JP2023109155A - 斜め控え支持杭式矢板岸壁 - Google Patents
斜め控え支持杭式矢板岸壁 Download PDFInfo
- Publication number
- JP2023109155A JP2023109155A JP2022201063A JP2022201063A JP2023109155A JP 2023109155 A JP2023109155 A JP 2023109155A JP 2022201063 A JP2022201063 A JP 2022201063A JP 2022201063 A JP2022201063 A JP 2022201063A JP 2023109155 A JP2023109155 A JP 2023109155A
- Authority
- JP
- Japan
- Prior art keywords
- pile
- sheet pile
- push
- wall
- length
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 239000000463 material Substances 0.000 claims abstract description 95
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 claims description 34
- 238000010276 construction Methods 0.000 abstract description 13
- 238000005452 bending Methods 0.000 description 28
- 230000008859 change Effects 0.000 description 26
- 230000001133 acceleration Effects 0.000 description 19
- 238000004088 simulation Methods 0.000 description 18
- 238000013461 design Methods 0.000 description 13
- 238000004458 analytical method Methods 0.000 description 12
- 238000000034 method Methods 0.000 description 9
- 229910000831 Steel Inorganic materials 0.000 description 7
- 239000010959 steel Substances 0.000 description 7
- 230000000052 comparative effect Effects 0.000 description 5
- 238000007796 conventional method Methods 0.000 description 5
- 230000009471 action Effects 0.000 description 4
- 238000010586 diagram Methods 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 4
- 230000036962 time dependent Effects 0.000 description 4
- 238000006243 chemical reaction Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 238000002485 combustion reaction Methods 0.000 description 2
- 238000006073 displacement reaction Methods 0.000 description 2
- 230000001747 exhibiting effect Effects 0.000 description 2
- 230000010354 integration Effects 0.000 description 2
- 230000003993 interaction Effects 0.000 description 2
- 230000007246 mechanism Effects 0.000 description 2
- 230000004044 response Effects 0.000 description 2
- 239000002689 soil Substances 0.000 description 2
- 238000009933 burial Methods 0.000 description 1
- 238000004364 calculation method Methods 0.000 description 1
- 239000004567 concrete Substances 0.000 description 1
- 230000010485 coping Effects 0.000 description 1
