JP2023093715A - Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder - Google Patents

Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder Download PDF

Info

Publication number
JP2023093715A
JP2023093715A JP2023073564A JP2023073564A JP2023093715A JP 2023093715 A JP2023093715 A JP 2023093715A JP 2023073564 A JP2023073564 A JP 2023073564A JP 2023073564 A JP2023073564 A JP 2023073564A JP 2023093715 A JP2023093715 A JP 2023093715A
Authority
JP
Japan
Prior art keywords
powder
fluorescent powder
inorganic fluorescent
composite powder
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2023073564A
Other languages
Japanese (ja)
Inventor
真佐人 岡
Masato Oka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohto Pharmaceutical Co Ltd
Original Assignee
Rohto Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohto Pharmaceutical Co Ltd filed Critical Rohto Pharmaceutical Co Ltd
Priority to JP2023073564A priority Critical patent/JP2023093715A/en
Publication of JP2023093715A publication Critical patent/JP2023093715A/en
Pending legal-status Critical Current

Links

Images

Abstract

To provide a novel method for enhancing fluorescence intensity of an inorganic phosphor, and an inorganic phosphor having enhanced fluorescence intensity, obtained by using the method, and an external composition for skin containing the same.SOLUTION: At least a part of the surface of inorganic fluorescent powder is coated with non-fluorescent powder, to enhance fluorescence intensity of the inorganic fluorescent powder.SELECTED DRAWING: Figure 1

Description

本発明は、無機蛍光粉体と非蛍光粉体の複合粉体、それを含有する皮膚外用組成物、及び無機蛍光粉体の蛍光強度増強方法に関する。 TECHNICAL FIELD The present invention relates to a composite powder of an inorganic fluorescent powder and a non-fluorescent powder, an external composition for skin containing the same, and a method for enhancing the fluorescence intensity of the inorganic fluorescent powder.

化粧料では、目的に応じて様々な粉体が含有されている。特にメーキャップ化粧料や日焼け止め化粧料においては、粉体によってツヤ感、ソフトフォーカス性、色補正、紫外線防御能等の効果を付与することが一般的である。 Cosmetics contain various powders depending on the purpose. Especially in makeup cosmetics and sunscreen cosmetics, powders are generally used to impart effects such as luster, soft focus, color correction, and UV protection.

粉体の中で、蛍光粉体は、一般にディスプレイや照明、遊具や塗料等の用途に使用されているが、化粧料においてもメーキャップ効果を高める目的で使用されている。例えば、化粧料に蛍光粉体を用いることで、ソフトフォーカス性等の付与だけでなく、蛍光色による色補正効果の付与もできる。 Among powders, fluorescent powders are generally used for applications such as displays, lighting, playground equipment and paints, and are also used in cosmetics for the purpose of enhancing the makeup effect. For example, by using fluorescent powder in cosmetics, it is possible not only to impart soft focus properties, but also to impart color correction effects using fluorescent colors.

特許文献1では無機蛍光粉体であるアルミネート複合酸化物を含有させることでソフトフォーカス性を向上させた化粧料が開示されている。特許文献2では非晶質シリカ粒子を含んだ青色蛍光粉体が開示されており、化粧料への適用についても記載されている。しかし、特許文献1や特許文献2に記載されている蛍光粉体は発光強度が十分でないため、化粧料として効果を発揮するには配合量を多くする必要があった。また、これらの蛍光粉体はソフトフォーカス性が高いため、ツヤ感を高める効果をもたせた化粧料には不向きであった。 Patent Literature 1 discloses a cosmetic having improved soft focus properties by containing an aluminate composite oxide, which is an inorganic fluorescent powder. Patent Document 2 discloses a blue fluorescent powder containing amorphous silica particles, and also describes its application to cosmetics. However, since the fluorescent powders described in Patent Documents 1 and 2 do not have sufficient luminous intensity, it was necessary to increase the amount of the powders to be effective as cosmetics. In addition, since these fluorescent powders have a high soft-focus property, they are not suitable for cosmetics intended to enhance glossiness.

そのような中、蛍光粉体において、その蛍光強度を増強させることで、メーキャップ効果を高める技術が開発されている。例えば特許文献3には、無機蛍光粉体と他の粉体を含有させることで発光強度がより効果的に高められた化粧料が開示されている。しかし、この文献に記載の技術では、蛍光粉体の蛍光強度の増強効果が不十分である場合がある。 Under such circumstances, techniques have been developed to enhance the makeup effect by increasing the fluorescence intensity of fluorescent powders. For example, Patent Literature 3 discloses a cosmetic in which an inorganic fluorescent powder and other powder are contained to effectively increase the luminous intensity. However, with the technique described in this document, the effect of enhancing the fluorescence intensity of the fluorescent powder may be insufficient.

一方、化粧料分野においては様々な複合粉体が使用されており、複合化する粉体の組み合わせ等により、様々な化粧料効果が得られることが知られている。例えば特許文献4では無機粉体上に特定の方法でシリカを複合化することでソフトフォーカス効果を高めた複合粉体が開示されている。特許文献5では窒化ホウ素に金属酸化物を複合化することでツヤを高めた複合粉体が開示されている。 On the other hand, various composite powders are used in the field of cosmetics, and it is known that various cosmetic effects can be obtained by combining composite powders. For example, Patent Document 4 discloses a composite powder in which a soft focus effect is enhanced by forming a composite of silica on an inorganic powder by a specific method. Patent Literature 5 discloses a composite powder in which gloss is enhanced by compounding boron nitride with a metal oxide.

しかし特許文献4、5においては、蛍光粉体に関する記述は一切なく、蛍光粉体の蛍光強度を増強するという課題は、これらの文献を参考にしても解決することができない。また、色補正効果についても何ら記載されていない。 However, in Patent Documents 4 and 5, there is no description about fluorescent powders, and the problem of enhancing the fluorescence intensity of fluorescent powders cannot be solved even by referring to these documents. Also, there is no description of the color correction effect.

特開2014-5255号公報JP 2014-5255 A 特開2016-141780号公報JP 2016-141780 A 国際公開公報2017/142057号International Publication No. 2017/142057 特開2015-113306号公報JP 2015-113306 A 特開2011-236137号公報JP 2011-236137 A

本発明は、無機蛍光体の蛍光強度の新規増強方法、この方法を用いて得られた蛍光強度が増強された無機蛍光体、それを含有する化粧料を提供することを目的とする。 An object of the present invention is to provide a novel method for enhancing the fluorescence intensity of an inorganic phosphor, an inorganic phosphor with enhanced fluorescence intensity obtained by this method, and a cosmetic containing the same.

本発明者は上記課題を解決するために鋭意検討した結果、無機蛍光粉体の表面の少なくとも一部に非蛍光粉体を被覆させることで蛍光強度が増強することを見出した。 As a result of intensive studies aimed at solving the above problems, the present inventors have found that the fluorescence intensity is enhanced by coating at least part of the surface of the inorganic fluorescent powder with a non-fluorescent powder.

即ち、本発明の要旨は以下の通りである。 That is, the gist of the present invention is as follows.

[1]少なくともa)無機蛍光粉体の表面の一部を、b)非蛍光粉体が被覆していることを特徴とする複合粉体。
[2]a)無機蛍光粉体の有する蛍光波長が、440nm~520nm又は640nm~700nmの範囲内であることを特徴とする[1]に記載の複合粉体。
[3]a)無機蛍光粉体が、結晶母体及び/又は賦活剤としてAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Si(ケイ素)、Mn(マンガン)、Ca(カルシウム)、Ti(チタン)、Ce(セリウム)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される少なくとも1種以上の元素を含有していることを特徴とする[1]又は[2]に記載の複合粉体。
[4]a)無機蛍光粉体が、酸化(Al/Ca/マンガン)、酸化(Mg/マンガン/チタン)、酸化亜鉛蛍光体、及び、リン酸(Ca/セリウム)からなる群より選択される少なくとも1種であることを特徴とする[1]~[3]のいずれか記載の複合粉体。
[5]b)非蛍光粉体が、酸化チタン、非蛍光性酸化亜鉛、酸化鉄、酸化アルミニウム(アルミナ)、及び、シリカからなる群より選択される少なくとも1種であることを特徴とする[1]~[4]のいずれか記載の複合粉体。
[6]a)無機蛍光粉体の粒子径が、1μm以上200μm以下であることを特徴とする、[1]~[5]のいずれか記載の複合粉体。
[7]b)非蛍光粉体の粒子径が、1nm以上100nm以下であることを特徴とする、[1]~[6]のいずれか記載の複合粉体。
[8]複合粉体におけるa)無機蛍光粉体とb)非蛍光粉体の比率が、a成分:b成分=95(重量%):5(重量%)~70(重量%):30(重量%)であることを特徴とする、[1]~[7]のいずれか記載の複合粉体。
[9]皮膚外用組成物用である、[1]~[8]のいずれか記載の複合粉体。
[10][1]~[9]のいずれか記載の複合粉体を含有する、皮膚外用組成物。
[11]a)無機蛍光粉体の表面の一部をb)非蛍光粉体で被覆することを特徴とする、無機蛍光粉体の蛍光強度増強方法。
[1] A composite powder, characterized in that at least a) part of the surface of an inorganic fluorescent powder is coated with b) a non-fluorescent powder.
[2] a) The composite powder according to [1], wherein the fluorescence wavelength of the inorganic fluorescent powder is in the range of 440 nm to 520 nm or 640 nm to 700 nm.
[3] a) The inorganic fluorescent powder contains Al (aluminum), Zn (zinc), Mg (magnesium), Si (silicon), Mn (manganese), Ca (calcium), Ti as a crystal matrix and/or an activator. (titanium), Ce (cerium), Ba (barium), O (oxygen), P (phosphorus), and S (sulfur). The composite powder according to [1] or [2].
[4] a) the inorganic phosphor powder is selected from the group consisting of oxide (Al/Ca/manganese), oxide (Mg/manganese/titanium), zinc oxide phosphor, and phosphoric acid (Ca/cerium) The composite powder according to any one of [1] to [3], which is at least one kind.
[5] b) The non-fluorescent powder is at least one selected from the group consisting of titanium oxide, non-fluorescent zinc oxide, iron oxide, aluminum oxide (alumina), and silica [ 1] The composite powder according to any one of [4].
[6] a) The composite powder according to any one of [1] to [5], wherein the inorganic fluorescent powder has a particle size of 1 μm or more and 200 μm or less.
[7] b) The composite powder according to any one of [1] to [6], wherein the non-fluorescent powder has a particle size of 1 nm or more and 100 nm or less.
[8] The ratio of a) inorganic fluorescent powder and b) non-fluorescent powder in the composite powder is a component: b component = 95 (% by weight): 5 (% by weight) to 70 (% by weight): 30 ( % by weight), the composite powder according to any one of [1] to [7].
[9] The composite powder according to any one of [1] to [8], which is used as a composition for external use on skin.
[10] A composition for external use on the skin, containing the composite powder according to any one of [1] to [9].
[11] A method for enhancing the fluorescence intensity of an inorganic fluorescent powder, which comprises a) covering part of the surface of the inorganic fluorescent powder with b) a non-fluorescent powder.

