JP2020066599A - Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder - Google Patents

Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder Download PDF

Info

Publication number
JP2020066599A
JP2020066599A JP2018200695A JP2018200695A JP2020066599A JP 2020066599 A JP2020066599 A JP 2020066599A JP 2018200695 A JP2018200695 A JP 2018200695A JP 2018200695 A JP2018200695 A JP 2018200695A JP 2020066599 A JP2020066599 A JP 2020066599A
Authority
JP
Japan
Prior art keywords
powder
fluorescent powder
inorganic fluorescent
composite powder
inorganic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2018200695A
Other languages
Japanese (ja)
Inventor
真佐人 岡
Masato Oka
真佐人 岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rohto Pharmaceutical Co Ltd
Original Assignee
Rohto Pharmaceutical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Rohto Pharmaceutical Co Ltd filed Critical Rohto Pharmaceutical Co Ltd
Priority to JP2018200695A priority Critical patent/JP2020066599A/en
Publication of JP2020066599A publication Critical patent/JP2020066599A/en
Priority to JP2023073564A priority patent/JP2023093715A/en
Pending legal-status Critical Current

Links

Abstract

To provide a novel method for enhancing fluorescence intensity of an inorganic phosphor, and an inorganic phosphor having enhanced fluorescence intensity, obtained by using the method, and an external composition for skin containing the same.SOLUTION: At least a part of the surface of inorganic fluorescent powder is coated with non-fluorescent powder, to enhance fluorescence intensity of the inorganic fluorescent powder.SELECTED DRAWING: Figure 1

Description

本発明は、無機蛍光粉体と非蛍光粉体の複合粉体、それを含有する皮膚外用組成物、及び無機蛍光粉体の蛍光強度増強方法に関する。   TECHNICAL FIELD The present invention relates to a composite powder of an inorganic fluorescent powder and a non-fluorescent powder, a composition for external skin containing the same, and a method for enhancing the fluorescent intensity of the inorganic fluorescent powder.

化粧料では、目的に応じて様々な粉体が含有されている。特にメーキャップ化粧料や日焼け止め化粧料においては、粉体によってツヤ感、ソフトフォーカス性、色補正、紫外線防御能等の効果を付与することが一般的である。   Various powders are contained in cosmetics depending on the purpose. Particularly in makeup cosmetics and sunscreen cosmetics, it is general to impart effects such as luster, soft focus, color correction, and ultraviolet ray protection ability by powder.

粉体の中で、蛍光粉体は、一般にディスプレイや照明、遊具や塗料等の用途に使用されているが、化粧料においてもメーキャップ効果を高める目的で使用されている。例えば、化粧料に蛍光粉体を用いることで、ソフトフォーカス性等の付与だけでなく、蛍光色による色補正効果の付与もできる。   Among powders, fluorescent powders are generally used for applications such as displays, lighting, playground equipment and paints, but are also used in cosmetics for the purpose of enhancing the makeup effect. For example, by using a fluorescent powder in a cosmetic material, not only soft focus property and the like but also color correction effect by fluorescent color can be provided.

特許文献1では無機蛍光粉体であるアルミネート複合酸化物を含有させることでソフトフォーカス性を向上させた化粧料が開示されている。特許文献2では非晶質シリカ粒子を含んだ青色蛍光粉体が開示されており、化粧料への適用についても記載されている。しかし、特許文献1や特許文献2に記載されている蛍光粉体は発光強度が十分でないため、化粧料として効果を発揮するには配合量を多くする必要があった。また、これらの蛍光粉体はソフトフォーカス性が高いため、ツヤ感を高める効果をもたせた化粧料には不向きであった。   Patent Document 1 discloses a cosmetic material having improved soft focus properties by containing an aluminate complex oxide which is an inorganic fluorescent powder. Patent Document 2 discloses a blue fluorescent powder containing amorphous silica particles, and describes application to cosmetics. However, since the fluorescent powders described in Patent Document 1 and Patent Document 2 do not have sufficient emission intensity, it is necessary to increase the blending amount in order to exert the effect as a cosmetic. Further, since these fluorescent powders have a high soft focus property, they are unsuitable for cosmetics having an effect of enhancing a glossy feeling.

そのような中、蛍光粉体において、その蛍光強度を増強させることで、メーキャップ効果を高める技術が開発されている。例えば特許文献3には、無機蛍光粉体と他の粉体を含有させることで発光強度がより効果的に高められた化粧料が開示されている。しかし、この文献に記載の技術では、蛍光粉体の蛍光強度の増強効果が不十分である場合がある。   Under such circumstances, a technique for enhancing the makeup effect by enhancing the fluorescence intensity of fluorescent powder has been developed. For example, Patent Document 3 discloses a cosmetic in which the emission intensity is more effectively increased by containing an inorganic fluorescent powder and another powder. However, in the technique described in this document, the effect of enhancing the fluorescent intensity of the fluorescent powder may be insufficient.

一方、化粧料分野においては様々な複合粉体が使用されており、複合化する粉体の組み合わせ等により、様々な化粧料効果が得られることが知られている。例えば特許文献4では無機粉体上に特定の方法でシリカを複合化することでソフトフォーカス効果を高めた複合粉体が開示されている。特許文献5では窒化ホウ素に金属酸化物を複合化することでツヤを高めた複合粉体が開示されている。   On the other hand, various composite powders are used in the cosmetics field, and it is known that various cosmetic effects can be obtained by combining powders to be composited. For example, Patent Document 4 discloses a composite powder in which silica is compounded on an inorganic powder by a specific method to enhance the soft focus effect. Patent Document 5 discloses a composite powder in which the gloss is enhanced by compounding boron nitride with a metal oxide.

しかし特許文献4、5においては、蛍光粉体に関する記述は一切なく、蛍光粉体の蛍光強度を増強するという課題は、これらの文献を参考にしても解決することができない。また、色補正効果についても何ら記載されていない。   However, in Patent Documents 4 and 5, there is no description about the fluorescent powder, and the problem of increasing the fluorescent intensity of the fluorescent powder cannot be solved even by referring to these documents. Further, there is no description about the color correction effect.

特開2014−5255号公報JP, 2014-5255, A 特開2016−141780号公報JP, 2016-141780, A 国際公開公報2017/142057号International Publication No. 2017/142057 特開2015−113306号公報JP, 2005-113306, A 特開2011−236137号公報JP, 2011-236137, A

本発明は、無機蛍光体の蛍光強度の新規増強方法、この方法を用いて得られた蛍光強度が増強された無機蛍光体、それを含有する化粧料を提供することを目的とする。   It is an object of the present invention to provide a novel method for enhancing the fluorescence intensity of an inorganic phosphor, an inorganic phosphor with enhanced fluorescence intensity obtained using this method, and a cosmetic containing the same.

本発明者は上記課題を解決するために鋭意検討した結果、無機蛍光粉体の表面の少なくとも一部に非蛍光粉体を被覆させることで蛍光強度が増強することを見出した。   As a result of intensive studies for solving the above-mentioned problems, the present inventor has found that the fluorescent intensity is enhanced by coating at least a part of the surface of the inorganic fluorescent powder with the non-fluorescent powder.

即ち、本発明の要旨は以下の通りである。 That is, the gist of the present invention is as follows.

[1]少なくともa)無機蛍光粉体の表面の一部を、b)非蛍光粉体が被覆していることを特徴とする複合粉体。
[2]a)無機蛍光粉体の有する蛍光波長が、440nm〜520nm又は640nm〜700nmの範囲内であることを特徴とする[1]に記載の複合粉体。
[3]a)無機蛍光粉体が、結晶母体及び/又は賦活剤としてAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Si(ケイ素)、Mn(マンガン)、Ca(カルシウム)、Ti(チタン)、Ce(セリウム)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される少なくとも1種以上の元素を含有していることを特徴とする[1]又は[2]に記載の複合粉体。
[4]a)無機蛍光粉体が、酸化(Al/Ca/マンガン)、酸化(Mg/マンガン/チタン)、酸化亜鉛蛍光体、及び、リン酸(Ca/セリウム)からなる群より選択される少なくとも1種であることを特徴とする[1]〜[3]のいずれか記載の複合粉体。
[5]b)非蛍光粉体が、酸化チタン、非蛍光性酸化亜鉛、酸化鉄、酸化アルミニウム(アルミナ)、及び、シリカからなる群より選択される少なくとも1種であることを特徴とする[1]〜[4]のいずれか記載の複合粉体。
[6]a)無機蛍光粉体の粒子径が、1μm以上200μm以下であることを特徴とする、[1]〜[5]のいずれか記載の複合粉体。
[7]b)非蛍光粉体の粒子径が、1nm以上100nm以下であることを特徴とする、[1]〜[6]のいずれか記載の複合粉体。
[8]複合粉体におけるa)無機蛍光粉体とb)非蛍光粉体の比率が、a成分:b成分=95(重量%):5(重量%)〜70(重量%):30(重量%)であることを特徴とする、[1]〜[7]のいずれか記載の複合粉体。
[9]皮膚外用組成物用である、[1]〜[8]のいずれか記載の複合粉体。
[10][1]〜[9]のいずれか記載の複合粉体を含有する、皮膚外用組成物。
[11]a)無機蛍光粉体の表面の一部をb)非蛍光粉体で被覆することを特徴とする、無機蛍光粉体の蛍光強度増強方法。
[1] A composite powder characterized in that at least a) a part of the surface of an inorganic fluorescent powder is covered with b) a non-fluorescent powder.
[2] a) The composite powder according to [1], wherein the fluorescent wavelength of the inorganic fluorescent powder is in the range of 440 nm to 520 nm or 640 nm to 700 nm.
[3] a) The inorganic fluorescent powder is a crystal matrix and / or an activator of Al (aluminum), Zn (zinc), Mg (magnesium), Si (silicon), Mn (manganese), Ca (calcium), Ti. (Titanium), Ce (Cerium), Ba (Barium), O (Oxygen), P (Phosphorus), S (Sulfur) at least one element selected from the above is contained. The composite powder according to [1] or [2].
[4] a) The inorganic fluorescent powder is selected from the group consisting of oxides (Al / Ca / manganese), oxides (Mg / manganese / titanium), zinc oxide phosphors, and phosphoric acid (Ca / cerium). The composite powder according to any one of [1] to [3], which is at least one kind.
[5] b) The non-fluorescent powder is at least one selected from the group consisting of titanium oxide, non-fluorescent zinc oxide, iron oxide, aluminum oxide (alumina), and silica [ The composite powder according to any one of 1] to [4].
[6] a) The composite powder according to any one of [1] to [5], wherein the particle size of the inorganic fluorescent powder is 1 μm or more and 200 μm or less.
[7] b) The composite powder according to any one of [1] to [6], wherein the non-fluorescent powder has a particle size of 1 nm or more and 100 nm or less.
[8] The ratio of the a) inorganic fluorescent powder to the b) non-fluorescent powder in the composite powder is as follows: a component: b component = 95 (wt%): 5 (wt%) to 70 (wt%): 30 ( % By weight), The composite powder according to any one of [1] to [7].
[9] The composite powder according to any one of [1] to [8], which is for an external composition for skin.
[10] A composition for external use for skin, containing the composite powder according to any one of [1] to [9].
[11] A method for enhancing the fluorescence intensity of an inorganic fluorescent powder, characterized in that a) a part of the surface of the inorganic fluorescent powder is covered with b) a non-fluorescent powder.