- 230000002596 correlated effect Effects 0.000 description 1
- 238000009795 derivation Methods 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 230000007774 longterm Effects 0.000 description 1
- 239000011513 prestressed concrete Substances 0.000 description 1
- 239000011150 reinforced concrete Substances 0.000 description 1
- 238000011160 research Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02A—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
- Y02A10/00—TECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE at coastal zones; at river basins
- Y02A10/11—Hard structures, e.g. dams, dykes or breakwaters
Landscapes
- Revetment (AREA)
Abstract
Description
控え杭の形式としては、特許文献1の図7に示されるように、杭を鉛直方向に沿って打設する控え直杭式や、特許文献2の図1に示されるように、斜めに打設した杭を頭部で結合する控え組杭式がある。一般的に、当該控え組杭式は、地震などによる矢板式岸壁の背面土圧の影響による海側への変位により、押し込まれる側を押し込み杭、引き抜かれる側を引き抜き杭と呼んでいる。控え組杭式は、構造が複雑であり工費も控え直杭式と比較すると高いことから、採用例は少ない。
第1に、矢板壁と控え杭頭部の距離は比較的短く設定される。矢板壁背後の主働崩壊面の背後に控え杭を設置することで、控え工には地盤変位の影響がなく、かつ工費を節減できる。
第2に、押し込み杭は、引き抜き杭と比較して同じ長さか、または短く設定される。また、工学的基盤まで根入れされることはほとんどない。これは杭に作用する軸力に対して杭先端の地盤支持力と杭周面の摩擦力で抵抗すればよいためである。引き抜き杭の方は先端支持力を見込むことができないので、杭周面摩擦力を大きくするために杭長が長くなる傾向があるが、こちらも工学的基盤まで根入れされることはほとんどない。
以上はあくまでも慣習的な設計法の想定する耐震機構に基づくものであり、実際の耐震性評価という観点からは問題が多い。現行設計法で設計された岸壁が十分な耐震性を確保できていなかった例としては、2011年東北地方太平洋沖地震で、控え組杭式の仙台塩釜港の高砂2号岸壁(-14m)がはらみだしなどの被災を受け、基幹輸送が長期間にわたり途絶えるという支障が生じた例が挙げられる。
工学的基盤以浅の地盤は巨大地震動作用時には剛性が大きく低下する。このため、押し込み杭の先端支持力と周面摩擦力は設計で想定している値より大幅に低下する。
このほかの点として、控え工を控え組杭式にすることで、上述の通り、控え直杭式岸壁と比較すると工費が大きく増加する。
水深が10m以上の大水深の前記境に沿って矢板壁を備え、
前記矢板壁の陸側においてタイ材により前記矢板壁と繋がれた控え杭として、押し込み杭のみを備え、
前記押し込み杭の鉛直方向と成す角度としての傾斜角が10°以上45°以下であり、
前記押し込み杭の下端部が前記押し込み杭の直径長以上、工学的基盤に根入れされ、
前記タイ材の長さの下限値は、以下の〔式1〕または〔式2〕により算出される値のうち大きい方の値が設定され、レベル2地震動に対応可能とした点にある。
Lmin(H、α)=H×tanα+a・・・〔式1〕
Lmin(h)=2.70×h-23.60・・・〔式2〕
ただし、Hを前記矢板壁と前記タイ材との接続部から前記矢板壁の下端までの長さとし、αを前記傾斜角とし、aを前記矢板壁の下端と前記押し込み杭との水平距離とし、hを前記水深とする。
また、工学的基盤以浅の地盤は、巨大地震作用時には剛性が大きく低下するため水平地盤反力はほとんど期待できないが、上記特徴構成の如く、押し込み杭の下端部を工学的基盤にその直径長以上根入れすることで、巨大地震作用時にも大きな支持力が期待できる。
更に、工学的基盤以浅の地盤は、巨大地震作用時には剛性が大きく低下するものの重量は変化しないため、押し込み杭の上部に存在する地盤の重量が、タイ材張力などで押し込み杭に大きな曲げ変形が生じることを抑制する効果も期待できる。
因みに、押し込み杭は、その下端部を海側へ向けて打設された斜め杭で、地震動等の作用により押し込まれる杭を意味するものとする。
尚、上記特徴構成において、押し込み杭とは、筒状体、円柱又は角柱を含む柱状の杭に加え、押し込み杭が連続する壁状の押し込み壁を含むものとする。
以上より、工費の不要な増加を抑制して経済優位性を確保しながらも、巨大地震発生時においても大きな支持力を発揮できる。
Lmin(H、α)=H×tanα+a・・・〔式1〕