本発明によれば、a)無機蛍光粉体の表面の少なくとも一部にb)非蛍光粉体を被覆させた複合粉体とすることで、a)無機蛍光粉体の蛍光強度を顕著に向上させることができる。また、a)無機蛍光粉体の表面の少なくとも一部にb)非蛍光粉体を被覆させた本発明の複合粉体は、優れた発光性を示すため、化粧料に含有させることで、よりメーキャップ効果の高い化粧料を提供することができる。 According to the present invention, by forming a composite powder in which at least a part of the surface of a) an inorganic fluorescent powder is coated with b) a non-fluorescent powder, a) the fluorescence intensity of the inorganic fluorescent powder is remarkably improved. can be made In addition, the composite powder of the present invention, in which at least part of the surface of a) the inorganic fluorescent powder is coated with b) the non-fluorescent powder, exhibits excellent luminescence. A cosmetic having a high makeup effect can be provided.

実施例1の無機蛍光複合粉体の走査型電子顕微鏡画像である。1 is a scanning electron microscope image of the inorganic fluorescent composite powder of Example 1. FIG. 比較例2の無機蛍光粉体混合物の走査型電子顕微鏡画像である。4 is a scanning electron microscope image of the inorganic fluorescent powder mixture of Comparative Example 2. FIG.

以下、本発明について詳細に説明する。なお、本明細書中で使用される用語は、特に言及しない限り、当該技術分野で通常用いられる意味で解釈される。 The present invention will be described in detail below. In addition, the terms used in this specification are interpreted as meanings commonly used in the technical field unless otherwise specified.

また、本明細書中で使用される%は、特に言及しない限り重量%を指す。 Also, % used in this specification refers to % by weight unless otherwise specified.

<複合粉体>
本発明の複合粉体は、少なくともa)無機蛍光粉体の表面の一部をb)非蛍光粉体が被覆していることを特徴とする。ここで、被覆とは、a)無機蛍光粉体の表面の少なくとも一部をb)非蛍光粉体が覆っていることを意味し、a)無機蛍光粉体の表面の一部を覆っている場合、a)無機蛍光粉体の表面の全部を覆っている場合のいずれも含む。本願発明の複合粉体の被覆率は30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。
<Composite powder>
The composite powder of the present invention is characterized in that at least part of the surface of a) inorganic fluorescent powder is covered with b) non-fluorescent powder. Here, the term “coated” means that a) at least part of the surface of the inorganic fluorescent powder is covered with b) the non-fluorescent powder, and a) part of the surface of the inorganic fluorescent powder is covered. The case a) includes both cases in which the entire surface of the inorganic fluorescent powder is covered. The coverage of the composite powder of the present invention is preferably 30% or more, more preferably 40% or more, even more preferably 50% or more.

本願発明における被覆率とは、a)無機蛍光粉体の表面積に対する、a)無機蛍光粉体の表面積と複合粉体における被覆されていない表面の表面積の差の割合のことであり、下記のような式で表すことができる。

Figure 2023093715000002
The coverage ratio in the present invention is the ratio of the difference between the surface area of a) the inorganic fluorescent powder and the surface area of the uncoated surface of the composite powder with respect to the surface area of the inorganic fluorescent powder. can be expressed as
Figure 2023093715000002

被覆率を求める方法としては、例えば、走査型電子顕微鏡観察画像において複合粉体の表面を観察し、複合粉体の表面全体と、b)非蛍光粉体が被覆されていない面の表面積を画像解析等により求め、上記式により各複合粉体の被覆率を算出し、複数の複合粉体の被覆率の平均値を本発明における複合粉体の被覆率とすることができる。 As a method for obtaining the coverage, for example, the surface of the composite powder is observed in a scanning electron microscope observation image, and the entire surface of the composite powder and b) the surface area of the surface not covered with the non-fluorescent powder are imaged. The coverage ratio of each composite powder is calculated by the above formula, and the average value of the coverage ratios of a plurality of composite powders can be used as the coverage ratio of the composite powder in the present invention.

本発明で用いられるa)無機蛍光粉体は、蛍光特性を有する無機粉体であればよく、形状、大きさは限定されない。 The a) inorganic fluorescent powder used in the present invention is not limited in shape and size as long as it is an inorganic powder having fluorescent properties.

a)無機蛍光粉体としては、蛍光特性を有する無機粉体であればよく、結晶母体単体で蛍光特性を有する賦活剤を含まない無機蛍光粉体でも、結晶母体と賦活剤(不純物)からなる賦活型蛍光体でもよい。本明細書における結晶母体とは、結晶体でも非晶体でもよい。また、それ以外の賦活剤等を含んでも、含まなくてもよく、賦活剤等を含まない場合においても通常用いられる結晶体及び非晶体と同等の意味で用いられる。結晶母体としては、金属酸化物、リン酸化合物、金属硫化物、金属硫酸化物、ハロリン酸化合物等が挙げられ、金属酸化物又はリン酸化合物が好ましい。 a) The inorganic fluorescent powder may be any inorganic powder having fluorescent properties, and even an inorganic fluorescent powder that is a single crystal matrix and does not contain an activator having fluorescent properties is composed of a crystal matrix and an activator (impurity). Activated phosphors may also be used. The crystal matrix in this specification may be a crystalline or amorphous. In addition, it may or may not contain other activators, etc., and even when it does not contain activators, etc., it is used in the same sense as the commonly used crystalline and amorphous bodies. Examples of the crystal matrix include metal oxides, phosphoric acid compounds, metal sulfides, metal sulfates, halophosphoric acid compounds, etc. Metal oxides and phosphoric acid compounds are preferred.

本発明で用いられるa)無機蛍光粉体の結晶母体としては、Al(アルミニウム)、Ti(チタン)、Zn(亜鉛)、Ge(ゲルマニウム)、Si(ケイ素)、Fe(鉄)、Zr(ジルコニウム)、Mn(マンガン)、Mg(マグネシウム)、Ca(カルシウム)、Zn(亜鉛)の中から選択される1種以上の元素を含有していることが好ましい。中でもAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Ca(カルシウム)、Ti(チタン)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される1種以上の元素を含有していることが好ましく、特にO(酸素)及び/又はP(リン)を含有し、かつAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Ca(カルシウム)、Ti(チタン)、Ba(バリウム)から選ばれる1種以上の元素を含有していることが好ましい。 The crystal matrix of a) inorganic fluorescent powder used in the present invention includes Al (aluminum), Ti (titanium), Zn (zinc), Ge (germanium), Si (silicon), Fe (iron), Zr (zirconium ), Mn (manganese), Mg (magnesium), Ca (calcium), and Zn (zinc). Among them, it is selected from Al (aluminum), Zn (zinc), Mg (magnesium), Ca (calcium), Ti (titanium), Ba (barium), O (oxygen), P (phosphorus), and S (sulfur). It preferably contains one or more elements, particularly O (oxygen) and / or P (phosphorus), and Al (aluminum), Zn (zinc), Mg (magnesium), Ca (calcium ), Ti (titanium), and Ba (barium).

本発明で用いられる賦活剤を含むa)無機蛍光粉体の賦活剤としては、Mn(マンガン)、Eu(ユウロピウム)、Cr(クロム)、Ce(セリウム)、Pr(プラセオジム)、La(ランタン)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Fe(鉄)、Zn(亜鉛)、Ti(チタン)等が用いられるが、特にこれらに限定されない。 Activators for a) inorganic fluorescent powder containing the activator used in the present invention include Mn (manganese), Eu (europium), Cr (chromium), Ce (cerium), Pr (praseodymium), and La (lanthanum). , Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Fe (iron), Zn (zinc), Ti (titanium) etc. are used, but are not particularly limited to these.

本発明で用いられるa)無機蛍光粉体は、結晶母体及び/又は賦活剤としてAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Si(ケイ素)、Mn(マンガン)、Ca(カルシウム)、Ti(チタン)、Ce(セリウム)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される少なくとも1種以上の元素を含有していることが好ましく、特に酸化(Al/Ca/マンガン)、酸化(Mg/マンガン/チタン)、酸化亜鉛蛍光体、リン酸(Ca/セリウム)が好ましい。 The a) inorganic fluorescent powder used in the present invention includes Al (aluminum), Zn (zinc), Mg (magnesium), Si (silicon), Mn (manganese), Ca (calcium) as a crystal matrix and / or an activator. , Ti (titanium), Ce (cerium), Ba (barium), O (oxygen), P (phosphorus), and S (sulfur). , especially oxide (Al/Ca/manganese), oxide (Mg/manganese/titanium), zinc oxide phosphor, and phosphoric acid (Ca/cerium) are preferred.

本発明で用いられるa)無機蛍光粉体は、いずれの色の蛍光を発するものであってよく、特に赤色蛍光粉体、緑色蛍光粉体、青色蛍光粉体が好ましい。 The a) inorganic fluorescent powder used in the present invention may emit fluorescence of any color, and red fluorescent powder, green fluorescent powder, and blue fluorescent powder are particularly preferred.

a)無機蛍光粉体の有する最大蛍光波長は、440nm~520nm又は640nm~700nmの範囲であることが好ましい。 a) The maximum fluorescence wavelength of the inorganic fluorescent powder is preferably in the range of 440 nm to 520 nm or 640 nm to 700 nm.

