JP2023089319A - 回転子及び電動機 - Google Patents

回転子及び電動機 Download PDF

Info

Publication number
JP2023089319A
JP2023089319A JP2020085763A JP2020085763A JP2023089319A JP 2023089319 A JP2023089319 A JP 2023089319A JP 2020085763 A JP2020085763 A JP 2020085763A JP 2020085763 A JP2020085763 A JP 2020085763A JP 2023089319 A JP2023089319 A JP 2023089319A
Authority
JP
Japan
Prior art keywords
arc
rotor
iron core
magnet
point
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020085763A
Other languages
English (en)
Inventor
明 山口
Akira Yamaguchi
清美 河村
Kiyomi Kawamura
裕也 前田
Yuya Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Intellectual Property Management Co Ltd
Original Assignee
Panasonic Intellectual Property Management Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Panasonic Intellectual Property Management Co Ltd filed Critical Panasonic Intellectual Property Management Co Ltd
Priority to JP2020085763A priority Critical patent/JP2023089319A/ja
Priority to PCT/JP2021/014456 priority patent/WO2021229954A1/ja
Priority to CN202180034504.3A priority patent/CN115552768A/zh
Priority to EP21805303.1A priority patent/EP4152568A4/en
Publication of JP2023089319A publication Critical patent/JP2023089319A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K1/00Details of the magnetic circuit
    • H02K1/06Details of the magnetic circuit characterised by the shape, form or construction
    • H02K1/22Rotating parts of the magnetic circuit
    • H02K1/27Rotor cores with permanent magnets
    • H02K1/2706Inner rotors
    • H02K1/272Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis
    • H02K1/274Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets
    • H02K1/2753Inner rotors the magnetisation axis of the magnets being perpendicular to the rotor axis the rotor consisting of two or more circumferentially positioned magnets the rotor consisting of magnets or groups of magnets arranged with alternating polarity
    • H02K1/276Magnets embedded in the magnetic core, e.g. interior permanent magnets [IPM]
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2201/00Specific aspects not provided for in the other groups of this subclass relating to the magnetic circuits
    • H02K2201/03Machines characterised by aspects of the air-gap between rotor and stator
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02KDYNAMO-ELECTRIC MACHINES
    • H02K2213/00Specific aspects, not otherwise provided for and not covered by codes H02K2201/00 - H02K2211/00
    • H02K2213/03Machines characterised by numerical values, ranges, mathematical expressions or similar information
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/64Electric machine technologies in electromobility

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Iron Core Of Rotating Electric Machines (AREA)
  • Permanent Field Magnets Of Synchronous Machinery (AREA)

Abstract

【課題】電動機の効率を低下させることなくコギングトルクを効果的に低減することができる回転子等を提供する。【解決手段】回転子10は、鉄心11の磁石挿入穴11bに配置された磁石12を備え、鉄心11の最外周形状は、変曲点Piを介して第1の円弧A1と第2の円弧A2とを含み、第1の円弧A1は、磁石12の磁極の中心と軸心Cとを通る第1の直線L1が鉄心11の最外周と交差する第1の点P1を通る円弧で、第2の円弧A2は、磁石12の磁極間中心と軸心Cとを通る第2の直線L2が鉄心11の最外周と交差する第2の点P2と変曲点Piとを結ぶ円弧であり、第1の点P1と軸心Cとの距離をr1とし、第2の点P2と軸心Cとの距離をr2とすると、0.860≦r2/r1≦0.925の関係を満たし、第1の円弧A1の半径をR1とし、第2の円弧A2の半径をR2とすると、0.56≦R2/R1≦0.71の関係を満たす。【選択図】図3