Lmin(h)=2.70×h-23.60・・・〔式2〕
ここで、Hは矢板壁とタイ材との接続部から矢板壁の下端までの長さとし、αを傾斜角とし、aは矢板壁の下端と押し込み杭との水平距離とし、hは水深とする。尚、aについては、後述する第2シミュレーションでは、零として計算している。水深hは、当該明細書では、標高として示される値の絶対値を意味するものとする。
タイ材の長さを、上記〔式1〕又は〔式2〕に基づいて算出される下限値Lmin以上に設定することで、矢板壁と押し込み杭とが互いに干渉しない条件としながらも、レベル2地震動のような巨大地震発生時においても、矢板壁の上端部の水平変形量を設計上許容し得る範囲に抑制して、十分な耐震性を確保可能な斜め控え支持杭式矢板岸壁を実現できる。
前記タイ材の長さの上限値は、以下の〔式3〕により算出される値が設定される点にある。
Lmax(h)=1.63×h+38.17・・・〔式3〕
そこで、本発明の発明者らは、タイ材の長さの上限値Lmaxを、地震動が入射した際に、矢板壁の上端部の水平変形量の変化率が1%となる値として第2シミュレーションを行い、当該上限値Lmaxが、水深hをパラメータとする〔式3〕にて表されるという知見を得た。
尚、変化率1%で収束とする例としては、以下の論文に例示されている(、K. Radhakrishnan, ”Comparison of Numerical Techniques for Integration of Stiff Ordinary Differential Equations Arising in Combustion Chemistry, NASA Technical Paper 2372, October 1984)。
以上の如く、タイ材の長さの上限値Lmaxを設定することにより、耐震性を十分に確保しつつも経済優位性を確保できる斜め控え支持杭式矢板岸壁を実現できる。
前記押し込み杭の前記傾斜角が10°以上40°以下である点にある。
説明を加えると、当該実施形態に係る控え工としては、従来、控え工として用いられる引き抜き杭又は直杭は、設けておらず、押し込み杭12のみを備えている。
押し込み杭12は、ちなみに、図1に示す構成例では、第1原地盤G1を貫通して第2原地盤G2へ根入れされている。
即ち、押し込み杭12が鉛直方向と成す角度としての傾斜角(図1でα)は、10°以上45°以下の角度に設定することができ、好ましくは、10°以上40°以下、より好ましくは、20°以上40°以下の角度に設定することができ、現場の状況により可能な範囲で大きな角度に設定することが好ましい。
ここで、当該実施形態に係る押し込み杭12には、巨大地震発生時等において、下端部12aよりも上方側の所定の範囲に高い曲げモーメントが発生することが想定される。
そこで、押し込み杭12は、下方側の下端部12aよりも上方側の大きな曲げモーメントが発生する範囲において相対的に剛性が高い高剛性部位(図示せず)を有する。説明を追加すると、押し込み杭12の高剛性部位は、他の部位よりも肉厚を厚く構成するなど剛性の高い部位により構成することができる。
平面視において、矢板壁10と押し込み杭12の上端部Kとの水平距離L1は、例えば、図13に示すように、原地盤Gに根入れされる直杭13と矢板壁10とをタイ材11にて繋ぐ岸壁構造300(控え直杭式)において、矢板壁10から引いた主働崩壊面Ss1と、直杭13の曲げモーメントが最初に零となる深さの1/3の点P0から引いた受働崩壊面Ss2がタイ材11において交差するときの直杭13の位置P(図13で矢板壁10から矢板壁10に直交する方向で距離Lpだけ離れた位置)に設定される。
ここで、直杭13の曲げモーメントが最初に零となる深さの1/3の点P0は、直杭13とタイ材11との接続部位としての上端部KよりもXだけ深い点である。
尚、前提として、タイ材11と押し込み杭12とは、略同一鉛直平面内にあるものとし、平面視において、矢板壁10はタイ材11と略直交するものとする。
尚、斜め控え支持杭式で、本発明に係るタイ材の長さL1については、後述する第2シミュレーションの結果に基づいて、控え直杭式とは異なる手法に基づいて設定される。
当該実施形態に係る斜め控え支持杭式矢板岸壁100(以下、本形式と表記する場合がある)と通常の控え直杭式矢板岸壁(以下、直杭式と表記する場合がある)の耐震性能を解析した結果を示す。
水深10m以上21m以下の大水深岸壁への適用性を検証する観点から、約中位の水深14m(標高としては、-14m)を用い、巨大地震作用時の地盤の非線形性を考慮して解析は2次元有限要素解析で行った。解析は構造物被害予測プログラム(FLIP)を用いて行い、当該FLIPは、港湾構造物の巨大地震作用時の地震応答の評価において標準的に用いられているものである。図2に本形式の断面図、図3に比較対象とする直杭式の断面図を示す。本形式の押し込み杭12の傾斜角αは30°とした。入力地震動は周期1秒の正弦波とした。当該周期は岸壁の変形に大きな影響を持つものとして設定した。最大加速度は3m/s2および4m/s2とした。最大加速度の値に対応して岸壁の変形量が変化するため、耐震性確保の観点から矢板壁10および控え杭(押し込み杭12及び直杭13)の諸元は最大加速度の値に応じて変化させている。