本発明で用いられるa)無機蛍光粉体の市販品としては、例えば、Lumate R(堺化学工業社製)、Lumate G(堺化学工業社製)、Lumate B(堺化学工業社製)等が挙げられるが、特にこれらに限定されない。 Commercially available inorganic fluorescent powder a) used in the present invention includes, for example, Lumate R (manufactured by Sakai Chemical Industry Co., Ltd.), Lumate G (manufactured by Sakai Chemical Industry Co., Ltd.), Lumate B (manufactured by Sakai Chemical Industry Co., Ltd.), and the like. Examples include, but are not limited to, these.

本発明で用いられるa)無機蛍光粉体の粒子径は特に限定されないが、0.5μm以上であることが好ましく、1μm以上であることがより好ましい。また、a)無機蛍光粉体の粒子径は、300μm以下であり、200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることがさらに好ましい。本発明で用いられるa)無機蛍光粉体の粒子径としては、十分な蛍光強度が得られ、化粧料等に用いた場合に使用感に優れる等の観点から、1μm以上200μm以下であることが好ましく、2μm以上100μm以下であることがより好ましい。 The particle size of a) the inorganic fluorescent powder used in the present invention is not particularly limited, but is preferably 0.5 μm or more, more preferably 1 μm or more. In addition, a) the particle size of the inorganic fluorescent powder is 300 μm or less, preferably 200 μm or less, more preferably 150 μm or less, and even more preferably 100 μm or less. The particle size of the a) inorganic fluorescent powder used in the present invention is preferably 1 μm or more and 200 μm or less from the viewpoint of obtaining sufficient fluorescence intensity and excellent feeling of use when used in cosmetics and the like. It is preferably 2 μm or more and 100 μm or less, more preferably.

なお、本願発明で用いる粒子径とは、透過型電子顕微鏡で観察した時の一次粒子における平均径のことを指す。 The particle size used in the present invention refers to the average size of primary particles observed with a transmission electron microscope.

本発明で用いられるb)非蛍光粉体は、蛍光特性を有さない粉体であれば特に限定されず、無機粉体でも有機粉体でもよく、形状や大きさも限定されない。 The b) non-fluorescent powder used in the present invention is not particularly limited as long as it does not have fluorescent properties, and may be inorganic powder or organic powder, and its shape and size are not limited.

無機粉体としては、酸化チタン、非蛍光性酸化亜鉛、酸化鉄(ベンガラ、黄酸化鉄、黒酸化鉄)、シリカ、酸化アルミニウム、水酸化アルミニウム、酸化セシウム、酸化クロム、水酸化クロム、硫酸バリウム、合成金雲母、マイカ、タルク、セリサイト、カオリン、グンジョウ、コンジョウ、カーボンブラック、炭酸カルシウム、炭酸マグネシウム、シリコーン、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム、窒化ホウ素等が挙げられるが、特にこれらに限定されない。 Inorganic powders include titanium oxide, non-fluorescent zinc oxide, iron oxide (red iron oxide, yellow iron oxide, black iron oxide), silica, aluminum oxide, aluminum hydroxide, cesium oxide, chromium oxide, chromium hydroxide, barium sulfate. , synthetic phlogopite, mica, talc, sericite, kaolin, granite, konjo, carbon black, calcium carbonate, magnesium carbonate, silicone, magnesium silicate, magnesium aluminum silicate, boron nitride, etc., but particularly limited to these not.

無機粉体の市販品としては、例えば、MP-1133AQ(テイカ社製)、MP-1133WP(テイカ社製)、MT-100WP(テイカ社製)、MT-100SA(テイカ社製)、MT-500B(テイカ社製)、MZ-300(テイカ社製)、MTZ-3040TSW(テイカ社製)、MZ-500(テイカ社製)、FINEX-30(堺化学工業社製)、FINEX-50(堺化学工業社製)、FINEX-30W(堺化学工業社製)、FINEX-50W(堺化学工業社製)、FINEX-50W-LP2(堺化学工業社製)、AEROSIL 200(日本アエロジル社製)、AEROSIL Alu C(日本アエロジル社製)、LL-100HP(チタン工業社製)、R-516HP(チタン工業社製)、BL-100HP(チタン工業社製)、セリサイトFSE(三信鉱工社製)、シリカマイクロビード P-1500(日揮触媒化成社製)、KSP-100(信越化学工業社製)、KSP-300(信越化学工業社製)等が挙げられるが、特にこれらに限定されない。 Commercially available inorganic powders include, for example, MP-1133AQ (manufactured by Tayca), MP-1133WP (manufactured by Tayca), MT-100WP (manufactured by Tayca), MT-100SA (manufactured by Tayca), and MT-500B. (manufactured by Tayca), MZ-300 (manufactured by Tayca), MTZ-3040TSW (manufactured by Tayca), MZ-500 (manufactured by Tayca), FINEX-30 (manufactured by Sakai Chemical Industry), FINEX-50 (Sakai Chemical Kogyo Co., Ltd.), FINEX-30W (manufactured by Sakai Chemical Industry Co., Ltd.), FINEX-50W (manufactured by Sakai Chemical Industry Co., Ltd.), FINEX-50W-LP2 (manufactured by Sakai Chemical Industry Co., Ltd.), AEROSIL 200 (manufactured by Nippon Aerosil Co., Ltd.), AEROSIL Alu C (manufactured by Nippon Aerosil Co., Ltd.), LL-100HP (manufactured by Titan Kogyo Co., Ltd.), R-516HP (manufactured by Titan Kogyo Co., Ltd.), BL-100HP (manufactured by Titan Kogyo Co., Ltd.), Sericite FSE (manufactured by Sanshin Koko Co., Ltd.), Silica microbeads P-1500 (manufactured by Nikki Shokubai Kasei Co., Ltd.), KSP-100 (manufactured by Shin-Etsu Chemical Co., Ltd.), KSP-300 (manufactured by Shin-Etsu Chemical Co., Ltd.) and the like can be mentioned, but not limited thereto.

有機粉体としては、ポリエチレン、ポリアミド、架橋ポリスチレン、ポリメタクリル酸メチル、セルロース、カルバメート、フッ素樹脂、ポリオレフィン、エポキシ樹脂、フェノール樹脂、小麦でんぷん、シルク、長鎖脂肪酸塩、セラミド、リン脂質等が挙げられるが、特にこれらに限定されない。 Examples of organic powder include polyethylene, polyamide, crosslinked polystyrene, polymethyl methacrylate, cellulose, carbamate, fluororesin, polyolefin, epoxy resin, phenol resin, wheat starch, silk, long-chain fatty acid salt, ceramide, phospholipid, and the like. but not particularly limited to these.

有機粉体の市販品としては、例えば、ガンツパールGMX-0610(アイカ工業社製)、ガンツパールGMX-0610AQ(アイカ工業社製)、SP-500(東レ社製)、Ceramide I(Evonik社製)、Ceramide III(Evonik社製)、Ceramide VI(Evonik社製)、Phytopresome Care-V(日本精化社製)、Ceramide TIC-001(高砂香料工業社製)、SLP-PC70(辻精油社製)、SLP-PC92H(辻精油社製)、NIKKOL レシノールS-10(日光ケミカルズ社製)等が挙げられるが、特にこれらに限定されない。 Commercially available organic powders include, for example, Ganzpearl GMX-0610 (manufactured by Aica Kogyo Co., Ltd.), Ganzpearl GMX-0610AQ (manufactured by Aica Kogyo Co., Ltd.), SP-500 (manufactured by Toray Industries, Inc.), Ceramide I (manufactured by Evonik Co., Ltd.). ), Ceramide III (manufactured by Evonik), Ceramide VI (manufactured by Evonik), Phytopresome Care-V (manufactured by Nippon Fine Chemical Co., Ltd.), Ceramide TIC-001 (manufactured by Takasago International Corporation), SLP-PC70 (manufactured by Tsuji Oil Co., Ltd. ), SLP-PC92H (manufactured by Tsuji Seiyu Co., Ltd.), NIKKOL Resinol S-10 (manufactured by Nikko Chemicals Co., Ltd.) and the like, but are not particularly limited thereto.

本発明で用いられる非蛍光粉体は無機粉体が好ましく、中でも金属酸化物、金属水酸化物、ケイ酸化物が好ましい。さらに金属酸化物とケイ酸化物は好ましく、酸化チタン、非蛍光性酸化亜鉛、酸化鉄、酸化アルミニウム(アルミナ)、シリカが特に好ましい。 The non-fluorescent powder used in the present invention is preferably an inorganic powder, and among these, metal oxides, metal hydroxides and silicic oxides are preferred. Further, metal oxides and silicic oxides are preferred, and titanium oxide, non-fluorescent zinc oxide, iron oxide, aluminum oxide (alumina) and silica are particularly preferred.

また、本発明で用いられるb)非蛍光粉体の粒子径は、本願発明で用いられる無機蛍光粉体の粒子径よりも小さい方が好ましく、250nm以下であることが好ましく、100nm以下の微粒子であることがより好ましい。また、本発明の複合粒子の蛍光強度を向上させる効果の観点から、0.1nm以上であることが好ましく、1nm以上であることがより好ましい。本発明で用いられる非蛍光粉体の粒子径としては、0.1nm以上150nm以下であることが好ましく、1nm以上100nm以下であることがより好ましい。 In addition, the particle size of the b) non-fluorescent powder used in the present invention is preferably smaller than the particle size of the inorganic fluorescent powder used in the present invention, preferably 250 nm or less, and fine particles of 100 nm or less. It is more preferable to have In addition, from the viewpoint of the effect of improving the fluorescence intensity of the composite particles of the present invention, it is preferably 0.1 nm or more, more preferably 1 nm or more. The particle size of the non-fluorescent powder used in the present invention is preferably 0.1 nm or more and 150 nm or less, more preferably 1 nm or more and 100 nm or less.

本願発明で用いられるa)無機蛍光粉体及び/又はb)非蛍光粉体は、複合化させる粉体の組み合わせによって、粉体同士の付着性を向上させたり、得られる複合粉体の蛍光強度をより高める等の目的で、表面処理がなされていてもよい。この表面処理は、複合化前のそれぞれの粉体に対して行ってもよいし、得られた複合粉体に対して行ってもよい。 The a) inorganic fluorescent powder and/or b) non-fluorescent powder used in the present invention improve the adhesion between the powders or increase the fluorescence intensity of the obtained composite powder depending on the combination of the powders to be composited. For the purpose of, for example, increasing the This surface treatment may be performed on each powder before being combined, or may be performed on the resulting composite powder.