本発明によれば、a)無機蛍光粉体の表面の少なくとも一部にb)非蛍光粉体を被覆させた複合粉体とすることで、a)無機蛍光粉体の蛍光強度を顕著に向上させることができる。また、a)無機蛍光粉体の表面の少なくとも一部にb)非蛍光粉体を被覆させた本発明の複合粉体は、優れた発光性を示すため、化粧料に含有させることで、よりメーキャップ効果の高い化粧料を提供することができる。   According to the present invention, a) a composite powder in which at least a part of the surface of the inorganic fluorescent powder is coated with b) a non-fluorescent powder, a) the fluorescent intensity of the inorganic fluorescent powder is significantly improved. Can be made. In addition, since a) the composite powder of the present invention in which at least a part of the surface of the inorganic fluorescent powder is coated with b) the non-fluorescent powder exhibits excellent luminescent properties, it is more preferable to include it in a cosmetic composition. It is possible to provide cosmetics having a high makeup effect.

実施例1の無機蛍光複合粉体の走査型電子顕微鏡画像である。2 is a scanning electron microscope image of the inorganic fluorescent composite powder of Example 1. 比較例2の無機蛍光粉体混合物の走査型電子顕微鏡画像である。5 is a scanning electron microscope image of the inorganic fluorescent powder mixture of Comparative Example 2.

以下、本発明について詳細に説明する。なお、本明細書中で使用される用語は、特に言及しない限り、当該技術分野で通常用いられる意味で解釈される。   Hereinafter, the present invention will be described in detail. It should be noted that the terms used in the present specification have the meanings commonly used in the art unless otherwise specified.

また、本明細書中で使用される%は、特に言及しない限り重量%を指す。   Further, as used herein,% means% by weight unless otherwise specified.

<複合粉体>
本発明の複合粉体は、少なくともa)無機蛍光粉体の表面の一部をb)非蛍光粉体が被覆していることを特徴とする。ここで、被覆とは、a)無機蛍光粉体の表面の少なくとも一部をb)非蛍光粉体が覆っていることを意味し、a)無機蛍光粉体の表面の一部を覆っている場合、a)無機蛍光粉体の表面の全部を覆っている場合のいずれも含む。本願発明の複合粉体の被覆率は30%以上が好ましく、40%以上がより好ましく、50%以上がさらに好ましい。
<Composite powder>
The composite powder of the present invention is characterized in that at least a) a part of the surface of the inorganic fluorescent powder is covered with b) a non-fluorescent powder. Here, the coating means that a) at least a part of the surface of the inorganic fluorescent powder is covered by b) a non-fluorescent powder, and a) a part of the surface of the inorganic fluorescent powder is covered. In this case, a) includes the case where the entire surface of the inorganic fluorescent powder is covered. The coverage of the composite powder of the present invention is preferably 30% or more, more preferably 40% or more, still more preferably 50% or more.

本願発明における被覆率とは、a)無機蛍光粉体の表面積に対する、a)無機蛍光粉体の表面積と複合粉体における被覆されていない表面の表面積の差の割合のことであり、下記のような式で表すことができる。
The coverage in the present invention is the ratio of the difference between a) the surface area of the inorganic fluorescent powder and the surface area of the uncoated surface of the composite powder to the surface area of the inorganic fluorescent powder. Can be expressed as

被覆率を求める方法としては、例えば、走査型電子顕微鏡観察画像において複合粉体の表面を観察し、複合粉体の表面全体と、b)非蛍光粉体が被覆されていない面の表面積を画像解析等により求め、上記式により各複合粉体の被覆率を算出し、複数の複合粉体の被覆率の平均値を本発明における複合粉体の被覆率とすることができる。   As a method of obtaining the coverage, for example, the surface of the composite powder is observed in a scanning electron microscope observation image, and the entire surface of the composite powder and b) the surface area of the surface not coated with the non-fluorescent powder are imaged. It is possible to obtain the coverage of each composite powder by the above formula, obtained by analysis or the like, and use the average value of the coverage of the plurality of composite powders as the coverage of the composite powder in the present invention.

本発明で用いられるa)無機蛍光粉体は、蛍光特性を有する無機粉体であればよく、形状、大きさは限定されない。   The a) inorganic fluorescent powder used in the present invention may be any inorganic powder having fluorescent properties, and its shape and size are not limited.

a)無機蛍光粉体としては、蛍光特性を有する無機粉体であればよく、結晶母体単体で蛍光特性を有する賦活剤を含まない無機蛍光粉体でも、結晶母体と賦活剤(不純物)からなる賦活型蛍光体でもよい。本明細書における結晶母体とは、結晶体でも非晶体でもよい。また、それ以外の賦活剤等を含んでも、含まなくてもよく、賦活剤等を含まない場合においても通常用いられる結晶体及び非晶体と同等の意味で用いられる。結晶母体としては、金属酸化物、リン酸化合物、金属硫化物、金属硫酸化物、ハロリン酸化合物等が挙げられ、金属酸化物又はリン酸化合物が好ましい。   a) As the inorganic fluorescent powder, any inorganic powder having fluorescent properties may be used. Even if the inorganic fluorescent powder does not include an activator having a fluorescent property in a single crystal host, it is composed of a crystalline host and an activator (impurity). An activated phosphor may be used. The crystalline matrix in the present specification may be a crystalline body or an amorphous body. Further, it may or may not contain an activator and the like other than the above, and is used in the same meaning as a crystalline substance and an amorphous substance which are usually used even when the activator and the like are not included. Examples of the crystal matrix include metal oxides, phosphoric acid compounds, metal sulfides, metal sulfates, halophosphoric acid compounds, and the like, and metal oxides or phosphoric acid compounds are preferable.

本発明で用いられるa)無機蛍光粉体の結晶母体としては、Al(アルミニウム)、Ti(チタン)、Zn(亜鉛)、Ge(ゲルマニウム)、Si(ケイ素)、Fe(鉄)、Zr(ジルコニウム)、Mn(マンガン)、Mg(マグネシウム)、Ca(カルシウム)、Zn(亜鉛)の中から選択される1種以上の元素を含有していることが好ましい。中でもAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Ca(カルシウム)、Ti(チタン)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される1種以上の元素を含有していることが好ましく、特にO(酸素)及び/又はP(リン)を含有し、かつAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Ca(カルシウム)、Ti(チタン)、Ba(バリウム)から選ばれる1種以上の元素を含有していることが好ましい。   The crystal matrix of the a) inorganic fluorescent powder used in the present invention includes Al (aluminum), Ti (titanium), Zn (zinc), Ge (germanium), Si (silicon), Fe (iron), Zr (zirconium). ), Mn (manganese), Mg (magnesium), Ca (calcium), and Zn (zinc) are preferably contained. Among them, Al (aluminum), Zn (zinc), Mg (magnesium), Ca (calcium), Ti (titanium), Ba (barium), O (oxygen), P (phosphorus), and S (sulfur) are selected. It is preferable to contain one or more kinds of elements, particularly O (oxygen) and / or P (phosphorus), and Al (aluminum), Zn (zinc), Mg (magnesium), Ca (calcium). ), Ti (titanium), and Ba (barium).

本発明で用いられる賦活剤を含むa)無機蛍光粉体の賦活剤としては、Mn(マンガン)、Eu(ユウロピウム)、Cr(クロム)、Ce(セリウム)、Pr(プラセオジム)、La(ランタン)、Gd(ガドリニウム)、Tb(テルビウム)、Dy(ジスプロシウム)、Ho(ホルミウム)、Er(エルビウム)、Tm(ツリウム)、Yb(イッテルビウム)、Fe(鉄)、Zn(亜鉛)、Ti(チタン)等が用いられるが、特にこれらに限定されない。   Examples of the activator for the a) inorganic fluorescent powder containing the activator used in the present invention include Mn (manganese), Eu (europium), Cr (chromium), Ce (cerium), Pr (praseodymium), La (lanthanum). , Gd (gadolinium), Tb (terbium), Dy (dysprosium), Ho (holmium), Er (erbium), Tm (thulium), Yb (ytterbium), Fe (iron), Zn (zinc), Ti (titanium). Etc. are used, but are not particularly limited thereto.

本発明で用いられるa)無機蛍光粉体は、結晶母体及び/又は賦活剤としてAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Si(ケイ素)、Mn(マンガン)、Ca(カルシウム)、Ti(チタン)、Ce(セリウム)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される少なくとも1種以上の元素を含有していることが好ましく、特に酸化(Al/Ca/マンガン)、酸化(Mg/マンガン/チタン)、酸化亜鉛蛍光体、リン酸(Ca/セリウム)が好ましい。   The a) inorganic fluorescent powder used in the present invention is Al (aluminum), Zn (zinc), Mg (magnesium), Si (silicon), Mn (manganese), Ca (calcium) as a crystal matrix and / or activator. , Ti (titanium), Ce (cerium), Ba (barium), O (oxygen), P (phosphorus), and S (sulfur) are preferable. In particular, oxide (Al / Ca / manganese), oxide (Mg / manganese / titanium), zinc oxide phosphor, phosphoric acid (Ca / cerium) are preferable.

本発明で用いられるa)無機蛍光粉体は、いずれの色の蛍光を発するものであってよく、特に赤色蛍光粉体、緑色蛍光粉体、青色蛍光粉体が好ましい。   The a) inorganic fluorescent powder used in the present invention may emit fluorescent light of any color, and red fluorescent powder, green fluorescent powder and blue fluorescent powder are particularly preferable.

a)無機蛍光粉体の有する最大蛍光波長は、440nm〜520nm又は640nm〜700nmの範囲であることが好ましい。   a) The maximum fluorescence wavelength of the inorganic fluorescent powder is preferably 440 nm to 520 nm or 640 nm to 700 nm.

本発明で用いられるa)無機蛍光粉体の市販品としては、例えば、Lumate R(堺化学工業社製)、Lumate G(堺化学工業社製)、Lumate B(堺化学工業社製)等が挙げられるが、特にこれらに限定されない。   Examples of commercially available a) inorganic fluorescent powder used in the present invention include Lumate R (manufactured by Sakai Chemical Industry Co., Ltd.), Lumate G (manufactured by Sakai Chemical Industry Co., Ltd.) and Lumate B (manufactured by Sakai Chemical Industry Co., Ltd.). However, the present invention is not limited to these.