なお、上述のように直杭式の場合は、巨大地震動作用時に表層地盤で液状化が発生すると耐震性能の極端な低下を招くが、本形式は地盤の水平反力を期待しないため、特に表層地盤で液状化が発生したとしても大きな耐震性の低下にはつながらない。ただしこの例では、仮に液状化が発生しない条件においても提案する形式が有利であることを示すために、液状化は発生しない条件として解析を行っている。
矢板壁10の最大曲げモーメントや控え杭の最大曲げモーメントは、本形式と直杭式で同程度である。図中のM0が最大曲げモーメント、Mpが全塑性モーメントであり、曲げモーメントが全塑性モーメントに達することは設計上許容されない。この点、本形式では、矢板壁10の最大曲げモーメントや押し込み杭12の最大曲げモーメントは、設計上許容される範囲に収まっている。
残留水平変形量は本形式では87cm(図9でH2)、直杭式では135cm(図11でH2)であり、本形式の残留水平変形量は直杭式の値の64%であり、大きな違いがある。ちなみに、最大変形量は本形式では98cm(図9でH1)、直杭式では143cm(図11でH1)で最大変形量の比は約68%である。
矢板壁の最大曲げモーメントは本形式と直杭式で同程度である。控え杭の最大曲げモーメントは本形式の方が直杭式よりも大きいが、最大値は全塑性モーメント以下であり、設計上許容される範囲にとどまっている。
以上より、本形式は直杭式と比較すると、同程度の構造健全性の条件で、地震時の残留水平変形量を大幅に低減することが可能な形式であるといえる。上記の通り、岸壁の耐震性能は構造健全性と変形量によって判断されるため、本形式の方が有利であることが示された。
さて、当該実施形態に係る斜め控え支持杭式矢板岸壁100に関し、傾斜角、タイ材11の長さL1、水深に係る更なる第2シミュレーションを行ったので、以下にその結果を示す。
尚、当該第2シミュレーションにおいて、傾斜角は10°以上40°以下の範囲とした。一方、タイ材11の長さL1は、第1関係においては、10m以上70m以下の範囲とした。第2関係においては、10mと20mとの間の変化率は15mのものとし、60mと70mとの間の変化率は65mのものとしている。このため、タイ材11の長さL1は、15m以上65m以下の範囲とした。第3関係においては、タイ材11の長さが10mのときは、傾斜角が10°の場合しか結果が得られていないため、20m以上70m以下の範囲とした。
以下、幾つかのケースを、上述した第1~第3関係を示すグラフ図に基づいて説明する。
例えば、ケース2においては、タイ材11の長さL1と矢板壁10の上端部の水平変形量との第1関係として図14が得られ、タイ材11の長さL1と矢板壁10の上端部の水平変形量の変化率との第2関係としては図15が得られ、傾斜角αと矢板壁10の上端部の水平変形量との第3関係としては図16が得られた。尚、それぞれのグラフにおいて、矢板壁10と押し込み杭12との干渉により、データが得られていないために、データ点が図示されていない箇所がある。
まず、タイ材11の長さL1の下限値については、地震動が入力された際に、矢板壁10の上端部の水平変形量を1m以下に抑えることが、要求される耐震性を満足する基準になる。
タイ材11の長さL1と矢板10の上端部の水平変形量との第1関係である図14において、傾斜角αが10°~40°のすべてが、矢板壁10の上端部の水平変形量が1m(閾値Ls1)以下となるタイ材11の長さL1の下限値Lminは、14.3mとなる。尚、図14に示すように、工学的基盤に根入れされた本発明に係る押し込み杭は、すべての傾斜角において、工学的基盤に根入れされない直杭の場合にくらべて、矢板壁10の上端部の水平変形量が抑えられている。
一方で、タイ材11の長さL1の上限値については、地震動が入力された際に、矢板壁10の上端部の水平変形量の変化率が1%となる値としている。尚、変化率1%で収束とする例としては、以下の論文に例示されている(K. Radhakrishnan, 「Comparison of Numerical Techniques for Integration of Stiff Ordinary Differential Equations Arising in Combustion Chemistry, NASA Technical Paper 2372, October 1984」)。
タイ材11の長さL1と矢板10の上端部の水平変形量の変化率との第2関係である図15において、傾斜角10°以上40°以下のすべてが、矢板壁10の上端部の水平変形量の変化率が1%となる閾値Ls2以下となるタイ材11の長さL1の上限値Lmaxは、53.82mである。
次に、ケース2において、傾斜角αと矢板10の上端部の水平変形量との第3関係は、図16に示されるように、傾斜角が10°以上の範囲では、傾斜角が大きくなるほど、矢板壁10の上端部の水平変形量が小さくなり、耐震性が向上することが看取できる。
尚、ケース1~36に関し、上述した通りの導出方法にて導出したタイ材11の長さL1の下限値Lmin及び上限値Lmaxは、〔表8〕~〔表10〕に示す通りとなっている。
次に、ケース1に関し、タイ材11の長さL1と矢板10の上端部の水平変形量との第1関係を図17に、タイ材11の長さL1と矢板10の上端部の水平変形量の変化率との第2関係を図18に、傾斜角αと矢板10の上端部の水平変形量との第3関係を図19に示す。