表面処理に用いられる物質の種類としては、シリカ、アルギン酸、酸化アルミニウム(アルミナ)、POE/ジメチコン共重合体、ポリエチレングリコール、水酸化アルミニウム、アミノ酸、金属石ケン、パーフルオロアルキルエチルリン酸エステルジエタノールアミン酸、フッ素アルキルアクリレート/ポリアルキレングリコールアクリレートポリマー、パーフルオロポリエーテルリン酸、パーフルオロポリエーテル鎖を有するアニオン性又はカチオン性高分子、水素添加レシチン、アシル化アミノ酸、α-トコフェロールリン酸エステル酸、メチルハイドロジェンポリシロキサン、α-モノアルコキシポリジメチルシロキサン、α-ジアルコキシポリジメチルシロキサン、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン、アモジメチコン、トリエトキシカプリリルシラン、アミノプロピルトリエトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルトリエトキシシラン、等が挙げられるが、これらに限定されない。中でも、親水性の表面処理が好ましく、特に、シリカ、アルギン酸、酸化アルミニウム(アルミナ)、POE/ジメチコン共重合体、ポリエチレングリコール、水酸化アルミニウムが好ましい。 Types of substances used for surface treatment include silica, alginic acid, aluminum oxide (alumina), POE/dimethicone copolymer, polyethylene glycol, aluminum hydroxide, amino acids, metal soap, perfluoroalkylethyl phosphate, diethanolamic acid. , fluorine alkyl acrylate/polyalkylene glycol acrylate polymer, perfluoropolyether phosphate, anionic or cationic polymer having perfluoropolyether chain, hydrogenated lecithin, acylated amino acid, α-tocopherol phosphate acid, methyl Hydrogenpolysiloxane, α-monoalkoxypolydimethylsiloxane, α-dialkoxypolydimethylsiloxane, triethoxysilylethylpolydimethylsiloxyethyldimethicone, amodimethicone, triethoxycaprylylsilane, aminopropyltriethoxysilane, perfluorooctylethyl Examples include, but are not limited to, triethoxysilane, perfluorooctyltriethoxysilane, and the like. Among them, hydrophilic surface treatment is preferable, and silica, alginic acid, aluminum oxide (alumina), POE/dimethicone copolymer, polyethylene glycol, and aluminum hydroxide are particularly preferable.

また、a)無機蛍光粉体及び/又はb)非蛍光粉体に対しては、複数の表面処理がなされていてもよく、表面処理率(粉体に対する表面処理剤量の割合)や表面処理方法も特に限定されない。 In addition, a) the inorganic fluorescent powder and/or b) the non-fluorescent powder may be subjected to a plurality of surface treatments. The method is also not particularly limited.

本発明において用いられるa)無機蛍光粉体及び/又はb)非蛍光粉体は、後述する複合粉体の調製方法での湿式処理において付着力が高いという点で、表面が親水性であることが好ましい。中でも、少なくとも1つ以上の親水性の表面処理がなされていることが好ましく、最表面に親水性の表面処理がなされていることが特に好ましい。ここで、親水性の表面処理としては、例えばシリカ、アルギン酸、酸化アルミニウム(アルミナ)、水酸化アルミニウム、アミノ酸、ポリエチレングリコール、POE/ジメチコン共重合体処理等が挙げられるが特にこれらに限定されない。 The a) inorganic fluorescent powder and/or b) non-fluorescent powder used in the present invention has a hydrophilic surface in that it has high adhesion in wet treatment in the method for preparing composite powder described later. is preferred. Above all, it is preferable that at least one or more hydrophilic surface treatments are performed, and it is particularly preferable that the outermost surface is subjected to a hydrophilic surface treatment. Examples of hydrophilic surface treatments include, but are not limited to, silica, alginic acid, aluminum oxide (alumina), aluminum hydroxide, amino acids, polyethylene glycol, and POE/dimethicone copolymer treatments.

本願発明における複合粉体の調製方法は特に限定されないが、湿式処理が好ましい。 Although the method for preparing the composite powder in the present invention is not particularly limited, wet processing is preferred.

湿式処理では、分散媒中にa)無機蛍光粉体とb)非蛍光粉体を分散し、b)非蛍光粉体をa)無機蛍光粉体の表面の少なくとも一部に被覆させることが好ましい。また、a)無機蛍光粉体及び/又はb)非蛍光粉体を機械的撹拌力・解砕力により十分に分散させる方が好ましく、具体的にはマグネチックスターラー、ミキサー、超音波、ホモジナイザー、高圧ホモジナイザー、ディスパーミキサー、ビーズミル、コロイドミル、ローラーミル、三本ローラーミル、スタンプミル、ロッドミル、ボールミル、ジョークラッシャー、ニーダー、プラネタリーミキサー等が挙げられるが特にこれらに限定されず、2つ以上用いても構わない。 In the wet treatment, it is preferable to disperse a) inorganic fluorescent powder and b) non-fluorescent powder in a dispersion medium, and b) coat at least part of the surface of a) inorganic fluorescent powder with non-fluorescent powder. . Further, it is preferable to sufficiently disperse a) the inorganic fluorescent powder and/or b) the non-fluorescent powder by a mechanical stirring force/disintegrating force. , disper mixers, bead mills, colloid mills, roller mills, three-roller mills, stamp mills, rod mills, ball mills, jaw crushers, kneaders, planetary mixers, etc., but are not particularly limited to these. I do not care.

また、ろ過や遠心分離、乾燥等の工程を付与してもよい。乾燥方法も特に限定されない。得られる複合粉体は、分散体やペーストとして用いてもよく、粉体として用いてもよい。 In addition, steps such as filtration, centrifugation and drying may be applied. The drying method is also not particularly limited. The obtained composite powder may be used as a dispersion, a paste, or as a powder.

湿式処理において用いる分散媒も特に限定されず、水、アルコール、炭化水素油、エステル油、シリコーン油、有機溶媒等が挙げられ、分散媒中に界面活性剤や塩、キレート剤等の成分を含有させてもよい。 The dispersion medium used in the wet treatment is not particularly limited, and includes water, alcohol, hydrocarbon oil, ester oil, silicone oil, organic solvent, etc., and the dispersion medium contains components such as surfactants, salts, and chelating agents. You may let

湿式処理において用いる分散媒は、粉体同士の付着力が向上する等の理由から、親水性の分散媒が好ましく、少なくとも水を含んでいることが好ましい。 The dispersion medium used in the wet treatment is preferably a hydrophilic dispersion medium, and preferably contains at least water, for reasons such as improving adhesion between powders.

本発明の複合粉体におけるa)無機蛍光粉体とb)非蛍光粉体の重量の割合は、a)無機蛍光粉体とb)非蛍光粉体のそれぞれの形状や大きさ等により適宜調整すればよいが、a成分(重量%):b成分(重量%)=95:5~70:30が好ましく、特に90:10~70:30が好ましい。また、上記割合は、例えば、複合粉体を調製する際の、a)成分、b)成分の仕込み量(重量%)の割合としてもよい。 The weight ratio of a) inorganic fluorescent powder and b) non-fluorescent powder in the composite powder of the present invention is appropriately adjusted depending on the respective shapes and sizes of a) inorganic fluorescent powder and b) non-fluorescent powder. However, component a (% by weight): component b (% by weight) is preferably 95:5 to 70:30, and more preferably 90:10 to 70:30. Moreover, the above ratio may be, for example, the ratio of the charged amount (% by weight) of the components a) and b) when preparing the composite powder.

本発明の複合粉体は、蛍光強度が強いことから、様々な形態の化粧料等の皮膚外用組成物に好適に用いることができる。また、蛍光を活用できる照明や遊具、塗料等の分野においても好適に使用することができる。 Since the composite powder of the present invention has a strong fluorescence intensity, it can be suitably used for external skin compositions such as various forms of cosmetics. In addition, it can be suitably used in the fields of lighting, playground equipment, paint, etc., where fluorescence can be utilized.

<皮膚外用組成物>
本発明の外用組成物は、上述した本発明の複合粉体を含有する。本発明の複合粉体は、蛍光強度が強く、優れた発光性、色補正効果を示すため、これを含有する皮膚外用組成物は、傷痕を目立たなくしたり、肌の色味を整える、メーキャップ効果を付与する等の目的で、医薬品、医薬部外品、化粧料などの皮膚外用剤全般に使用できる。特にメーキャップ効果に優れることから、化粧品として好適に使用できる。
<Composition for external use on the skin>
The composition for external use of the present invention contains the composite powder of the present invention described above. Since the composite powder of the present invention exhibits high fluorescence intensity, excellent luminescence and color correction effect, the composition for external use on the skin containing it has a make-up effect that makes scars inconspicuous, adjusts skin tone, and has a makeup effect. For the purpose of imparting In particular, it can be suitably used as a cosmetic product because of its excellent makeup effect.

本発明の皮膚外用組成物における複合粉体の含有量としては、0.0001重量%以上50重量%以下であり、0.001重量%以上30重量%以下であることが好ましく、0.01重量%以上20重量%以下であることがより好ましく、0.01重量%以上10重量%以下であることがさらに好ましく、0.01重量%以上5重量%以下であることが特に好ましい。 The content of the composite powder in the external composition for skin of the present invention is 0.0001% by weight or more and 50% by weight or less, preferably 0.001% by weight or more and 30% by weight or less, and 0.01% by weight. % or more and 20 wt % or less, more preferably 0.01 wt % or more and 10 wt % or less, and particularly preferably 0.01 wt % or more and 5 wt % or less.

本発明の皮膚外用組成物は、本発明の複合粉体以外に、本発明の効果を損なわない範囲で、その他の成分を含んでいてもよい。 The external composition for skin of the present invention may contain other ingredients in addition to the composite powder of the present invention within a range that does not impair the effects of the present invention.

その他の成分としては、種々の目的に応じて、油分、親油性非イオン界面活性剤、親水性非イオン界面活性剤、その他の界面活性剤、金属イオン封鎖剤、天然の水溶性高分子、半合成の水溶性高分子、合成の水溶性高分子、無機の水溶性高分子、各種の抽出液、各種粉体、保湿成分、多価アルコール、スクラブ剤、紫外線散乱成分、収斂成分、ペプチド又はその誘導体、アミノ酸又はその誘導体、洗浄成分、角質柔軟成分、細胞賦活化成分、老化防止成分、血行促進作用成分、美白成分、DNAの損傷の予防及び/又は修復作用を有する成分、抗炎症成分、抗酸化成分、ビタミン類、皮脂吸着成分、抗菌成分等のその他の成分を、本発明の効果を損なわない範囲で含んでいてもよい。本発明の皮膚外用組成物において、これらの成分は、1種又は2種以上組み合わせて配合してもよい。なお、これらの各成分としては、医薬品、医薬部外品、化粧品分野等において使用され得るものであれば特に制限されず、任意のものを適宜選択し使用することができる。 Other ingredients include oils, lipophilic nonionic surfactants, hydrophilic nonionic surfactants, other surfactants, sequestering agents, natural water-soluble polymers, semi- Synthetic water-soluble polymer, synthetic water-soluble polymer, inorganic water-soluble polymer, various extracts, various powders, moisturizing ingredients, polyhydric alcohols, scrubbing agents, ultraviolet scattering ingredients, astringent ingredients, peptides or their Derivatives, amino acids or derivatives thereof, cleansing ingredients, keratin softening ingredients, cell activating ingredients, anti-aging ingredients, blood circulation promoting ingredients, whitening ingredients, ingredients that prevent and/or repair DNA damage, anti-inflammatory ingredients, anti-inflammatory ingredients, Other ingredients such as oxidizing ingredients, vitamins, sebum-adsorbing ingredients, and antibacterial ingredients may be included as long as the effects of the present invention are not impaired. In the composition for external use on skin of the present invention, these components may be blended singly or in combination of two or more. These components are not particularly limited as long as they can be used in the fields of pharmaceuticals, quasi-drugs, cosmetics, and the like, and arbitrary components can be appropriately selected and used.

本発明の皮膚外用組成物は、本発明の複合粉体の他に、複合化していない蛍光粉体を含んでいてもよい。 The external composition for skin of the present invention may contain a non-complexed fluorescent powder in addition to the composite powder of the present invention.

本発明の皮膚外用組成物の製造方法は特に制限されず、必須成分である本発明の複合粉体、及び上記その他の成分等から適宜選択した成分を、配合して、常法により、混合して製造することができる。 The method for producing the composition for external use on the skin of the present invention is not particularly limited. can be manufactured by

本発明の皮膚外用組成物の具体的用途としては、例えば、化粧水、保湿液、乳液、美容液、パック、ハンドクリーム、ボディローション、ボディークリーム、リップクリームのような基礎化粧料;洗顔料、メイク落とし、ボディーシャンプーのような洗浄用化粧料;ファンデーション、化粧下地、アイカラー、アイシャドー、アイライナー、アイブロウ、ハイライト、コントロールカラー、チーク、マスカラ、口紅、ファイスパウダーのようなメーキャップ化粧料;日焼け止め化粧料等の化粧料に用いることができる。また、これら化粧料の機能を1つの製剤にまとめた多機能型製剤も挙げられる。さらに、創傷用軟膏、ニキビ用外用剤等の医薬品・医薬部外品等にも用いることができる。 Specific uses of the external composition for skin of the present invention include, for example, basic cosmetics such as lotions, moisturizing liquids, milky lotions, serums, packs, hand creams, body lotions, body creams, and lip balms; cleansing cosmetics such as makeup remover and body shampoo; makeup cosmetics such as foundation, makeup base, eye color, eye shadow, eyeliner, eyebrow, highlighter, control color, blush, mascara, lipstick, face powder; It can be used for cosmetics such as sunscreen cosmetics. In addition, multifunctional preparations in which the functions of these cosmetics are integrated into one preparation are also included. Furthermore, it can also be used for pharmaceuticals and quasi-drugs such as ointments for wounds and external preparations for acne.

中でも、ファンデーション、化粧下地、アイカラー、アイシャドー、アイライナー、アイブロウ、ハイライト、コントロールカラー、チーク、マスカラ、口紅、ファイスパウダーのようなメーキャップ化粧料;日焼け止め化粧料等の化粧料が、特に好ましい。 Among them, makeup cosmetics such as foundations, makeup bases, eye colors, eye shadows, eyeliners, eyebrows, highlights, control colors, cheeks, mascara, lipsticks, and face powders; preferable.

<無機蛍光粉体の蛍光強度増強方法>
本発明は、a)無機蛍光粉体の表面の一部にb)非蛍光粉体を被覆させることを特徴とする、無機蛍光粉体の蛍光強度増強方法も含む。また、a)無機蛍光粉体の表面の一部にb)非蛍光粉体を被覆させて得られた本発明の複合粉体は、優れた発光性を示すため、化粧料に含有させることで、よりメーキャップ効果の高い化粧料を提供することができるものである。なお、無機蛍光粉体の蛍光強度増強方法におけるa)無機蛍光粉体、b)非蛍光粉体の説明、これらを用いて調製される複合粉体の具体的な説明は、「複合粉体」の項の説明を適用できる。
<Method for Enhancing Fluorescence Intensity of Inorganic Fluorescent Powder>
The present invention also includes a method for enhancing the fluorescence intensity of an inorganic fluorescent powder, which comprises a) coating a portion of the surface of the inorganic fluorescent powder with b) a non-fluorescent powder. In addition, the composite powder of the present invention obtained by coating a part of the surface of a) an inorganic fluorescent powder with b) a non-fluorescent powder exhibits excellent luminescence. , a cosmetic having a higher makeup effect can be provided. In the method for enhancing the fluorescence intensity of inorganic fluorescent powders, a) inorganic fluorescent powders and b) non-fluorescent powders, and specific explanations of composite powders prepared using these are referred to as "composite powders". The explanations in section 3.1.2.1 apply.

次にa)無機蛍光粉体の表面の少なくとも一部をb)非蛍光粉体が被覆している複合粉体について実施例を挙げ、詳細を説明するが、本発明はこれらに限定されるものではない。 Next, examples of composite powders in which a) at least part of the surface of inorganic fluorescent powders is coated with b) non-fluorescent powders will be described in detail, but the present invention is limited to these examples. isn't it.

(実施例1)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長は660nm)4.5gを水45.5g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.5gを水49.5g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 1)
Silica-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) 4.5 g in water 45.5 g and sufficiently dispersed with a disper mill to obtain an oxidized (Al/Ca/manganese) aqueous dispersion. Next, 0.5 g of alumina-treated fine titanium oxide particles (acicular, particle size: 15 nm, aluminum hydroxide treatment: 6%) was added to 49.5 g of water and sufficiently dispersed using a disper mill to obtain an aqueous dispersion of alumina-treated fine titanium oxide particles. got Alumina-treated fine-particle titanium oxide aqueous dispersion was mixed with oxidized (Al/Ca/manganese) aqueous dispersion, and after being sufficiently dispersed with a disper mill, the mixture was filtered and dried at 60° C. overnight. After drying, the aggregate was pulverized with a mill grinder to obtain an inorganic fluorescent composite powder.

(比較例1)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長は660nm。)4.5gとアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.5gをミルグラインダーで粉砕し、無機蛍光粉体混合物を得た。
(Comparative example 1)
4.5 g of silica-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) and alumina-treated fine titanium oxide (Acicular, particle diameter 15 nm, aluminum hydroxide treatment 6%) 0.5 g was pulverized with a mill grinder to obtain an inorganic fluorescent powder mixture.

(比較例2)
比較例2として、シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長は660nm)を用いた。
(Comparative example 2)
As Comparative Example 2, silica-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, after aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) was used.

<複合化の確認>
走査型電子顕微鏡 VE-8800(キーエンス社製)を用いて実施例1の無機蛍光複合粉体と比較例2の無機蛍光粉体混合物を観察した。それぞれの顕微鏡写真を図1(実施例1)、図2(比較例2)として示した。
<Confirmation of compounding>
The inorganic fluorescent composite powder of Example 1 and the inorganic fluorescent powder mixture of Comparative Example 2 were observed using a scanning electron microscope VE-8800 (manufactured by Keyence Corporation). The respective micrographs are shown as FIG. 1 (Example 1) and FIG. 2 (Comparative Example 2).

図1と図2を比較すると、明らかに実施例1においてシリカ処理酸化(Al/Ca/マンガン)の表面にアルミナ処理微粒子酸化チタンが付着し、非蛍光粉体であるアルミナ処理微粒子酸化チタンが、無機蛍光粉体であるシリカ処理酸化(Al/Ca/マンガン)の表面を被覆していることを確認できた。 Comparing FIG. 1 and FIG. 2, it is clear that in Example 1, the alumina-treated fine particle titanium oxide adheres to the surface of the silica-treated oxide (Al/Ca/manganese), and the alumina-treated fine particle titanium oxide, which is a non-fluorescent powder, It was confirmed that the surface of silica-treated oxide (Al/Ca/manganese), which is an inorganic fluorescent powder, was covered.

<試験1 蛍光強度の評価>
プレート(50mm×50mm HELIOPLATE HD6、HelioScreen Labs製)に両面テープを貼り、刷毛で均一に試料を塗布。分光変角色差計GC-5000(日本電色工業社製)を用い、プレートの試料が塗布された面側に入射角45°で光をあて、正反射角の反射強度を測定した。a)成分の蛍光波長における強度において、a)無機蛍光粉体のみの時の強度を1とした時の、各試料の蛍光波長における強度を比較した。
<Test 1 Evaluation of fluorescence intensity>
Double-sided tape was attached to a plate (50 mm×50 mm HELIOPLATE HD6, manufactured by HelioScreen Labs), and the sample was evenly applied with a brush. Using a spectrogonometric color difference meter GC-5000 (manufactured by Nippon Denshoku Industries Co., Ltd.), light was applied to the surface of the plate coated with the sample at an incident angle of 45°, and the reflection intensity of the regular reflection angle was measured. With respect to the intensity at the fluorescence wavelength of the a) component, the intensity at the fluorescence wavelength of each sample was compared, taking the intensity of the a) inorganic fluorescent powder alone as 1.