Description

本開示は、回転子及び回転子を備える電動機に関し、特に、鉄心に永久磁石が配置された永久磁石埋め込み型の回転子及びこの回転子を備える電動機に関する。
電動機は、家庭用機器又は産業用機器等の様々な電気機器に用いられている。例えば、電動機は、回転ファンを回転させるために、電気掃除機に搭載される電動送風機に用いられている。
電動機としては、鉄心に複数の永久磁石が埋め込まれた回転子を有するIPM(Interior Permanent Magnet)モータが知られている。IPMモータは、回転子が有する鉄心の永久磁石によるマグネットトルクに加えて、鉄心に生じる磁気抵抗の大きさの凹凸によるリラクタンストルクを得ることができる。このため、小型で高効率のモータを実現することができる。
しかしながら、IPMモータでは、回転子が有する鉄心に埋め込まれた永久磁石から発生する磁束に起因して回転子の回転位置によって磁気吸引力が異なるため、回転子が回転した際にコギングトルクと呼ばれるトルクの脈動が発生する。
そこで、このようなコギングトルクを低減するために、IPMモータでは、回転子が有する鉄心の最外周形状を工夫する技術が知られている。例えば、特許文献1には、コギングトルクを低減するとともに誘起電圧の高調波含有率を低減して振動と騒音を抑制するために、回転子が有する鉄心の各磁極の最外周形状を円弧と2つの直線とによって構成した電動機が開示されている。
特開2006-238667号公報
しかしながら、従来の電動機の構造では、効率を低下させることなく、コギングトルクを低減することが難しい。例えば、固定子と回転子とのエアギャップを大きくすることでコギングトルクを低減することができるものの、固定子と回転子とのエアギャップを大きくすると電動機の効率が低下する。しかも、固定子と回転子とのエアギャップを大きくすると、電動機が大型化してしまう。
また、近年、電動機の小型化に加えて電動機の高速化が要望されている。しかしながら、回転子の回転数を高めて電動機を単純に高速化すると、振動に対するコギングトルクの影響が大きくなる。この場合、従来の電動機の構造では、電動機単体としてはコギングトルクが低減できたかのように見えるものであっても、電動送風機に電動機を組み込んだときに、コギングトルクの影響を受けて振動が発生し、騒音が生じることがある。
このように、これまでの電動機では、効率を低下させることなく、コギングトルクを十分に低減することが難しい。特に、電動機を小型化及び高速化するには、従来の電動機の構造では、効率を維持してコギングトルクを低減するには限界がある。
本開示は、このような課題を解決するためになされたものであり、電動機の効率を低下させることなくコギングトルクを効果的に低減することができる回転子及び電動機を提供することを目的とする。
上記目的を達成するために、本開示に係る回転子の一態様は、複数の磁石挿入穴を有する鉄心と、各々が前記複数の磁石挿入穴に配置された複数の磁石と、前記鉄心に固定された回転軸とを備え、前記回転軸の軸心と交差する平面上において、前記複数の磁石の各々の磁極に対応する前記鉄心の最外周形状は、変曲点を介して連続する第1の円弧と第2の円弧とを含み、前記第1の円弧は、前記磁極の中心と前記軸心とを通る第1の直線が前記鉄心の最外周と交差する第1の点を通る円弧であり、前記第2の円弧は、前記複数の磁石のうち隣り合う2つの磁石の磁極間中心と前記軸心とを通る第2の直線が前記鉄心の最外周と交差する第2の点と前記変曲点とを結ぶ円弧であり、前記第1の点と前記軸心との距離をr1とし、前記第2の点と前記軸心との距離をr2とすると、0.860≦r2/r1≦0.925の関係を満たし、前記第1の円弧の半径をR1とし、前記第2の円弧の半径をR2とすると、0.56≦R2/R1≦0.71の関係を満たす。
また、本開示に係る電動機の一態様は、上記の回転子と、前記回転子に対向して配置され、前記回転子に作用する磁力を発生させる固定子とを備える。
本開示によれば、電動機の効率を低下させることなくコギングトルクを効果的に低減することができる。
実施の形態に係るモータの断面図である。 図1のII-II線における実施の形態に係るモータの断面図である。 実施の形態に係る電動機における回転子の断面図である。 実施の形態に係る電動機におけr2/r1とコギングトルクとの関係を示す図である。 実施の形態に係る電動機におけるR2/R1とコギングトルクとの関係を示す図である。 比較例の電動機と実施例の電動機とにおける回転トルクの脈動データを示す図である。 比較例の電動機と実施例の電動機とにおける回転トルクの波形データにおける高次成分データを示す図である。 比較例の電動機と実施例の電動機とにおける電動機の性能データを示す図である。
以下、本開示の実施の形態について説明する。なお、以下に説明する実施の形態は、いずれも本開示の一具体例を示すものである。したがって、以下の実施の形態で示される、数値、構成要素、構成要素の配置位置及び接続形態、並びに、工程及び工程の順序等は、一例であって本開示を限定する主旨ではない。よって、以下の実施の形態における構成要素のうち、本開示の最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
また、各図は、模式図であり、必ずしも厳密に図示されたものではない。なお、各図において、実質的に同一の構成に対しては同一の符号を付しており、重複する説明は省略又は簡略化する。
(実施の形態)
まず、実施の形態に係る電動機1の全体構成について、図1及び図2を用いて説明する。図1及び図2は、実施の形態に係る電動機1の断面図である。図2は、図1のII-II線における断面図である。本実施の形態における電動機1は、例えば、電気掃除機に搭載される電動送風機のファンモータとして用いることができる。
図1及び図2に示すように、電動機1は、回転子10と、固定子20とを備える。電動機1は、さらに、第1軸受け31と、第2軸受け32と、第1ブラケット41と、第2ブラケット42とを備える。
本実施の形態における電動機1は、回転子10が固定子20の内側に配置されたインナーロータ型のモータである。つまり、固定子20は、回転子10を囲むように配置されている。
回転子10(ロータ)は、固定子20とエアギャップを介して配置されている。具体的には、回転子10の表面と固定子20の表面との間には微小なエアギャップが存在する。回転子10は、固定子20に生じる磁力によって回転する。