尚、第1関係、第2関係、第3関係の何れについても、傾向としては、ケース2と同様である。
ここで、特に、タイ材11の長さL1と矢板10の上端部の水平変形量との第1関係について、説明を加えると、図17に示すように、当該ケース1では、傾斜角αが10°以上40°以下のすべてが、第2シミュレーションにおけるタイ材11の長さL1の範囲の10m以上65m以下で、矢板壁10の上端部の水平変形量が1mとなる閾値Ls1を超えていない。このような場合、タイ材11の長さL1の下限値Lminは、10m未満となることを意味するものとして、以下の〔表8〕~〔表10〕において、Lxとして示しており、更に、ケース1~16のタイ材11の長さL1の下限値Lminをプロットした図26では、プロットしていない。
次に、ケース24に関し、タイ材11の長さL1と矢板10の上端部の水平変形量との第1関係を図20に、タイ材11の長さL1と矢板10の上端部の水平変形量変化率との第2関係を図21に、傾斜角αと矢板10の上端部の水平変形量との第3関係を図22に示す。
尚、第1関係、第2関係、第3関係の何れについても、傾向としては、ケース2と同様であるが、当該ケース24は、ケース2に比べ、地盤固有周期が0.6sと小さく比較的硬質な地盤であるものの、水深が21mと深くなっているため、ケース2に比べて、タイ材11の長さL1の下限値Lminが50mと長くなっている。
ここで、特に、タイ材11の長さL1と矢板10の上端部の水平変形量変化率との第2関係について、説明を加えると、当該ケース24では、傾斜角αが10°以上40°以下のすべてが、第2シミュレーションにおけるタイ材11の長さL1の範囲の10m以上65m以下で、矢板壁10の上端部の水平変形量の変化率が1%(閾値Ls2)以下となっていない。このような場合、タイ材11の長さL1の上限値Lmaxは、65mを超えることを意味するものとして、以下の〔表8〕~〔表10〕において、Lyとして示しており、更に、ケース1~16のタイ材11の長さL1の上限値Lmaxをプロットした図27では、プロットしていない。
次に、ケース34に関し、タイ材11の長さL1と矢板10の上端部の水平変形量との第1関係を図23に、タイ材11の長さL1と矢板10の上端部の水平変形量の変化率との第2関係を図24に、傾斜角αと矢板10の上端部の水平変形量との第3関係を図25に示す。
尚、第1関係、第2関係、第3関係の何れについても、傾向としては、ケース2と同様であるが、当該ケース34は、ケース2に比べ、地盤固有周期が1.2sと大きく比較的地盤は軟弱であり、水深も14mと深くなっているため、ケース2に比べて、タイ材11の長さL1の下限値Lminが41.82mと長くなっている。
さて、ケース1~36の夫々の条件で算出されたタイ材11の長さL1の下限値Lminを、横軸を水深hとしてプロットしたものを図26に示す。
図26に示されるように、ケース1~36は、地盤固有周期と工学的基盤のPSI値とが共通するグループとして、ケース1~6の第1グループと、ケース7~12の第2グループと、ケース13~18の第3グループと、ケース19~24の第4グループと、ケース25~30の第5グループと、ケース31~36の第6グループとに分けられる。
当該実施形態においては、水深hをパラメータとしたタイ材11の長さL1の下限値Lminを導出するのに際し、図26に示される最も小さい値を示す第3グループのプロット群のデータを最小二乗近似して傾きを求めると共に、当該傾きの直線で切片が最も小さくなる第3グループのプロットを通る直線に係る式(以下の〔式2〕)を、タイ材11の長さL1の下限値Lminとする。
ただし、Hを矢板壁10とタイ材11との接続部から矢板壁10の下端までの長さとし、αを傾斜角とし、hを水深とする。aを矢板壁10の下端と押し込み杭12との水平距離とする。尚、当該シミュレーションでは、aは零としている。
ケース1~36の夫々の条件で算出されたタイ材11の長さL1の上限値Lmaxを、横軸を水深hとしてプロットしたものを図27に示す。
図27に示されるように、ケース1~36は、地盤固有周期と工学的基盤のPSI値とが共通するグループとして、ケース1~6の第1グループと、ケース7~12の第2グループと、ケース13~18の第3グループと、ケース19~24の第4グループと、ケース25~30の第5グループと、ケース31~36の第6グループとに分けられる。
当該実施形態においては、水深hをパラメータとしたタイ材11の長さL1の上限値Lmaxを導出するのに際し、図27に示される最も大きい値を示す第6グループのプロット群のデータを最小二乗近似して傾きを求めると共に、当該傾きの直線で切片が最も大きくなる第6グループのプロットを通る直線に係る式(以下の〔式3〕)を、タイ材11の長さL1の上限値Lmaxとする。
傾斜角αの範囲は、傾斜角が10°以上の範囲では、傾斜角が大きくなるほど、矢板壁10の上端部の水平変形量が小さくなり、耐震性が向上することが看取できる。尚、45°より大きい範囲では、技術的に施工が困難であるため、上限を45°とする。