本発明で用いられるa)無機蛍光粉体の粒子径は特に限定されないが、0.5μm以上であることが好ましく、1μm以上であることがより好ましい。また、a)無機蛍光粉体の粒子径は、300μm以下であり、200μm以下であることが好ましく、150μm以下であることがより好ましく、100μm以下であることがさらに好ましい。本発明で用いられるa)無機蛍光粉体の粒子径としては、十分な蛍光強度が得られ、化粧料等に用いた場合に使用感に優れる等の観点から、1μm以上200μm以下であることが好ましく、2μm以上100μm以下であることがより好ましい。   The particle size of the a) inorganic fluorescent powder used in the present invention is not particularly limited, but is preferably 0.5 μm or more, more preferably 1 μm or more. The particle size of the a) inorganic fluorescent powder is 300 μm or less, preferably 200 μm or less, more preferably 150 μm or less, and further preferably 100 μm or less. The particle size of the a) inorganic fluorescent powder used in the present invention is 1 μm or more and 200 μm or less from the viewpoint of obtaining sufficient fluorescence intensity and being excellent in feeling when used in cosmetics and the like. It is preferably 2 μm or more and 100 μm or less.

なお、本願発明で用いる粒子径とは、透過型電子顕微鏡で観察した時の一次粒子における平均径のことを指す。   The particle diameter used in the present invention refers to the average diameter of primary particles when observed with a transmission electron microscope.

本発明で用いられるb)非蛍光粉体は、蛍光特性を有さない粉体であれば特に限定されず、無機粉体でも有機粉体でもよく、形状や大きさも限定されない。   The non-fluorescent powder b) used in the present invention is not particularly limited as long as it has no fluorescent property, and may be an inorganic powder or an organic powder, and its shape and size are not limited.

無機粉体としては、酸化チタン、非蛍光性酸化亜鉛、酸化鉄(ベンガラ、黄酸化鉄、黒酸化鉄)、シリカ、酸化アルミニウム、水酸化アルミニウム、酸化セシウム、酸化クロム、水酸化クロム、硫酸バリウム、合成金雲母、マイカ、タルク、セリサイト、カオリン、グンジョウ、コンジョウ、カーボンブラック、炭酸カルシウム、炭酸マグネシウム、シリコーン、ケイ酸マグネシウム、ケイ酸アルミニウムマグネシウム、窒化ホウ素等が挙げられるが、特にこれらに限定されない。   Examples of the inorganic powder include titanium oxide, non-fluorescent zinc oxide, iron oxide (red iron oxide, yellow iron oxide, black iron oxide), silica, aluminum oxide, aluminum hydroxide, cesium oxide, chromium oxide, chromium hydroxide, barium sulfate. , Synthetic phlogopite, mica, talc, sericite, kaolin, gunjou, konjou, carbon black, calcium carbonate, magnesium carbonate, silicone, magnesium silicate, magnesium aluminum silicate, boron nitride and the like, but are particularly limited to these. Not done.

無機粉体の市販品としては、例えば、MP−1133AQ(テイカ社製)、MP−1133WP(テイカ社製)、MT−100WP(テイカ社製)、MT−100SA(テイカ社製)、MT−500B(テイカ社製)、MZ−300(テイカ社製)、MTZ−3040TSW(テイカ社製)、MZ−500(テイカ社製)、FINEX−30(堺化学工業社製)、FINEX−50(堺化学工業社製)、FINEX−30W(堺化学工業社製)、FINEX−50W(堺化学工業社製)、FINEX−50W−LP2(堺化学工業社製)、AEROSIL 200(日本アエロジル社製)、AEROSIL Alu C(日本アエロジル社製)、LL−100HP(チタン工業社製)、R−516HP(チタン工業社製)、BL−100HP(チタン工業社製)、セリサイトFSE(三信鉱工社製)、シリカマイクロビード P−1500(日揮触媒化成社製)、KSP−100(信越化学工業社製)、KSP−300(信越化学工業社製)等が挙げられるが、特にこれらに限定されない。   Examples of commercially available inorganic powders include MP-1133AQ (manufactured by Teika), MP-1133WP (manufactured by Teika), MT-100WP (manufactured by Teika), MT-100SA (manufactured by Teika), MT-500B. (Manufactured by Teika), MZ-300 (manufactured by Teika), MTZ-3040TSW (manufactured by Teika), MZ-500 (manufactured by Teika), FINEX-30 (manufactured by Sakai Chemical Industry), FINEX-50 (Sakai Chemical Industry). Industrial Co., Ltd.), FINEX-30W (Sakai Chemical Industry Co., Ltd.), FINEX-50W (Sakai Chemical Industry Co., Ltd.), FINEX-50W-LP2 (Sakai Chemical Industry Co., Ltd.), AEROSIL 200 (Japan Aerosil Co., Ltd.), AEROSIL Alu C (manufactured by Nippon Aerosil Co., Ltd.), LL-100HP (manufactured by Titanium Industry Co., Ltd.), R-516HP (manufactured by Titanium Industry Co., Ltd.), BL-100HP ( Tan Kogyo Co., Ltd., Sericite FSE (Sanshin Mining Co., Ltd.), Silica Micro Bead P-1500 (JGC Catalysts Co., Ltd.), KSP-100 (Shin-Etsu Chemical Co., Ltd.), KSP-300 (Shin-Etsu Chemical Co., Ltd.) Manufactured) and the like, but are not particularly limited thereto.

有機粉体としては、ポリエチレン、ポリアミド、架橋ポリスチレン、ポリメタクリル酸メチル、セルロース、カルバメート、フッ素樹脂、ポリオレフィン、エポキシ樹脂、フェノール樹脂、小麦でんぷん、シルク、長鎖脂肪酸塩、セラミド、リン脂質等が挙げられるが、特にこれらに限定されない。   Examples of the organic powder include polyethylene, polyamide, crosslinked polystyrene, polymethylmethacrylate, cellulose, carbamate, fluororesin, polyolefin, epoxy resin, phenol resin, wheat starch, silk, long-chain fatty acid salt, ceramide, phospholipid and the like. However, the present invention is not limited to these.

有機粉体の市販品としては、例えば、ガンツパールGMX−0610(アイカ工業社製)、ガンツパールGMX−0610AQ(アイカ工業社製)、SP−500(東レ社製)、Ceramide I(Evonik社製)、Ceramide III(Evonik社製)、Ceramide VI(Evonik社製)、Phytopresome Care−V(日本精化社製)、Ceramide TIC−001(高砂香料工業社製)、SLP−PC70(辻精油社製)、SLP−PC92H(辻精油社製)、NIKKOL レシノールS−10(日光ケミカルズ社製)等が挙げられるが、特にこれらに限定されない。   Examples of commercially available organic powders include GANTZ Pearl GMX-0610 (manufactured by Aika Kogyo Co., Ltd.), GANTZ Pearl GMX-0610AQ (manufactured by Aika Kogyo Co., Ltd.), SP-500 (manufactured by Toray Co., Ltd.), and Ceramide I (manufactured by Evonik Co.). ), Ceramide III (manufactured by Evonik), Ceramide VI (manufactured by Evonik), Phytopresome Care-V (manufactured by Nippon Seika Co., Ltd.), Ceramide TIC-001 (manufactured by Takasago International Corporation), SLP-PC70 (manufactured by Tsuji Seiyu Co., Ltd.). ), SLP-PC92H (manufactured by Tsuji Seiyu Co., Ltd.), NIKKOL Recinol S-10 (manufactured by Nikko Chemicals Co., Ltd.) and the like, but are not particularly limited thereto.

本発明で用いられる非蛍光粉体は無機粉体が好ましく、中でも金属酸化物、金属水酸化物、ケイ酸化物が好ましい。さらに金属酸化物とケイ酸化物は好ましく、酸化チタン、非蛍光性酸化亜鉛、酸化鉄、酸化アルミニウム(アルミナ)、シリカが特に好ましい。   The non-fluorescent powder used in the present invention is preferably an inorganic powder, and among them, a metal oxide, a metal hydroxide and a silicate are preferable. Further, metal oxides and silica oxides are preferable, and titanium oxide, non-fluorescent zinc oxide, iron oxide, aluminum oxide (alumina), and silica are particularly preferable.

また、本発明で用いられるb)非蛍光粉体の粒子径は、本願発明で用いられる無機蛍光粉体の粒子径よりも小さい方が好ましく、250nm以下であることが好ましく、100nm以下の微粒子であることがより好ましい。また、本発明の複合粒子の蛍光強度を向上させる効果の観点から、0.1nm以上であることが好ましく、1nm以上であることがより好ましい。本発明で用いられる非蛍光粉体の粒子径としては、0.1nm以上150nm以下であることが好ましく、1nm以上100nm以下であることがより好ましい。   The particle size of b) the non-fluorescent powder used in the present invention is preferably smaller than the particle size of the inorganic fluorescent powder used in the present invention, preferably 250 nm or less, and 100 nm or less of fine particles. More preferably. Further, from the viewpoint of the effect of improving the fluorescence intensity of the composite particles of the present invention, it is preferably 0.1 nm or more, more preferably 1 nm or more. The particle size of the non-fluorescent powder used in the present invention is preferably 0.1 nm or more and 150 nm or less, more preferably 1 nm or more and 100 nm or less.

本願発明で用いられるa)無機蛍光粉体及び/又はb)非蛍光粉体は、複合化させる粉体の組み合わせによって、粉体同士の付着性を向上させたり、得られる複合粉体の蛍光強度をより高める等の目的で、表面処理がなされていてもよい。この表面処理は、複合化前のそれぞれの粉体に対して行ってもよいし、得られた複合粉体に対して行ってもよい。   The a) inorganic fluorescent powder and / or b) non-fluorescent powder used in the present invention improves the adhesion between the powders by combining the powders to be composited, and the fluorescence intensity of the resulting composite powder. Surface treatment may be performed for the purpose of further increasing the temperature. This surface treatment may be performed on each powder before compounding, or may be performed on the obtained composite powder.