回転子10は、周方向に亘って磁束を生成するN極とS極とが複数交互に繰り返して存在する構成になっている。これにより、回転子10は、固定子20に作用する磁力を発生する。本実施の形態において、回転子10が発生する磁束の向きは、回転軸13に含まれる軸心Cが延伸する方向(軸心方向)と直交する方向である。つまり、回転子10が発生する磁束の向きは、ラジアル方向(径方向)である。
回転子10は、鉄心11と、磁石12と、回転軸13とを有する。本実施の形態において、回転子10は、永久磁石である磁石12が鉄心11に埋め込まれた永久磁石埋め込み型のロータ(IPMロータ)である。したがって、本実施の形態における電動機1は、IPMモータである。
鉄心11は、回転子10のコアとなる回転子鉄心(ロータコア)である。本実施の形態において、鉄心11は、複数の鋼板が回転軸13に含まれる軸心Cが延伸する方向(軸心方向)に積層された積層体である。複数の鋼板の各々は、例えば、所定形状に形成された打ち抜き電磁鋼板である。複数の鋼板は、例えばかしめによって互いに固定されている。なお、鉄心11は、複数の鋼板の積層体に限らず、磁性材料によって構成されたバルク体であってもよい。
磁石12は、永久磁石である。本実施の形態において、磁石12は、焼結マグネットからなる永久磁石である。磁石12は、鉄心11に埋め込まれている。つまり、電動機1は、鉄心11に磁石12が埋め込まれた回転子10であるIPMロータを有するIPMモータである。鉄心11には、複数の磁石12が埋め込まれている。本実施の形態では、4つの磁石12が鉄心11に埋め込まれている。
回転軸13は、長尺状のシャフトであり、例えば金属棒である。回転軸13は、鉄心11に固定されている。具体的には、回転軸13は、軸心Cの方向において鉄心11の両側に延在するように、鉄心11の中心に設けられた貫通孔11aに挿入されて鉄心11に固定されている。回転軸13は、例えば鉄心11の貫通孔11aに圧入したり、焼き嵌めしたりすることで鉄心11に固定されている。
このように構成される回転子10は、回転軸13に含まれる軸心Cを回転中心として回転する。つまり、回転軸13は、回転子10が回転する際の中心となる。なお、回転子10の詳細については、後述する。
固定子20(ステータ)は、回転子10との間にエアギャップを介して回転子10に対向して配置されている。具体的には、固定子20は、回転子10の鉄心11を囲むように配置されている。
固定子20は、回転子10に作用する磁力を発生させる。具体的には、固定子20は、回転子10が有する鉄心11とのエアギャップ面に磁束を生成するように、N極とS極とが複数交互に繰り返して存在する構成になっている。固定子20は、回転子10とともに磁気回路を構成している。
本実施の形態において、固定子20は、鉄心21と、巻線コイル22と、インシュレータ23とを有する。
鉄心21は、固定子20のコアとなる固定子鉄心(ステータコア)である。本実施の形態において、鉄心21は、複数の鋼板が回転軸13に含まれる軸心Cの方向に沿って積層された積層体である。複数の鋼板の各々は、例えば、所定形状に形成された打ち抜き電磁鋼板である。なお、鉄心21は、複数の鋼板の積層体に限らず、磁性材料によって構成されたバルク体であってもよい。
図2に示すように、鉄心21には、回転子10が有する鉄心11に向かって突出する複数のティース21aが設けられている。具体的には、複数のティース21aは、回転軸13に含まれる軸心Cに向かって突出するように設けられている。つまり、複数のティース21aは、回転軸13に含まれる軸心Cと直交する方向(ラジアル方向)に放射状に延在している。複数のティース21aは、隣り合う2つのティース21aの間にスロットを形成しながら周方向に等間隔に配置されている。本実施の形態において、鉄心21は、6つのティース21aを有する。つまり、固定子20のスロット数は6である。
また、各ティース21aには、当該ティース21aの内周側の先端部から周方向の両側に延伸する延伸部が設けられている。この延伸部は、ティース21aの内周側の先端部から突出するように形成されている。隣り合う2つのティース21aにおいて、一方のティース21aの延伸部と他方のティース21aの延伸部との間には、隙間(スロットオープニング)が存在している。
巻線コイル22は、固定子20の電機子巻線である固定子コイル(ステータコイル)である。巻線コイル22は、鉄心21の複数のティース21aに巻き回されている。具体的には、巻線コイル22は、インシュレータ23を介して各ティース21aに巻き回されている。本実施の形態において、巻線コイル22は、各ティース21aに巻回された集中巻コイルであり、鉄心21のスロットに収納されている。
巻線コイル22は、3相同期モータとして回転子10を回転できるように3相巻線となっている。具体的には、巻線コイル22は、互いに電気的に120度位相が異なる、U相、V相及びW相の3相それぞれの単位コイルによって構成されている。つまり、各ティース21aに巻き回された巻線コイル22は、U相、V相及びW相の相単位でそれぞれに通電される3相の交流によって通電駆動される。これにより、各ティース21aに固定子20の主磁束が生成される。つまり、各ティース21aは、磁極ティースであり、巻線コイル22に通電されることで磁力を発生させる電磁石である。
インシュレータ23は、コイルボビンであり、巻線コイル22が巻回される枠状の枠体部を有する。具体的には、インシュレータ23の枠体部は、ティース21aの胴体部を囲むように形成されている。インシュレータ23は、複数のティース21aの各々に設けられている。インシュレータ23は、例えば、絶縁樹脂材料によって一体に形成された樹脂成形品である。
図1に示すように、第1軸受け31及び第2軸受け32は、回転軸13を回転自在に保持するベアリングである。第1軸受け31は、回転子10が有する鉄心11の一方側から突出した部位を支持している。一方、第2軸受け32は、回転子10が有する鉄心11の他方側から突出した部位を支持している。本実施の形態において、第1軸受け31及び第2軸受け32は、玉軸受けが用いられているが、スラスト軸受け等の他の軸受けを用いてもよい。
第1ブラケット41は、第1軸受け31を保持している。具体的には、第1軸受け31は、第1ブラケット41に設けられた凹部に固定されている。第2ブラケット42は、第2軸受け32を保持している。具体的には、第2軸受け32は、第2ブラケット42に設けられた凹部に固定されている。第1ブラケット41及び第2ブラケット42は、例えば金属材料によって構成されている。なお、第1ブラケット41及び第2ブラケット42は、樹脂材料によって構成されてもよい。
本実施の形態において、第1ブラケット41及び第2ブラケット42は、電動機1の外郭を構成している。具体的には、第1ブラケット41は、開口部を有するフレーム(筐体)であり、第2ブラケット42は、第1ブラケット41の開口部を塞ぐ蓋体である。
なお、第1ブラケット41には、回転軸13が貫通しており、回転軸13の一部は、第1ブラケット41から外部に突出している。図示しないが、回転軸13のうち第1ブラケット41から外部に突出した部分には、回転ファン等の負荷が取り付けられる。つまり、回転軸13において、第1ブラケット41から突出した部分は、出力軸である。
図1、図2に示すように、このように構成された電動機1では、固定子20が有する巻線コイル22に通電すると、界磁電流が巻線コイル22に流れて磁界が生成される。これにより、固定子20から回転子10に向かう磁束が生成される。具体的には、固定子20が有する鉄心21のティース21aの各々から回転子10が有する鉄心11に向かう磁束が生成される。一方、回転子10では、鉄心11に埋め込まれた磁石12によって固定子20を通る磁束が生成される。この固定子20で生成される磁束と回転子10が有する磁石12から生じる磁束との相互作用によって生じた磁気力が回転子10を回転させるトルクとなり、回転子10が回転する。
次に、本実施の形態に係る電動機1における回転子10の詳細な構成について、図3を用いて説明する。図3は、実施の形態に係る電動機1における回転子10の断面図である。なお、図3は、図2における回転子10の断面を拡大して示している。
上述のように、回転子10は、鉄心11と、鉄心11に埋め込まれた磁石12と、鉄心11の貫通孔11aに挿入された回転軸13とを有する。
図3に示すように、鉄心11は、複数の磁石挿入穴11bを有する。複数の磁石挿入穴11bの各々は、磁石12が埋め込み配設される磁石埋込穴である。複数の磁石挿入穴11bは、鉄心11の回転方向に沿って等間隔に設けられている。本実施の形態において、磁石挿入穴11bは4つ設けられている。4つの磁石挿入穴11bは、上面視において上下対称且つ左右対称となるように設けられている。
本実施の形態において、各磁石挿入穴11bは、回転軸13の長手方向(軸心Cの方向)に沿って鉄心11を貫通する貫通孔である。したがって、各磁石挿入穴11bは、鉄心11における回転軸13の長手方向(軸心Cの方向)の両端面の各々で開口している。各磁石挿入穴11bの開口形状は、上面視において、スリット状の略矩形状である。なお、回転軸13の長手方向を法線とする平面で切断したときの各磁石挿入穴11bの任意の断面形状は、開口形状と同じであり、スリット状の略矩形状である。なお、磁石挿入穴11bは、鉄心11を貫通していなくてもよい。例えば、鉄心11を構成する複数の鋼板のうちの一方の端部の鋼板に開口を設けなくてもよい。この場合、磁石挿入穴11bとしての開口のない鋼板は、磁石12が鉄心11に挿入されたときのストッパとなる。
複数の磁石挿入穴11bの各々には、複数の磁石12の各々が配置されている。具体的には、各磁石挿入穴11bには、1つの磁石12が挿入されている。複数の磁石12は、複数の磁石挿入穴11bと同様に、鉄心11の周方向に沿って等間隔に配置されている。各磁石12は、着磁された永久磁石である。複数の磁石12は、S極とN極との磁極が回転子10の周方向に交互に存在するように配置されている。つまり、隣り合う2つの磁石12は、S極及びN極の磁極の向きが逆向きになっている。
本実施の形態では、鉄心11には4つの磁石挿入穴11bが設けられているので、鉄心11には4つの磁石12が挿入されている。したがって、回転子10の極数は4(極対数は2)である。なお、磁石12の着磁については、磁石12を磁石挿入穴11b内に配置した後に着磁してもよいし、磁石12を磁石挿入穴11bに挿入する前に予め着磁してもよいが、磁石12を磁石挿入穴11bに挿入する作業性を考慮すると、磁石12を磁石挿入穴11b内に挿入した後に着磁する方がよい。
各磁石12は、板状である。本実施の形態において、磁石12は、板状の直方体であり、平面視形状が矩形状である。したがって、回転軸13の長手方向を法線とする平面で切断したときの磁石12の断面形状は、長方形である。各磁石12は、厚み方向が鉄心11の径方向となるように磁石挿入穴11bに配置されている。
各磁石12は、各磁石挿入穴11b内において、鉄心11の径方向の外側(外周側)寄りに配置されている。具体的には、磁石12が磁石挿入穴11b内に配置された状態において、各磁石挿入穴11bにおける径方向の内側の内面と磁石12との間には隙間(クリアランス)が存在し、且つ、各磁石挿入穴11bにおける径方向の外側の内面と磁石12とが接している。磁石挿入穴11b内に挿入された磁石12は、接着剤によって鉄心11に固定してもよいし、磁石12と磁石挿入穴11bとの隙間に詰められる突起を有する固定部材を別途設けることで磁石12を鉄心11に固定してもよい。
次に、回転子10が有する鉄心11の最外周形状(外縁形状)について詳細に説明する。図3に示すように、本実施の形態における鉄心11の最外周部分には、隣り合う2つの磁石12の間の部分が内方に(つまり軸心Cに向かう方向に)落ち込むように形成された凹部が存在している。この結果、鉄心11は、回転軸13に含まれる軸心Cの方向から見たときに、最外周部分における複数の磁石12の各々の対応する位置が外方に膨出するような花びらのような形状となる。本実施の形態では、4つの磁石12が鉄心11に設けられているので、鉄心11の最外周部分には4つの凹部が形成されており、鉄心11の最外周部分は、4つの磁石12の各磁極中心の各々が外側に膨出するように形成されている。
具体的には、図3に示すように、回転軸13に含まれる軸心Cと交差する平面上において、複数の磁石12の各々の磁極に対応する鉄心11の最外周形状は、変曲点Piを介して連続する第1の円弧A1と第2の円弧A2とを含む。変曲点Piは、第1の円弧A1と第2の円弧A2との接続点であり、第1の円弧A1と第2の円弧A2とは変曲点Piを介して連続する1つの曲線である。
第1の円弧A1は、磁石12の磁極の中心と回転軸13に含まれる軸心Cとを通る第1の直線L1(つまりd軸)が鉄心11の最外周と交差する第1の点P1を通る円弧である。具体的には、第1の円弧A1は、第1の点P1を通り、且つ、隣り合う2つの変曲点Piを結ぶ円弧である。
第2の円弧A2は、複数の磁石12のうち隣り合う2つの磁石12の磁極間中心と回転軸13に含まれる軸心Cとを通る第2の直線L2(つまりq軸)が鉄心11の最外周と交差する第2のP2と変曲点Piとを結ぶ円弧である。
第1の円弧A1の半径と第2の円弧A2の半径とは異なる。したがって、各磁石12の1磁極分に対応する鉄心11の最外周形状は、半径が異なる2つの第1の円弧A1と第2の円弧A2とを含む。具体的には、1磁極分に対応する鉄心11の最外周形状の曲線は、隣り合う2つの第2の点P2を結ぶ線であって、1つの第1の円弧A1と2つの第2の円弧A2とによって構成されている。
第1の円弧A1の中心は、回転軸13に含まれる軸心Cである。つまり、第1の円弧A1の半径をR1とすると、第1の円弧A1は、軸心Cを回転中心とする半径R1の円弧である。したがって、第1の円弧A1は、鉄心11の最大径をなす円の一部である。
一方、第2の円弧A2の中心は、回転軸13に含まれる軸心Cではなく、軸心Cと鉄心11の最外周(外縁)との間に位置している。第2の円弧A2は、鉄心11の最大径をなす円の一部を軸心Cに向けて凹ませて凹部を形成するための円弧である。つまり、第2の円弧A2を設けることで、鉄心11の最外周部分の一部を凹ませることができる。
本実施の形態において、第2の円弧A2の中心は、変曲点Piと回転軸13に含まれる軸心Cとを結ぶ線分上に位置する点O2である。つまり、第2の円弧A2の半径をR2とすると、第2の円弧A2は、点O2を回転中心とする半径R2の円弧である。
また、図3に示すように、本実施の形態において、磁石12は、回転軸13に含まれる軸心Cの方向から見たときに、長尺状の形状を有する。具体的には、磁石12は、当該磁石12の幅方向の端縁が磁石12の長手方向において変曲点Piを超えて延在するように構成されている。つまり、磁石12の幅方向の端部と第1の直線L1との距離は、変曲点Piと第1の直線L1との距離よりも長くなっている。
そして、本実施の形態における回転子10では、第1の点P1と回転軸13に含まれる軸心Cとの距離である第1の距離をr1とし、第2の点P2と回転軸13に含まれる軸心Cとの距離である第2の距離をr2とすると、第1の距離r1と第2の距離r2との比である距離比r2/r1については、0.860≦r2/r1≦0.925の関係を満たしている。
さらに、本実施の形態における回転子10では、第1の円弧A1の半径R1と第2の円弧A2の半径R2との比である半径比R2/R1については、0.56≦R2/R1≦0.71の関係を満たしている。
ここで、0.860≦r2/r1≦0.925の関係と0.56≦R2/R1≦0.71の関係とを満たすことの効果について、図4及び図5を用いて説明する。
図4は、図1~図3に示される構造の回転子を有する電動機におけるr2/r1とコギングトルクとの関係を示す図である。また、図5は、図1~図3に示される構造を有する電動機におけるR2/R1とコギングトルクとの関係を示す図である。
d軸についての第1の距離r1とq軸についての第2の距離r2との比である距離比r2/r1については、距離比r2/r1を小さくすることで、コギングトルクを低減することができる。しかしながら、距離比r2/r1が小さくなっていくと、第2の点P2が軸心Cに近づいていく(つまり鉄心11の内方に向かっていく)ため、第2の点P2で鉄心11の最外周が軸心Cに向かって大きく落ち込むことになり、鉄心11に磁束が流れにくくなって電動機としての効率が低下していく。このため、距離比r2/r1はあまり小さくしない方がよい。
ここで、コギングトルクと距離比r2/r1との関係については、図4に示すように、距離比r2/r1の値が0.90付近でコギングトルクが最小となり、その最小点を境にして、距離比r2/r1の値が小さくなるにつれてコギングトルクの値が大きくなるとともに、距離比r2/r1の値が大きくなるにつれてコギングトルクの値が大きくなっていく。
そして、本発明者らの検討結果によれば、距離比r2/r1については、0.860≦r2/r1≦0.925の関係にすることで、電動機の効率を低下させることなく、コギングトルクの値を4[mNm]以下にしてコギングトルクを効果的に低減できることが分かった。
また、第1の円弧A1と第2の円弧A2とについては、第1の円弧A1の半径R1と第2の円弧A2の半径R2との比である半径比R2/R1の値に応じて、第1の円弧A1と第2の円弧A2との接続点である変曲点Piの位置が決まる。つまり、半径比R2/R1の値に応じて、鉄心11の外周(外縁)における第1の点P1と第2の点P2との間での変曲点Piの位置が決まる。
具体的には、半径比R2/R1の値が0.5未満になると、変曲点Piが第2の点P2寄り(つまりq軸寄り)に位置することになる。そして、半径比R2/R1の値が小さくなるにつれて、変曲点Piが第2の点P2に近づいていく。一方、半径比R2/R1の値が0.5を超えると、変曲点Piが第1の点P1寄り(つまりd軸寄り)に位置することになる。そして、半径比R2/R1の値が大きくなるにつれて、変曲点Piが第1の点P1に近づいていく。
この場合、電動機の効率の観点では、第1の点P1と第2の点P2との間で第1の円弧A1と第2の円弧A2とがそれぞれ占める割合は、鉄心11の最大径をなす円の一部である第1の円弧A1の占める割合が第2の円弧A2が占める割合よりも大きい方がよい。したがって、変曲点Piは、第1の点P1と第2の点P2との間において、第1の点P1寄り(つまりd軸寄り)に位置しているとよい。つまり、半径比R2/R1の値は、0.5以上であるとよい。
ここで、コギングトルクと半径比R2/R1との関係については、図5に示すように、半径比R2/R1の値が0.64付近においてコギングトルクが最小となり、その最小点を境にして、半径比R2/R1の値が小さくなるにつれてコギングトルクの値が大きくなるとともに、半径比R2/R1の値が大きくなるにつれてコギングトルクの値が大きくなっていく。
そして、本発明者らの検討結果によれば、半径比R2/R1については、0.56≦R2/R1≦0.71にすることで、電動機の効率を低下させることなく、コギングトルクの値を4[mNm]以下にしてコギングトルクを効果的に低減できることが分かった。
次に、比較例の回転子を有する電動機(以下、「比較例」と記載する)と本実施の形態に係る回転子を有する電動機1(以下、「実施例」と記載する)とを比較する検証実験を行ったので、その結果について、図6~図8を用いて説明する。
図6は、比較例と実施例とにおける回転トルクの脈動データ(コギングトルク)を示す図である。図7は、比較例と実施例とにおける回転トルクの波形データにおける高次成分データを示す図である。図8は、比較例と実施例とにおける電動機の性能データを示す図である。
なお、本実験において、比較例及び実施例は、いずれも、4極6スロットであり、図1~図3に示される構造の回転子を有する電動機を用いた。この場合、比較例では、R1=9.20mm、R2=7.00mm、r1=9.20mm、r2=8.59mm、D1=12.14mm、D2=9.10mm、L=6.93mmとし、実施例では、R1=9.20mm、R2=5.80mm、r1=9.20mm、r2=8.25mm、D1=11.67mm、D2=9.10mm、L=6.80mmとした。また、比較例及び実施例を比較するにあたり、モータは以下の条件で回転した。すなわち、コギングトルクを測定する際、比較例及び実施例のいずれにおいても回転子を5rpmで回転させた。コギングトルク以外の性能を測定する際、比較例及び実施例のいずれにおいても回転子を6,150rpmで回転させた。
その結果、図6に示すように、実施例は、比較例に対して、コギングトルクを大幅に低減できていることが分かった。また、図7に示すように、純粋なトルクリップル成分(12次)について、実施例は、比較例と比べて1/10以下にまで低減できていることが分かった。さらに、図8に示すように、電動機の効率については、過負荷部分では実施例の効率が比較例の効率と比べて若干低下したものの、実施例は比較例に対してピーク効率が上昇することが分かった。また、電動機の全体の効率としては、実施例は比較例に対してほぼ維持できており、実施例は比較例に対して効率の低下はほぼ見られなかった。このように、本実験結果によれば、実施例は、比較例に対して、電動機の効率を低下させることなくコギングトルクを効果的に低減できることが分かった。
以上説明したように、本実施の形態に係る回転子10及び電動機1によれば、第1の点P1と回転軸13に含まれる軸心Cとの距離である第1の距離r1と、第2の点P2と回転軸13に含まれる軸心Cとの距離である第2の距離r2とは、0.860≦r2/r1≦0.925の関係を満たしており、また、第1の円弧A1の半径R1と第2の円弧A2の半径R2とは、0.56≦R2/R1≦0.71の関係を満たしている。
この構成により、電動機1の効率を低下させることなくコギングトルクを効果的に低減することができる。つまり、電動機1の高効率化とコギングトルクの低減化との両立を図ることができる。
したがって、コギングトルクを低減するために回転子10と固定子20とのエアギャップを大きくする必要がないので、電動機1が大型化することを抑制できる。つまり、小型の電動機を得ることができる。また、回転子10を高速回転させたとしてもコギングトルクによる振動を抑制できるので、回転子が高速回転する電動機を電動送風機に組み込んだとしてもコギングトルクによる振動で騒音が生じることを効果的に抑制できる。このように、本実施の形態に係る電動機1によれば、小型化及び高速化したとしても、コギングトルクを十分に低減することができる。
また、本実施の形態に係る回転子10では、図3に示すように、回転軸13に含まれる軸心Cと交差する平面上において、隣り合う2つの第2の点P2同士を結ぶ弦の長さをD1とし、磁石12の幅の長さをD2とすると、0.7≦D2/D1≦0.8の関係を満たしているとよい。この構成により、さらにコギングトルクを低減することができる。
また、本実施の形態に係る回転子10では、図3に示すように、回転軸13に含まれる軸心Cと交差する平面上において、磁石12の外側端部と回転軸13に含まれる軸心Cとの距離をLとすると、0.7≦L1/r1≦0.8の関係を満たしているとよい。この構成により、電動機1の効率をより一層低下させることなくコギングトルクをさらに効果的に低減することができる。
また、本実施の形態に係る回転子10では、図3に示すように、第2の円弧A2の中心(点O2)は、変曲点Piと回転軸13に含まれる軸心Cとを結ぶ線分上に位置している。この構成により、変曲点Piにおいて第1の円弧A1と第2の円弧A2とを滑らかに接続することができる。したがって、さらにコギングトルクを低減することができる。
(変形例)
以上、本開示に係る回転子10及び電動機1について、実施の形態に基づいて説明したが、本開示は、上記実施の形態に限定されるものではない。
例えば、上記実施の形態において、回転子10の磁極数は4(つまり、磁石12の数が4個)であったが、これに限らない。例えば、回転子10の磁極数は、2n(nは自然数)であれば、任意の数を適用できる。同様に、上記実施の形態において、固定子20のスロット数は6であったが、これに限らない。
また、上記実施の形態において、磁石12は、焼結マグネットであったが、これに限らない。例えば、磁石12は、ボンド磁石であってもよい。
また、上記実施の形態にいて、電動機1は、電気掃除機のファンモータに適用する場合について説明したが、これに限らない。例えば、上記実施の形態における電動機1は、エアコン又は冷蔵庫等の電気掃除機以外の家庭用電気機器、又は、自動車用機器やロボット等の産業用電気機器等の種々の電気機器に利用することができる。
本開示の技術は、回転子を備える電動機及び電動機を備える電気機器等に広く利用することができる。
1 電動機
10 回転子
11 鉄心
11a 貫通孔
11b 磁石挿入穴
12 磁石
13 回転軸
20 固定子
21 鉄心
21a ティース
22 巻線コイル
23 インシュレータ
31 第1軸受け
32 第2軸受け
41 第1ブラケット
42 第2ブラケット
A1 第1の円弧
A2 第2の円弧
L1 第1の直線
L2 第2の直線
P1 第1の点
P2 第2の点
Pi 変曲点

Claims (6)

  1. 複数の磁石挿入穴を有する鉄心と、
    各々が前記複数の磁石挿入穴に配置された複数の磁石と、
    前記鉄心に固定された回転軸とを備え、
    前記回転軸の軸心と交差する平面上において、
    前記複数の磁石の各々の磁極に対応する前記鉄心の最外周形状は、変曲点を介して連続する第1の円弧と第2の円弧とを含み、
    前記第1の円弧は、前記磁極の中心と前記軸心とを通る第1の直線が前記鉄心の最外周と交差する第1の点を通る円弧であり、
    前記第2の円弧は、前記複数の磁石のうち隣り合う2つの磁石の磁極間中心と前記軸心とを通る第2の直線が前記鉄心の最外周と交差する第2の点と前記変曲点とを結ぶ円弧であり、
    前記第1の点と前記軸心との距離をr1とし、前記第2の点と前記軸心との距離をr2とすると、0.860≦r2/r1≦0.925の関係を満たし、
    前記第1の円弧の半径をR1とし、前記第2の円弧の半径をR2とすると、0.56≦R2/R1≦0.71の関係を満たす、
    回転子。
  2. 前記平面上において、隣り合う2つの前記第2の点同士を結ぶ弦の長さをD1とし、前記磁石の幅の長さをD2とすると、0.7≦D2/D1≦0.8の関係を満たす、
    請求項1に記載の回転子。
  3. 前記平面上において、前記磁石の外側端部と前記軸心との距離をLとすると、0.7≦L1/r1≦0.8の関係を満たす、
    請求項1又は2に記載の回転子。
  4. 前記第2の円弧の中心は、前記変曲点と前記軸心とを結ぶ線分上に位置する、
    請求項1~3のいずれか1項に記載の回転子。
  5. 前記磁石の幅方向の端部と前記第1の直線との距離は、前記変曲点と前記第1の直線との距離よりも長い、
    請求項1~4のいずれか1項に記載の回転子。
  6. 請求項1~5のいずれか1項に記載の回転子と、
    前記回転子に対向して配置され、前記回転子に作用する磁力を発生させる固定子とを備える、
    電動機。
JP2020085763A 2020-05-15 2020-05-15 回転子及び電動機 Pending JP2023089319A (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020085763A JP2023089319A (ja) 2020-05-15 2020-05-15 回転子及び電動機
PCT/JP2021/014456 WO2021229954A1 (ja) 2020-05-15 2021-04-05 回転子及び電動機
CN202180034504.3A CN115552768A (zh) 2020-05-15 2021-04-05 转子及电动机
EP21805303.1A EP4152568A4 (en) 2020-05-15 2021-04-05 ROTOR AND ELECTRIC MOTOR

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020085763A JP2023089319A (ja) 2020-05-15 2020-05-15 回転子及び電動機

Publications (1)

Publication Number Publication Date
JP2023089319A true JP2023089319A (ja) 2023-06-28

Family

ID=78525701

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020085763A Pending JP2023089319A (ja) 2020-05-15 2020-05-15 回転子及び電動機

Country Status (4)

Country Link
EP (1) EP4152568A4 (ja)
JP (1) JP2023089319A (ja)
CN (1) CN115552768A (ja)
WO (1) WO2021229954A1 (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4736472B2 (ja) 2005-02-28 2011-07-27 パナソニック株式会社 電動機
CN101375485B (zh) * 2006-04-17 2011-04-13 松下电器产业株式会社 电动机
US8405270B2 (en) * 2007-05-07 2013-03-26 Panasonic Corporation Permanent magnet buried type electric motor
JP5394756B2 (ja) * 2009-01-09 2014-01-22 三菱電機株式会社 永久磁石式回転電機の回転子
JP5413358B2 (ja) * 2010-12-07 2014-02-12 株式会社安川電機 電動機

Also Published As

Publication number Publication date
WO2021229954A1 (ja) 2021-11-18
EP4152568A1 (en) 2023-03-22
EP4152568A4 (en) 2023-11-22
CN115552768A (zh) 2022-12-30

Similar Documents

Publication Publication Date Title
JP4838348B2 (ja) 永久磁石型モータ及び密閉型圧縮機及びファンモータ
JP6422595B2 (ja) 電動機および空気調和機
JP4626405B2 (ja) ブラシレスモータ
EP1734638A1 (en) Permanent-magnet motor
WO2010150492A1 (ja) アキシャル型モータ
US20090021105A1 (en) Rotor for an electric machine and production method thereof
US8760026B2 (en) Rotor with V-shaped permanent magnet arrangement, rotating electric machine, vehicle, elevator, fluid machine, and processing machine
JP5208088B2 (ja) 永久磁石埋込型電動機及び送風機
JP2003264947A (ja) 永久磁石電動機
JPWO2007123107A1 (ja) モータ
JP3452434B2 (ja) 永久磁石回転子
WO2014174864A1 (ja) 永久磁石同期機およびこれを用いた圧縮機
WO2015097767A1 (ja) 永久磁石式回転電機
US20230253838A1 (en) Electric motor
JPWO2022019074A5 (ja)
JP4602958B2 (ja) 永久磁石型モータ及び密閉型圧縮機及びファンモータ
JP2009050148A (ja) 広範囲定出力永久磁石式モータ
JPH1189133A (ja) 永久磁石形モータ
JP2003088019A (ja) 永久磁石電動機
JPH11136892A (ja) 永久磁石電動機
JP4080273B2 (ja) 永久磁石埋め込み型電動機
WO2021235267A1 (ja) 回転子及び電動機
JP2023089319A (ja) 回転子及び電動機
JP2006254621A (ja) 永久磁石型電動機
JP2002369422A (ja) 永久磁石式回転電機