さて、水深については、地震動の最大加速度が300Galのときに、押し込み杭の傾斜角を10°、20°、30°、40°とした斜め控え支持杭式で、本発明の〔式1〕または〔式2〕にて算出される下限値であるタイ材11の長さL1に設定した場合と、控え直杭式で、従来手法により設定されたタイ材11の長さL1に設定した場合とにおいて、夫々の水深における矢板壁の上端部の水平変形量を比較すると、図28に示すように、水深10m以上21m以下の範囲において、従来手法に比べ、本発明のほうが、矢板壁の上端部の水平変形量を抑制できていることがわかる。
これは、図29に示されるように、地震動の最大加速度が400Galの場合でも同様である。
従って、本発明においては、適用される水深の範囲は、10m以上21m以下とする。より好ましくは、水深10m以上20m以下とする。
図14、16に係る値は〔表11〕に示し、図15に係る値は〔表12〕に示し、図17、19に係る値は〔表13〕に示し、図18に係る値は〔表14〕に示し、図20、22に係る値は〔表15〕に示し、図21に係る値は〔表16〕に示し、図23、25に係る値は〔表17〕に示し、図24に係る値は〔表18〕に示し、図28に係る値は〔表19〕に示し、図29に係る値は〔表20〕に示している。
尚、〔表11〕に示す値のうち、直杭に関する値等については、示すデータの性質上、図16に示していない。同様に、〔表13〕に示す値のうち、直杭に関する値等については図19に示しておらず、〔表15〕に示す値のうち、直杭に関する値等については図22に示していない。
(1)上記実施形態では、押し込み杭12は、下端部12aよりも上方側において剛性が高められる高剛性部位(図示せず)を有する構成例を示したが、当該高剛性部位は、必ずしも設けなくても構わない。
11 :タイ材
12 :押し込み杭
12a :下端部
20 :直杭
100 :杭式矢板岸壁
a :矢板壁の下端と押し込み杭との水平距離
G2 :第2原地盤
h :水深
H :矢板壁とタイ材との接続部から矢板壁の下端までの長さ
K :上端部
L1 :距離
Lp :距離
S :海
Ss1 :主働崩壊面
Ss2 :受働崩壊面
α :傾斜角
Claims (3)
- 海と陸との境に設けられる斜め控え支持杭式矢板岸壁であって、
水深が10m以上の大水深の前記境に沿って矢板壁を備え、
前記矢板壁の陸側においてタイ材により前記矢板壁と繋がれた控え杭として、押し込み杭のみを備え、
前記押し込み杭の鉛直方向と成す角度としての傾斜角が10°以上45°以下であり、
前記押し込み杭の下端部が前記押し込み杭の直径長以上、工学的基盤に根入れされ、
前記タイ材の長さの下限値は、以下の〔式1〕または〔式2〕により算出される値のうち大きい方の値が設定され、レベル2地震動に対応可能とした斜め控え支持杭式矢板岸壁。
Lmin(H、α)=H×tanα+a・・・〔式1〕
Lmin(h)=2.70×h-23.60・・・〔式2〕
ただし、Hを前記矢板壁と前記タイ材との接続部から前記矢板壁の下端までの長さとし、αを前記傾斜角とし、aを前記矢板壁の下端と前記押し込み杭との水平距離とし、hを前記水深とする。 - 前記タイ材の長さの上限値は、以下の〔式3〕により算出される値が設定される請求項1に記載の斜め控え支持杭式矢板岸壁。
Lmax(h)=1.63×h+38.17・・・〔式3〕 - 前記押し込み杭の前記傾斜角が10°以上40°以下である請求項1又は2に記載の斜め控え支持杭式矢板岸壁。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2022010157A JP7226725B1 (ja) | 2022-01-26 | 2022-01-26 | 斜め控え支持杭式矢板岸壁 |
JP2022010157 | 2022-01-26 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP7229498B1 JP7229498B1 (ja) | 2023-02-28 |
JP2023109155A true JP2023109155A (ja) | 2023-08-07 |
Family
ID=85252021
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022010157A Active JP7226725B1 (ja) | 2022-01-26 | 2022-01-26 | 斜め控え支持杭式矢板岸壁 |
JP2022201063A Active JP7229498B1 (ja) | 2022-01-26 | 2022-12-16 | 斜め控え支持杭式矢板岸壁 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022010157A Active JP7226725B1 (ja) | 2022-01-26 | 2022-01-26 | 斜め控え支持杭式矢板岸壁 |
Country Status (1)
Country | Link |
---|---|
JP (2) | JP7226725B1 (ja) |
Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4835617A (ja) * | 1971-09-08 | 1973-05-25 | ||