表面処理に用いられる物質の種類としては、シリカ、アルギン酸、酸化アルミニウム(アルミナ)、POE/ジメチコン共重合体、ポリエチレングリコール、水酸化アルミニウム、アミノ酸、金属石ケン、パーフルオロアルキルエチルリン酸エステルジエタノールアミン酸、フッ素アルキルアクリレート/ポリアルキレングリコールアクリレートポリマー、パーフルオロポリエーテルリン酸、パーフルオロポリエーテル鎖を有するアニオン性又はカチオン性高分子、水素添加レシチン、アシル化アミノ酸、α−トコフェロールリン酸エステル酸、メチルハイドロジェンポリシロキサン、α−モノアルコキシポリジメチルシロキサン、α−ジアルコキシポリジメチルシロキサン、トリエトキシシリルエチルポリジメチルシロキシエチルジメチコン、アモジメチコン、トリエトキシカプリリルシラン、アミノプロピルトリエトキシシラン、パーフルオロオクチルエチルトリエトキシシラン、パーフルオロオクチルトリエトキシシラン、等が挙げられるが、これらに限定されない。中でも、親水性の表面処理が好ましく、特に、シリカ、アルギン酸、酸化アルミニウム(アルミナ)、POE/ジメチコン共重合体、ポリエチレングリコール、水酸化アルミニウムが好ましい。   The types of substances used for the surface treatment include silica, alginic acid, aluminum oxide (alumina), POE / dimethicone copolymer, polyethylene glycol, aluminum hydroxide, amino acid, metal soap, perfluoroalkylethyl phosphate diethanolamine acid. , Fluoroalkyl acrylate / polyalkylene glycol acrylate polymer, perfluoropolyether phosphoric acid, anionic or cationic polymer having perfluoropolyether chain, hydrogenated lecithin, acylated amino acid, α-tocopherol phosphate ester acid, methyl Hydrogen polysiloxane, α-monoalkoxy polydimethyl siloxane, α-dialkoxy polydimethyl siloxane, triethoxysilylethyl polydimethylsiloxyethyl dimethicone Amodimethicone, triethoxy caprylyl silane, aminopropyltriethoxysilane, perfluorooctyl ethyl triethoxysilane, perfluorooctyl triethoxysilane, but and the like, without limitation. Among them, hydrophilic surface treatment is preferable, and silica, alginic acid, aluminum oxide (alumina), POE / dimethicone copolymer, polyethylene glycol, and aluminum hydroxide are particularly preferable.

また、a)無機蛍光粉体及び/又はb)非蛍光粉体に対しては、複数の表面処理がなされていてもよく、表面処理率(粉体に対する表面処理剤量の割合)や表面処理方法も特に限定されない。   The a) inorganic fluorescent powder and / or the b) non-fluorescent powder may be subjected to a plurality of surface treatments, such as surface treatment rate (ratio of surface treatment agent amount to powder) and surface treatment. The method is also not particularly limited.

本発明において用いられるa)無機蛍光粉体及び/又はb)非蛍光粉体は、後述する複合粉体の調製方法での湿式処理において付着力が高いという点で、表面が親水性であることが好ましい。中でも、少なくとも1つ以上の親水性の表面処理がなされていることが好ましく、最表面に親水性の表面処理がなされていることが特に好ましい。ここで、親水性の表面処理としては、例えばシリカ、アルギン酸、酸化アルミニウム(アルミナ)、水酸化アルミニウム、アミノ酸、ポリエチレングリコール、POE/ジメチコン共重合体処理等が挙げられるが特にこれらに限定されない。   The surface of the a) inorganic fluorescent powder and / or b) non-fluorescent powder used in the present invention is hydrophilic in that it has high adhesiveness in the wet treatment in the method for preparing a composite powder described below. Is preferred. Among them, at least one or more hydrophilic surface treatments are preferable, and it is particularly preferable that the outermost surface is hydrophilic surface treatment. Here, examples of the hydrophilic surface treatment include, but are not particularly limited to, silica, alginic acid, aluminum oxide (alumina), aluminum hydroxide, amino acid, polyethylene glycol, and POE / dimethicone copolymer treatment.

本願発明における複合粉体の調製方法は特に限定されないが、湿式処理が好ましい。   The method for preparing the composite powder in the present invention is not particularly limited, but wet processing is preferable.

湿式処理では、分散媒中にa)無機蛍光粉体とb)非蛍光粉体を分散し、b)非蛍光粉体をa)無機蛍光粉体の表面の少なくとも一部に被覆させることが好ましい。また、a)無機蛍光粉体及び/又はb)非蛍光粉体を機械的撹拌力・解砕力により十分に分散させる方が好ましく、具体的にはマグネチックスターラー、ミキサー、超音波、ホモジナイザー、高圧ホモジナイザー、ディスパーミキサー、ビーズミル、コロイドミル、ローラーミル、三本ローラーミル、スタンプミル、ロッドミル、ボールミル、ジョークラッシャー、ニーダー、プラネタリーミキサー等が挙げられるが特にこれらに限定されず、2つ以上用いても構わない。   In the wet treatment, it is preferable that a) the inorganic fluorescent powder and b) the non-fluorescent powder are dispersed in a dispersion medium, and b) the non-fluorescent powder is coated on at least a part of the surface of the a) the inorganic fluorescent powder. . Further, it is preferable to sufficiently disperse a) the inorganic fluorescent powder and / or b) the non-fluorescent powder by a mechanical stirring force and a crushing force, specifically, a magnetic stirrer, a mixer, an ultrasonic wave, a homogenizer, a high-pressure homogenizer. , Disperser mixer, bead mill, colloid mill, roller mill, triple roller mill, stamp mill, rod mill, ball mill, jaw crusher, kneader, planetary mixer, etc., but are not particularly limited to these, and two or more may be used. I do not care.

また、ろ過や遠心分離、乾燥等の工程を付与してもよい。乾燥方法も特に限定されない。得られる複合粉体は、分散体やペーストとして用いてもよく、粉体として用いてもよい。   Moreover, you may add processes, such as filtration, centrifugation, and drying. The drying method is also not particularly limited. The obtained composite powder may be used as a dispersion or a paste, or may be used as a powder.

湿式処理において用いる分散媒も特に限定されず、水、アルコール、炭化水素油、エステル油、シリコーン油、有機溶媒等が挙げられ、分散媒中に界面活性剤や塩、キレート剤等の成分を含有させてもよい。   The dispersion medium used in the wet treatment is not particularly limited, and examples thereof include water, alcohols, hydrocarbon oils, ester oils, silicone oils and organic solvents, and the dispersion medium contains components such as surfactants, salts and chelating agents. You may let me.

湿式処理において用いる分散媒は、粉体同士の付着力が向上する等の理由から、親水性の分散媒が好ましく、少なくとも水を含んでいることが好ましい。   The dispersion medium used in the wet treatment is preferably a hydrophilic dispersion medium, and preferably contains at least water, for the reason that the adhesion between powders is improved.

本発明の複合粉体におけるa)無機蛍光粉体とb)非蛍光粉体の重量の割合は、a)無機蛍光粉体とb)非蛍光粉体のそれぞれの形状や大きさ等により適宜調整すればよいが、a成分(重量%):b成分(重量%)=95:5〜70:30が好ましく、特に90:10〜70:30が好ましい。また、上記割合は、例えば、複合粉体を調製する際の、a)成分、b)成分の仕込み量(重量%)の割合としてもよい。   The weight ratio of a) the inorganic fluorescent powder and b) the non-fluorescent powder in the composite powder of the present invention is appropriately adjusted according to the shape and size of each of the a) the inorganic fluorescent powder and the b) the non-fluorescent powder. However, it is preferable that a component (wt%): b component (wt%) = 95: 5 to 70:30, particularly 90:10 to 70:30. Further, the above ratio may be, for example, the ratio of the charged amounts (% by weight) of the components a) and b) when preparing the composite powder.

本発明の複合粉体は、蛍光強度が強いことから、様々な形態の化粧料等の皮膚外用組成物に好適に用いることができる。また、蛍光を活用できる照明や遊具、塗料等の分野においても好適に使用することができる。   Since the composite powder of the present invention has strong fluorescence intensity, it can be suitably used for various external compositions for skin such as cosmetics. Further, it can be suitably used in the fields of lighting, playground equipment, paints, etc. that can utilize fluorescence.

<皮膚外用組成物>
本発明の外用組成物は、上述した本発明の複合粉体を含有する。本発明の複合粉体は、蛍光強度が強く、優れた発光性、色補正効果を示すため、これを含有する皮膚外用組成物は、傷痕を目立たなくしたり、肌の色味を整える、メーキャップ効果を付与する等の目的で、医薬品、医薬部外品、化粧料などの皮膚外用剤全般に使用できる。特にメーキャップ効果に優れることから、化粧品として好適に使用できる。
<External composition for skin>
The composition for external use of the present invention contains the above-described composite powder of the present invention. Since the composite powder of the present invention has strong fluorescence intensity and exhibits excellent light emitting property and color correction effect, the composition for external use for skin containing the same makes the scars inconspicuous or adjusts the skin tone, and has a makeup effect. It can be used for general external preparations for skin such as pharmaceuticals, quasi drugs, and cosmetics for the purpose of imparting In particular, since it has an excellent makeup effect, it can be suitably used as a cosmetic product.

本発明の皮膚外用組成物における複合粉体の含有量としては、0.0001重量%以上50重量%以下であり、0.001重量%以上30重量%以下であることが好ましく、0.01重量%以上20重量%以下であることがより好ましく、0.01重量%以上10重量%以下であることがさらに好ましく、0.01重量%以上5重量%以下であることが特に好ましい。   The content of the composite powder in the external composition for skin of the present invention is 0.0001% by weight or more and 50% by weight or less, preferably 0.001% by weight or more and 30% by weight or less, and 0.01% by weight. % Or more and 20% by weight or less is more preferable, 0.01% by weight or more and 10% by weight or less is further preferable, and 0.01% by weight or more and 5% by weight or less is particularly preferable.

本発明の皮膚外用組成物は、本発明の複合粉体以外に、本発明の効果を損なわない範囲で、その他の成分を含んでいてもよい。   The external composition for skin of the present invention may contain, in addition to the composite powder of the present invention, other components as long as the effects of the present invention are not impaired.

その他の成分としては、種々の目的に応じて、油分、親油性非イオン界面活性剤、親水性非イオン界面活性剤、その他の界面活性剤、金属イオン封鎖剤、天然の水溶性高分子、半合成の水溶性高分子、合成の水溶性高分子、無機の水溶性高分子、各種の抽出液、各種粉体、保湿成分、多価アルコール、スクラブ剤、紫外線散乱成分、収斂成分、ペプチド又はその誘導体、アミノ酸又はその誘導体、洗浄成分、角質柔軟成分、細胞賦活化成分、老化防止成分、血行促進作用成分、美白成分、DNAの損傷の予防及び/又は修復作用を有する成分、抗炎症成分、抗酸化成分、ビタミン類、皮脂吸着成分、抗菌成分等のその他の成分を、本発明の効果を損なわない範囲で含んでいてもよい。本発明の皮膚外用組成物において、これらの成分は、1種又は2種以上組み合わせて配合してもよい。なお、これらの各成分としては、医薬品、医薬部外品、化粧品分野等において使用され得るものであれば特に制限されず、任意のものを適宜選択し使用することができる。   Other components include oils, lipophilic nonionic surfactants, hydrophilic nonionic surfactants, other surfactants, sequestering agents, natural water-soluble polymers, and semi-soluble polymers according to various purposes. Synthetic water-soluble polymer, synthetic water-soluble polymer, inorganic water-soluble polymer, various extracts, various powders, moisturizing ingredients, polyhydric alcohols, scrubbing agents, ultraviolet scattering ingredients, astringent ingredients, peptides or the like Derivative, amino acid or its derivative, washing component, keratin softening component, cell activating component, anti-aging component, blood circulation promoting component, whitening component, component having DNA damage preventing and / or repairing action, anti-inflammatory component, anti-inflammatory component Other components such as oxidizing components, vitamins, sebum-adsorbing components, antibacterial components and the like may be contained within a range that does not impair the effects of the present invention. In the external composition for skin of the present invention, these components may be blended alone or in combination of two or more. It should be noted that each of these components is not particularly limited as long as it can be used in the fields of pharmaceuticals, quasi drugs, cosmetics, etc., and any component can be appropriately selected and used.

本発明の皮膚外用組成物は、本発明の複合粉体の他に、複合化していない蛍光粉体を含んでいてもよい。   The external composition for skin of the present invention may contain a non-composited fluorescent powder in addition to the composite powder of the present invention.

本発明の皮膚外用組成物の製造方法は特に制限されず、必須成分である本発明の複合粉体、及び上記その他の成分等から適宜選択した成分を、配合して、常法により、混合して製造することができる。   The method for producing the external composition for skin of the present invention is not particularly limited, and the composite powder of the present invention which is an essential component, and components appropriately selected from the above-mentioned other components and the like are blended and mixed by a conventional method. Can be manufactured.

本発明の皮膚外用組成物の具体的用途としては、例えば、化粧水、保湿液、乳液、美容液、パック、ハンドクリーム、ボディローション、ボディークリーム、リップクリームのような基礎化粧料;洗顔料、メイク落とし、ボディーシャンプーのような洗浄用化粧料;ファンデーション、化粧下地、アイカラー、アイシャドー、アイライナー、アイブロウ、ハイライト、コントロールカラー、チーク、マスカラ、口紅、ファイスパウダーのようなメーキャップ化粧料;日焼け止め化粧料等の化粧料に用いることができる。また、これら化粧料の機能を1つの製剤にまとめた多機能型製剤も挙げられる。さらに、創傷用軟膏、ニキビ用外用剤等の医薬品・医薬部外品等にも用いることができる。   Specific applications of the external composition for skin of the present invention include, for example, basic cosmetics such as lotion, moisturizer, emulsion, beauty essence, pack, hand cream, body lotion, body cream and lip balm; Makeup remover, cleaning cosmetics such as body shampoo; makeup cosmetics such as foundation, makeup base, eye color, eye shadow, eyeliner, eyebrow, highlight, control color, cheek, mascara, lipstick, face powder; It can be used for cosmetics such as sunscreen cosmetics. In addition, a multifunctional preparation in which the functions of these cosmetics are combined into one preparation is also included. Furthermore, it can also be used in medicines, quasi drugs, such as ointments for wounds and external preparations for acne.

中でも、ファンデーション、化粧下地、アイカラー、アイシャドー、アイライナー、アイブロウ、ハイライト、コントロールカラー、チーク、マスカラ、口紅、ファイスパウダーのようなメーキャップ化粧料;日焼け止め化粧料等の化粧料が、特に好ましい。   Among them, makeup cosmetics such as foundation, makeup base, eye color, eye shadow, eye liner, eyebrow, highlight, control color, cheek, mascara, lipstick, face powder; sunscreen cosmetics, etc. preferable.

<無機蛍光粉体の蛍光強度増強方法>
本発明は、a)無機蛍光粉体の表面の一部にb)非蛍光粉体を被覆させることを特徴とする、無機蛍光粉体の蛍光強度増強方法も含む。また、a)無機蛍光粉体の表面の一部にb)非蛍光粉体を被覆させて得られた本発明の複合粉体は、優れた発光性を示すため、化粧料に含有させることで、よりメーキャップ効果の高い化粧料を提供することができるものである。なお、無機蛍光粉体の蛍光強度増強方法におけるa)無機蛍光粉体、b)非蛍光粉体の説明、これらを用いて調製される複合粉体の具体的な説明は、「複合粉体」の項の説明を適用できる。
<Method for enhancing fluorescent intensity of inorganic fluorescent powder>
The present invention also includes a method of enhancing the fluorescence intensity of inorganic fluorescent powder, characterized in that a) a part of the surface of the inorganic fluorescent powder is coated with b) non-fluorescent powder. In addition, the composite powder of the present invention obtained by coating a) a part of the surface of the inorganic fluorescent powder with b) a non-fluorescent powder exhibits excellent luminescent properties, so that it can be incorporated into a cosmetic composition. It is possible to provide a cosmetic having a higher makeup effect. In addition, in the method for enhancing the fluorescent intensity of the inorganic fluorescent powder, the description of a) the inorganic fluorescent powder, b) the non-fluorescent powder, and the specific description of the composite powder prepared using these are given in "Composite Powder". The explanation in the section can be applied.

次にa)無機蛍光粉体の表面の少なくとも一部をb)非蛍光粉体が被覆している複合粉体について実施例を挙げ、詳細を説明するが、本発明はこれらに限定されるものではない。   Next, a detailed description will be given with reference to examples of the composite powder in which a) at least a part of the surface of the inorganic fluorescent powder is coated with b) the non-fluorescent powder, but the present invention is not limited thereto. is not.

(実施例1)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長は660nm)4.5gを水45.5g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.5gを水49.5g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 1)
Silica-treated oxidation (Al / Ca / manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) 4.5 g in water 45.5 g It was put in and sufficiently dispersed by a disper mill to obtain an oxidized (Al / Ca / manganese) aqueous dispersion. Next, 0.5 g of alumina-treated fine particle titanium oxide (needle-shaped, particle diameter 15 nm, Al hydroxide treated 6%) was put in 49.5 g of water and dispersed sufficiently with a disper mill to obtain an alumina-treated fine particle titanium oxide aqueous dispersion. Got The alumina-treated fine particle titanium oxide aqueous dispersion was mixed with the oxidized (Al / Ca / manganese) aqueous dispersion, thoroughly dispersed with a Dispermill, filtered, and dried at 60 ° C. overnight. After drying, the aggregate was crushed with a mill grinder to obtain an inorganic fluorescent composite powder.

(比較例1)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長は660nm。)4.5gとアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.5gをミルグラインダーで粉砕し、無機蛍光粉体混合物を得た。
(Comparative Example 1)
4.5 g of silica-treated oxide (Al / Ca / manganese) (plate-like, particle size 40 μm, aluminum hydroxide treated 4.5%, silica-treated 1.0%, fluorescence wavelength is 660 nm) 4.5 g, and alumina-treated fine particle titanium oxide 0.5 g (needle-shaped, particle diameter 15 nm, treated with Al hydroxide 6%) was pulverized with a mill grinder to obtain an inorganic fluorescent powder mixture.

(比較例2)
比較例2として、シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長は660nm)を用いた。
(Comparative example 2)
As Comparative Example 2, silica-treated oxidation (Al / Ca / manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) was used.

<複合化の確認>
走査型電子顕微鏡 VE−8800(キーエンス社製)を用いて実施例1の無機蛍光複合粉体と比較例2の無機蛍光粉体混合物を観察した。それぞれの顕微鏡写真を図1(実施例1)、図2(比較例2)として示した。
<Confirmation of compounding>
The inorganic fluorescent composite powder of Example 1 and the inorganic fluorescent powder mixture of Comparative Example 2 were observed using a scanning electron microscope VE-8800 (manufactured by Keyence Corporation). The respective micrographs are shown in FIG. 1 (Example 1) and FIG. 2 (Comparative Example 2).

図1と図2を比較すると、明らかに実施例1においてシリカ処理酸化(Al/Ca/マンガン)の表面にアルミナ処理微粒子酸化チタンが付着し、非蛍光粉体であるアルミナ処理微粒子酸化チタンが、無機蛍光粉体であるシリカ処理酸化(Al/Ca/マンガン)の表面を被覆していることを確認できた。   Comparing FIG. 1 and FIG. 2, obviously, in Example 1, the alumina-treated fine particle titanium oxide adheres to the surface of the silica-treated oxide (Al / Ca / manganese), and the alumina-treated fine particle titanium oxide which is a non-fluorescent powder, It was confirmed that the surface of silica-treated oxide (Al / Ca / manganese), which is an inorganic fluorescent powder, was coated.

<試験1 蛍光強度の評価>
プレート(50mm×50mm HELIOPLATE HD6、HelioScreen Labs製)に両面テープを貼り、刷毛で均一に試料を塗布。分光変角色差計GC−5000(日本電色工業社製)を用い、プレートの試料が塗布された面側に入射角45°で光をあて、正反射角の反射強度を測定した。a)成分の蛍光波長における強度において、a)無機蛍光粉体のみの時の強度を1とした時の、各試料の蛍光波長における強度を比較した。
<Test 1 Evaluation of fluorescence intensity>
A double-sided tape is attached to a plate (50 mm x 50 mm HELIOPLATE HD6, made by HelioScreen Labs), and the sample is evenly applied with a brush. Using a spectrophotometric color difference meter GC-5000 (manufactured by Nippon Denshoku Industries Co., Ltd.), light was applied to the surface of the plate coated with the sample at an incident angle of 45 ° to measure the reflection intensity at the regular reflection angle. Regarding the intensities at the fluorescence wavelength of the component a), the intensities at the fluorescence wavelength of each sample were compared, where the intensity at a) only the inorganic fluorescent powder was 1.

比較例2:a)無機蛍光粉体単体と、比較例1:a)無機蛍光粉体とb)非蛍光粉体の単純混合の、蛍光波長660nmにおける反射強度を比較すると、a)無機蛍光粉体とb)非蛍光粉体を単純混合するだけでも約9倍に蛍光強度が増加した。実施例1:a)無機蛍光粉体とb)非蛍光粉体を複合粉体は、比較例1の約14倍の強度を示し、複合化により、さらに蛍光強度が増加することが確認できた。   Comparative Example 2: a) Inorganic fluorescent powder alone, Comparative example 1: a) Inorganic fluorescent powder and b) Non-fluorescent powder are simply mixed, and the reflection intensity at a fluorescent wavelength of 660 nm is compared. The fluorescence intensity increased about 9 times by simply mixing the body and b) the non-fluorescent powder. Example 1: The composite powder of a) an inorganic fluorescent powder and b) a non-fluorescent powder showed about 14 times the strength of Comparative Example 1, and it was confirmed that the composite further increases the fluorescence strength. .

また、蛍光波長(660nm)の場合と、蛍光波長(400nm)の場合で、蛍光強度を比較すると、蛍光波長(660nm)の方がより、蛍光強度が増加しており、a)成分の蛍光波長において、より顕著な強度増加が確認された。蛍光波長660nmの蛍光強度が顕著に増強されることにより、赤味の映える粉体となった。   Further, comparing the fluorescence intensities in the case of the fluorescence wavelength (660 nm) and in the case of the fluorescence wavelength (400 nm), the fluorescence intensity is higher at the fluorescence wavelength (660 nm), and the fluorescence wavelength of the component a) In, a more remarkable increase in strength was confirmed. Since the fluorescence intensity at the fluorescence wavelength of 660 nm was remarkably enhanced, the powder became reddish.