Figure 2023093715000003
Figure 2023093715000003

比較例2:a)無機蛍光粉体単体と、比較例1:a)無機蛍光粉体とb)非蛍光粉体の単純混合の、蛍光波長660nmにおける反射強度を比較すると、a)無機蛍光粉体とb)非蛍光粉体を単純混合するだけでも約9倍に蛍光強度が増加した。実施例1:a)無機蛍光粉体とb)非蛍光粉体を複合粉体は、比較例1の約14倍の強度を示し、複合化により、さらに蛍光強度が増加することが確認できた。 Comparative Example 2: Comparison of reflection intensity at a fluorescence wavelength of 660 nm between a) inorganic fluorescent powder alone and Comparative Example 1: simple mixture of a) inorganic fluorescent powder and b) non-fluorescent powder, a) inorganic fluorescent powder Fluorescence intensity increased about 9 times by simply mixing the solid and b) the non-fluorescent powder. Example 1: Composite powder of a) inorganic fluorescent powder and b) non-fluorescent powder showed about 14 times the intensity of Comparative Example 1, and it was confirmed that the fluorescence intensity further increased by compositing. .

また、蛍光波長(660nm)の場合と、蛍光波長(400nm)の場合で、蛍光強度を比較すると、蛍光波長(660nm)の方がより、蛍光強度が増加しており、a)成分の蛍光波長において、より顕著な強度増加が確認された。蛍光波長660nmの蛍光強度が顕著に増強されることにより、赤味の映える粉体となった。 Further, when the fluorescence intensity is compared between the fluorescence wavelength (660 nm) and the fluorescence wavelength (400 nm), the fluorescence intensity increases more at the fluorescence wavelength (660 nm), and the fluorescence wavelength of component a) , a more significant increase in strength was confirmed. The fluorescence intensity at a fluorescence wavelength of 660 nm was significantly enhanced, resulting in a reddish powder.

(実施例2)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長660nm)0.95gを水49.05g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.05gを水49.9g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 2)
0.95 g of silica-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) was put into 49.05 g of water. , and a disper mill to obtain an oxidized (Al/Ca/manganese) aqueous dispersion. Next, 0.05 g of alumina-treated fine titanium oxide particles (acicular, particle size: 15 nm, aluminum hydroxide treatment: 6%) was added to 49.9 g of water and sufficiently dispersed using a disper mill to obtain an aqueous dispersion of alumina-treated fine titanium oxide particles. got Alumina-treated fine-particle titanium oxide aqueous dispersion was mixed with oxidized (Al/Ca/manganese) aqueous dispersion, and after being sufficiently dispersed with a disper mill, the mixture was filtered and dried at 60° C. overnight. After drying, the aggregate was pulverized with a mill grinder to obtain an inorganic fluorescent composite powder.

(実施例3)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長660nm)0.80gを水49.20g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.20gを水49.80g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 3)
0.80 g of silica-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) was put into 49.20 g of water. , and a disper mill to obtain an oxidized (Al/Ca/manganese) aqueous dispersion. Next, 0.20 g of alumina-treated fine titanium oxide particles (acicular, particle size: 15 nm, aluminum hydroxide treatment: 6%) was added to 49.80 g of water and sufficiently dispersed using a disper mill to obtain an aqueous dispersion of alumina-treated fine titanium oxide particles. got Alumina-treated fine-particle titanium oxide aqueous dispersion was mixed with oxidized (Al/Ca/manganese) aqueous dispersion, and after being sufficiently dispersed with a disper mill, the mixture was filtered and dried at 60° C. overnight. After drying, the aggregate was pulverized with a mill grinder to obtain an inorganic fluorescent composite powder.

(実施例4)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長660nm)0.70gを水49.30g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.30gを水49.70g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 4)
0.70 g of silica-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) was put into 49.30 g of water. , and a disper mill to obtain an oxidized (Al/Ca/manganese) aqueous dispersion. Next, 0.30 g of alumina-treated fine titanium oxide particles (acicular, particle size: 15 nm, aluminum hydroxide treatment: 6%) was added to 49.70 g of water and sufficiently dispersed by a disper mill to obtain an aqueous dispersion of alumina-treated fine titanium oxide particles. got Alumina-treated fine-particle titanium oxide aqueous dispersion was mixed with oxidized (Al/Ca/manganese) aqueous dispersion, and after being sufficiently dispersed with a disper mill, the mixture was filtered and dried at 60° C. overnight. After drying, the aggregate was pulverized with a mill grinder to obtain an inorganic fluorescent composite powder.

複合化処理を行った実施例1~4の蛍光強度を、複合化前のa)無機蛍光粉体である比較例2の強度を1として、比較した。結果は表2に示す。 The fluorescence intensities of Examples 1 to 4 subjected to the compounding treatment were compared, with the intensity of Comparative Example 2, which is a) inorganic fluorescent powder before compounding, being 1. Results are shown in Table 2.

Figure 2023093715000004
Figure 2023093715000004

(実施例5)
実施例1のシリカ処理酸化(Al/Ca/マンガン)を、粒子径10μmのシリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)に変え、無機蛍光複合粉体を得た。
(Example 5)
Silica-treated oxidation (Al/Ca/manganese) of Example 1 was changed to silica-treated oxidation (Al/Ca/manganese) with a particle size of 10 μm (plate-like, particle size of 10 μm, aluminum hydroxide treatment of 4.5%, then silica treatment 3.0% (fluorescence wavelength: 660 nm) to obtain an inorganic fluorescent composite powder.

(実施例6)
実施例3のシリカ処理酸化(Al/Ca/マンガン)を、粒子径10μmのシリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)に変え、無機蛍光複合粉体を得た。
(Example 6)
Silica-treated oxidation (Al/Ca/manganese) of Example 3 was changed to silica-treated oxidation (Al/Ca/manganese) with a particle size of 10 μm (plate-like, particle size of 10 μm, aluminum hydroxide treatment of 4.5%, then silica treatment 3.0% (fluorescence wavelength: 660 nm) to obtain an inorganic fluorescent composite powder.

(実施例7)
実施例4のシリカ処理酸化(Al/Ca/マンガン)を、粒子径10μmのシリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)に変え、無機蛍光複合粉体を得た。
(Example 7)
Silica-treated oxidation (Al/Ca/manganese) of Example 4 was changed to silica-treated oxidation (Al/Ca/manganese) with a particle size of 10 μm (plate-like, particle size of 10 μm, aluminum hydroxide treatment of 4.5%, then silica treatment 3.0% (fluorescence wavelength: 660 nm) to obtain an inorganic fluorescent composite powder.

(比較例3)
比較例3として、シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)を用いた。
(Comparative Example 3)
As Comparative Example 3, silica-treated oxidation (Al/Ca/manganese) (plate-like, particle size 10 μm, after aluminum hydroxide treatment 4.5%, silica treatment 3.0%, fluorescence wavelength 660 nm) was used.

複合化処理を行った実施例5~7の蛍光強度を、複合化前のa)無機蛍光粉体である比較例3の強度を1として、比較した。結果を表3に示す。 The fluorescence intensities of Examples 5 to 7 subjected to the compounding treatment were compared, with the intensity of Comparative Example 3 (a) inorganic fluorescent powder before compounding being set to 1. Table 3 shows the results.

Figure 2023093715000005
Figure 2023093715000005

実施例1~4と比較例2より、a)成分とb)成分の比率を変えても、複合化により、蛍光強度の増強が確認できた。 From Examples 1 to 4 and Comparative Example 2, it was confirmed that even when the ratio of components a) and b) was changed, the fluorescence intensity was enhanced by complexing.

また、a)成分の粒子径を変えても(実施例5~7)同様に、複合化により、蛍光強度の増強が確認できた。特にa:b=90:10~70:30において顕著に蛍光強度が上昇した。 Further, even when the particle size of the component a) was changed (Examples 5 to 7), it was confirmed that the fluorescence intensity was enhanced by the complexing. Especially when a:b was 90:10 to 70:30, the fluorescence intensity increased remarkably.

(実施例8)
実施例1のシリカ処理酸化(Al/Ca/マンガン)をアルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・アルギン酸処理 3%・蛍光波長は660nm)に変え、無機蛍光複合粉体を得た。
(Example 8)
Silica-treated oxidation (Al/Ca/manganese) in Example 1 was changed to alginic acid-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, alginic acid treatment 3%, fluorescence wavelength 660 nm), inorganic fluorescent composite powder got a body

(実施例9)
実施例8のアルミナ処理微粒子酸化チタンをシリカ処理微粒子酸化チタン(針状・粒子径15nm・シリカ処理 30%)に変え、無機複合粉体を得た。
(Example 9)
Inorganic composite powder was obtained by replacing the alumina-treated fine titanium oxide particles of Example 8 with silica-treated fine titanium oxide particles (acicular, particle size: 15 nm, silica treatment: 30%).

(実施例10)
実施例1のアルミナ処理微粒子酸化チタンをアルミナ(略球状・粒子径13nm・表面処理なし)に変え、無機蛍光複合粉体を得た。
(Example 10)
An inorganic fluorescent composite powder was obtained by replacing the alumina-treated fine particulate titanium oxide of Example 1 with alumina (substantially spherical, particle size: 13 nm, no surface treatment).

(実施例11)
実施例1のシリカ処理酸化(Al/Ca/マンガン)をアルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・アルギン酸処理 1%・蛍光波長は660nm)に変え、さらにアルミナ処理微粒子酸化チタンをシリカ(略球状・粒子径12nm・表面処理なし)に変え、無機蛍光複合粉体を得た。
(Example 11)
Silica-treated oxidation (Al/Ca/manganese) in Example 1 was changed to alginic acid-treated oxidation (Al/Ca/manganese) (plate-like, particle size 40 μm, alginic acid treatment 1%, fluorescence wavelength 660 nm), and alumina-treated fine particles. An inorganic fluorescent composite powder was obtained by replacing titanium oxide with silica (substantially spherical, particle diameter 12 nm, no surface treatment).

(実施例12)
実施例3のシリカ処理酸化(Al/Ca/マンガン)をアルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・アルギン酸処理 1%・蛍光波長は660nm)に変え、さらにアルミナ処理微粒子酸化チタンをシリカ処理顔料級酸化チタン(略球状・粒子径250nm・水酸化Al処理 2.6%後にシリカ処理 5.0%)に変え、無機複合粉体を得た。
(Example 12)
Silica-treated oxidation (Al/Ca/manganese) in Example 3 was changed to alginic acid-treated oxidation (Al/Ca/manganese) (plate-like, particle size: 40 μm, alginic acid treatment: 1%, fluorescence wavelength: 660 nm), and alumina-treated microparticles Titanium oxide was changed to silica-treated pigment-grade titanium oxide (substantially spherical, particle size: 250 nm, treated with Al hydroxide at 2.6%, then treated with silica at 5.0%) to obtain an inorganic composite powder.

(実施例13)
実施例12のシリカ処理顔料級酸化チタンをPOE・ジメチコン共重合体処理微粒子酸化亜鉛(略球状・粒子径35nm・トリエトキシカプリリルシラン処理 3.6%後、ポリオキシエチレン・メチルポリシロキサン共重合体処理 10.0%)に変え、無機蛍光複合粉体を得た。
(Example 13)
The silica-treated pigment-grade titanium oxide of Example 12 was treated with POE/dimethicone copolymer-treated fine zinc oxide particles (substantially spherical, particle size 35 nm, triethoxycaprylylsilane treatment of 3.6%, followed by polyoxyethylene/methylpolysiloxane copolymerization). 10.0%) to obtain an inorganic fluorescent composite powder.

(比較例4)
比較例4として、アルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径4μm・アルギン酸処理 3%・蛍光波長660nm)を用いた。
(Comparative Example 4)
As Comparative Example 4, alginic acid treatment oxidation (Al/Ca/manganese) (plate-like, particle diameter 4 μm, alginic acid treatment 3%, fluorescence wavelength 660 nm) was used.

(比較例5)
比較例5として、アルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径4μm・アルギン酸処理 1%・蛍光波長660nm)を用いた。
(Comparative Example 5)
As Comparative Example 5, alginic acid treatment oxidation (Al/Ca/manganese) (plate-like, particle diameter 4 μm, alginic acid treatment 1%, fluorescence wavelength 660 nm) was used.

それぞれの実施例で得られた無機蛍光複合粉体において、複合していないa)無機蛍光粉体と蛍光強度を1として比較した結果は表4のようになった(実施例8、9は比較例4と、実施例10は比較例2と、実施例11~13は比較例5で強度の比を求めた)。 Table 4 shows the results of comparing the inorganic fluorescent composite powder obtained in each example with the uncombined a) inorganic fluorescent powder with a fluorescence intensity of 1 (Examples 8 and 9 are compared The strength ratio was determined in Comparative Example 2 for Example 4, Example 10, and Comparative Example 5 for Examples 11 to 13).

Figure 2023093715000006
Figure 2023093715000006

(実施例14)
実施例1のシリカ処理酸化(Al/Ca/マンガン)をリン酸(Ca/セリウム)(Lumate B(堺化学工業社製、最大蛍光波長 460nm))に変え、無機蛍光複合粉体を得た。
(Example 14)
The silica-treated oxidation (Al/Ca/manganese) in Example 1 was changed to phosphoric acid (Ca/cerium) (Lumate B (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength: 460 nm)) to obtain an inorganic fluorescent composite powder.

(実施例15)
実施例1のシリカ処理酸化(Al/Ca/マンガン)を酸化亜鉛蛍光体(Lumate G(堺化学工業社製、最大蛍光波長 500nm))に変え、アルミナ処理微粒子酸化チタンをシリカ処理微粒子酸化チタン(針状・粒子径15nm・シリカ処理 30%)に変え、無機蛍光複合粉体を得た。
(Example 15)
The silica-treated oxide (Al/Ca/manganese) in Example 1 was changed to a zinc oxide phosphor (Lumate G (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength: 500 nm)), and the alumina-treated fine particle titanium oxide was changed to silica-treated fine particle titanium oxide ( needle shape, particle diameter 15 nm, silica treatment 30%) to obtain an inorganic fluorescent composite powder.

(実施例16)
実施例1のシリカ処理酸化(Al/Ca/マンガン)を酸化(Mg/マンガン/チタン)(Lumate R(堺化学工業社製、最大蛍光波長660nm))に変え、アルミナ処理微粒子酸化チタンをシリカ処理微粒子酸化チタン(針状・粒子径15nm・シリカ処理 30%)に変え、無機蛍光複合粉体を得た。
(Example 16)
Silica-treated oxidation (Al/Ca/manganese) in Example 1 was changed to oxidation (Mg/manganese/titanium) (Lumate R (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength 660 nm)), and alumina-treated fine particles of titanium oxide were treated with silica. Inorganic fluorescent composite powder was obtained by changing to fine particles of titanium oxide (acicular, particle size: 15 nm, silica treatment: 30%).

(比較例6)
比較例6として、リン酸(Ca/セリウム)(Lumate B(堺化学工業社製、最大蛍光波長 460nm))を用いた。
(Comparative Example 6)
As Comparative Example 6, phosphoric acid (Ca/cerium) (Lumate B (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength: 460 nm)) was used.

(比較例7)
比較例7として、酸化亜鉛蛍光体(Lumate G(堺化学工業社製、最大蛍光波長 500nm))を用いた。
(Comparative Example 7)
As Comparative Example 7, a zinc oxide phosphor (Lumate G (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength: 500 nm)) was used.

(比較例8)
比較例8として、酸化(Mg/マンガン/チタン)(Lumate R(堺化学工業社製、最大蛍光波長660nm)を使用。)を用いた。
(Comparative Example 8)
As Comparative Example 8, oxidation (Mg/manganese/titanium) (using Lumate R (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength: 660 nm)) was used.

実施例14と比較例6の460nmにおける蛍光強度の比較と、実施例15と比較例7の500nmにおける蛍光強度の比較、実施例16と比較例8の660nmにおける蛍光強度の比較をそれぞれ行った結果は表5のようになった。いずれも比較例の強度を1として強度比を求めた。 Results of comparison of fluorescence intensity at 460 nm between Example 14 and Comparative Example 6, comparison of fluorescence intensity at 500 nm between Example 15 and Comparative Example 7, and comparison of fluorescence intensity at 660 nm between Example 16 and Comparative Example 8. was as shown in Table 5. In each case, the intensity ratio was obtained with the intensity of the comparative example set to 1.

Figure 2023093715000007
Figure 2023093715000007

<化粧料への応用例>
次に無機蛍光複合粉体を配合した皮膚外用組成物(化粧料)の処方例を示すが、これらに限定されるものではない。
<Example of application to cosmetics>
Next, formulation examples of external skin compositions (cosmetics) containing the inorganic fluorescent composite powder are shown, but the present invention is not limited to these.

[パウダーファンデーション]
成分名 配合量[%]
シリコーン処理タルク 残余
フッ素処理セリサイト 5
シリコーン処理顔料級酸化チタン 5
シリコーン処理微粒子酸化チタン 5
窒化ホウ素 3
(ビニルジメチコン/メチコンシルセスキオキサン)クロスポリマー 2
ナイロン末 1
ステアリン酸Mg 1
実施例1の無機蛍光複合粉体 3
メチルフェニルポリシロキサン 7
パラメトキシケイヒ酸2-エチルヘキシル 5
ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン 1
イソステアリン酸ソルビタン 0.5
着色顔料 適量
防腐剤 適量
合計 100
[powder foundation]
Ingredient name Amount [%]
Silicon treated talc Residual fluorine treated sericite 5
Siliconized pigment grade titanium oxide 5
Siliconized microparticle titanium dioxide 5
boron nitride 3
(vinyl dimethicone/methicone silsesquioxane) crosspolymer 2
Nylon powder 1
Mg stearate 1
Inorganic fluorescent composite powder of Example 1 3
Methylphenylpolysiloxane 7
2-ethylhexyl p-methoxycinnamate 5
bisethylhexyloxyphenol methoxyphenyltriazine 1
Sorbitan isostearate 0.5
Appropriate amount of coloring pigment
Appropriate amount of antiseptic
Total 100

メーキャップ効果の優れたパウダーファンデーションが得られた。 A powder foundation with excellent makeup effect was obtained.

[ルースパウダー]
成分名 配合量[%]
シリコーン処理タルク 残余
フッ素処理セリサイト 5
ポリメチルシルセスキオキサン 7
実施例1の無機蛍光複合粉体 5
シリコーン処理顔料級酸化チタン 3
雲母チタン 3
着色顔料 適量
防腐剤 適量
合計 100
[Loose powder]
Ingredient name Amount [%]
Silicon treated talc Residual fluorine treated sericite 5
Polymethylsilsesquioxane 7
Inorganic fluorescent composite powder of Example 1 5
Siliconized pigment grade titanium dioxide 3
Mica Titanium 3
Appropriate amount of coloring pigment
Appropriate amount of antiseptic
Total 100

[化粧下地]
成分名 配合量[%]
水 残余
BG 10
1,3-ペンタンジオール 1
キサンタンガム 0.1
ヒドロキシプロピルメチルセルロース 0.2
(アクリル酸ヒドロキシエチル/アクリロイルジメチルタウリンNa)コポリマー
0.5
ポリソルベート60 1.5
ステアリン酸グリセリル 1.5
パラメトキシケイヒ酸2-エチルヘキシル 8
イソステアリン酸処理微粒子酸化亜鉛 2
ジエチルアミノヒドロキシ安息香酸ヘキシル 3
イソノナン酸イソノニル 3
メチルポリシロキサン 3
実施例3の無機蛍光複合粉体 1
雲母チタン 1
着色顔料 適量
防腐剤 適量
合計 100
[Makeup base]
Ingredient name Amount [%]
Water Balance BG 10
1,3-pentanediol 1
Xanthan gum 0.1
Hydroxypropyl methylcellulose 0.2
(Hydroxyethyl acrylate/Na acryloyldimethyltaurate) copolymer
0.5
Polysorbate 60 1.5
Glyceryl stearate 1.5
2-Ethylhexyl p-methoxycinnamate 8
Isostearic acid treated fine zinc oxide 2
Hexyl diethylaminohydroxybenzoate 3
isononyl isononanoate 3
Methyl polysiloxane 3
Inorganic fluorescent composite powder 1 of Example 3
Mica Titanium 1
Appropriate amount of coloring pigment
Appropriate amount of antiseptic
Total 100

メーキャップ効果の優れた化粧下地が得られた。 A makeup base with excellent makeup effect was obtained.

[サンスクリーン]
成分名 配合量[%]
シクロペンタシロキサン 残余
メチルフェニルポリシロキサン 5
パラメトキシケイヒ酸2-エチルヘキシル 6
ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン 3
イソノナン酸イソノニル 7
シリコーン処理微粒子酸化亜鉛 3
ラウリルPEG-9ポリジメチルシロキシエチルジメチコン 2
イソステアリン酸ソルビタン 1
ステアリン酸処理した実施例1の無機蛍光複合粉体 1
水 25
DPG 5
キサンタンガム 0.1
エタノール 5
防腐剤 適量
合計 100
[sunscreen]
Ingredient name Amount [%]
Cyclopentasiloxane Residual methylphenylpolysiloxane 5
2-Ethylhexyl p-methoxycinnamate 6
bisethylhexyloxyphenol methoxyphenyltriazine 3
isononyl isononanoate 7
Siliconized fine zinc oxide 3
Lauryl PEG-9 Polydimethylsiloxyethyl Dimethicone 2
Sorbitan Isostearate 1
Inorganic fluorescent composite powder of Example 1 treated with stearic acid 1
water 25
DPG 5
Xanthan gum 0.1
Ethanol 5
Appropriate amount of antiseptic
Total 100

メーキャップ効果の優れたサンスクリーンが得られた。 A sunscreen with excellent make-up effect was obtained.

本発明によれば、無機蛍光粉体が本来有する蛍光強度を顕著に向上させた複合粉体を提供することができる。また、本発明の複合粉体は、優れた発光性を示すため、化粧料に含有させることで、よりメーキャップ効果の高い様々な形態の化粧料を提供することができる。さらに化粧料だけでなく、照明や遊具、塗料等の分野においても使用することができる。 ADVANTAGE OF THE INVENTION According to this invention, the composite powder which remarkably improved the fluorescence intensity which an inorganic fluorescent powder originally has can be provided. In addition, since the composite powder of the present invention exhibits excellent luminescence, it is possible to provide various forms of cosmetics with higher makeup effects by including the composite powder in cosmetics. Furthermore, it can be used not only in cosmetics but also in the fields of lighting, playground equipment, paints, and the like.

Claims (11)

少なくともa)無機蛍光粉体の表面の一部を、b)非蛍光粉体が被覆していることを特徴とする複合粉体。 A composite powder comprising: a) at least part of the surface of an inorganic fluorescent powder, b) coated with a non-fluorescent powder. a)無機蛍光粉体の有する蛍光波長が、440nm~520nm又は640nm~700nmの範囲内であることを特徴とする請求項1に記載の複合粉体。 a) The composite powder according to claim 1, wherein the fluorescence wavelength of the inorganic fluorescent powder is in the range of 440 nm to 520 nm or 640 nm to 700 nm. a)無機蛍光粉体が、結晶母体及び/又は賦活剤としてAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Si(ケイ素)、Mn(マンガン)、Ca(カルシウム)、Ti(チタン)、Ce(セリウム)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される少なくとも1種以上の元素を含有していることを特徴とする請求項1又は2に記載の複合粉体。 a) The inorganic fluorescent powder contains Al (aluminum), Zn (zinc), Mg (magnesium), Si (silicon), Mn (manganese), Ca (calcium), Ti (titanium) as a crystal matrix and/or an activator , Ce (cerium), Ba (barium), O (oxygen), P (phosphorus), and S (sulfur). Or the composite powder according to 2. a)無機蛍光粉体が、酸化(Al/Ca/マンガン)、酸化(Mg/マンガン/チタン)、酸化亜鉛蛍光体、及び、リン酸(Ca/セリウム)からなる群より選択される少なくとも1種であることを特徴とする請求項1~3のいずれか記載の複合粉体。 a) At least one inorganic fluorescent powder selected from the group consisting of oxide (Al/Ca/manganese), oxide (Mg/manganese/titanium), zinc oxide phosphor, and phosphoric acid (Ca/cerium) The composite powder according to any one of claims 1 to 3, characterized in that b)非蛍光粉体が、酸化チタン、非蛍光性酸化亜鉛、酸化鉄、酸化アルミニウム(アルミナ)、及び、シリカからなる群より選択される少なくとも1種であることを特徴とする請求項1~4のいずれか記載の複合粉体。 b) The non-fluorescent powder is at least one selected from the group consisting of titanium oxide, non-fluorescent zinc oxide, iron oxide, aluminum oxide (alumina), and silica. 5. The composite powder according to any one of 4. a)無機蛍光粉体の粒子径が、1μm以上200μm以下であることを特徴とする、請求項1~5のいずれか記載の複合粉体。 a) The composite powder according to any one of claims 1 to 5, wherein the inorganic fluorescent powder has a particle size of 1 µm or more and 200 µm or less. b)非蛍光粉体の粒子径が、1nm以上100nm以下であることを特徴とする、請求項1~6のいずれか記載の複合粉体。 b) The composite powder according to any one of claims 1 to 6, wherein the non-fluorescent powder has a particle size of 1 nm or more and 100 nm or less. 複合粉体におけるa)無機蛍光粉体とb)非蛍光粉体の比率が、a成分:b成分=95(重量%):5(重量%)~70(重量%):30(重量%)であることを特徴とする、請求項1~7のいずれか記載の複合粉体。 The ratio of a) inorganic fluorescent powder and b) non-fluorescent powder in the composite powder is a component: b component = 95 (% by weight): 5 (% by weight) to 70 (% by weight): 30 (% by weight) The composite powder according to any one of claims 1 to 7, characterized in that 皮膚外用組成物用である、請求項1~8のいずれか記載の複合粉体。 The composite powder according to any one of claims 1 to 8, which is used as a composition for external use on the skin. 請求項1~9のいずれか記載の複合粉体を含有する、皮膚外用組成物。 A composition for external use on the skin, containing the composite powder according to any one of claims 1 to 9. a)無機蛍光粉体の表面の一部をb)非蛍光粉体で被覆することを特徴とする、無機蛍光粉体の蛍光強度増強方法。 A method for enhancing the fluorescence intensity of an inorganic fluorescent powder, which comprises a) coating a part of the surface of the inorganic fluorescent powder with b) a non-fluorescent powder.
JP2023073564A 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder Pending JP2023093715A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023073564A JP2023093715A (en) 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018200695A JP2020066599A (en) 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder
JP2023073564A JP2023093715A (en) 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2018200695A Division JP2020066599A (en) 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Publications (1)

Publication Number Publication Date
JP2023093715A true JP2023093715A (en) 2023-07-04

Family

ID=70389555

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018200695A Pending JP2020066599A (en) 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder
JP2023073564A Pending JP2023093715A (en) 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Family Applications Before (1)

Application Number Title Priority Date Filing Date
JP2018200695A Pending JP2020066599A (en) 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Country Status (1)

Country Link
JP (2) JP2020066599A (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020202764A1 (en) * 2019-04-05 2020-10-08 株式会社 資生堂 Cell activator
JP2021107369A (en) * 2019-12-27 2021-07-29 株式会社 資生堂 Composition containing ultraviolet wavelength-converting substance

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10307281A1 (en) * 2003-02-20 2004-09-02 Patent-Treuhand-Gesellschaft für elektrische Glühlampen mbH Coated phosphor, light-emitting device with such phosphor and method for its production
JP2008150518A (en) * 2006-12-19 2008-07-03 Sharp Corp Wavelength converting member and light-emitting device
JP5870611B2 (en) * 2010-11-05 2016-03-01 日亜化学工業株式会社 Light emitting device and manufacturing method thereof
JP2014201648A (en) * 2013-04-04 2014-10-27 パナソニック株式会社 Phosphor body, production method of phosphor body, and led element
JP2015089898A (en) * 2013-11-05 2015-05-11 信越化学工業株式会社 Inorganic phosphor powder, curable resin composition using inorganic phosphor powder, wavelength conversion member and optical semiconductor device
WO2017142057A1 (en) * 2016-02-18 2017-08-24 ロート製薬株式会社 Topical dermatological composition

Also Published As

Publication number Publication date
JP2020066599A (en) 2020-04-30

Similar Documents

Publication Publication Date Title
JP7343976B2 (en) Skin external composition
JP2023093715A (en) Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder
JP4869377B2 (en) Lipophilic surface-treated powder having easy dispersibility and cosmetics containing the powder
JP2007230995A (en) Cosmetic composition comprising sub-micrometer boron nitride particle
EP3798191B1 (en) Novel titanium oxide powder and cosmetic formulated therewith
JP2011102291A (en) Coated zinc oxide particles, water-based composition, and cosmetics
CN101028228A (en) Cosmetic compositions comprising sub-micron boron nitride particles
JP2014510764A (en) Cosmetic composition
JP6309858B2 (en) Powder cosmetics
WO2008044385A1 (en) Cosmetic preparation containing polyfunctional composite powder
JP2011225559A (en) Powder makeup cosmetic containing water
JP6462583B2 (en) Surface-treated powder using theanine and cosmetic containing the same
JP7111480B2 (en) powdered cosmetics
KR102437232B1 (en) Silicon oxide-coated UV-shielding particles, silicon oxide-coated UV-shielding particles-containing aqueous composition, cosmetics
JP2004123681A (en) Makeup cosmetic
JP2004307409A (en) Pigment for cosmetic and cosmetic containing the same
JP2021063041A (en) Powder cosmetics and method for producing the same
JP6450582B2 (en) Powder cosmetics
JP6598491B2 (en) Powder cosmetics
WO2022097476A1 (en) Cosmetic
JP2013245146A (en) Al-CONTAINING YELLOW COLOR SHEET-LIKE IRON OXIDE PIGMENT, METHOD FOR PRODUCING THE SAME, AND COSMETIC COMPOUNDED WITH THE SAME
JP2012229168A (en) Uv ray shielding compound powder
JPH1179966A (en) Cosmetic
WO2023053720A1 (en) Powder for cosmetic composition blending, said powder being composed of calcium titanium composite oxide
JP2023097497A (en) Cosmetic

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230518