JPH1088587A (ja) * | 1996-09-13 | 1998-04-07 | Taisei Corp | 構造物基礎の地盤側方流動圧に対する抵抗構造 |
JPH11323872A (ja) * | 1998-05-14 | 1999-11-26 | Toyo Constr Co Ltd | 矢板式岸壁の改造方法 |
JP2003287574A (ja) * | 2002-03-28 | 2003-10-10 | System Soft Corp | 地震被害予測システム、方法、およびプログラム |
JP2004244983A (ja) * | 2003-02-17 | 2004-09-02 | Nippon Steel Corp | 中詰材を有する壁体構造物 |
JP2011043047A (ja) * | 2010-11-29 | 2011-03-03 | Ohbayashi Corp | 既設重力式岸壁の改修補強構造 |
JP2013014962A (ja) * | 2011-07-05 | 2013-01-24 | Nippon Steel & Sumitomo Metal | 堤防の補強構造 |
JP2015017463A (ja) * | 2013-07-12 | 2015-01-29 | 強化土株式会社 | 液状化対策工法及び液状化対策改良地盤 |
JP2015117563A (ja) * | 2013-12-20 | 2015-06-25 | 五洋建設株式会社 | 既設構造物を補強する工法および構造物 |
JP2017078265A (ja) * | 2015-10-19 | 2017-04-27 | 新日鐵住金株式会社 | 岸壁・護岸構造および岸壁・護岸の構築方法 |
JP2021008720A (ja) * | 2019-06-28 | 2021-01-28 | 国立大学法人神戸大学 | ケーソン、ニューマチックケーソン工法及び構造物 |
-
2022
- 2022-01-26 JP JP2022010157A patent/JP7226725B1/ja active Active
- 2022-12-16 JP JP2022201063A patent/JP7229498B1/ja active Active
Patent Citations (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4835617A (ja) * | 1971-09-08 | 1973-05-25 | ||
JPH1088587A (ja) * | 1996-09-13 | 1998-04-07 | Taisei Corp | 構造物基礎の地盤側方流動圧に対する抵抗構造 |
JPH11323872A (ja) * | 1998-05-14 | 1999-11-26 | Toyo Constr Co Ltd | 矢板式岸壁の改造方法 |
JP2003287574A (ja) * | 2002-03-28 | 2003-10-10 | System Soft Corp | 地震被害予測システム、方法、およびプログラム |
JP2004244983A (ja) * | 2003-02-17 | 2004-09-02 | Nippon Steel Corp | 中詰材を有する壁体構造物 |
JP2011043047A (ja) * | 2010-11-29 | 2011-03-03 | Ohbayashi Corp | 既設重力式岸壁の改修補強構造 |
JP2013014962A (ja) * | 2011-07-05 | 2013-01-24 | Nippon Steel & Sumitomo Metal | 堤防の補強構造 |
JP2015017463A (ja) * | 2013-07-12 | 2015-01-29 | 強化土株式会社 | 液状化対策工法及び液状化対策改良地盤 |
JP2015117563A (ja) * | 2013-12-20 | 2015-06-25 | 五洋建設株式会社 | 既設構造物を補強する工法および構造物 |
JP2017078265A (ja) * | 2015-10-19 | 2017-04-27 | 新日鐵住金株式会社 | 岸壁・護岸構造および岸壁・護岸の構築方法 |
JP2021008720A (ja) * | 2019-06-28 | 2021-01-28 | 国立大学法人神戸大学 | ケーソン、ニューマチックケーソン工法及び構造物 |
Also Published As
Publication number | Publication date |
---|---|
JP7229498B1 (ja) | 2023-02-28 |
JP2023108872A (ja) | 2023-08-07 |
JP7226725B1 (ja) | 2023-02-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5471797B2 (ja) | 護岸構造及び既設護岸構造の耐震補強構造 | |
Golightly | Tilting of monopiles long, heavy and stiff; pushed beyond their limits | |