(実施例2)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長660nm)0.95gを水49.05g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.05gを水49.9g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 2)
Silica treatment Oxidation (Al / Ca / manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) 0.95 g in water 49.05 g Then, it was sufficiently dispersed with a Dispermill to obtain an oxidized (Al / Ca / manganese) aqueous dispersion. Next, 0.05 g of alumina-treated fine particle titanium oxide (needle-shaped, particle diameter 15 nm, Al hydroxide treated 6%) was put in 49.9 g of water, and dispersed sufficiently by a disper mill to obtain an alumina-treated fine particle titanium oxide aqueous dispersion. Got The alumina-treated fine particle titanium oxide aqueous dispersion was mixed with the oxidized (Al / Ca / manganese) aqueous dispersion, thoroughly dispersed with a Dispermill, filtered, and dried at 60 ° C. overnight. After drying, the aggregate was crushed with a mill grinder to obtain an inorganic fluorescent composite powder.

(実施例3)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長660nm)0.80gを水49.20g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.20gを水49.80g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 3)
Silica treatment Oxidation (Al / Ca / manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) 0.80 g in water 49.20 g Then, it was sufficiently dispersed with a Dispermill to obtain an oxidized (Al / Ca / manganese) aqueous dispersion. Next, 0.20 g of alumina-treated fine particle titanium oxide (needle-shaped, particle diameter 15 nm, Al hydroxide-treated 6%) was put in 49.80 g of water and sufficiently dispersed by a disper mill to obtain an alumina-treated fine particle titanium oxide aqueous dispersion. Got The alumina-treated fine particle titanium oxide aqueous dispersion was mixed with the oxidized (Al / Ca / manganese) aqueous dispersion, thoroughly dispersed with a Dispermill, filtered, and dried at 60 ° C. overnight. After drying, the aggregate was crushed with a mill grinder to obtain an inorganic fluorescent composite powder.

(実施例4)
シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・水酸化アルミニウム処理 4.5%後、シリカ処理 1.0%・蛍光波長660nm)0.70gを水49.30g中に入れ、ディスパーミルで十分に分散させ、酸化(Al/Ca/マンガン)水分散体を得た。次にアルミナ処理微粒子酸化チタン(針状・粒子径15nm・水酸化Al処理 6%)0.30gを水49.70g中に入れ、ディスパーミルで十分に分散させ、アルミナ処理微粒子酸化チタン水分散体を得た。酸化(Al/Ca/マンガン)水分散体中にアルミナ処理微粒子酸化チタン水分散体を混合させ、ディスパーミルで十分に分散後、ろ過、60℃で一晩乾燥させた。乾燥後に凝集物をミルグラインダーで解砕し、無機蛍光複合粉体を得た。
(Example 4)
Silica treatment Oxidation (Al / Ca / manganese) (plate-like, particle size 40 μm, aluminum hydroxide treatment 4.5%, silica treatment 1.0%, fluorescence wavelength 660 nm) 0.70 g is put in water 49.30 g. Then, it was sufficiently dispersed with a Dispermill to obtain an oxidized (Al / Ca / manganese) aqueous dispersion. Next, 0.30 g of alumina-treated fine particle titanium oxide (needle-shaped, particle size 15 nm, Al hydroxide treated 6%) was put in 49.70 g of water and dispersed sufficiently with a disper mill to give an alumina-treated fine particle titanium oxide aqueous dispersion. Got The alumina-treated fine particle titanium oxide aqueous dispersion was mixed with the oxidized (Al / Ca / manganese) aqueous dispersion, thoroughly dispersed with a Dispermill, filtered, and dried at 60 ° C. overnight. After drying, the aggregate was crushed with a mill grinder to obtain an inorganic fluorescent composite powder.

複合化処理を行った実施例1〜4の蛍光強度を、複合化前のa)無機蛍光粉体である比較例2の強度を1として、比較した。結果は表2に示す。   The fluorescence intensities of Examples 1 to 4 which were subjected to the composite treatment were compared, with the intensity of Comparative Example 2 which was a) the inorganic fluorescent powder before the composite being set as 1. The results are shown in Table 2.

(実施例5)
実施例1のシリカ処理酸化(Al/Ca/マンガン)を、粒子径10μmのシリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)に変え、無機蛍光複合粉体を得た。
(Example 5)
The silica-treated oxidation (Al / Ca / manganese) of Example 1 was treated with silica having a particle diameter of 10 μm (Al / Ca / manganese) (plate-like, particle diameter 10 μm, aluminum hydroxide treatment after 4.5%, silica treatment). 3.0% / fluorescence wavelength of 660 nm) to obtain an inorganic fluorescent composite powder.

(実施例6)
実施例3のシリカ処理酸化(Al/Ca/マンガン)を、粒子径10μmのシリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)に変え、無機蛍光複合粉体を得た。
(Example 6)
The silica-treated oxidation (Al / Ca / manganese) of Example 3 was treated with silica-treated oxidation (Al / Ca / manganese) having a particle diameter of 10 μm (plate-like particle diameter 10 μm-aluminum hydroxide treatment after 4.5%, silica treatment). 3.0% / fluorescence wavelength of 660 nm) to obtain an inorganic fluorescent composite powder.

(実施例7)
実施例4のシリカ処理酸化(Al/Ca/マンガン)を、粒子径10μmのシリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)に変え、無機蛍光複合粉体を得た。
(Example 7)
The silica-treated oxidation (Al / Ca / manganese) of Example 4 was treated with silica having a particle diameter of 10 μm (Al / Ca / manganese) (plate-like, particle diameter 10 μm, aluminum hydroxide treatment after 4.5%, silica treatment). 3.0% / fluorescence wavelength of 660 nm) to obtain an inorganic fluorescent composite powder.

(比較例3)
比較例3として、シリカ処理酸化(Al/Ca/マンガン)(板状・粒子径10μm・水酸化アルミニウム処理 4.5%後、シリカ処理 3.0%・蛍光波長660nm)を用いた。
(Comparative example 3)
As Comparative Example 3, silica-treated oxidation (Al / Ca / manganese) (plate-like, particle size 10 μm, aluminum hydroxide treatment 4.5%, silica treatment 3.0%, fluorescence wavelength 660 nm) was used.

複合化処理を行った実施例5〜7の蛍光強度を、複合化前のa)無機蛍光粉体である比較例3の強度を1として、比較した。結果を表3に示す。   The fluorescence intensities of Examples 5 to 7 that were subjected to the composite treatment were compared, with the intensity of Comparative Example 3 which was a) the inorganic fluorescent powder before the composite being set as 1. The results are shown in Table 3.

実施例1〜4と比較例2より、a)成分とb)成分の比率を変えても、複合化により、蛍光強度の増強が確認できた。   From Examples 1 to 4 and Comparative Example 2, even if the ratio of the component a) and the component b) was changed, it was confirmed that the fluorescence intensity was enhanced by the compounding.

また、a)成分の粒子径を変えても(実施例5〜7)同様に、複合化により、蛍光強度の増強が確認できた。特にa:b=90:10〜70:30において顕著に蛍光強度が上昇した。   Further, even if the particle diameter of the component a) was changed (Examples 5 to 7), similarly, it was confirmed that the fluorescence intensity was enhanced by the combination. In particular, the fluorescence intensity remarkably increased at a: b = 90: 10 to 70:30.

(実施例8)
実施例1のシリカ処理酸化(Al/Ca/マンガン)をアルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・アルギン酸処理 3%・蛍光波長は660nm)に変え、無機蛍光複合粉体を得た。
(Example 8)
The silica-treated oxidation (Al / Ca / manganese) of Example 1 was changed to alginic acid-treated oxidation (Al / Ca / manganese) (plate-like, particle size 40 μm, alginic acid treatment 3%, fluorescence wavelength was 660 nm), and the inorganic fluorescent composite powder was used. Got the body

(実施例9)
実施例8のアルミナ処理微粒子酸化チタンをシリカ処理微粒子酸化チタン(針状・粒子径15nm・シリカ処理 30%)に変え、無機複合粉体を得た。
(Example 9)
The alumina-treated fine particle titanium oxide of Example 8 was changed to silica-treated fine particle titanium oxide (needle-like, particle diameter 15 nm, silica-treated 30%) to obtain an inorganic composite powder.

(実施例10)
実施例1のアルミナ処理微粒子酸化チタンをアルミナ(略球状・粒子径13nm・表面処理なし)に変え、無機蛍光複合粉体を得た。
(Example 10)
The alumina-treated fine particle titanium oxide of Example 1 was changed to alumina (substantially spherical, particle diameter 13 nm, no surface treatment) to obtain an inorganic fluorescent composite powder.

(実施例11)
実施例1のシリカ処理酸化(Al/Ca/マンガン)をアルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・アルギン酸処理 1%・蛍光波長は660nm)に変え、さらにアルミナ処理微粒子酸化チタンをシリカ(略球状・粒子径12nm・表面処理なし)に変え、無機蛍光複合粉体を得た。
(Example 11)
The silica-treated oxidation (Al / Ca / manganese) of Example 1 was changed to alginic acid-treated oxidation (Al / Ca / manganese) (plate-shaped, particle size 40 μm, alginic acid-treated 1%, fluorescence wavelength was 660 nm), and further alumina-treated fine particles. The titanium oxide was changed to silica (substantially spherical, particle diameter 12 nm, no surface treatment) to obtain an inorganic fluorescent composite powder.

(実施例12)
実施例3のシリカ処理酸化(Al/Ca/マンガン)をアルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径40μm・アルギン酸処理 1%・蛍光波長は660nm)に変え、さらにアルミナ処理微粒子酸化チタンをシリカ処理顔料級酸化チタン(略球状・粒子径250nm・水酸化Al処理 2.6%後にシリカ処理 5.0%)に変え、無機複合粉体を得た。
(Example 12)
The silica-treated oxidation (Al / Ca / manganese) of Example 3 was changed to alginic acid-treated oxidation (Al / Ca / manganese) (plate shape, particle size 40 μm, alginic acid treatment 1%, fluorescence wavelength was 660 nm), and further alumina treated fine particles. The titanium oxide was changed to a silica-treated pigment-grade titanium oxide (substantially spherical, particle size 250 nm, Al hydroxide treated 2.6% and silica treated 5.0%) to obtain an inorganic composite powder.

(実施例13)
実施例12のシリカ処理顔料級酸化チタンをPOE・ジメチコン共重合体処理微粒子酸化亜鉛(略球状・粒子径35nm・トリエトキシカプリリルシラン処理 3.6%後、ポリオキシエチレン・メチルポリシロキサン共重合体処理 10.0%)に変え、無機蛍光複合粉体を得た。
(Example 13)
The silica-treated pigment-grade titanium oxide of Example 12 was treated with POE / dimethicone copolymer-treated fine particle zinc oxide (substantially spherical / particle diameter 35 nm / triethoxycaprylylsilane treatment 3.6%, followed by polyoxyethylene / methylpolysiloxane copolymerization). The coalescence treatment was changed to 10.0%) to obtain an inorganic fluorescent composite powder.

(比較例4)
比較例4として、アルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径4μm・アルギン酸処理 3%・蛍光波長660nm)を用いた。
(Comparative example 4)
As Comparative Example 4, alginic acid-treated oxidation (Al / Ca / manganese) (plate-like particle size 4 μm, alginic acid-treated 3%, fluorescence wavelength 660 nm) was used.

(比較例5)
比較例5として、アルギン酸処理酸化(Al/Ca/マンガン)(板状・粒子径4μm・アルギン酸処理 1%・蛍光波長660nm)を用いた。
(Comparative example 5)
As Comparative Example 5, alginic acid-treated oxidation (Al / Ca / manganese) (plate-like particle size 4 μm, alginic acid-treated 1%, fluorescence wavelength 660 nm) was used.

それぞれの実施例で得られた無機蛍光複合粉体において、複合していないa)無機蛍光粉体と蛍光強度を1として比較した結果は表4のようになった(実施例8、9は比較例4と、実施例10は比較例2と、実施例11〜13は比較例5で強度の比を求めた)。   The inorganic fluorescent composite powders obtained in the respective examples were compared with the non-composite a) inorganic fluorescent powder with a fluorescent intensity of 1, and the results are shown in Table 4 (Comparing Examples 8 and 9). The strength ratios of Example 4 and Example 10 were found in Comparative Example 2 and Examples 11 to 13 were found in Comparative Example 5).

(実施例14)
実施例1のシリカ処理酸化(Al/Ca/マンガン)をリン酸(Ca/セリウム)(Lumate B(堺化学工業社製、最大蛍光波長 460nm))に変え、無機蛍光複合粉体を得た。
(Example 14)
The silica-treated oxidation (Al / Ca / manganese) of Example 1 was changed to phosphoric acid (Ca / cerium) (Lumate B (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength 460 nm)) to obtain an inorganic fluorescent composite powder.

(実施例15)
実施例1のシリカ処理酸化(Al/Ca/マンガン)を酸化亜鉛蛍光体(Lumate G(堺化学工業社製、最大蛍光波長 500nm))に変え、アルミナ処理微粒子酸化チタンをシリカ処理微粒子酸化チタン(針状・粒子径15nm・シリカ処理 30%)に変え、無機蛍光複合粉体を得た。
(Example 15)
The silica-treated oxide (Al / Ca / manganese) of Example 1 was changed to a zinc oxide phosphor (Lumate G (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength: 500 nm)), and the alumina-treated fine particle titanium oxide (silica-treated fine particle titanium oxide ( Inorganic fluorescent composite powder was obtained by changing to needle-like particles, particle diameter 15 nm, silica treatment 30%).

(実施例16)
実施例1のシリカ処理酸化(Al/Ca/マンガン)を酸化(Mg/マンガン/チタン)(Lumate R(堺化学工業社製、最大蛍光波長660nm))に変え、アルミナ処理微粒子酸化チタンをシリカ処理微粒子酸化チタン(針状・粒子径15nm・シリカ処理 30%)に変え、無機蛍光複合粉体を得た。
(Example 16)
The silica-treated oxidation (Al / Ca / manganese) of Example 1 was changed to oxidation (Mg / manganese / titanium) (Lumate R (produced by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength 660 nm)), and the alumina-treated fine particle titanium oxide was treated with silica. Inorganic fluorescent composite powder was obtained by changing to fine particle titanium oxide (acicular, particle size 15 nm, silica treated 30%).

(比較例6)
比較例6として、リン酸(Ca/セリウム)(Lumate B(堺化学工業社製、最大蛍光波長 460nm))を用いた。
(Comparative example 6)
As Comparative Example 6, phosphoric acid (Ca / cerium) (Lumate B (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength 460 nm)) was used.

(比較例7)
比較例7として、酸化亜鉛蛍光体(Lumate G(堺化学工業社製、最大蛍光波長 500nm))を用いた。
(Comparative Example 7)
As Comparative Example 7, a zinc oxide phosphor (Lumate G (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength 500 nm)) was used.

(比較例8)
比較例8として、酸化(Mg/マンガン/チタン)(Lumate R(堺化学工業社製、最大蛍光波長660nm)を使用。)を用いた。
(Comparative Example 8)
As Comparative Example 8, oxide (Mg / manganese / titanium) (using Lumate R (manufactured by Sakai Chemical Industry Co., Ltd., maximum fluorescence wavelength 660 nm)) was used.

実施例14と比較例6の460nmにおける蛍光強度の比較と、実施例15と比較例7の500nmにおける蛍光強度の比較、実施例16と比較例8の660nmにおける蛍光強度の比較をそれぞれ行った結果は表5のようになった。いずれも比較例の強度を1として強度比を求めた。   Results of comparison of the fluorescence intensity at 460 nm of Example 14 and Comparative Example 6, comparison of the fluorescence intensity at 500 nm of Example 15 and Comparative Example 7, and comparison of the fluorescence intensity at 660 nm of Example 16 and Comparative Example 8, respectively. Is shown in Table 5. In each case, the strength of the comparative example was set to 1, and the strength ratio was calculated.

<化粧料への応用例>
次に無機蛍光複合粉体を配合した皮膚外用組成物(化粧料)の処方例を示すが、これらに限定されるものではない。
<Application example to cosmetics>
Next, formulation examples of the external composition for skin (cosmetics) containing the inorganic fluorescent composite powder are shown, but the formulation is not limited thereto.

[パウダーファンデーション]
成分名 配合量[%]
シリコーン処理タルク 残余
フッ素処理セリサイト 5
シリコーン処理顔料級酸化チタン 5
シリコーン処理微粒子酸化チタン 5
窒化ホウ素 3
(ビニルジメチコン/メチコンシルセスキオキサン)クロスポリマー 2
ナイロン末 1
ステアリン酸Mg 1
実施例1の無機蛍光複合粉体 3
メチルフェニルポリシロキサン 7
パラメトキシケイヒ酸2−エチルヘキシル 5
ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン 1
イソステアリン酸ソルビタン 0.5
着色顔料 適量
防腐剤 適量
合計 100
[Powder foundation]
Ingredient name Mixing amount [%]
Silicone treated talc Residual fluorine treated sericite 5
Silicone treated pigment grade titanium oxide 5
Silicone treated fine particles titanium oxide 5
Boron nitride 3
(Vinyl dimethicone / methicone silsesquioxane) crosspolymer 2
Nylon powder 1
Stearic acid Mg 1
Inorganic fluorescent composite powder of Example 1 3
Methylphenyl polysiloxane 7
2-Ethylhexyl paramethoxycinnamate 5
Bisethylhexyloxyphenol methoxyphenyl triazine 1
Sorbitan isostearate 0.5
Color pigment Suitable amount
Preservative Suitable amount
Total 100

メーキャップ効果の優れたパウダーファンデーションが得られた。   A powder foundation having an excellent makeup effect was obtained.

[ルースパウダー]
成分名 配合量[%]
シリコーン処理タルク 残余
フッ素処理セリサイト 5
ポリメチルシルセスキオキサン 7
実施例1の無機蛍光複合粉体 5
シリコーン処理顔料級酸化チタン 3
雲母チタン 3
着色顔料 適量
防腐剤 適量
合計 100
[Loose powder]
Ingredient name Mixing amount [%]
Silicone treated talc Residual fluorine treated sericite 5
Polymethylsilsesquioxane 7
Inorganic fluorescent composite powder of Example 1 5
Silicone treated pigment grade titanium oxide 3
Mica titanium 3
Color pigment Suitable amount
Preservative Suitable amount
Total 100

[化粧下地]
成分名 配合量[%]
水 残余
BG 10
1,3−ペンタンジオール 1
キサンタンガム 0.1
ヒドロキシプロピルメチルセルロース 0.2
(アクリル酸ヒドロキシエチル/アクリロイルジメチルタウリンNa)コポリマー
0.5
ポリソルベート60 1.5
ステアリン酸グリセリル 1.5
パラメトキシケイヒ酸2−エチルヘキシル 8
イソステアリン酸処理微粒子酸化亜鉛 2
ジエチルアミノヒドロキシ安息香酸ヘキシル 3
イソノナン酸イソノニル 3
メチルポリシロキサン 3
実施例3の無機蛍光複合粉体 1
雲母チタン 1
着色顔料 適量
防腐剤 適量
合計 100
[Makeup base]
Ingredient name Mixing amount [%]
Water residual BG 10
1,3-pentanediol 1
Xanthan gum 0.1
Hydroxypropyl methylcellulose 0.2
(Hydroxyethyl acrylate / acryloyl dimethyl taurine Na) copolymer
0.5
Polysorbate 60 1.5
Glyceryl stearate 1.5
2-Ethylhexyl paramethoxycinnamate 8
Isostearic acid treated fine particle zinc oxide 2
Hexyl diethylaminohydroxybenzoate 3
Isononyl isononanoate 3
Methyl polysiloxane 3
Inorganic fluorescent composite powder of Example 3 1
Mica titanium 1
Color pigment Suitable amount
Preservative Suitable amount
Total 100

メーキャップ効果の優れた化粧下地が得られた。   A makeup base with an excellent makeup effect was obtained.

[サンスクリーン]
成分名 配合量[%]
シクロペンタシロキサン 残余
メチルフェニルポリシロキサン 5
パラメトキシケイヒ酸2−エチルヘキシル 6
ビスエチルヘキシルオキシフェノールメトキシフェニルトリアジン 3
イソノナン酸イソノニル 7
シリコーン処理微粒子酸化亜鉛 3
ラウリルPEG−9ポリジメチルシロキシエチルジメチコン 2
イソステアリン酸ソルビタン 1
ステアリン酸処理した実施例1の無機蛍光複合粉体 1
水 25
DPG 5
キサンタンガム 0.1
エタノール 5
防腐剤 適量
合計 100
[sunscreen]
Ingredient name Mixing amount [%]
Cyclopentasiloxane Residual methylphenylpolysiloxane 5
2-Ethylhexyl paramethoxycinnamate 6
Bisethylhexyloxyphenol methoxyphenyl triazine 3
Isononyl isononanoate 7
Silicone treated fine particles zinc oxide 3
Lauryl PEG-9 polydimethylsiloxyethyl dimethicone 2
Sorbitan isostearate 1
Inorganic fluorescent composite powder of Example 1 treated with stearic acid 1
Water 25
DPG 5
Xanthan gum 0.1
Ethanol 5
Preservative Suitable amount
Total 100

メーキャップ効果の優れたサンスクリーンが得られた。   A sunscreen with an excellent makeup effect was obtained.

本発明によれば、無機蛍光粉体が本来有する蛍光強度を顕著に向上させた複合粉体を提供することができる。また、本発明の複合粉体は、優れた発光性を示すため、化粧料に含有させることで、よりメーキャップ効果の高い様々な形態の化粧料を提供することができる。さらに化粧料だけでなく、照明や遊具、塗料等の分野においても使用することができる。   According to the present invention, it is possible to provide a composite powder in which the fluorescent intensity originally possessed by the inorganic fluorescent powder is remarkably improved. In addition, since the composite powder of the present invention exhibits excellent luminescent properties, when incorporated into a cosmetic, various forms of cosmetic with a higher makeup effect can be provided. Further, it can be used not only in cosmetics but also in the fields of lighting, playground equipment, paints and the like.

Claims (11)

少なくともa)無機蛍光粉体の表面の一部を、b)非蛍光粉体が被覆していることを特徴とする複合粉体。   At least a) a part of the surface of the inorganic fluorescent powder is covered with b) a non-fluorescent powder, which is a composite powder. a)無機蛍光粉体の有する蛍光波長が、440nm〜520nm又は640nm〜700nmの範囲内であることを特徴とする請求項1に記載の複合粉体。   The composite powder according to claim 1, wherein a) the fluorescent wavelength of the inorganic fluorescent powder is in the range of 440 nm to 520 nm or 640 nm to 700 nm. a)無機蛍光粉体が、結晶母体及び/又は賦活剤としてAl(アルミニウム)、Zn(亜鉛)、Mg(マグネシウム)、Si(ケイ素)、Mn(マンガン)、Ca(カルシウム)、Ti(チタン)、Ce(セリウム)、Ba(バリウム)、O(酸素)、P(リン)、S(硫黄)の中から選択される少なくとも1種以上の元素を含有していることを特徴とする請求項1又は2に記載の複合粉体。 a) Inorganic fluorescent powder is Al (aluminum), Zn (zinc), Mg (magnesium), Si (silicon), Mn (manganese), Ca (calcium), Ti (titanium) as a crystal matrix and / or activator. 2. At least one element selected from the group consisting of C, Ce (cerium), Ba (barium), O (oxygen), P (phosphorus) and S (sulfur) is contained. Or the composite powder according to 2. a)無機蛍光粉体が、酸化(Al/Ca/マンガン)、酸化(Mg/マンガン/チタン)、酸化亜鉛蛍光体、及び、リン酸(Ca/セリウム)からなる群より選択される少なくとも1種であることを特徴とする請求項1〜3のいずれか記載の複合粉体。   a) The inorganic fluorescent powder is at least one selected from the group consisting of oxide (Al / Ca / manganese), oxide (Mg / manganese / titanium), zinc oxide phosphor, and phosphoric acid (Ca / cerium). The composite powder according to any one of claims 1 to 3, wherein b)非蛍光粉体が、酸化チタン、非蛍光性酸化亜鉛、酸化鉄、酸化アルミニウム(アルミナ)、及び、シリカからなる群より選択される少なくとも1種であることを特徴とする請求項1〜4のいずれか記載の複合粉体。   b) The non-fluorescent powder is at least one selected from the group consisting of titanium oxide, non-fluorescent zinc oxide, iron oxide, aluminum oxide (alumina), and silica. 4. The composite powder according to any one of 4 above. a)無機蛍光粉体の粒子径が、1μm以上200μm以下であることを特徴とする、請求項1〜5のいずれか記載の複合粉体。   a) The particle size of the inorganic fluorescent powder is 1 μm or more and 200 μm or less, and the composite powder according to claim 1. b)非蛍光粉体の粒子径が、1nm以上100nm以下であることを特徴とする、請求項1〜6のいずれか記載の複合粉体。   b) The composite powder according to any one of claims 1 to 6, wherein the non-fluorescent powder has a particle diameter of 1 nm or more and 100 nm or less. 複合粉体におけるa)無機蛍光粉体とb)非蛍光粉体の比率が、a成分:b成分=95(重量%):5(重量%)〜70(重量%):30(重量%)であることを特徴とする、請求項1〜7のいずれか記載の複合粉体。   The ratio of a) the inorganic fluorescent powder and b) the non-fluorescent powder in the composite powder is as follows: a component: b component = 95 (wt%): 5 (wt%) to 70 (wt%): 30 (wt%) The composite powder according to any one of claims 1 to 7, wherein 皮膚外用組成物用である、請求項1〜8のいずれか記載の複合粉体。   The composite powder according to any one of claims 1 to 8, which is for an external composition for skin. 請求項1〜9のいずれか記載の複合粉体を含有する、皮膚外用組成物。   A composition for external skin application, which comprises the composite powder according to claim 1. a)無機蛍光粉体の表面の一部をb)非蛍光粉体で被覆することを特徴とする、無機蛍光粉体の蛍光強度増強方法。   a) A method for enhancing the fluorescence intensity of an inorganic fluorescent powder, which comprises coating a part of the surface of the inorganic fluorescent powder with b) a non-fluorescent powder.
JP2018200695A 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder Pending JP2020066599A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2018200695A JP2020066599A (en) 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder
JP2023073564A JP2023093715A (en) 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2018200695A JP2020066599A (en) 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2023073564A Division JP2023093715A (en) 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Publications (1)

Publication Number Publication Date
JP2020066599A true JP2020066599A (en) 2020-04-30

Family

ID=70389555

Family Applications (2)

Application Number Title Priority Date Filing Date
JP2018200695A Pending JP2020066599A (en) 2018-10-25 2018-10-25 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder
JP2023073564A Pending JP2023093715A (en) 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Family Applications After (1)

Application Number Title Priority Date Filing Date
JP2023073564A Pending JP2023093715A (en) 2018-10-25 2023-04-27 Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder

Country Status (1)

Country Link
JP (2) JP2020066599A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204195A1 (en) * 2019-04-05 2020-10-08 株式会社 資生堂 Composition containing ultraviolet wavelength-converting substance and hydrophobized silica and/or hydrophobized starch
JP2021107369A (en) * 2019-12-27 2021-07-29 株式会社 資生堂 Composition containing ultraviolet wavelength-converting substance

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518398A (en) * 2003-02-20 2006-08-10 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング Coated phosphor, light-emitting device having this type of phosphor, and method for manufacturing the same
JP2008150518A (en) * 2006-12-19 2008-07-03 Sharp Corp Wavelength converting member and light-emitting device
JP2014201648A (en) * 2013-04-04 2014-10-27 パナソニック株式会社 Phosphor body, production method of phosphor body, and led element
JP2015089898A (en) * 2013-11-05 2015-05-11 信越化学工業株式会社 Inorganic phosphor powder, curable resin composition using inorganic phosphor powder, wavelength conversion member and optical semiconductor device
JP2016026404A (en) * 2010-11-05 2016-02-12 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
WO2017142057A1 (en) * 2016-02-18 2017-08-24 ロート製薬株式会社 Topical dermatological composition

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006518398A (en) * 2003-02-20 2006-08-10 パテント−トロイハント−ゲゼルシヤフト フユール エレクトリツシエ グリユーラムペン ミツト ベシユレンクテル ハフツング Coated phosphor, light-emitting device having this type of phosphor, and method for manufacturing the same
JP2008150518A (en) * 2006-12-19 2008-07-03 Sharp Corp Wavelength converting member and light-emitting device
JP2016026404A (en) * 2010-11-05 2016-02-12 日亜化学工業株式会社 Light-emitting device and method for manufacturing the same
JP2014201648A (en) * 2013-04-04 2014-10-27 パナソニック株式会社 Phosphor body, production method of phosphor body, and led element
JP2015089898A (en) * 2013-11-05 2015-05-11 信越化学工業株式会社 Inorganic phosphor powder, curable resin composition using inorganic phosphor powder, wavelength conversion member and optical semiconductor device
WO2017142057A1 (en) * 2016-02-18 2017-08-24 ロート製薬株式会社 Topical dermatological composition

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020204195A1 (en) * 2019-04-05 2020-10-08 株式会社 資生堂 Composition containing ultraviolet wavelength-converting substance and hydrophobized silica and/or hydrophobized starch
WO2020204198A1 (en) * 2019-04-05 2020-10-08 株式会社 資生堂 Cosmetic preparation containing ultraviolet wavelength conversion material and water-soluble thickening agent
JP2021107369A (en) * 2019-12-27 2021-07-29 株式会社 資生堂 Composition containing ultraviolet wavelength-converting substance

Also Published As

Publication number Publication date
JP2023093715A (en) 2023-07-04

Similar Documents

Publication Publication Date Title
JP4869377B2 (en) Lipophilic surface-treated powder having easy dispersibility and cosmetics containing the powder
JP7343976B2 (en) Skin external composition
JP5646271B2 (en) Coated zinc oxide particles, aqueous compositions and cosmetics
JP2023093715A (en) Composite powder, external composition for skin, and method for enhancing fluorescence intensity of inorganic fluorescent powder
JP2007230995A (en) Cosmetic composition comprising sub-micrometer boron nitride particle
JP6889998B2 (en) Composition
EP3798191B1 (en) Novel titanium oxide powder and cosmetic formulated therewith
JP2014510764A (en) Cosmetic composition
KR100835865B1 (en) Microfine emulsion containing titanium dioxide and zinc oxide and composition of external application to the skin containing thereof
JP2011225559A (en) Powder makeup cosmetic containing water
JP6462583B2 (en) Surface-treated powder using theanine and cosmetic containing the same
JP7111480B2 (en) powdered cosmetics
JP5917293B2 (en) Al-containing yellow plate-like iron oxide pigment, method for producing the same, and cosmetics containing the same
JP2021063041A (en) Powder cosmetics and method for producing the same
JP2020164462A (en) Cosmetic
JP6598491B2 (en) Powder cosmetics
JP6450582B2 (en) Powder cosmetics
JP2005171145A (en) Disperse composition and cosmetic in which the same composition is formulated
WO2023189890A1 (en) Powder of titanium(iv) oxide composed of particles having peanut-like twin shape, and cosmetic containing same
JP2012229168A (en) Uv ray shielding compound powder
WO2022097476A1 (en) Cosmetic
EP4353218A1 (en) Iron oxide pigment for cosmetic composition and cosmetic composition containing iron oxide pigment
JP6809844B2 (en) Powder cosmetics
WO2006131972A1 (en) Dispersion composition and cosmetic preparation containing the same
WO2021014656A1 (en) Hydrophilized inorganic powder and cosmetic preparation containing said hydrophilized inorganic powder

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20211021

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220531

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20220719

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221013

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20230207

C60 Trial request (containing other claim documents, opposition documents)

Free format text: JAPANESE INTERMEDIATE CODE: C60

Effective date: 20230427