Sluis et al. | Modelling of a pile row in a 2D plane strain FE-analysis | |
JP2010150787A (ja) | 桟橋の補強構造、補強方法 | |
Jalbi et al. | Minimum foundation size and spacing for jacket supported offshore wind turbines considering dynamic design criteria | |
JP2021063404A (ja) | 既存岸壁の改良構造及び改良方法 | |
JP7229498B1 (ja) | 斜め控え支持杭式矢板岸壁 | |
JP5919620B2 (ja) | 鋼管矢板式係船岸およびその設計方法 | |
Bilgin et al. | Analysis of anchored sheet pile wall deformations | |
JP2014221991A (ja) | 鋼製矢板締切構造およびその施工方法 | |
Zhao et al. | Seismic analysis of integral abutment bridges including soil-structure interaction | |
JP6206528B2 (ja) | 鋼製矢板締切構造およびその施工方法 | |
Hanssen | Small strain overlay to the API py curves for sand | |
Kardoğan et al. | Review of liquefaction around marine and pile-supported wharf structures | |
JP5983436B2 (ja) | 重力式防波堤 | |
Kim et al. | Numerical analysis of cluster and monopod suction bucket foundation | |
Bhattacharya et al. | Learning from collapse of piles in liquefiable soils | |
Abdel-Fattah et al. | Analysis of the behavior of inclined anchor by varying the inclination and elevation of tie | |
Iai | Seismic performance-based design of port structures and simulation techniques | |
Bryson et al. | Direct approach for designing an excavation support system to limit ground movements | |
JP2012021346A (ja) | 摩擦杭基礎構造 | |
Priyadarsini et al. | Design of Pile Foundation System for Wharf Structure in Liquefiable Soils | |
Raman et al. | Settlement prediction of pile-supported structures in Liquefiable soils during earthquake | |
George et al. | Effect of Soil-Pile-Structure Interaction on Behaviour of Offshore Jacket Structure | |
Detert et al. | On the seismic performance of geosynthetic reinforced earth structures |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A821 Effective date: 20221219 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230113 |
|
A871 | Explanation of circumstances concerning accelerated examination |
Free format text: JAPANESE INTERMEDIATE CODE: A871 Effective date: 20230113 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20230131 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20230207 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7229498 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |