JP2023085447A - 免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 - Google Patents
免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 Download PDFInfo
- Publication number
- JP2023085447A JP2023085447A JP2023061167A JP2023061167A JP2023085447A JP 2023085447 A JP2023085447 A JP 2023085447A JP 2023061167 A JP2023061167 A JP 2023061167A JP 2023061167 A JP2023061167 A JP 2023061167A JP 2023085447 A JP2023085447 A JP 2023085447A
- Authority
- JP
- Japan
- Prior art keywords
- polypeptide
- hhv
- ebv
- human
- hcmv
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/005—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/245—Herpetoviridae, e.g. herpes simplex virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K39/12—Viral antigens
- A61K39/245—Herpetoviridae, e.g. herpes simplex virus
- A61K39/25—Varicella-zoster virus
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K45/00—Medicinal preparations containing active ingredients not provided for in groups A61K31/00 - A61K41/00
- A61K45/06—Mixtures of active ingredients without chemical characterisation, e.g. antiphlogistics and cardiaca
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P31/00—Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
- A61P31/12—Antivirals
- A61P31/20—Antivirals for DNA viruses
- A61P31/22—Antivirals for DNA viruses for herpes viruses
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61P—SPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
- A61P37/00—Drugs for immunological or allergic disorders
- A61P37/02—Immunomodulators
- A61P37/04—Immunostimulants
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N7/00—Viruses; Bacteriophages; Compositions thereof; Preparation or purification thereof
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61K—PREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
- A61K39/00—Medicinal preparations containing antigens or antibodies
- A61K2039/505—Medicinal preparations containing antigens or antibodies comprising antibodies
- A61K2039/507—Comprising a combination of two or more separate antibodies
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16034—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16071—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16111—Cytomegalovirus, e.g. human herpesvirus 5
- C12N2710/16134—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16111—Cytomegalovirus, e.g. human herpesvirus 5
- C12N2710/16171—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16211—Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
- C12N2710/16234—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16211—Lymphocryptovirus, e.g. human herpesvirus 4, Epstein-Barr Virus
- C12N2710/16271—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16311—Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
- C12N2710/16334—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16311—Mardivirus, e.g. Gallid herpesvirus 2, Marek-like viruses, turkey HV
- C12N2710/16371—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16634—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16611—Simplexvirus, e.g. human herpesvirus 1, 2
- C12N2710/16671—Demonstrated in vivo effect
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16711—Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
- C12N2710/16734—Use of virus or viral component as vaccine, e.g. live-attenuated or inactivated virus, VLP, viral protein
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2710/00—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA dsDNA viruses
- C12N2710/00011—Details
- C12N2710/16011—Herpesviridae
- C12N2710/16711—Varicellovirus, e.g. human herpesvirus 3, Varicella Zoster, pseudorabies
- C12N2710/16771—Demonstrated in vivo effect
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Virology (AREA)
- Chemical & Material Sciences (AREA)
- Medicinal Chemistry (AREA)
- General Health & Medical Sciences (AREA)
- Organic Chemistry (AREA)
- Veterinary Medicine (AREA)
- Pharmacology & Pharmacy (AREA)
- Animal Behavior & Ethology (AREA)
- Immunology (AREA)
- Public Health (AREA)
- Engineering & Computer Science (AREA)
- Microbiology (AREA)
- Epidemiology (AREA)
- Genetics & Genomics (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Mycology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
- General Chemical & Material Sciences (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Biochemistry (AREA)
- Oncology (AREA)
- Communicable Diseases (AREA)
- Gastroenterology & Hepatology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Biomedical Technology (AREA)
- Biophysics (AREA)
- General Engineering & Computer Science (AREA)
- Medicines Containing Antibodies Or Antigens For Use As Internal Diagnostic Agents (AREA)
- Peptides Or Proteins (AREA)
- Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
- Medicines Containing Material From Animals Or Micro-Organisms (AREA)
Abstract
Description
本願は、2017年1月27日付で出願された米国仮特許出願第62/451,396号の利益を主張し、その出願日に依拠し、その開示全体が引用することにより本明細書の一部をなす。
本発明は、ユニフォームド・サービシズ・ユニバーシティにより与えられた助成金番号Q574LJ15による政府の支援のもとで行われた。政府は、本発明に一定の権利を有する。
本願は、ASCIIフォーマットで電子的に提出された配列表を含み、その全体が引用することにより本明細書の一部をなす。2018年1月25日付けで作製された上記ASCIIコピーの名前はHMJ-153-PCT_SL.txtであり、207545バイトのサイズである。
gp42は、細胞表面MHC-II受容体と相互作用して、そのヘテロ二量体EBV gH/gLタンパク質との会合をもたらす。次いで、ヘテロ二量体gH/gLは、gp42を結合することによってコンフォメーション変化を経て、ウイルス-宿主細胞膜融合を直接媒介するEBV融合タンパク質gBの活性化をもたらす(非特許文献4)。EBVのように、他のHHVファミリーメンバーの結合、融合及び宿主細胞侵入は、典型的には宿主細胞表面の種々の受容体に結合する他のアクセサリータンパク質と共に、gB、gH及びgLのポリペプチドによって主に媒介される。
を除去するように修飾した。したがって、gBは、その本来の三量体コンフォメーションにならなかった(非特許文献12)。これらの2つの研究は予防用HCMVワクチンとしてのgBの更なる評価に貢献したが、それらの研究は、より有効な予防用ワクチン製剤に対する切実なニーズを示す。
て複数のタンパク質を投与する場合には、タンパク質間の相互作用、及びそれらの相互作用がどのように免疫系の応答に影響し得るのかを注意深く評価することが重要である。
gHのポリペプチドの1つ以上とを含む。本明細書で言及される様々な実施の形態では、gBポリペプチドは単量体又は多量体(例えば、二量体、三量体、四量体等)であってもよい。或る特定の実施の形態では、抗原性組成物はgBポリペプチドと、gHポリペプチドと、gLポリペプチドとを含む。gLポリペプチド及びgHポリペプチドは、任意に、ヘテロ二量体として存在してもよい。或る特定の実施の形態では、ヘテロ二量体は融合タンパク質である。他の実施の形態では、ヘテロ二量体は、非共有結合的に会合したタンパク質複合体である。一実施の形態では、gBポリペプチドは単量体、二量体又は三量体であり、gLポリペプチド及びgHポリペプチドはヘテロ二量体を形成する。別の実施の形態では、gBポリペプチドは単量体であり、gLポリペプチド及びgHポリペプチドは単量体のヘテロ二量体を形成する。
gHポリペプチドと、gLポリペプチドと、gBポリペプチドとの組み合わせであって、各ポリペプチドは単量体又は多量体であり、任意に、gHポリペプチド及びgLポリペプチドはgH/gLヘテロ二量体を形成する。或る特定の実施の形態では、gH/gLヘテロ二量体は、単量体、二量体、三量体又は四量体であり、gBポリペプチドは単量体、二量体又は三量体である。一実施の形態では、上記組み合わせは、単量体又は三量体のgH/gLヘテロ二量体と、単量体又は三量体のgBポリペプチドとを含む。また、これらの抗原性組成物は、任意に、ヒトVZV糖タンパク質C(gC)ポリペプチド、ヒトVZV糖タンパク質E(gE)ポリペプチド、及び/又はヒトVZV糖タンパク質I(gI)ポリペプチドの1つ以上を含んでもよい。
る者、及び/又は原発性免疫不全症候群を患っている者であってもよい。開示される方法では、抗原性組成物は、連続して又は同時に投与されてもよい。
L128ポリペプチドをコードする第3の核酸分子と、HHV UL130ポリペプチドをコードする第4の核酸分子と、HHV UL131Aポリペプチドをコードする第5の核酸分子とを含む。或る特定の実施の形態では、ポリペプチドが宿主細胞において核酸構築物から発現されると、五量体のgH/gL/UL128/UL130/UL131Aタンパク質複合体が形成される。ポリペプチドは、任意に、膜貫通ドメイン及び/又は細胞内ドメインを含まない。一実施の形態では、組み換え核酸構築物は、第1の核酸に制御可能に連結された第1のプロモーターと、第3の核酸分子に制御可能に連結された第2のプロモーターとを更に含む。また核酸構築物は、任意に、第1の核酸の分子と第2の核酸分子との間に位置する第1の配列内リボソーム進入部位(IRES)と、第3の核酸分子と第4の核酸分子との間に位置する第2のIRESと、第4の核酸分子と第5の核酸分子との間に位置する第3のIRESとを含む。また任意に、核酸構築物は、IgGカッパー軽鎖リーダーペプチドをコードする第1、第2、第3、第4、及び第5のヌクレオチド配列を含み、ここで、IgGカッパー軽鎖リーダーペプチドをコードする第1、第2、第3、第4及び第5のヌクレオチド配列はそれぞれ、第1、第2、第3、第4及び第5の核酸分子とインフレームである。或る特定の実施の形態では、HHVはHCMV、EBV、HSV-1、HSV-2、VZV、KSHVである。
V免疫グロブリンを収集する工程の1つ以上を含む。この実施の形態及び関連する方法の実施の形態では、識別する工程は、任意に、血液、血漿又は血清試料をRaji B細胞中和アッセイ及び/又はHeLa細胞中和アッセイに供することを含む。この実施の形態では、HeLa細胞中和アッセイは、GFP標識化EBVでHeLa細胞を感染させて、EBVに感染したHeLa細胞を生じさせる工程と、EBVに感染したHeLa細胞と共に血液、血漿又は血清試料をインキュベートする工程と、フローサイトメトリー又はELISpotアッセイで血液、血漿又は血清試料の中和活性を分析する工程と、任意に、血液、血漿又は血清試料のIC50を計算する工程とを含む。また、この実施の形態では、血液、血漿又は血清試料は、血液、血漿又は血清試料が、選択されていない血液、血漿又は血清試料の平均IC50より4倍~25倍又は10倍~20倍高いIC50を有する場合、高いEBV中和活性を備えると識別される。
する被験体に投与することにより受動移入を達成し、該免疫細胞、又は抗HSV-1又は抗HSV-2の高力価免疫グロブリンは、該抗HSV-1又は抗HSV-2の高力価免疫グロブリンに対して選択された1つ以上の血液、血漿又は血清試料、任意にヒトの血液、血漿又は血清試料から得られたものである。任意に、血液、血漿又は血清試料は、2つ以上のHSV-1又はHSV-2の融合及び宿主細胞侵入タンパク質により免疫化したドナーから得られたものである。また、血液、血漿又は血清試料は、三量体gH/gL又は三量体gBを含むがこれらに限定されない、宿主細胞へのHSV-1又はHSV-2の結合、融合及び侵入の媒介に関与する単一の多量体のHSV-1タンパク質又はHSV-2タンパク質により免疫化したドナーから得ることができる。この方法の別の実施の形態では、被験体は、HSV-1若しくはHSV-2の感染によって引き起こされる脳炎を発症するリスクがある、又は被験体は活動性のHSV-2若しくはHSV-1の感染、及び/又はHSV脳炎を有する妊婦である。
7)に対する免疫を受動的に移入させる方法も開示する。これらの方法は、免疫細胞、又は抗HHV-6若しくは抗HHV-7の高力価免疫グロブリンを、それを必要とする被験体に投与することにより受動移入を達成し、該免疫細胞、又は抗HHV-6若しくは抗HHV-7の高力価免疫グロブリンは、抗HHV-6又は抗HHV-7の高力価免疫グロブリンに対して選択された、血液、血漿又は血清の1つ以上の試料、任意にヒトの血液、血漿又は血清試料から得られたものである。任意に、血液、血漿又は血清試料は、2つ以上のHHV-6又はHHV-7の融合及び宿主細胞侵入タンパク質により免疫化したドナーから得られたものである。また、血液、血漿又は血清試料は、三量体gH/gL又は三量体gBを含むがこれらに限定されない、宿主細胞へのHHV-6又はHHV-7の結合、融合及び侵入の媒介に関与する単一の多量体のHHV-6又はHHV-7のタンパク質により免疫化したドナーから得ることができる。また、HHV-6又はHHV-7の受動移入方法の別の実施の形態では、該方法は、抗HHV-6又は抗HHV-7の高力価免疫グロブリンを被験体に投与する工程の前に行なわれる以下の工程:(i)1以上のヒトドナー被験体に対して、抗HHV-6又は抗HHV-7の高力価免疫グロブリンを生成するのに十分な量で、少なくともHHV-6又はHHV-7のgH/gLヘテロ二量体、及びHHV-6又はHHV-7のgBポリペプチドを投与する工程;及び/又は(ii)上記1以上のヒトドナー被験体から抗HHV-6又は抗HHV-7の高力価免疫グロブリンを収集する工程の1つ以上を含む。或る特定の実施の形態では、HHV-6又はHHV-7のgBポリペプチドは単量体、二量体又は三量体であり、gH/gLヘテロ二量体は単量体、二量体、三量体又は四量体である。
本発明がより容易に理解され得るように、幾つかの用語を初めに定義する。付加的な定義は発明を実施するための形態の全体にわたって説明する。
b(Ward et al. (1989)Nature 341:544-546)並びに抗原結合機能を保った他の抗体断片を含む。上記Fab断片は、定常領域間でジスルフィド結合によって共有結合されたVH-CH1ドメインとVL-CLドメインとを有する。FV断片はより小さいものであり、共有結合されていないVHドメインとVLドメインとを有する。共有結合されていないドメインが解離される傾向を克服するために、scFVを構築することができる。scFVは、(1)VHのC末端をVLのN末端に結合する、又は(2)VLのC末端をVHのN末端に結合するフレキシブルなポリペプチドを含む。15-merの(Gly4Ser)3ペプチド(配列番号3)をリンカーとして使用することができるが、他のリンカーが当該技術分野で知られている。これらの抗体断片は、当業者に知られた慣用の技法を使用して得られ、かつ該断片は、機能についてインタクトな抗体と同じように評価される。
又はグリコシル化されなくてもよい。
gp350ポリペプチドを指す。
酸球、好塩基球、リンパ球及び/又は単球が挙げられる。リンパ球は、Tリンパ球及びBリンパ球を含む。また、免疫細胞は、樹状細胞、ナチュラルキラー(NK)細胞及び/又は肥満細胞であってもよい。
ム結合部位等)の役目をする場合がある。
Clin. Microbiol. Rev., 13(4):602-614, 2000を参照されたい)。
HV-1、HHV-2、VZV及び仮性狂犬病ウイルス(PRV:pseudorabies virus)が挙げられ、神経向性である、すなわち、それらのウイルスは宿主の神経系に主に感染する又はそれを攻撃する傾向がある。アルファヘルペスウイルス科は最も広い宿主域を有し、細胞培養で急速に広がる。潜在アルファヘルペスウイルス感染は、通常感覚ニューロンにおいて確立され、溶解感染が表皮細胞で起こる(Roizman B, Sears AE. Herpes simplex viruses and their replication. In: Fields BN, Knipe DM, Howley PM, eds. Fields
virology. Philadelphia: Lippincott-Raven, 1996:2231-95)。
エプスタインバーウイルス(EBV、HHV-4)。エプスタインバーウイルス(EBV)は、最初に発見されたヒト癌ウイルスであり、移植後リンパ増殖性障害(PTLD)及び未分化上咽頭癌(NPC)の病因と強く結び付けられる。両方の例において、疾患の発症及び重症度はEBV血症のレベルと正に相関し、疾患の永続化において溶解EBV再活性化の役割を強く示唆する。ヒトヘルペスウイルス4(HHV-4)としても知られるエプスタインバーウイルス(EBV)は、バーキットリンパ腫、上咽頭癌、伝染性単核球症、ホジキン病のサブセット、及び免疫抑制された患者におけるリンパ増殖性症候群等の病理学的存在に関わり、世界的な罹患率及び死亡率の主な原因である(Cohen JI, Curr. Opin. Immunol., 1999 Aug; 11(4):365-70、Thorley-Lawson DA, J., Allergy Clin. Immunol., 2005 Aug; 116(2):251-61; quiz 62、及びVetsika EK, Callan M., Expert Rev. Mol. Med., 2004 Nov 5;6(23):1-16)。EBVは二本鎖の直鎖DNAゲノムを持つ。EBVゲノムのヌクレオチド配列、及びそれによってコードされるウイルスタンパク質のアミノ酸配列が知られており、NCBI参照番号NC_009334、Version NC_009334.1、GI:139424470に示され、それらの配列が参照することにより本明細書の一部をなす。
象が、AIDSの患者にも起こる。
り若い患者は、事前の免疫が無いため、造血幹細胞又は固形臓器の移植後にPTLDを発症するリスクが最も高い。原発性免疫不全症候群の患者もまた、EBV駆動型B細胞リンパ増殖及びリンパ腫を発症するリスクが高い(Rickinson et al., Trends Immunol., 35:159-69, 2014)。WHOは、重症度の昇順に、PTLDの3つの主な組織学的種類、すなわち初期病変、多形性(P-PTLD)及び単形性(M-PTLD)を定義する(Harris
et al., Semin. Diagn. Pathol., 14:8-14, 1997)。M-PTLDは典型的には非ホジ
キンリンパ腫として顕在化する。
IVIgはPTLDを治療するために他の治療と組み合わせて経験的に使用されてきたが、その可能性のある臨床的な利益を評価する研究はなかった。
閉、聴覚の愁訴(auditory complaints)及び脳神経麻痺として臨床に顕在化する。放射
線療法は、NPCに対する一次治療であり、追加の化学療法がより進行した症例で利用される(同上)。5年生存は、ステージに応じて70%~98%であるが、NPCは再発しやすい。
VのDNAレベルは、NPC腫瘍負荷と直接相関する(To et al., Clin. Cancer Res.,
9:3254-9, 2003)。したがって、潜在EBVの再活性化はNPCの形成及び進行の重要な特徴であり、抗体に基づく免疫療法に対する可能性のある役割を示唆する。健康な血清反応陽性個体の血液及び唾液から複数株のEBVが単離され得るが、典型的にはEBVの単一の株のみがNPC細胞から単離され、その病原性の役割と一致する(Tsang et al., Virol. Sin., 30:107-21, 2015)。EBNA2、3A、3B及び3Cの配列における株のバリエーションが記載されているが、エンベロープタンパク質gp350、gH/gL及びgBは高度に保存されており、これらの後者のタンパク質を交差株の防御に対して理想的なワクチン候補としている(Sample et al., J. Virol., 64:4084-92, 1990、及びRowe et al., J. Virol., 63:1031-9, 1989)。
al., Blood, 121:3547-53, 2013)及びEBVとも病原的に(pathogenically)関連付けられるリンパ節外NK/T細胞リンパ腫(Wang et al., Oncotarget., 6(30):30317-30326, 2015)と並んで、NPCにおける有害な生存転帰と正に相関する(Jin et al., Eur. J. Cancer, 48:882-8, 2012、Hsu et al., Head Neck, 34:1064-70, 2012、及びHsu et al., Oral Oncol., 49:620-5, 2013)。
潜伏EBV及びEBV伝播に対する主なヒトの感染源は休止しているメモリーBリンパ球である(Babcock et al., Immunity, 1998 Sep; 9(3):395-404)。EBVは、感染力及びB細胞腫瘍性形質転換にとって重要な事象である(Thorley-Lawson DA, J. Allergy Clin. Immunol., 2005 Aug; 116(2):251-61; quiz 62)、B細胞へのウイルス侵入のためのgp350-CD21結合事象に依存する(Tanner et al., Cell, 1987 Jul 17; 50(2):203-13、及びTanner et al., J. Virology, 1988; 62(12):4452-64)。gp350は主なEBV外膜糖タンパク質であり、一方、2型補体受容体(CR2)としても知られるCD21は、iC3b補体タンパク質に結合するB細胞表面の受容体である。活動性EBV感染を有する患者に由来する血清は、B細胞へのEBVの侵入を阻止する抗体(「中和」抗体)を含有する。gp350によるこれらの血清の吸着は、この中和活性の大半を排除し(Thorley-Lawson et al., J. Virology, 1982 Aug; 43(2):730-6)、gp350が、防御
的液性免疫応答が向けられる主要なEBV抗原としての役割を果たすことを示す。
0は、EBV誘導性リンパ腫を防御した(Morgan et al., J. Med. Virol., 1984; 13(3):281-92、及びMorgan et al., J. Med. Virol., 1989 Sep; 29(1):74-8)。アラム又はムラミルジペプチド中の組み換えgp350も同様に防御的である(Finerty et al., J. Gen. Virol., 1992 Feb; 73 (Pt 2):449-53、及びFinerty et al., Vaccine, 1994 Oct; 12(13):1180-4)。コモン・マーモセット(common marmosets)も、アラム中の組み換えg
p350による免疫化に続くEBV負荷後のウイルス複製の減少を示した(Cox et al., J. Med. Virol., 1998 Aug; 55(4):255-61)。アデノウイルスベクター又はワクシニアウイルスベクターによって発現されたgp350を使用する非ヒト霊長類研究は、同様に、CTM又はコモン・マーモセットにおける実験的なEBV誘導性リンパ腫又はEBV複製に対する防御を示した(Mackett et al., J. Med. Virol., 1996 Nov; 50(3):263-71、Ragot et al., J. Gen. Virol., 1993 Mar; 74 (Pt 3):501-7、及びMorgan et al., J. Med. Virol., 1988 Jun; 25(2):189-95)。
は、EBV(1:40~1:160)に対する中和抗体を生じた。10名中10名のワクチン接種をしていない対照が、16ヶ月の追跡調査で感染したが、9名中わずか3名のワクチン接種を受けた子供のみがこの時期に感染した。より最近では、健康なEBV血清反応陰性成人をアラム+/-モノホスホリルリピドA中の組み換え単量体gp350タンパク質により免疫化した第I/II相研究が行われた(非特許文献6、及び非特許文献7)。3回の投薬の後、被験体の最大82%が検出可能な中和血清抗gp350抗体力価を有した。ワクチンは、無症候性EBV感染の予防ではなく伝染性単核球症の発症の予防において78.0%の有効性を実証した。最後に慢性腎疾患を有する子供に与えられたアラム中の組み換え単量体gp350タンパク質の追加の第I相試験は、少数の被験体のみが検出可能な中和血清抗gp350力価を示すことを実証した(非特許文献8)。
の部分、及びgp350配列のアミノ酸21~26又はアミノ酸372~378のgp220のタンパク質は、CR2結合に関連している(Tanner et al., Cell, 203-213 (1987)、及びNemerow et al., Cell, 61:1416-20, 1987)。したがって、gp350タンパク
質又はgp350抗原(又はgp220のタンパク質又は抗原)という用語は、全長のgp350又はgp220のタンパク質だけでなく、CR2を結合する能力を保持するその断片又は改変型も指す。
MEAALLVCQY TIQSLIHLTG EDPGFFNVEI PEFPFYPTCN VCTADVNVTI 50
NFDVGGKKHQ LDLDFGQLTP HTKAVYQPRG AFGGSENATN LFLLELLGAG 100
ELALTMRSKK LPINVTTGEE QQVSLESVDV YFQDVFGTMW CHHAEMQNPV 150
YLIPETVPYI KWDNCNSTNI TAVVRAQGLD VTLPLSLPTS AQDSNFSVKT 200
EMLGNEIDIE CIMEDGEISQ VLPGDNKFNI TCSGYESHVP SGGILTSTSP 250
VATPIPGTGY AYSLRLTPRP VSRFLGNNSI LYVFYSGNGP KASGGDYCIQ 300
SNIVFSDEIP ASQDMPTNTT DITYVGDNAT YSVPMVTSED ANSPNVTVTA 350
FWAWPNNTET DFKCKWTLTS GTPSGCENIS GAFASNRTFD ITVSGLGTAP 400
KTLIITRTAT NATTTTHKVI FSKAPESTTT SPTLNTTGFA DPNTTTGLPS 450
STHVPTNLTA PASTGPTVST ADVTSPTPAG TTSGASPVTP SPSPWDNGTE 500
SKAPDMTSST SPVTTPTPNA TSPTPAVTTP TPNATSPTPA VTTPTPNATS 550
PTLGKTSPTS AVTTPTPNAT SPTLGKTSPT SAVTTPTPNA TSPTLGKTSP 600
TSAVTTPTPN ATGPTVGETS PQANATNHTL GGTSPTPVVT SQPKNATSAV 650
TTGQHNITSS STSSMSLRPS SNPETLSPST SDNSTSHMPL LTSAHPTGGE 700
NITQVTPASI STHHVSTSSP EPRPGTTSQA SGPGNSSTST KPGEVNVTKG 750
TPPQNATSPQ APSGQKTAVP TVTSTGGKAN STTGGKHTTG HGARTSTEPT 800
TDYGGDSTTP RPRYNATTYL PPSTSSKLRP RWTFTSPPVT TAQATVPVPP 850
TSQPRFSNLS MLVLQWASLA VLTLLLLLVM ADCAFRRNLS TSHTYTTPPY 900
DDAETYV 907
MEAALLVCQY TIQSLIHLTG EDPGFFNVEI PEFPFYPTCN VCTADVNVTI 50
NFDVGGKKHQ LDLDFGQLTP HTKAVYQPRG AFGGSENATN LFLLELLGAG 100
ELALTMRSKK LPINVTTGEE QQVSLESVDV YFQDVFGTMW CHHAEMQNPV 150
YLIPETVPYI KWDNCNSTNI TAVVRAQGLD VTLPLSLPTS AQDSNFSVKT 200
EMLGNEIDIE CIMEDGEISQ VLPGDNKFNI TCSGYESHVP SGGILTSTSP 250
VATPIPGTGY AYSLRLTPRP VSRFLGNNSI LYVFYSGNGP KASGGDYCIQ 300
SNIVFSDEIP ASQDMPTNTT DITYVGDNAT YSVPMVTSED ANSPNVTVTA 350
FWAWPNNTET DFKCKWTLTS GTPSGCENIS GAFASNRTFD ITVSGLGTAP 400
KTLIITRTAT NATTTTHKVI FSKAPESTTT SPTLNTTGFA DPNTTTGLPS 450
STHVPTNLTA PASTGPTVST ADVTSPTPAG TTSGASPVTP SPSPWDNGTE 500
STPPQNATSP QAPSGQKTAV PTVTSTGGKA NSTTGGKHTT GHGARTSTEP 550
TTDYGGDSTT PRPRYNATTY LPPSTSSKLR PRWTFTSPPV TTAQATVPVP 600
PTSQPRFSNL SMLVLQWASL AVLTLLLLLV MADCAFRRNL STSHTYTTPP 650
YDDAETYV 658
MQLLCVFCLV LLWEVGAASL SEVKLHLDIE GHASHYTIPW TELMAKVPGL 50
SPEALWREAN VTEDLASMLN RYKLIYKTSG TLGIALAEPV DIPAVSEGSM 100
QVDASKVHPG VISGLNSPAC MLSAPLEKQL FYYIGTMLPN TRPHSYVFYQ 150
LRCHLSYVAL SINGDKFQYT GAMTSKFLMG TYKRVTEKGD EHVLSLIFGK 200
TKDLPDLRGP FSYPSLTSAQ SGDYSLVIVT TFVHYANFHN YFVPNLKDMF 250
SRAVTMTAAS YARYVLQKLV LLEMKGGCRE PELDTETLTT MFEVSVAFFK 300
VGHAVGETGN GCVDLRWLAK SFFELTVLKD IIGICYGATV KGMQSYGLER 350
LAAVLMATVK MEELGHLTTE KQEYALRLAT VGYPKAGVYS GLIGGATSVL 400
LSAYNRHPLF QPLHTVMRET LFIGSHVVLR ELRLNVTTQG PNLALYQLLS 450
TALCSALEIG EVLRGLALGT ESGLFSPCYL SLRFDLTRDK LLSMAPQEAM 500
LDQAAVSNAV DGFLGRLSLE REDRDAWHLP AYKCVDRLDK VLMIIPLINV 550
TFIISSDREV RGSALYEAST TYLSSSLFLS PVIMNKCSQG AVAGEPRQIP 600
KIQNFTRTQK SCIFCGFALL SYDEKEGLET TTYITSQEVQ NSILSSNYFD 650
FDNLHVHYLL LTTNGTVMEI AGLYEERAHV VLAIILYFIA FALGIFLVHK 700
IVMFFL 706
MRTVGVFLAT CLVTIFVLPT WGNWAYPCCH VTQLRAQHLL ALENISDIYL 50
VSNQTCDGFS LASLNSPKNG SNQLVISRCA NGLNVVSFFI SILKRSSSAL 100
TGHLRELLTT LETLYGSFSV EDLFGANLNR YAWHRGG 137
MTRRRVLSVV VLLAALACRL GAQTPEQPAP PATTVQPTAT RQQTSFPFRV 50
CELSSHGDLF RFSSDIQCPS FGTRENHTEG LLMVFKDNII PYSFKVRSYT 100
KIVTNILIYN GWYADSVTNR HEEKFSVDSY ETDQMDTIYQ CYNAVKMTKD 150
GLTRVYVDRD GVNITVNLKP TGGLANGVRR YASQTELYDA PGWLIWTYRT 200
RTTVNCLITD MMAKSNSPFD FFVTTTGQTV EMSPFYDGKN KETFHERADS 250
FHVRTNYKIV DYDNRGTNPQ GERRAFLDKG TYTLSWKLEN RTAYCPLQHW 300
QTFDSTIATE TGKSIHFVTD EGTSSFVTNT TVGIELPDAF KCIEEQVNKT 350
MHEKYEAVQD RYTKGQEAIT YFITSGGLLL AWLPLTPRSL ATVKNLTELT 400
TPTSSPPSSP SPPAPPAARG STSAAVLRRR RRDAGNATTP VPPAAPGKSL 450
GTLNNPATVQ IQFAYDSLRR QINRMLGDLA RAWCLEQKRQ NMVLRELTKI 500
NPTTVMSSIY GKAVAAKRLG DVISVSQCVP VNQATVTLRK SMRVPGSETM 550
CYSRPLVSFS FINDTKTYEG QLGTDNEIFL TKKMTEVCQA TSQYYFQSGN 600
EIHVYNDYHH FKTIELDGIA TLQTFISLNT SLIENIDFAS LELYSRDEQR 650
ASNVFDLEGI FREYNFQAQN IAGLRKDLDN AVSNGRNQFV DGLGELMDSL 700
GSVGQSITNL VSTVGGLFSS LVSGFISFFK NPFGGMLILV LVAGVVILVI 750
SLTRRTRQMS QQPVQMLYPG IDELAQQHAS GEGPGINPIS KTELQAIMLA 800
LHEQNQEQKR AAQRAAGPSV ASRALQAARD RFPGLRRRRY HDPETAAALL 850
GEAETEF 857
MVSFKQVRVP LFTAIALVIV LLLAYFLPPR VRGGGRVSAA AITWVPKPNV 50
EVWPVDPPPP VNFNKTAEQE YGDKEIKLPH WTPTLHTFQV PKNYTKANCT 100
YCNTREYTFS YKERCFYFTK KKHTWNGCFQ ACAELYPCTY FYGPTPDILP 150
VVTRNLNAIE SLWVGVYRVG EGNWTSLDGG TFKVYQIFGS HCTYVSKFST 200
VPVSHHECSF LKPCLCVSQR SNS 223
MFSCKQHLSL GACVFCLGLL ASTPFIWCFV FANLLSLEIF SPWQTHVYRL 50
GFPTACLMAV LWTLVPAKHA VRAVTPAIML NIASALIFFS LRVYSTSTWV 100
SAPCLFLANL PLLCLWPRLA IEIVYICPAI HQRFFELGLL LACTIFALSV 150
VSRALEVSAV FMSPFFIFLA LGSGSLAGAR RNQIYTSGLE RRRSIFCARG 200
DHSVASLKET LHKCPWDLLA ISALTVLVVC VMIVLHVHAE VFFGLSRYLP 250
LFLCGAMASG GLYLGHSSII ACVMATLCTL TSVVVYFLHE TLGPLGKTVL 300
FISIFVYYFS GVAALSAAMR YKLKKFVNGP LVHLRVVYMC CFVFTFCEYL 350
LVTFIKS
MVDEQVAVEH GTVSHTISRE EDGVVHERRV LASGERVEVF YKAPAPRPRE 50
GRASTFHDFT VPAAAAVPGP EPEPEPHPPM PIHANGGGET KTNTQDQNQN 100
QTTRTRTNAK AEERTAEMDD TMASSGGQRG APISADLLSL SSLTGRMAAM 150
APSWMKSEVC GERMRFKEDV YDGEAETLAE PPRCFMLSFV FIYYCCYLAF 200
LALLAFGFNP LFLPSFMPVG AKVLRGKGRD FGVPLSYGCP TNPFCKVYTL 250
IPAVVINNVT YYPNNTDSHG GHGGFEAAAL HVAALFESGC PNLQAVTNRN 300
RTFNVTRASG RVERRLVQDM QRVLASAVVV MHHHCHYETY YVFDGVGPEF 350
GTIPTPCFKD VLAFRPSLVT NCTAPLKTSV KGPNWSGAAG GMKRKQCRVD 400
RLTDRSFPAY LEEVMYVMVQ
であり、gH/gLヘテロ二量体は三量体である。或る特定の実施形態では、共に混合された場合、EBVのgB、gH及びgLのポリペプチドはタンパク質複合体を形成する。或る特定の実施形態では、EBVのgB、gH及びgLのポリペプチドは、gB、gH及びgLのポリペプチドを含むタンパク質複合体として投与されない。例えば、gBをgH及び/又はgLとは別に投与することができ、又はタンパク質複合体としてではなくgH及びgLと共に投与することもできる。
PEL)又は体腔性B細胞リンパ腫(BCBL:body-cavity based B-cell lymphomas)及び多中心性キャッスルマン病(MCD)におけるB細胞、カポジ肉腫(KS)病変の血管腔に付着する扁平内皮細胞、典型的なKS紡錘細胞、KS病変におけるCD45+/CD68+単球、角化細胞、及び上皮細胞を含む多くの種類の宿主細胞に広く感染する(同上)。さらに、KSHV感染は多発性骨髄腫と関連づけられている(Rettig et al., Science, 276:1851-4, 1997)。EBVのように、KSHVもまた細胞融合及び侵入を媒介するgB、gH及びgLを発現する。また、KSHVは、それらのEBV相当物と比較して同一ではないにせよ、同様の役割を媒介する、保存された糖タンパク質gM及びgNを発現する(同上)。
J. Virol., 77(7):4205-20, 2003、及びJha et al., mBio, 5(6):e02261-14, 2014、及
びStuerzl et al., Thromb. Haemost., 102:1117-34, 2009)。ORF68は、宿主細胞
のユビキチンプロテアソーム経路と相互作用して、その経路を阻害することにより、タンパク質分解を阻害することが知られている(Gardner, M., 8th Annual CEND Symposium, 22 March 2016)。ORF68は、KSHVにおけるウイルスゲノム複製にとって不可欠
である。KSHV ORF68が、KSHV DNA複製にとって不可欠な宿主細胞の細胞質中のタンパク質のプロテアソーム媒介性分解を抑制するタンパク質をコードすると想定される(同上)。
1 msstqirtei pvallilclc lvachancpt yrshlgfwqe gwsgqvyqdw lgrmncsyen
61 mtaleavsln gtrlaagsps seypnvsvsv edtsasgsge daidesgsge eerpvtshvt
121 fmtqsvqatt eltdalisaf sgsyssgeps rttrirvspv aengrnsgas nrvpfsattt
181 ttrgrdahyn aeirthlyil wavglllglv lilylcvprc rrkkpyiv
nkに公開され、参照することにより本明細書の一部をなすKSHV gpK8.1Bのアミノ酸及び核酸の配列。gpK8.1Bのアミノ酸配列は以下の通りである(配列番号11):
1 MSSTQIRTEI PVALLILCLC LVACHANCPT YRSHLGFWQE GWSGQVYQDW LGRMNCSYEN
61 MTALEAVSLN GTRLAAGSPS RSYSSGEPSR TTRIRVSPVA ENGRNSGASN RVPFSATTTT
121 TRGRDAHYNA EIRTHLYILW AVGLLLGLVL ILYLCVPRCR RKKPYIV
MQGLAFLAAL ACWRCISLTC GATGALPTTA TTITRSATQL INGRTNLSIE 50
LEFNGTSFFL NWQNLLNVIT EPALTELWTS AEVAEDLRVT LKKRQSLFFP 100
NKTVVISGDG HRYTCEVPTS SQTYNITKGF NYSALPGHLG GFGINARLVL 150
GDIFASKWSL FARDTPEYRV FYPMNVMAVK FSISIGNNES GVALYGVVSE 200
DFVVVTLHNR SKEANETASH LLFGLPDSLP SLKGHATYDE LTFARNAKYA 250
LVAILPKDSY QTLLTENYTR IFLNMTESTP LEFTRTIQTR IVSIEARRAC 300
AAQEAAPDIF LVLFQMLVAH FLVARGIAEH RFVEVDCVCR QYAELYFLRR 350
ISRLCMPTFT TVGYNHTTLG AVAATQIARV SATKLASLPR SSQETVLAMV 400
QLGARDGAVP SSILEGIAMV VEHMYTAYTY VYTLGDTERK LMLDIHTVLT 450
DSCPPKDSGV SEKLLRTYLM FTSMCTNIEL GEMIARFSKP DSLNIYRAFS 500
PCFLGLRYDL HPAKLRAEAP QSSALTRTAV ARGTSGFAEL LHALHLDSLN 550
LIPAINCSKI TADKIIATVP LPHVTYIISS EALSNAVVYE VSEIFLKSAM 600
FISAIKPDCS GFNFSQIDRH IPIVYNISTP RRGCPLCDSV IMSYDESDGL 650
QSLMYVTNER VQTNLFLDKS PFFDNNNLHI HYLWLRDNGT VVEIRGMYRR 700
RAASALFLIL SFIGFSGVIY FLYRLFSILY
MGIFALFAVL WTTLLVTSHA YVALPCCAIQ ASAASTLPLF FAVHSIHFAD 50
PNHCNGVCIA KLRSKTGDIT VETCVNGFNL RSFLVAVVRR LGSWASQENL 100
RLLWYLQRSL TAYTVGFNAT TADSSIHNVN IIIISVGKAM NRTGSVSGSQ 150
TRAKSSSRRA HAGQKGK
MQGLAFLAAL ACWRCISLTC GATGALPTTA TTITRSATQL INGRTNLSIE 50
LEFNGTSFFL NWQNLLNVIT EPALTELWTS AEVAEDLRVT LKKRQSLFFP 100
NKTVVISGDG HRYTCEVPTS SQTYNITKGF NYSALPGHLG GFGINARLVL 150
GDIFASKWSL FARDTPEYRV FYPMNVMAVK FSISIGNNES GVALYGVVSE 200
DFVVVTLHNR SKEANETASH LLFGLPDSLP SLKGHATYDE LTFARNAKYA 250
LVAILPKDSY QTLLTENYTR IFLNMTESTP LEFTRTIQTR IVSIEARRAC 300
AAQEAAPDIF LVLFQMLVAH FLVARGIAEH RFVEVDCVCR QYAELYFLRR 350
ISRLCMPTFT TVGYNHTTLG AVAATQIARV SATKLASLPR SSQETVLAMV 400
QLGARDGAVP SSILEGIAMV VEHMYTAYTY VYTLGDTERK LMLDIHTVLT 450
DSCPPKDSGV SEKLLRTYLM FTSMCTNIEL GEMIARFSKP DSLNIYRAFS 500
PCFLGLRYDL HPAKLRAEAP QSSALTRTAV ARGTSGFAEL LHALHLDSLN 550
LIPAINCSKI TADKIIATVP LPHVTYIISS EALSNAVVYE VSEIFLKSAM 600
FISAIKPDCS GFNFSQIDRH IPIVYNISTP RRGCPLCDSV IMSYDESDGL 650
QSLMYVTNER VQTNLFLDKS PFFDNNNLHI HYLWLRDNGT VVEIRGMYRR 700
RAASALFLIL SFIGFSGVIY FLYRLFSILY
MTASTVALAL FVASILGHCW VTANSTGVAS STERSSPSTA GLSARPSPGP 50
TSVTTPGFYD VACSADSFSP SLSSFSSVWA LINALLVVVA TFFYLVYLCF 100
FKFVDEVVHA
MRASKSDRFL MSSWVKLLFV AVIMYICSAV VPMAATYEGL GFPCYFNNLV 50
NYSALNLTVR NSAKHLTPTL FLEKPEMLVY IFWTFIVDGI AIVYYCLAAV 100
AVYRAKHVHA TTMMSMQSWI ALLGSHSVLY VAILRMWSMQ LFIHVLSYKH 150
VLMAAFVYCI HFCISFAHIQ SLITCNSAQW EIPLLEQHVP DNTMMESLLT 200
RWKPVCVNLY LSTTALEMLL FSLSTMMAVG NSFYVLVSDA IFGAVNMFLA 250
LTVVWYINTE FFLVKFMRRQ VGFYVGVFVG YLILLLPVIR YENAFVQANL 300
HYIVAINISC IPILCILAIV IRVIRSDWGL CTPSAAYMPL ATSAPTVDRT 350
PTVHQKPPPL PAKTRARAKV KDISTPAPRT QYQSDHESDS EIDETQMIFI 400
MFVPWQLGTI TRHRDELQKL LAASLLPEHP EESLGNPIMT QIHQSLQPSS 50
PCRVCQLLFS LVRDSSTPMG FFEDYACLCF FCLYAPHCWT STMAAAADLC 100
EIMHLHFPEE EATYGLFGPG RLMGIDLQLH FFVQKCFKTT AAEKILGISN 150
LQFLKSEFIR GMLTGTITCN FCFKTSWPRT DKEEATGPTP CCQITDTTTA 200
PASGIPELAR ATFCGASRPT KPSLLPALID IWSTSSELLD EPRPRLIASD 250
MSELKSVVAS HDPFFSPPLQ ADTSQGPCLM HPTLGLRYKN GTASVCLLCE 300
CLAAHPEAPK ALQTLQCEVM GHIENNVKLV DRIAFVLDNP FAMPYVSDPL 350
LRELIRGCTP QEIHKHLFCD PLCALNAKVV SEDVLFRLPR EQEYKKLRAS 400
AAAGQLLDAN TLFDCEVVQT LVFLFKGLQN ARVGKTTSLD IIRELTAQLK 450
RHRLDLAHPS QTSHLYA
ヒトサイトメガロウイルス(HCMV、HHV-5)。ヒトサイトメガロウイルス(HCMV)は、ヘルペスウイルス科のエンベロープを持つ二本鎖DNAのβヘルペスウイルスである。HCMVはベータヘルペスウイルス亜科に属し、HHV-6及びHHV-7もまたそのメンバーである。この科のウイルスによって感染した細胞は、しばしば肥大するよう(巨細胞腫)になる。HCMVは、幼年期の難聴の代表的な非遺伝的原因であり、また精神遅滞を含む神経発達の遅延の重大な原因である(Demmler-Harrison GJ, J. Clin. Virol., 46 Suppl 4, 2009: S1-5、Jeon et al., Infect. Dis. Obstet. Gynecol., 2006:80383, 2006、及びMorton et al., N. Engl. J. Med., 354:2151-64, 2006)。米国では、1年当たり20000名~40000名の乳児がHCMV感染を伴って生まれ、年間8000の恒久的障害及び18億6000万ドルの医療費を占める。また、HCMVは、移植レシピエント及びAIDSを有する患者を含む免疫抑制された個体において著しい臨床疾患を引き起こす(Bonaros et al., Clin. Transplant., 22:89-97, 2008、及びSteininger et al., J. Clin. Virol., 37:1-9, 2006)。免疫適格性の個体におけるHCMV感
染は、一般に無症候性であるが、より年齢が上の子供及び成人の一次感染の10%に単核球症症候群をもたらす可能性がある(Horwitz et al., Medicine (Baltimore), 65:124-34, 1986)。2001年には、全米科学アカデミーの医学研究所が、先天的なHCMV感
染を予防するワクチンがとりわけ米国の最優先事項であると述べた(Stratton et al., "Vaccines for the 21st Century: A tool for decisionmaking," Washington, DC, National Academy Press, 2001)。
幹細胞の移植を通して、及びまれに血液製剤の輸液注射によって伝播され得る。HCMV
は、主に線維芽細胞、上皮細胞、内皮細胞、単球マクロファージ、肝細胞及びニューロンに感染する。哺乳動物細胞へのHCMVの融合及び侵入の機構は、ヘルペスウイルス科の他のメンバーによって用いられるものと類似する(Heldwein et al., Cell. Mol. Life Sci., 65:1653-68, 2008、及びWhite et al., Crit. Rev. Biochem. Mol. Biol., 43:189-219, 2008)。HCMVは、形質膜(線維芽細胞)(Compton et al., Virology, 191:387-95, 1992)又はエンドソーム膜(上皮細胞及び内皮細胞)(Ryckman et al., J. Virol., 80:710-22, 2006)のいずれかと、そのエンベロープを融合させることにより細胞に侵
入する。
と同様に、HCMVのgH/gLタンパク質及びgBタンパク質は、宿主細胞へのHCMVの融合及び侵入に重要な役割を果たす。gBタンパク質は、全ての宿主細胞膜とのHCMVの融合の直接的なメディエーターである。HCMV gB及びその融合活性の活性化は、gH/gL及びgOとの会合を必要とし、共にgH/gL/gOヘテロ三量体タンパク質複合体を形成する。しかしながら、また、UL128/130/131A変異体が上皮細胞及び内皮細胞に感染しなかったことから、gH/gL/UL128/130/131A(五量体複合体)タンパク質は、これらの細胞へのHCMVの効率的なターゲティングにとって重要である(Ryckman et al., J. Virol., 80:710-22, 2006、Hahn et al., J. Virol., 78:10023-33, 2004、Adler et al., J. Gen. Virol., 87: 2451-60, 2006、及びWang et al., J. Virol., 79:10330-8, 2005)。対照的に、gOヌルHCMVが線維芽細胞、上皮及び内皮細胞を含む試験した全ての細胞型に感染することができなかったため、また線維芽細胞と上皮細胞の感染はいずれも、一般には、五量体複合体gH/gL/UL128/UL130/UL131AではなくgH/gL/gO複合体の存在量と相関したことから、gOは、全てのHCMV宿主細胞とのHCMVの融合に関与するようである(Wille et al., J. Virol., 84:2585-96, 2010、Jiang et al., J. Virol., 82:2802-12, 2008、及びZhou et al., J. Virol., 89(17):8999-9009, 2015)。3つ全てのUL128-131遺伝子が、どの既知のクラスのタンパク質に対しても相同性を有しない、アミノ末端シグナルペプチド、中心ケモカイン様ドメイン及びカルボキシ末端ドメインを含む共通する構造を共有する(Patrone et al., J. Virol., 79(13):8361-8373, 2005)。H
CMVのgBタンパク質又はgH/gLタンパク質は、線維芽細胞と上皮細胞の両方に対して血清HCMV中和抗体を誘発することが示された。しかしながら、五量体複合体は、上皮細胞及び内皮細胞に対する最も高い血清中和力価を誘導するものの、線維芽細胞に対してはそれ以上の改善はない(Wen et al., Vaccine, 32:3796-804, 2014、Freed et al., Proc. Natl. Acad. Sci. USA, 110:E4997-5005, 2013、及びSchuessler et al., J. Virol., 86:504-12, 2012)。HCMV gH/gL/gO複合体は、哺乳動物細胞(HE
K-239)において産生されたが(Kinzler et al., J. Clin. Virol., 25 Suppl 2:S87-95, 2002)、HCMV中和抗体を誘導するその能力に関する報告はない。
。HCMV gMポリペプチドは、372アミノ酸長であり、およそ42kDaの分子量
を有し、7つのTMドメインを持つ。HCMV gNは、129アミノ酸長であり、約15kDaの予測分子量を有するが、重度のグリコシル化のため、40kDa~50kDaタンパク質として現われる傾向がある。糖タンパク質M(gM、UL100)及び糖タンパク質N(gN、UL73)は、HCMVエンベロープの最も豊富なタンパク質成分であるgM/gNタンパク質複合体を形成する。最近の研究は、gM又はgNのいずれかをコードするウイルス遺伝子の欠失がHCMVには致死であるが、他のHHVではそうではないことを示した(Baines et al., J. Virol., 67:1441-1452, 1993、Fuchs et al., Virus Res., 112:108-114, 2005、Hobom et al., J. Virol., 74:7720-7729, 2000、Mach et al., J. Virol., 81:5212-5224, 2007、及びMacLean et al., J. Gen. Virol., 74(pt. 6):975-983, 1993)。
むタンパク質複合体又は融合タンパク質をコードする組み換え核酸を開示する。五量体複合体を構成するこれらのHHVポリペプチドの配列は、例えば、HCMVを含む任意のベータヘルペスウイルス亜科のメンバーに由来してもよい。例示的に制御可能に連結されたプロモーター配列等を含む、五量体複合体の5つ全てのHCMVポリペプチドをコードする核酸構築物の実施形態を図13に示す。タンパク質精製タグ等としての当該技術分野で知られているhis-タグ配列、又は免疫グロブリンカッパー配列等の追加の核酸配列は、精製を補助するため、かかる核酸配列中に含まれ得る。別の実施形態では、核酸構築物は、HHVポリペプチドgH、gL及びgBをコードする配列を含んでもよい。これらの高度に保存されたポリペプチドは、全てのHHVゲノムに見られることから、任意の既知のHHV gB、gH及び/又はgLの配列に対応し得る。
MRPGLPPYLT VFTVYLLSHL PSQRYGADAA SEALDPHAFH LLLNTYGRPI 50
RFLRENTTQC TYNSSLRNST VVRENAISFN FFQSYNQYYV FHMPRCLFAG 100
PLAEQFLNQV DLTETLERYQ QRLNTYALVS KDLASYRSFS QQLKAQDSLG 150
QQPTTVPPPI DLSIPHVWMP PQTTPHDWKG SHTTSGLHRP HFNQTCILFD 200
GHDLLFSTVT PCLHQGFYLM DELRYVKITL TEDFFVVTVS IDDDTPMLLI 250
FGHLPRVLFK APYQRDNFIL RQTEKHELLV LVKKAQLNRH SYLKDSDFLD 300
AALDFNYLDL SALLRNSFHR YAVDVLKSGR CQMLDRRTVE MAFAYALALF 350
AAARQEEAGT EISIPRALDR QAALLQIQEF MITCLSQTPP RTTLLLYPTA 400
VDLAKRALWT PDQITDITSL VRLVYILSKQ NQQHLIPQWA LRQIADFALQ 450
LHKTHLASFL SAFARQELYL MGSLVHSMLV HTTERREIFI VETGLCSLAE 500
LSHFTQLLAH PHHEYLSDLY TPCSSSGRRD HSLERLTRLF PDATVPATVP 550
AALSILSTMQ PSTLETFPDL FCLPLGESFS ALTVSEHVSY VVTNQYLIKG 600
ISYPVSTTVV GQSLIITQTD SQTKCELTRN MHTTHSITAA LNISLENCAF 650
CQSALLEYDD TQGVINIMYM HDSDDVLFAL DPYNEVVVSS PRTHYLMLLK 700
NGTVLEVTDV VVDATDSRLL MMSVYALSAI IGIYLLYRML KTC
MCRRPDCGFS FSPGPVILLW CCLLLPIVSS AAVSVAPTAA EKVPAECPEL 50
TRRCLLGEVF EGDKYESWLR PLVNVTGRDG PLSQLIRYRP VTPEAANSVL 100
LDEAFLDTLA LLYNNPDQLR ALLTLLSSDT APRWMTVMRG YSECGDGSPA 150
VYTCVDDLCR GYDLTRLSYG RSIFTEHVLG FELVPPSLFN VVVAIRNEAT 200
RTNRAVRLPV STAAAPEGIT LFYGLYNAVK EFCLRHQLDP PLLRHLDKYY 250
AGLPPELKQT RVNLPAHSRY GPQAVDAR
MESRIWCLVV CVNLCIVCLG AAVSSSSTSH ATSSTHNGSH TSRTTSAQTR 50
SVYSQHVTSS EAVSHRANET IYNTTLKYGD VVGVNTTKYP YRVCSMAQGT 100
DLIRFERNII CTSMKPINED LDEGIMVVYK RNIVAHTFKV RVYQKVLTFR 150
RSYAYIYTTY LLGSNTEYVA PPMWEIHHIN KFAQCYSSYS RVIGGTVFVA 200
YHRDSYENKT MQLIPDDYSN THSTRYVTVK DQWHSRGSTW LYRETCNLNC 250
MLTITTARSK YPYHFFATST GDVVYISPFY NGTNRNASYF GENADKFFIF 300
PNYTIVSDFG RPNAAPETHR LVAFLERADS VISWDIQDEK NVTCQLTFWE 350
ASERTIRSEA EDSYHFSSAK MTATFLSKKQ EVNMSDSALD CVRDEAINKL 400
QQIFNTSYNQ TYEKYGNVSV FETSGGLVVF WQGIKQKSLV ELERLANRSS 450
LNITHRTRRS TSDNNTTHLS SMESVHNLVY AQLQFTYDTL RGYINRALAQ 500
IAEAWCVDQR RTLEVFKELS KINPSAILSA IYNKPIAARF MGDVLGLASC 550
VTINQTSVKV LRDMNVKESP GRCYSRPVVI FNFANSSYVQ YGQLGEDNEI 600
LLGNHRTEEC QLPSLKIFIA GNSAYEYVDY LFKRMIDLSS ISTVDSMIAL 650
DIDPLENTDF RVLELYSQKE LRSSNVFDLE EIMREFNSYK QRVKYVEDKV 700
VDPLPPYLKG LDDLMSGLGA AGKAVGVAIG AVGGAVASVV EGVATFLKNP 750
FGAFTIILVA IAVVIITYLI YTRQRRLCTQ PLQNLFPYLV SADGTTVTSG 800
STKDTSLQAP PSYEESVYNS GRKGPGPPSS DASTAAPPYT NEQAYQMLLA 850
LARLDAEQRA QQNGTDSLDG QTGTQDKGQK PNLLDRLRHR KNGYRHLKDS 900
DEEENV
MEWNTLVLGL LVLSVVAESS GNNSSTSTSA TTSKSSASVS TTKLTTVATT 50
SATTTTTTTL STTSTKLSST THDPNVMRRH ANDDFYKAHC TSHMYELSLS 100
SFAAWWTMLN ALILMGAFCI VLRHCCFQNF TATTTKGY
MAPSHVDKVN TRTWSASIVF MVLTFVNVSV HLVLSNFPHL GYPCVYYHVV 50
DFERLNMSAY NVMHLHTPML FLDSVQLVCY AVFMQLVFLA VTIYYLVCWI 100
KISMRKDKGM SLNQSTRDIS YMGDSLTAFL FILSMDTFQL FTLTMSFRLP 150
SMIAFMAAVH FFCLTIFNVS MVTQYRSYKR SLFFFSRLHP KLKGTVQFRT 200
LIVNLVEVAL GFNTTVVAMA LCYGFGNNFF VRTGHMVLAV FVVYAIISII 250
YFLLIEAVFF QYVKVQFGYH LGAFFGLCGL IYPIVQYDTF LSNEYRTGIS 300
WSFGMLFFIW AMFTTCRAVR YFRGRGSGSV KYQALATASG EEVAVLSHHD 350
SLESRRLREE EDDDDDEDFE DA
MGRKEMMVRD VPKMVFLISI SFLLVSFINC KVMSKALYNR PWRGLVLSKI 50
GKYKLDQLKL EILRQLETTI STKYNVSKQP VKNLTMNMTE FPQYYILAGP 100
IQNYSITYLW FDFYSTQLRK PAKYVYSQYN HTAKTITFRP PPCGTVPSMT 150
CLSEMLNVSK RNDTGEQGCG NFTTFNPMFF NVPRWNTKLY VGPTKVNVDS 200
QTIYFLGLTA LLLRYAQRNC THSFYLVNAM SRNLFRVPKY INGTKLKNTM 250
RKLKRKQAPV KEQFEKKAKK TQSTTTPYFS YTTSAALNVT TNVTYSITTA 300
ARRVSTSTIA YRPDSSFMKS IMATQLRDLA TWVYTTLRYR QNPFCEPSRN 350
RTAVSEFMKN THVLIRNETP YTIYGTLDMS SLYYNETMFV ENKTASDSNK 400
TTPTSPSMGF QRTFIDPLWD YLDSLLFLDE IRNFSLRSPT YVNLTPPEHR 450
RAVNLSTLNS LWWWLQ
MSPKNLTPFL TALWLLLGHS RVPRVRAEEC CEFINVNHPP ERCYDFKMCN 50
RFTVALRCPD GEVCYSPEKT AEIRGIVTTM THSLTRQVVH NKLTSCNYNP 100
LYLEADGRIR CGKVNDKAQY LLGAAGSVPY RWINLEYDKI TRIVGLDQYL 150
ESVKKHKRLD VCRAKMGYML Q
MLRLLLRHYF HCLLLCAVWA TPCLASSWST LTANQNPSPP WSKLTYSKPH 50
DAATFYCPFL YPSPPRSPSQ FSGFQRVSTG PECRNETLYL LYNREGQTLV 100
ERSSTWVKKV IWYLSGRNQT ILQRMPRTAS KPSDGNVQIS VEDAKIFGAH 150
MVPKQTKLLR FVVNDGTRYQ MCVMKLESWA HVFRDYSVSF QVRLTFTEAN 200
NQTYTFCTHP NLIV
MRLCRVWLSV CLCAVVLGQC QRETAEKNDY YRVPHYWDAC SRALPDQTRY 50
KYVEQLVDLT LNYHYDASHG LDNFDVLKRI NVTEVSLLIS DFRRQNRRGG 100
TNKRTTFNAA GSLAPHARSL EFSVRLFAN
でに約90%の個体がHHV-6に感染し、非工業国では100%に達すると推定されている(Salahuddin et al., Science, 234:596, 1986、Willis et al., Br. Med. Bull., 62(1):125-138, 2002)。HHV-6感染は、小児バラ疹(第6病)、突発性発疹(バラ
発疹)を引き起こし、髄膜脳炎、肝炎、致死的血球貪食症候群及び間質肺炎と同様に、異好性陰性(heterophile-negative)伝染性単核球症と関連する(同上)。さらに、幾つかのB細胞リンパ腫におけるHHV-6のゲノム配列の検出、及びHHV-6が齧歯類細胞を癌化(transform)させる可能性により、或る特定の癌においてHHV-6の役割を示
唆する幾つかの証拠がある(Ablashi et al., J. Virol. Methods, 21:29-48, 1988、Josephs et al., Science, 234:601-603, 1986、Razzaque, A., Oncogene, 5:1356-1370, 1990、及びTorelli et al., Blood, 77:2251-2258, 1991)。遺伝シークエンシングによっ
て確認された、HHV-6の2つのバリアント、HHV-6A及びHHV-6Bが存在する(Ablashi et al., Arch. Virol., 159(5):863-870, 2014)。2つのバリアントのゲノムは、コリニア(co-linear)であり、90%の全体配列同一性を共有する(同上)。高
度に保存された糖タンパク質gH、gB、gN及びgOであっても、配列が識別可能に異なり、一貫して異なる(単離株を越えて保存されている)。また、2つのバリアントは、わずかに異なる病因及び疾患関連性を示すように見える(同上)。それにもかかわらず、他のHHV科メンバーに存在する同じ糖タンパク質は、HHV-6及びHHV-7のゲノムによってコードされる。
に基づくHHV-6膜融合に顕著な役割を果たす(Foa-Tomasi et al., J. Virol., 65:4124-4129, 1991、Gompels et al., J. Virol., 65:2393-2401, 1991、Liu et al., Virology, 197:12-22, 1993、及びQian et al., Virology, 194:380-386, 1993)。他のヘルペスウイルスの場合のように、これらの糖タンパク質はヘテロ二量体複合体を形成し、gLは、gHの正しい折り畳み、細胞内成熟及び表面発現に必要である(Anderson et al., J. Gen. Virol., 80:1485-1494, 1999、Hutchinson et al., J. Virol., 66:2240-2250, 1992、Liu et al., J. Gen. Virol., 74:1847-1857, 1993、及びRoop et al., J. Virol.,
67:2285-2297, 1993)。ヘルペスウイルスの中で最も高度に保存された糖タンパク質で
あることが知られているHHV-6糖タンパク質gB、及び糖タンパク質gp82-gp105(HHV-6及び関連するβ-ヘルペスウイルス、HHV-7でのみ見られる)は融合/侵入プロセスに重要である(Takeda et al., Virology, 222:176-183, 1996、Pfeiffer et al., J. Virol., 69:3490-3500, 1995、及びPfeiffer et al., J. Virol., 67:4611-4620, 1993)。
ク質は、被験体において、免疫応答を誘導する又はHHV-6若しくはHHV-7感染を治療若しくは予防するため、同時に又は別々に投与され得る。或る特定の実施形態では、抗原性組成物(又は投与方法)は、以下のHHV-6及びHHV-7ポリペプチド(又はそれをコードする核酸):gB、gH及びgLの2つ以上を含む。或る実施形態では、gBポリペプチドは単量体、二量体又は三量体である。或る実施形態では、gHポリペプチド及びgLポリペプチドは単量体、二量体、三量体又は四量体である。典型的には、gH及びgLはgH/gLヘテロ二量体を形成する。
MLLRLWVFVL LTPCYGWRPL NISNSSHCRN GNFENPIVRP GFITFNFYTK 50
NDTRIYQVPK CLLGSDITYH LFDAINTTES LTNYEKRVTR FYEPPMNDIL 100
RLSPVPSVKQ FNLDRSIQPQ VVYSLNMYPS QGIYYVRVVE VRQMQYDNVS 150
CKLPNSLKEL IFPVQVRCAK ITRYVGEDIY THFFTPDFMI LYIQNPAGDL 200
TMMYGNTTSI NFKAPYKKSS FIFKQTLTDD LLLIVEKDVI DVQYRFISDA 250
TFVDETLNDV DEVEALLLKF NNLGIQTLLR GDCKKPNYAG IPQMMFLYGI 300
VHFSYSTKNT GPMPVLRVLK THENLLSIDS FVNRCVNVSE GTLQYPKMKE 350
FLKYEPSDYS YITKNKSISV STLLTYLATA YESNVTISKY KWTDIANTLQ 400
NIYEKHMFFT NLTFSDRETL FMLAEIANII PTDERMQRHM QLLIGNLCNP 450
VEIVSWARML TADRAPNLEN IYSPCASPVR RDVTNSFLKT VLTYASLDRY 500
RSDMMEMLSV YRPPNMERVA AIQCLSPSEP AASLTLPNVT FVISPSYVIK 550
GVSLTITTTI VATSIIITAI PLNSTCVSTN YKYAGQDLLV LRNISSQTCE 600
FCQSVVMEYD DIDGPLQYIY IKNIDELKTL TDPNNNLLVP NTRTHYLLLA 650
KNGSVFEMSE VGIDIDQVSI ILVIIYILIA IIALFGLYRL IRLC
MLFRLWVFVL LTPCYSWRPW TISDESHCKN GNSENPIVRP GFITFNFYTK 50
NDTRIYQVPK CLLGSDITYH LFDAINTTES LTNYEKRVTR FYEPPMNDIL 100
RLSTVPAVKQ FNLDHSIQPQ IVYSLNLYPS HGIYYIRVVE VRQMQYDNVS 150
CKLPNSLNEL IFPVQVRCAK ITRYAGENIY THFFTPDFMI LYIQNPAGDL 200
TMMYGNTTDI NFKAPYRKSS FIFKQTLTDD LLLIVEKDVV DEEYRFISDA 250
TFVDETLDDV DEVEALLLKF NNLGIQTLLR GDCKKPDYAG IPQMMFLYGI 300
VHFSYSTKNT GPMPVLRVLK THENLLSIDS FVNRCVNVSE GTIQYPKMKE 350
FLKYEPSDYS YITKNKSIPV STLLTYLATA YETNVTISRY KWSDIANTLQ 400
KIYEKHMFFT NLTFSDRETL FMLAEIANFI PADERMQRHM QLLIGNLCNP 450
VEIVSWAHML TADKAPNLEN IYSPCASPVR RDVTNSFVKT VLTYASLDRY 500
RSDMMEMLSV YRPPDMARVA AIQCLSPSEP AASLPLPNVT FVISPSYVIK 550
GVSLTITTTI VATSIIITAI PLNSTCVSTN YKYAGQDLLV LRNISSQTCE 600
FCQSVVMEYD DIDGPLQYIY IKNIDELKTL TDPNNNLLVP NTRTHYLLLA 650
KNGSVFEMSE VGIDIDQVSI ILVIIYVLIA IIALFGLYRL IRLC
MELLLFVMSL ILLTFSKAIP LFNHNSFYFE KLDDCIAAVI NCTKSEVPLL 50
LEPIYQPPAY NEDVMSILLQ PPTKKKPFSR IMVTDEFLSD FLLLQDNPEQ 100
LRTLFALIRD PESRDNWLNF FNGFQTCSPS VGITTCIRDN CRKYSPEKIT 150
YVNNFFVDNI AGLEFNISEN TDSFYSNIGF LLYLENPAKG VTKIIRFPFN 200
SLTLFDTILN CLKYFHLKTG VELDLLKHME TYNSKLPFRS SRPTILIRNT 250
MELLLFVMSL ILLTFSKAMP LFDHNSFYFE KLDDCIAAVI NCTRSEVPLL 50
LEPIYQPPVY NEDVMSILLK PPTKKKPFSR IMVTNEFLSD FLLLQDNPEQ 100
LRTLFALIGD PESRDNWLNF FNGFQTCSPS VGITTCISDN CRKYLPERIT 150
YVNNFFVDNI AGLEFNISEN TDSFYSNIGF LLYLENPATG ITKIIRFPFN 200
SLTLFDTILN CLKYFHLKTG VEFDLLKQME AYNSKLPFRS SRPTILIRNT 250
MSKMAVLFLA VFLMNSVLMI YCDPDHYIRA GYNHKYPFRI CSIAKGTDLM 50
RFDRDISCSP YKSNAKMSEG FFIIYKTNIE TYTFPVRTYK KELTFQSSYR 100
DVGVVYFLDR TVMGLAMPVY EANLVNSHAQ CYSAVAMKRP DGTVFSAFHE 150
DNNKNNTLNL FPLNFKSITN KRFITTKEPY FARGPLWLYS TSTSLNCIVT 200
EATAKAKYPF SYFALTTGEI VEGSPFFNGS NGKHFAEPLE KLTILENYTM 250
IEDLMNGMNG ATTLVRKIAF LEKADTLFSW EIKEENESVC MLKHWTTVTH 300
GLRAETNETY HFISKELTAA FVAPKESLNL TDPKQTCIKN EFEKIINEVY 350
MSDYNDTYSM NGSYQIFKTT GDLILIWQPL VQKSLMFLEQ GSEKIRRRRD 400
VGDVKSRHDI LYVQLQYLYD TLKDYINDAL GNLAESWCLD QKRTITMLHE 450
LSKISPSSIV SEVYGRPISA QLHGDVLAIS KCIEVNQSSV QLHKSMRVVD 500
AKGVRSETMC YNRPLVTFSF VNSTPEVVPG QLGLDNEILL GDHRTEECEI 550
PSTKIFLSGN HAHVYTDYTH TNSTPIEDIE VLDAFIRLKI DPLENADFKV 600
LDLYSPDELS RANVFDLENI LREYNSYKSA LYTIEAKIAT NTPSYVNGIN 650
SFLQGLGAIG TGLGSVISVT AGALGDIVGG VVSFLKNPFG GGLMLILAIV 700
VVVIIIVVFV RQRHVLSKPI DMMFPYATNP VTTVSSVTGT TVVKTPSVKD 750
VDGGTSVAVS EKEEGMADVS GQVSDDEYSQ EDALKMLKAI KSLDESYRRK 800
PSSSESHASK PSLIDRIRYR GYKSVNVEEA
MSKMRVLFLA VFLMNSVLMI YCDSDDYIRA GYNHKYPFRI CSIAKGTDLM 50
RFDRDISCSP YKSNAKMSEG FFIIYKTNIE TYTFPVRTYK NELTFPTSYR 100
DVGVVYFLDR TVMGLAMPVY EANLVNSRAQ CYSAVAIKRP DGTVFSAYHE 150
DNNKNETLEL FPLNFKSVTN KRFITTKEPY FARGPLWLYS TSTSLNCIVT 200
EATAKAKYPF SYFALTTGEI VEGSPFFDGS NGKHFAEPLE KLTILENYTM 250
IEDLMNGMNG ATTLVRKIAF LEKGDTLFSW EIKEENESVC MLKHWTTVTH 300
GLRAETDETY HFISKELTAA FVASKESLNL TDPKQTCIKN EFEKIITDVY 350
MSDYNDAYSM NGSYQIFKTT GDLILIWQPL VQKSLMVLEQ GSVNLRRRRD 400
LVDVKSRHDI LYVQLQYLYD TLKDYINDAL GNLAESWCLD QKRTITMLHE 450
LSKISPSSIV SEVYGRPISA QLHGDVLAIS KCIEVNQSSV QLYKSMRVVD 500
AKGVRSETMC YNRPLVTFSF VNSTPEVVLG QLGLDNEILL GDHRTEECEI 550
PSTKIFLSGN HAHVYTDYTH TNSTPIEDIE VLDAFIRLKI DPLENADFKL 600
LDLYSPDELS RANVFDLENI LREYNSYKSA LYTIEAKIAT NTPSYVNGIN 650
SFLQGLGAIG TGLGSVISVT AGALGDIVGG VVSFLKNPFG GGLMLILAIV 700
VVVIIIVVFV RQKHVLSKPI DMMFPYATNP VTTVSSVTGT TVVKTPSVKD 750
ADGGTSVAVS EKEEGMADVS GQISGDEYSQ EDALKMLKAI KSLDESYRRK 800
PSSSESHASK PSLIDRIRYR GYKSVNVEEA
MYFYINSLLL IVSINGWKHW NILNSSICVN EKTNQTIIQP GLITFNFHDY 50
NETRVYQIPK CLFGYTFVSN LFDSVNFDES FDQYKHRITR FFNPSTEKAV 100
KIYAQKFQTN IKPVSHTKTI TVSFLPLFYE KDVYFANVSE IRKLYYNQYI 150
CTLSNGLTDY LFPITERCVM RHYNYLNTVF MLALTPSFFI ISVETGMDDV 200
VFIFGNVSRI FFKAPFRKSS FIYRQTVSDD LLLITKKTTI ERFYPFLKID 250
FLDDIWKQNY DISFLIAKFN KLATVYIMEG FCGKPVNKDT FHLMFLFGLT 300
HFLYSTRGDG LLPLLEILNT HQSIITMGRF LEKCFKMTKS HLLYPEMEKL 350
QNFQLVDYSY ITSDLTIPIS AKLAFLSLAD GRIVTVPQNK WKEIENNIET 400
LYEKHKLFTN LTQPERANLF LLSEIGNSLV FQEKIKRKIH VLLASLCNPL 450
EMYFWTHMLD NVMDIETMFS PCATATRKDL TQRVVNNILS YKNLDAYTNK 500
VMNTLSVYRK KRLDMFKSIS CVSNEQAAFL TLPNITYTIS SKYILAGTSF 550
SVTSTVISTT IIITVVPLNS TCTPTNYKYS VKNIKPIYNI SSHDCVFCES 600
LVVEYDDIDG IIQFVYIMDD KQLLKLIDPD TNFIDVNPRT HYLLFLRNGS 650
VFEITALDLK SSQVSIMLVL LYLIIIIIVL FGIYHVFRLF
MKTNIFFIFL ISILNQIYAL FNNSYYSNLE QECIKNILNC TQSKTLSLLE 50
PIDQAPIPKS DIISRLLYHT PYISRRDQVL IDEDFLETFY LLYNNPNQLH 100
TLLSLIKDSE SGHNWLGFLN NFERCLSDNT LLTCRDNVCK SYSYEKLKFT 150
GNIFVENIIG FEFNIPSNMI NFNMSILIYL ENEETRTQRI VRIDHHGINV 200
FDALLNCLRY FSRYYNFSFP LIQEMEKYNE VLPFRSEFSN LLIRTY
MKILFLSVFI TFSLQLSLQT EADFVMTGHN QHLPFRICSI ATGTDLVRFD 50
REVSCASYGS NIKTTEGILI IYKTKIEAHT FSVRTFKKEL TFQTTYRDVG 100
TVYFLDRTVT TLPMPIEEVH MVNTEARCLS SISVKRSEEE EYVAYHKDEY 150
VNKTLDLIPL NFKSDTVRRY ITTKEPFLRN GPLWFYSTST SINCIVTDCI 200
AKTKYPFDFF ALSTGETVEG SPFYNGINSK TFNEPTEKIL FRNNYTMLKT 250
FDDGSKGNFV TLTKMAFLEK GNTIFSWEVQ NEESSICLLK HWMTIPHALR 300
AENANSFHFI AQELTASFVT GKSNYTLSDS KYNCINSNYT SILDEIYQTQ 350
YNNSHDKNGS YEIFKTEGDL ILIWQPLIQR KLTVLENFSN ASRKRRKREL 400
ETNKDIVYVQ LQYLYDTLKD YINTALGKLA EAWCLNQKRT ITVLHELSKI 450
SPSGIISAVY GKPMSAKLIG DVLAVSKCIE VNQTSVQLHK SMRLTKDSSY 500
DALRCYSRPL LTYSFANSSK ETYLGQLGLD NEILLGNHRT EECEQSNTKI 550
FLSGKFAHIF KDYTYVNSSL ITEIEALDAF VDLNIDPLEN ADFTLLELYT 600
KDELSKANVF DLETILREYN SYKSALHHIE TKIATVTPTY IGGIDTFFKG 650
LGALGLGLGA VLGVTAGALG DVVNGVFSFL KNPFGGALTI LLTLGVIGLV 700
IFLFLRHKRL AQTPIDILFP YTSKSTNSVL QATQSVQAQV KEPLDSSPPY 750
LKTNKDTEPQ GDDITHTNEY SQVEALKMLK AIKLLDESYK KAEIAEAKKS 800
QRPSLLERIQ YRGYQKLSTE EL
HHV-1、すなわち単純ヘルペスウイルス1(HSV-1)は、口腔ヘルペスを引き起こし、HHV-2、すなわち単純ヘルペスウイルス1(HSV-2)は性器ヘルペスを引き起し、HHV-3、すなわちVZVは水疱瘡及び帯状疱疹を引き起こす。これらのウイルスは各々、ヘルペスウイルス科のアルファヘルペスウイルス亜科に属し、神経向性ウイルスである。VZVは、ほぼ全てのヒトに感染し、一次感染は水疱瘡(水痘)を引き起こす。潜伏VZVは、最も一般的には、神経軸索に沿って、脳神経神経節、後根神経節及び自律神経節に存在する。この亜科のウイルスは自発的に再活性化して、帯状疱疹(帯状ヘルペス)を生じる。帯状ヘルペスの皮膚病変は通常1週間を超えて続くが、一部の個体では、感染は慢性疼痛又はヘルペス後神経痛(PHN、3ヶ月を超えて続く疼痛)に結びつく場合があり、また同様に血管症は60歳より年齢が上の患者の約40%で起こり得る。また、帯状ヘルペス麻痺(Zoster paresis)(下位運動ニューロン型筋力低下を伴う帯状ヘルペス)は、腕、脚、横隔膜及び/又は腹筋に起こり得る。帯状ヘルペスの病理学的特徴としては、関連する神経炎による炎症及び出血性壊死、限局性軟膜炎、片側性分節性急性灰白髄炎(unilateral segmental poliomyelitis)、並びに関連する運動根及び知覚根の変性が挙げられる。脱髄は、単核細胞(MNC)の浸潤及びミクログリア増殖を伴う領域で見られる。核内封入体、ウイルス抗原及びヘルペスウイルス粒子は、急性的に感染した神経節で見つかった。血管障害(又は脳卒中)は、脳動脈の増殖性ウイルス感染によって引き起こされる場合があり、肉芽腫性血管炎、VZV血管炎/脳炎、水痘後動脈症(post-varicella arteriopathy)、及び遅発性対側片麻痺を伴う眼部帯状ヘルペスと称さ
れる。症状としては、発熱、精神状態の変化、頭痛及び局所神経障害を挙げることができる(Gilden et al., Neuropathol. Appl. Neurobiol., 37(5):441-463, 2012)。VZV
感染の他の重篤な合併症として、モラレ髄膜炎、多発性帯状ヘルペス(Zoster multiplex)、脊髄炎、眼部ヘルペス(herpes ophthalmicus)(無疱疹性帯状疱疹)及びラムゼイ
-ハント症候群が挙げられる。研究は、帯状ヘルペス後の脳卒中リスクの増加を示した(Kang et al., Stroke, 40(11):3443-3448, 2009、及びLin et al., Neurology, 74(10):792-797, 2010)。VZVの急性感染は、髄膜炎、髄膜脳炎、髄膜神経根炎及び小脳炎に結び付く場合がある(Habib et al., J. Neurovirol., 15(2):206-208, 2009、Klein et al., Scan. J. Infect. Dis., 42(8):631-633, 2010、Gunson et al., J. Clin. Virol., 50(3):191-193, 2011、及びMoses et al., Lancet Neurol., 5(11):984-988, 2006)。
ーマ細胞、線維芽細胞等を含む幾つかの細胞型においてアポトーシスを起こす(Pugazhenthi et al., J. Virol., 83(18):9273-82, 2009)。
gH及びgL、gM、gNを産生する。VZVにはHHV-1/HHV-2糖タンパク質gDの等価物はないが、VZVの糖タンパク質gEは同様の機能を果たす(Cohen, J. I., Curr. Top. Microbiol. Immunol., 342:1-14, 2010)。gB、gH及びgLの発現は、宿主細胞へのウイルス粒子の侵入に先立って膜融合を誘導するのに必要条件であり、かつ十分条件であって、ヌクレオカプシドが細胞質へのアクセスを得ることを可能にする。gp42、gD、gO又はUL128-130に類似する他のアクセサリー糖タンパク質は、融合に必要ではない(非特許文献1、Vleck et al., Proc. Natl. Acad. Sci. USA, 108:18412-7, 2011、及びOliver et al., Proc. Natl. Acad. Sci. USA, 110:1911-6, 2013)。
MFALVLAVVI LPLWTTANKS YVTPTPATRS IGHMSALLRE YSDRNMSLKL 50
EAFYPTGFDE ELIKSLHWGN DRKHVFLVIV KVNPTTHEGD VGLVIFPKYL 100
LSPYHFKAEH RAPFPAGRFG FLSHPVTPDV SFFDSSFAPY LTTQHLVAFT 150
TFPPNPLVWH LERAETAATA ERPFGVSLLP ARPTVPKNTI LEHKAHFATW 200
DALARHTFFS AEAIITNSTL RIHVPLFGSV WPIRYWATGS VLLTSDSGRV 250
EVNIGVGFMS SLISLSSGPP IELIVVPHTV KLNAVTSDTT WFQLNPPGPD 300
PGPSYRVYLL GRGLDMNFSK HATVDICAYP EESLDYRYHL SMAHTEALRM 350
TTKADQHDIN EESYYHIAAR IATSIFALSE MGRTTEYFLL DEIVDVQYQL 400
KFLNYILMRI GAGAHPNTIS GTSDLIFADP SQLHDELSLL FGQVKPANVD 450
YFISYDEARD QLKTAYALSR GQDHVNALSL ARRVIMSIYK GLLVKQNLNA 500
TERQALFFAS MILLNFREGL ENSSRVLDGR TTLLLMTSMC TAAHATQAAL 550
NIQEGLAYLN PSKHMFTIPN VYSPCMGSLR TDLTEEIHVM NLLSAIPTRP 600
GLNEVLHTQL DESEIFDAAF KTMMIFTTWT AKDLHILHTH VPEVFTCQDA 650
AARNGEYVLI LPAVQGHSYV ITRNKPQRGL VYSLADVDVY NPISVVYLSR 700
DTCVSEHGVI ETVALPHPDN LKECLYCGSV FLRYLTTGAI MDIIIIDSKD 750
TERQLAAMGN STIPPFNPDM HGDDSKAVLL FPNGTVVTLL GFERRQAIRM 800
SGQYLGASLG GAFLAVVGFG IIGWMLCGNS RLREYNKIPL T
MASHKWLLQI VFLKTITIAY CLHLQDDTPL FFGAKPLSDV SLIITEPCVS 50
SVYEAWDYAA PPVSNLSEAL SGIVVKTKCP VPEVILWFKD KQMAYWTNPY 100
VTLKGLAQSV GEEHKSGDIR DALLDALSGV WVDSTPSSTN IPENGCVWGA 150
DRLFQRVCQ
MSPCGYYSKW RNRDRPEYRR NLRFRRFFSS IHPNAAAGSG FNGPGVFITS 50
VTGVWLCFLC IFSMFVTAVV SVSPSSFYES LQVEPTQSED ITRSAHLGDG 100
DEIREAIHKS QDAETKPTFY VCPPPTGSTI VRLEPTRTCP DYHLGKNFTE 150
GIAVVYKENI AAYKFKATVY YKDVIVSTAW AGSSYTQITN RYADRVPIPV 200
SEITDTIDKF GKCSSKATYV RNNHKVEAFN EDKNPQDMPL IASKYNSVGS 250
KAWHTTNDTY MVAGTPGTYR TGTSVNCIIE EVEARSIFPY DSFGLSTGDI 300
IYMSPFFGLR DGAYREHSNY AMDRFHQFEG YRQRDLDTRA LLEPAARNFL 350
VTPHLTVGWN WKPKRTEVCS LVKWREVEDV VRDEYAHNFR FTMKTLSTTF 400
ISETNEFNLN QIHLSQCVKE EARAIINRIY TTRYNSSHVR TGDIQTYLAR 450
GGFVVVFQPL LSNSLARLYL QELVRENTNH SPQKHPTRNT RSRRSVPVEL 500
RANRTITTTS SVEFAMLQFT YDHIQEHVNE MLARISSSWC QLQNRERALW 550
SGLFPINPSA LASTILDQRV KARILGDVIS VSNCPELGSD TRIILQNSMR 600
VSGSTTRCYS RPLISIVSLN GSGTVEGQLG TDNELIMSRD LLEPCVANHK 650
RYFLFGHHYV YYEDYRYVRE IAVHDVGMIS TYVDLNLTLL KDREFMPLQV 700
YTRDELRDTG LLDYSEIQRR NQMHSLRFYD IDKVVQYDSG TAIMQGMAQF 750
FQGLGTAGQA VGHVVLGATG ALLSTVHGFT TFLSNPFGAL AVGLLVLAGL 800
VAAFFAYRYV LKLKTSPMKA LYPLTTKGLK QLPEGMDPFA EKPNATDTPI 850
EEIGDSQNTE PSVNSGFDPD KFREAQEMIK YMTLVSAAER QESKARKKNK 900
TSALLTSRLT GLALRNRRGY SRVRTENVTG V
MFLIQCLISA VIFYIQVTNA LIFKGDHVSL QVNSSLTSIL IPMQNDNYTE 50
IKGQLVFIGE QLPTGTNYSG TLELLYADTV AFCFRSVQVI RYDGCPRIRT 100
SAFISCRYKH SWHYGNSTDR ISTEPDAGVM LKITKPGIND AGVYVLLVRL 150
DHSRSTDGFI LGVNVYTAGS HHNIHGVIYT SPSLQNGYST RALFQQARLC 200
DLPATPKGSG TSLFQHMLDL RAGKSLEDNP WLHEDVVTTE TKSVVKEGIE 250
NHVYPTDMST LPEKSLNDPP ENLLIIIPIV ASVMILTAMV IVIVISVKRR 300
RIKKHPIYRP NTKTRRGIQN ATPESDVMLE AAIAQLATIR EESPPHSVVN 350
PFVK
MKRIQINLIL TIACIQLSTE SQPTPVSITE LYTSAATRKP DPAVAPTSAA 50
SRKPDPAVAP TSAASRKPDP AVAPTSAASR KPDPAVAPTS AATRKPDPAV 100
APTSAASRKP DPAVAPTSAA TRKPDPAVAP TSAASRKPDP AANTQHSQPP 150
FLYENIQCVH GGIQSIPYFH TFIMPCYMRL TTGQQAAFKQ QQKTYEQYSL 200
DPEGSNITRW KSLIRPDLHI EVWFTRHLID PHRQLGNALI RMPDLPVMLY 250
SNSADLNLIN NPEIFTHAKE NYVIPDVKTT SDFSVTILSM DATTEGTYIW 300
RVVNTKTKNV ISEHSITVTT YYRPNITVVG DPVLTGQTYA AYCNVSKYYP 350
PHSVRVRWTS RFGNIGKNFI TDAIQEYANG LFSYVSAVRI PQQKQMDYPP 400
PAIQCNVLWI RDGVSNMKYS AVVTPDVYPF PNVSIGIIDG HIVCTAKCVP 450
RGVVHFVWWV NDSPINHENS EITGVCDQNK RFVNMQSSCP TSELDGPITY 500
SCHLDGYPKK FPPFSAVYTY DASTYATTFS VVAVIIGVIS ILGTLGLIAV 550
IATLCIRCCS
MGTVNKPVVG VLMGFGIITG TLRITNPVRA SVLRYDDFHT DEDKLDTNSV 50
YEPYYHSDHA ESSWVNRGES SRKAYDHNSP YIWPRNDYDG FLENAHEHHG 100
VYNQGRGIDS GERLMQPTQM SAQEDLGDDT GIHVIPTLNG DDRHKIVNVD 150
QRQYGDVFKG DLNPKPQGQR LIEVSVEENH PFTLRAPIQR IYGVRYTETW 200
SFLPSLTCTG DAAPAIQHIC LKHTTCFQDV VVDVDCAENT KEDQLAEISY 250
RFQGKKEADQ PWIVVNTSTL FDELELDPPE IEPGVLKVLR TEKQYLGVYI 300
WNMRGSDGTS TYATFLVTWK GDEKTRNPTP AVTPQPRGAE FHMWNYHSHV 350
FSVGDTFSLA MHLQYKIHEA PFDLLLEWLY VPIDPTCQPM RLYSTCLYHP 400
NAPQCLSHMN SGCTFTSPHL AQRVASTVYQ NCEHADNYTA YCLGISHMEP 450
SFGLILHDGG TTLKFVDTPE SLSGLYVFVV YFNGHVEAVA YTVVSTVDHF 500
VNAIEERGFP PTAGQPPATT KPKEITPVNP GTSPLLRYAA WTGGLAAVVL 550
LCLVIFLICT AKRMRVKAYR VDKSPYNQSM YYAGLPVDDF EDSESTDTEE 600
EFGNAIGGSH GGSSYTVYID KTR
チドを含むタンパク質複合体として投与されない。例えば、gBをgH及び/又はgLとは別に投与することができ、又はタンパク質複合体としてではなくgH及びgLと共に投与することもできる。
MGNGLWFVGV IILGAAWGQV HDWTEQTDPW FLDGLGMDRM YWRDTNTGRL 50
WLPNTPDPQK PPRGFLAPPD ELNLTTASLP LLRWYEERFC FVLVTTAEFP 100
RDPGQLLYIP KTYLLGRPPN ASLPAPTTVE PTAQPPPAVA PLKGLLHNPT 150
ASVLLRSRAW VTFSAVPDPE ALTFPRGDNV ATASHPSGPR DTPPPRPPVG 200
ARRHPTTELD ITHLHNASTT WLATRGLLRS PGRYVYFSPS ASTWPVGIWT 250
TGELVLGCDA ALVRARYGRE FMGLVISMHD SPPAEVMVVP AGQTLDRVGD 300
PADENPPGAL PGPPGGPRYR VFVLGSLTRA DNGSALDALR RVGGYPEEGT 350
NYAQFLSRAY AEFFSGDAGA EQGPRPPLFW RLTGLLATSG FAFVNAAHAN 400
GAVCLSDLLG FLAHSRALAG LAARGAAGCA ADSVFFNVSV LDPTARLQLE 450
ARLQHLVAEI LEREQSLALH ALGYQLAFVL DSPSAYDAVA PSAAHLIDAL 500
YAEFLGGRVV TTPVVHRALF YASAVLRQPF LAGVPSAVQR ERARRSLLIA 550
SALCTSDVAA ATNADLRTAL ARADHQKTLF WLPDHFSPCA ASLRFDLDES 600
VFILDALAQA TRSETPVEVL AQQTHGLAST LTRWAHYNAL IRAFVPEASH 650
RCGGQSANVE PRILVPITHN ASYVVTHSPL PRGIGYKLTG VDVRRPLFLT 700
YLTATCEGST RDIESKRLVR TQNQRDLGLV GAVFMRYTPA GEVMSVLLVD 750
TDNTQQQIAA GPTEGAPSVF SSDVPSTALL LFPNGTVIHL LAFDTQPVAA 800
IAPGFLAASA LGVVMITAAL AGILKVLRTS VPFFWRRE
MGILGWVGLI AVGVLCVRGG LPSTEYVIRS RVAREVGDIL KVPCVPLPSD 50
DLDWRYETPS AINYALIDGI FLRYHCPGLD TVLWDRHAQK AYWVNPFLFV 100
AGFLEDLSYP AFPANTQETE TRLALYKEIR QALDSRKQAA SHTPVKAGCV 150
NFDYSRTRRC VGRQDLGPTN GTSGRTPVLP PDDEAGLQPK PLTTPPPIIA 200
TSDPTPRRDA ATKSRRRRPH SRRL
MHQGAPSWGR RWFVVWALLG LTLGVLVASA APTSPGTPGV AAATQAANGG 50
PATPAPPPLG AAPTGDPKPK KNKKPKNPTP PRPAGDNATV AAGHATLREH 100
LRDIKAENTD ANFYVCPPPT GATVVQFEQP RRCPTRPEGQ NYTEGIAVVF 150
KENIAPYKFK ATMYYKDVTV SQVWFGHRYS QFMGIFEDRA PVPFEEVIDK 200
INAKGVCRST AKYVRNNLET TAFHRDDHET DMELKPANAA TRTSRGWHTT 250
DLKYNPSRVE AFHRYGTTVN CIVEEVDARS VYPYDEFVLA TGDFVYMSPF 300
YGYREGSHTE HTTYAADRFK QVDGFYARDL TTKARATAPT TRNLLTTPKF 350
TVAWDWVPKR PSVCTMTKWQ EVDEMLRSEY GGSFRFSSDA ISTTFTTNLT 400
EYPLSRVDLG DCIGKDARDA MDRIFARRYN ATHIKVGQPQ YYQANGGFLI 450
AYQPLLSNTL AELYVREHLR EQSRKPPNPT PPPPGASANA SVERIKTTSS 500
IEFARLQFTY NHIQRHVNDM LGRVAIAWCE LQNHELTLWN EARKLNPNAI 550
ASVTVGRRVS ARMLGDVMAV STCVPVAADN VIVQNSMRIS SRPGACYSRP 600
LVSFRYEDQG PLVEGQLGEN NELRLTRDAI EPCTVGHRRY FTFGGGYVYF 650
EEYAYSHQLS RADITTVSTF IDLNITMLED HEFVPLEVYT RHEIKDSGLL 700
DYTEVQRRNQ LHDLRFADID TVIHADANAA MFAGLGAFFE GMGDLGRAVG 750
KVVMGIVGGV VSAVSGVSSF MSNPFGALAV GLLVLAGLAA AFFAFRYVMR 800
LQSNPMKALY PLTTKELKNP TNPDASGEGE EGGDFDEAKL AEAREMIRYM 850
ALVSAMERTE HKAKKKGTSA LLSAKVTDMV MRKRRNTNYT QVPNKDGDAD 900
EDDL
MGGAAARLGA VILFVVIVGL HGVRGKYALA DASLKMADPN RFRGKDLPVP 50
DRLTDPPGVR RVYHIQAGLP DPFQPPSLPI TVYYAVLERA CRSVLLNAPS 100
EAPQIVRGGS EDVRKQPYNL TIAWFRMGGN CAIPITVMEY TECSYNKSLG 150
ACPIRTQPRW NYYDSFSAVS EDNLGFLMHA PAFETAGTYL RLVKINDWTE 200
ITQFILEHRA KGSCKYALPL RIPPSACLSP QAYQQGVTVD SIGMLPRFIP 250
ENQRIVAVYS LKIAGWHGPK APYTSTLLPP ELSETPNATQ PELAPEDPED 300
SALLEDPVGT VAPQIPPNWH IPSIQDAATP YHPPATPNNM GLIAGAVGGS 350
LLAALVICGI VYWMRRRTQK GPKRIRLPHI REDDQPSSHQ PLFY
MGPGLWVVMG VLVGVAGGHD TYWTEQIDPW FLHGLGLART YWRDTNTGRL 50
WLPNTPDASD PQRGRLAPPG ELNLTTASVP MLRWYAERFC FVLVTTAEFP 100
RDPGQLLYIP KTYLLGRPRN ASLPELPEAG PTSRPPAEVT QLKGLSHNPG 150
ASALLRSRAW VTFAAAPDRE GLTFPRGDDG ATERHPDGRR NAPPPGPPAG 200
APRHPTTNLS IAHLHNASVT WLAARGLLRT PGRYVYLSPS ASTWPVGVWT 250
TGGLAFGCDA ALVRARYGKG FMGLVISMRD SPPAEIIVVP ADKTLARVGN 300
PTDENAPAVL PGPPAGPRYR VFVLGAPTPA DNGSALDALR RVAGYPEEST 350
NYAQYMSRAY AEFLGEDPGS GTDARPSLFW RLAGLLASSG FAFINAAHAH 400
DAIRLSDLLG FLAHSRVLAG LAARGAAGCA ADSVFLNVSV LDPAARLRLE 450
ARLGHLVAAI LEREQSLAAH ALGYQLAFVL DSPAAYGAVA PSAARLIDAL 500
YAEFLGGRAL TAPMVRRALF YATAVLRAPF LAGAPSAEQR ERARRGLLIT 550
TALCTSDVAA ATHADLRAAL ARTDHQKNLF WLPDHFSPCA ASLRFDLAEG 600
GFILDALAMA TRSDIPADVM AQQTRGVASA LTRWAHYNAL IRAFVPEATH 650
QCSGPSHNAE PRILVPITHN ASYVVTHTPL PRGIGYKLTG VDVRRPLFIT 700
YLTATCEGHA REIEPKRLVR TENRRDLGLV GAVFLRYTPA GEVMSVLLVD 750
TDATQQQLAQ GPVAGTPNVF SSDVPSVALL LFPNGTVIHL LAFDTLPIAT 800
IAPGFLAASA LGVVMITAAL AGILRVVRTC VPFLWRRE
MGFVCLFGLV VMGAWGAWGG SQATEYVLRS VIAKEVGDIL RVPCMRTPAD 50
DVSWRYEAPS VIDYARIDGI FLRYHCPGLD TFLWDRHAQR AYLVNPFLFA 100
AGFLEDLSHS VFPADTQETT TRRALYKEIR DALGSRKQAV SHAPVRAGCV 150
NFDYSRTRRC VGRRDLRPAN TTSTWEPPVS SDDEASSQSK PLATQPPVLA 200
LSNAPHGGSP RREVGAGILA SDATSHVCIA SHPGSGAGQP TRLAAGSAVQ 250
RRRPRGCPPG VMFSASTTPE QPLGLSGDAT PPLPTSVPLD WAAFRRAFLI 300
DDAWRPLLEP ELANPLTARL LAEYDRRCQT EEVLPPREDV FSWTRYCTPD 350
DVRVVIIGQD PYHHPGQAHG LAFSVRADVP VPPSLRNVLA AVKNCYPDAR 400
MSGRGCLEKW ARDGVLLLNT TLTVKRGAAA SHSKLGWDRF VGGVVRRLAA 450
RRPGLVFMLW GAHAQNAIRP DPRQHYVLKF SHPSPLSKVP FGTCQHFLAA 500
NRYLETRDIM PIDWSV
MRGGGLICAL VVGALVAAVA SAAPAAPAAP RASGGVAATV AANGGPASRP 50
PPVPSPATTK ARKRKTKKPP KRPEATPPPD ANATVAAGHA TLRAHLREIK 100
VENADAQFYV CPPPTGATVV QFEQPRRCPT RPEGQNYTEG IAVVFKENIA 150
PYKFKATMYY KDVTVSQVWF GHRYSQFMGI FEDRAPVPFE EVIDKINTKG 200
VCRSTAKYVR NNMETTAFHR DDHETDMELK PAKVATRTSR GWHTTDLKYN 250
PSRVEAFHRY GTTVNCIVEE VDARSVYPYD EFVLATGDFV YMSPFYGYRE 300
GSHTEHTSYA ADRFKQVDGF YARDLTTKAR ATSPTTRNLL TTPKFTVAWD 350
WVPKRPAVCT MTKWQEVDEM LRAEYGGSFR FSSDAISTTF TTNLTEYSLS 400
RVDLGDCIGR DAREAIDRMF ARKYNATHIK VGQPQYYLAT GGFLIAYQPL 450
LSNTLAELYV REYMREQDRK PRNATPAPLR EAPSANASVE RIKTTSSIEF 500
ARLQFTYNHI QRHVNDMLGR IAVAWCELQN HELTLWNEAR KLNPNAIASA 550
TVGRRVSARM LGDVMAVSTC VPVAPDNVIV QNSMRVSSRP GTCYSRPLVS 600
FRYEDQGPLI EGQLGENNEL RLTRDALEPC TVGHRRYFIF GGGYVYFEEY 650
AYSHQLSRAD VTTVSTFIDL NITMLEDHEF VPLEVYTRHE IKDSGLLDYT 700
EVQRRNQLHD LRFADIDTVI RADANAAMFA GLCAFFEGMG DLGRAVGKVV 750
MGVVGGVVSA VSGVSSFMSN PFGALAVGLL VLAGLVAAFF AFRYVLQLQR 800
NPMKALYPLT TKELKTSDPG GVGGEGEEGA EGGGFDEAKL AEAREMIRYM 850
ALVSAMERTE HKARKKGTSA LLSSKVTNMV LRKRNKARYS PLHNEDEAGD 900
EDEL
MGRLTSGVGT AALLVVAVGL RVVCAKYALA DPSLKMADPN RFRGKNLPVL 50
DRLTDPPGVK RVYHIQPSLE DPFQPPSIPI TVYYAVLERA CRSVLLHAPS 100
EAPQIVRGAS DEARKHTYNL TIAWYRMGDN CAIPITVMEY TECPYNKSLG 150
VCPIRTQPRW SYYDSFSAVS EDNLGFLMHA PAFETAGTYL RLVKINDWTE 200
ITQFILEHRA RASCKYALPL RIPPAACLTS KAYQQGVTVD SIGMLPRFIP 250
ENQRTVALYS LKIAGWHGPK PPYTSTLLPP ELSDTTNATQ PELVPEDPED 300
SALLEDPAGT VSSQIPPNWH IPSIQDVAPH HAPAAPSNPG LIIGALAGST 350
LAVLVIGGIA FWVRRRAQMA PKRLRLPHIR DDDAPPSHQP LFY
又はその標的分子に結合する能力を保持するその部分からなる。例として、gp350はB細胞の表面にあるCD21(CR2としても知られる)に結合し、gp42はHLAクラスII分子に結合し、gDはネクチン-1(HveC、CD111)及びヘルペスウイルス侵入メディエーター(HVEM)に結合し、gpK8.1A及びgpK8.1Bは細胞表面ヘパリン硫酸分子に結合する。
。
イメント法(J. Mol. Biol., 48:443, 1970)を利用する。GAPプログラムに対する好
ましい初期設定パラメーターは以下を含む:(1)ヌクレオチドに関する単一要素比較マトリクス(一致を表す数値1と不一致を表す数値0を含む)、及びSchwartz and Dayhoff, eds., Atlas of Protein Sequence and Structure, National Biomedical Research Foundation, pp. 353-358, 1979に記載されるGribskov and Burgess, Nucl. Acids Res., 14:6745, 1986の荷重比較マトリクス、(2)各ギャップに対するペナルティー3.0及び各ギャップの各シンボルについての追加0.10ペナルティー、並びに(3)末端ギャップに対してはペナルティーなし。
ゲーションを可能とする制限酵素部位に隣接する、変異配列を含むオリゴヌクレオチドを合成することによって、特定の遺伝子座に導入され得る。ライゲーションに続いて、得られた再構成された配列は、所望のアミノ酸の挿入、置換又は欠失を有するアナログをコードする。
、Smith et al.(Genetic Engineering: Principles and Methods, Plenum Press, 1981
)、Kunkel(Proc. Natl. Acad. Sci. USA, 82:488, 1985)、Kunkel et al.(Methods in Enzymol., 154:367, 1987)、並びに米国特許第4,518,584号及び同第4,7
37,462号に開示され、それらの全てが参照することにより本明細書の一部をなす。
gH/gLと会合して、gB/gH/gLのヘテロ三量体を形成することが知られている。したがって、かかるHHVポリペプチドを組成物に導入することにより、或る条件下で自発的に多量体化が起こり得る。
第2のHHVポリペプチドに対して二量体である、若しくは第1、第2及び第3のHHVポリペプチドに対して三量体である六量体を形成し、又は(四量体化ドメインが使用される場合)八量体を形成する。
等の1つ以上の宿主細胞を含む組織培養物から分泌されるように、シグナルペプチドをコードする核酸を含む。融合タンパク質の分泌は、既知の方法論によるタンパク質の採取及び精製の容易な手段を提供する。
プチドは、同一のポリペプチド配列、類似するポリペプチド配列、又は異なるポリペプチド配列を有してもよい。
会合を媒介する二量体化ドメインである。別の実施形態では、オリゴマー化ドメインは、3つのHHVポリペプチド及び/又は3つのHHV融合タンパク質の自己会合を媒介する三量体化ドメインである。別の実施形態では、オリゴマー化ドメインは、4つのHHVポリペプチド及び/又は4つのHHV融合タンパク質の自己会合を媒介する四量体化ドメインである。一実施形態では、三量体化ドメインは、フィブリチンモチーフ若しくは真核生物GCN4転写因子モチーフ、又はそれらの誘導体である。
された異種性タンパク質の安定した三量体化を可能とする修飾されたロイシンジッパーの使用は、Fanslow et al., Semin. Immunol., 6:267, 1994に記載される。
レオチド配列への言及は、文脈上他の意味に解すべき場合を除いて、指定の配列を有するDNA分子を包含し、TがUに置換された指定の配列を有するRNA分子を包含する。
れたい)。DNA導入に続いて、ベクターを含有する細胞を選択する選択法(例えば抗生物質耐性)を行うことができる。
貫通ドメイン又は細胞内のドメインを含まない。或る特定の実施形態では、組み換え核酸は、単一の転写産物からの複数のタンパク質の発現を促進するための1つ以上の配列内リボソーム進入部位(IRES)を含む。或る特定の実施形態では、組み換え核酸は、第1の核酸と第2の核酸との間に第1のIRES、第2の核酸と第3の核酸との間に第2のIRES、及び/又は第4の核酸と第5の核酸との間に第3のIRESを含む。或る特定の実施形態では、組み換え核酸は、HHVポリペプチドの発現を促進するための1つ以上のプロモーター配列を含む。或る特定の実施形態では、組み換え核酸は、第1の核酸に制御可能に連結された第1のプロモーターと、第3の核酸に制御可能に連結された第2のプロモーターとを含む。一実施形態では、プロモーターはCMVプロモーターである。或る特定の実施形態では、HHVは、例えばHCMVを含むベータヘルペスウイルス亜科メンバーである。かかる組み換え核酸の非限定的で例示的な実施形態を図13に示す。精製を補助するためのタンパク質精製タグ(例えばhis-タグ配列)又は宿主細胞からの分泌を促進するためのリーダー配列(例えば免疫グロブリンカッパー軽鎖リーダー配列)等の追加の核酸配列をかかる核酸配列に含んでもよい。或る特定の実施形態では、リーダー配列は、第1、第2、第3、第4及び第5の核酸の各々とインフレームで挿入される。
或る特定の実施形態では、核酸ワクチンはウイルスベクターワクチンである。
合剤、及びクロスポビドン、デンプングリコール酸ナトリウム、クロスカルメロースナトリウム等の崩壊剤、並びに上述のいずれかの混合物から選ぶことができる。薬学的に許容可能な賦形剤は、ステアリン酸マグネシウム、ステアリン酸カルシウム、ステアリン酸、ベヘン酸グリセリル、硬化植物油、フマル酸グリセリン等の滑沢剤、及びコロイド状二酸化ケイ素等の流動促進剤、並びにそれらの混合物から更に選ぶことができる。或る実施形態では、薬学的に許容可能な賦形剤は微結晶性セルロース、デンプン、タルク、ポビドン、クロスポビドン、ステアリン酸マグネシウム、コロイド状二酸化ケイ素、ドデシル硫酸ナトリウム、及び上述のいずれかの混合物から選ばれる。賦形剤は粒内、粒間又はそれらの混合物であり得る。
はグリセリルエステル(例えばモノステアリン酸グリセリル)、ポリオキシエチレングリコールエステル及びエーテル、並びにソルビタン脂肪酸エステル(例えばモノパルミチン酸ソルビタン)及びそれらのポリオキシエチレン誘導体(例えばポリオキシエチレンモノパルミチン酸ソルビタン)によって例示される。天然乳化剤としては、アラビアゴム、ゼラチン、レシチン及びコレステロールが挙げられる。
では、被験体は上咽頭癌を発症するリスクがある。或る特定の実施形態では、被験体は上咽頭癌を有する。
のFabとFcの両方の部分による体液性及び細胞性免疫応答の媒介、並びに病原体のクリアランスの増強を含む、受動的に移入された抗体の多機能の機構を立証した。また、受動免疫療法は、時には、任意に、細胞移入療法、免疫グロブリン療法、抗血清療法、受動移入、又は受動免疫とも称される。免疫細胞が、それを必要とする被験体に投与される免疫成分又は中和物質である場合、上記方法は、しばしば養子移入、養子細胞療法(ACT)、又は養子免疫療法と称される。
に利用される。
抗体を、次いで、それを必要とする別の被験体に投与することができる。代替的には、HHV融合又は宿主細胞侵入タンパク質に対する高力価中和抗体を、高力価抗体について選択された1つ以上の血液、血清又は血漿試料から得ることができる。或る特定の実施形態では、1つ以上の血液、血清又は血漿試料を、ヒトドナーから得る。
。或る特定の実施形態では、高力価の抗HHV抗体又は免疫細胞を、ドナー被験体から収集した血液、血清及び/又は血漿試料から得る。次いで、これらの免疫成分を、第2の被験体において免疫防御効果を誘導するため、それを必要とする第2の被験体に移入させ、それによりHHV感染を予防又は治療する。第2の被験体は、HHVに感染していてもよく、又はHHVに感染しやすいものであってもよい。抗体は、任意に、それを必要とする被験体への投与に先立って抽出及び/又は精製されてもよい。さらに、他の実施形態では、任意に、ドナー被験体は、血液、血清及び/又は血漿がそれを必要とする被験体に投与され得るように、それを必要とする被験体と組織適合性である。或る実施形態では、血液、血清及び/又は血漿は、ヒトドナーから得られる。
価抗KSHV抗体が投与され、該被験体は、KSHV関連カポジ肉腫、原発性滲出性リンパ腫、多中心性キャッスルマン病、KSHV関連炎症性サイトカイン症候群、又はKSHV免疫再構築炎症反応症候群を発症するリスクがある。
実施例1.1-EBV gHポリペプチド及びEBV gLポリペプチドの産生
EBVのgHポリペプチド及びgLポリペプチドを組み換えにより産生するため、EBV gH及びgLのコード配列を、NCBIウェブサイトのEBV gHヌクレオチド129454~131574及びEBV gLヌクレオチド98500~98913を含む参照配列NC_009334.1からダウンロードした。アミノ酸23~137をコードするgL配列を使用し、アミノ酸1~22にあるシグナルペプチドをIgGκリーダー配列で置き換えた。アミノ酸19~678に対応するアミノ酸をコードするgH配列はgL配列の3’末端に連結され、15アミノ酸リンカー(Gly4Ser)3(配列番号3)配列によって隔てられる(図1の代表的な概略を参照されたい)。T4ファージフィブリチンに由来するフォルドン三量体化ドメインコード配列(例えば、米国特許第6,911,205号;米国特許第8,147,843号;及び国際公開第01/19958号)をgHの3’末端に連結し、その後ろにHis6(配列番号49)コード配列が続いた。三量体gH/gLをコードするDNAを合成し、ベクターpOptiVEV(米国カリフォルニア州カールスバッドのInvitrogen)にクローニングし、シークエンシングによって配列を検証した。単量体EBV gH/gL構築物を、フォルドン三量体化コード配列を含まないEBV gH/gLのPCR増幅によって作製し、pOptiVEVにクローニングした。その配列をシークエンシングによって検証した。
した。上清を濃縮し、コバルトアフィニティ精製(米国マサチューセッツ州ウォルサムのThermo Fisher Scientific)を使用して精製した。Sephadex(商標)G200カラム又はSuperose(商標)6 Increase 10/300 GLカラム(英国リトル・チャルフォントのGE Healthcare)を使用するサイズ排除クロマトグラフィ
ーによって組み換えタンパク質を更に精製した。
用する三量体gH/gLポリペプチドのウェスタンブロット分析は、単量体gH/gLの予測サイズと一致する約90キロダルトン(kDa)の分子量(MW)バンドを明らかにした(図2A)。非還元条件下では、約270kDaのMWバンドが観察され、三量体gH/gLの予測サイズと一致した(図2A)。
組み換えによりEBV gBポリペプチドを産生するため、参照配列NC_009334.1、ヌクレオチド157775~160348に対応するEBV gBのコード配列をNCBIウェブサイトからダウンロードした。EBV gBの細胞外のドメインをコードする配列(野生型EBVのアミノ酸23~732)を、三量体gB発現のための構築物の設計に使用した。アミノ酸1~22に対応するシグナルペプチドをIgGκリーダー配列で置き換え、アミノ酸427(L)と434(A)との間のフーリン切断部位のコード配列(RRRRD)(配列番号50)を、15アミノ酸(Gly4Ser)3(配列番号3)リンカー配列で置き換えた(図1)。His6(配列番号49)配列をタンパク質精製のため3’末端に連結させた。下記の全ての工程は、EBV gH/gLについて上に記載される通りであった。
BV gBタンパク質が単量体形態(約80kDa)の予測サイズであることを実証した(図2B)。EBV gBタンパク質のネイティブ形態の検出を可能とする修正された非還元条件下で、三量体EBV gB(約240kDa)の予測サイズを有する均一なバンドが観察された(図2B)。
EBV gp350ポリペプチドを以前に記載されている通りに発現させた(Cui et al., Vaccine, 31:3039-45, 2013を参照されたい;またその全体が引用することにより本
明細書の一部をなす特許文献1も参照されたい)。簡潔には、EBVの単量体gp350構築物を、B95-8株のgp350 cDNAのPCR増幅によって作製した。アミノ酸1~470をコードする配列を、5’末端に付加されたIgGκリーダー配列、及び3’末端に付加されたHis6(配列番号49)コード配列と共にクローニングした。四量体gp350構築物を、単量体gp350構築物(His6(配列番号49)を含まない)の3’末端への第2のgp350断片(1~470)のライゲーションによって作製した。第2のgp350断片は、ホモ二量体化のため5’末端に(Gly4Ser)3(配列番号3)リンカー、3’末端にロイシンジッパー配列、続いてタンパク質精製のためのHis6(配列番号49)配列を有する(図1)。単量体及び四量体のgp350 DNAをpOptiVEVにクローニングし、それらの配列をシークエンシングによって検証した。下記の全ての工程はEBV gH/gLについて上に記載される通りであった。
列番号49)mAbを変性(還元)条件下で使用するウェスタンブロット分析は、単量体gp350に対応する単一の約100kDaのバンド及び四量体gp350を形成する2つのgp350二量体の解離により生じたgp350二量体と一致する約200kDaの単一のバンドを明らかにした(図2C)。ネイティブ(非還元)条件下で、単量体gp350と一致する約100kDaの単一のバンドを明らかにし、四量体gp350と一致する約400kDaの単一のバンドが観察された(図2C)。
得られたEBVポリペプチドは、ワクチン調製物で、ウサギにおける免疫応答を誘導す
るそれらの能力について調べた。この研究及びこの実施例の後に続く実施例では、免疫応答のレベルを、血清中に見られたEBVポリペプチド特異抗体のレベルによって決定した。この研究では、12週齢~15週齢の5匹の雄性のニュージーランドホワイトウサギ群を、単量体EBV gp350又は単量体EBV gH/gLに対して四量体EBV gp350、三量体EBV gH/gL又は三量体EBV gBを含む、各25μgのEBV抗原により皮下免疫化した。抗原を水酸化アルミニウムに吸着させ(アラム;1mgのタンパク質当たり0.25μgのアラム)、注射に先立って、ウサギでの使用に最適化させた12-merホスホロチオエート修飾CpGオリゴデオキシヌクレオチド(ODN)(以下、ODN 2007、TCGTCGTTGTCGTTTTGTCGTT(配列番号51))50μgと混合した(Ioannou et al., Vaccine, 21:4368-72, 2003を参照され
たい)。ODN 2007の活性を、ウサギ脾細胞(同上)に添加した場合のIgM分泌を刺激するその能力によって確認した。アラム及びCpG-ODN単独により免疫化したウサギは陰性対照としての役割を果たした。ウサギを、0日目、21日目及び42日目に免疫化した。血清サンプルを、初回免疫化前及び各免疫化の10日後に採取した。
gH/gL(図3、中央パネル、黒丸)は、一次免疫化及び1回目の追加免疫の後、それぞれ、血清gH/gL特異的IgG力価の30倍超及び90倍超の増大を誘導し、2回目の追加免疫によって力価は同等となった。これらのデータは、四量体の融合EBV gp350ポリペプチドの多量体化が免疫原性の著しい増加を誘導することを示した、四量体及び単量体のgp350を使用してマウスで行われた従来の研究(Cui et al., Vaccine, 31:3039-45, 2013)と一致する。
血清in vitroEBV中和力価の決定を、Raji細胞(EBV陽性ヒトバーキットリンパ腫細胞株)を使用して記載される通りに行った(Sashihara et al., Virology, 391:249-56, 2009)。簡潔には、EBV BZLF1及びEBV BALF4をそれぞれ発現するプラスミドp509及びp2670で293個/2089個の細胞をトランスフェクションすることにより、GFP-EBV(B95-8/F)を作製した(米国メリーランド州ベセスダのN.I.H.のJeffrey I. Cohen博士による寄贈)(非特許文献4、及びDelecluse et al., Proc. Natl. Acad. Sci. U.S.A, 95:8245-50, 1998)。血清の段階希釈物を、96ウェルプレートにおいてGFP-EBVと2時間混合した後、更に1時間Raji細を添加した。次いで、細胞を洗浄し、培地単独で3日間再度培養し、パラホルムアルデヒドで固定して、GFP+Raji細胞についてフローサイトメトリーによって分析した。GFP陽性細胞数の低減に基づく感染力が50%(IC50)阻害される血清希
釈率をPrism 6ソフトウェアを用いた非線形回帰分析によって計算した(米国カリフォルニア州ラ・ホーヤのGraphPad Software, Inc.)。EBV中和抗gp350 mA
b(72A1)を陽性対照として使用した。免疫前血清及びアラム+CpG-ODN単独により免疫化したウサギに由来する血清は、陰性対照としての役割を果たした。末梢血ナイーブヒトB細胞を使用する血清中和力価の決定のため、健康なドナーの末梢血から単離したナイーブヒトB細胞をGFP-EBVとインキュベートし、100ng/mlのIL-4(米国カリフォルニア州サンディエゴのBioLegend)及び1μg/mlのCD40抗
体(米国ミネソタ州ミネアポリスのR&D Systems)を含有するRPMI 1640培地で
培養した。
12週齢~15週齢のニュージーランドホワイトウサギを、水酸化アルミニウムに吸着させ(アラム;タンパク質1mg当たりアラム0.25μg)、ウサギに対して最適化された12-merホスホロチオエート修飾CpG-ODN(TCATAACGTTCC(配列番号52))(Ioannou et al., Vaccine, 21:4368-72, 2003)100μgと混合し
た、各25μgのEBVの三量体gB及び単量体gH/gLの組み合わせにより皮下免疫化した。ウサギを、0日目、21日目及び42日目に免疫化し、初回免疫化の前及び各免疫化の10日後に血清サンプルを採取した。Rajiバーキットリンパ腫B細胞へのGFP標識化EBVの侵入のフローサイトメトリー分析に基づくEBV中和アッセイを使用して、RajiB細胞の感染力を50%阻害する血清EBV中和力価(IC50)を測定した。EBVの三量体gBと単量体gH/gLの両方を投与することは、個々のEBVタンパク質を投与することと比較して、相乗的な結果をもたらした。より具体的には、52日目には、EBVの三量体gB及び単量体gH/gLにより免疫化したウサギは、EBVの三量体gB又は単量体gH/gL単独で免疫化したウサギと比較して、それぞれ、16倍及び14倍高いEBV中和活性を実証した(図5)。
三量体EBV gB、単量体EBV gH/gL又は単量体EBV gp350により免疫化したウサギから得られた血清の種々の組み合わせを、Raji細胞を用いて、in
vitro EBV中和力価について分析した。三量体gB+単量体gH/gL血清、
三量体gB+単量体gp350血清、単量体gH/gL+単量体gp350血清、及び三量体gB+単量体gH/gL+単量体gp350血清はいずれも、個々のタンパク質免疫血清の中和活性の合計と比較して、EBV中和活性の2倍超の増加を示し、EBV中和活性に対する相乗作用を明らかに実証した(図6B)。
この研究では、上でEBVポリペプチドに曝露されたウサギに由来する、すなわち受動免疫移入モデルによる抗血清が、EBV感染からマウスを保護し得るかどうかを判断するため、マウスを生EBVにより負荷した。NOD/Shi-scid/IL-2Rγnull(NOG)マウスは、当該技術分野において認識されている、ヒトにおけるEBV感染の重要な態様を模するEBV感染のヒト化モデルマウスである(Yajima et al., J. Infect. Dis., 198:673-82, 2008)。NOGマウスは免疫不全であり、成熟したT細胞、B細胞及びナチュラルキラー細胞を欠く。ヒト臍帯血に由来する造血幹細胞(HSC)を移植することによって、NOGマウスの免疫系を機能的なヒト免疫系で再構成させて、ヒト化NOG(hu-NOG)マウスを作製することができる(Yajima et al., J. Infect. Dis., 198:673-82, 2008)。約1×103TD50(50%トランフォーミング量)のEBVによるマウスの接種は、組織病理学の所見を伴うB細胞リンパ増殖及び免疫低下状態のヒトで観察されるものに類似する潜在EBV遺伝子発現、並びに感染から10週間までの死亡を引き起こすことから、ヒトにおけるEBV由来PTLDに対する有用なモデルと見なされる(Dittmer et al., Curr. Opin. Virol., 14:145-50, 2015)。
る受動免疫化研究を必要とする。この点で、初期の研究は、EBV血清反応陽性の健康なドナーに由来する末梢血単核細胞(PBMC)を腹腔内注射したSCIDマウスの85%が、150日間に亘りB細胞リンパ腫を発症したことを報告した。しかしながら、腫瘍形成は、2つの異なる市販のIVIg調製物(高EBV中和活性について特異的に選択されていない)による毎週の治療によって、又はEBVの血清反応陰性ではなく血清反応陽性であるドナーに由来する精製されたIgGによって予防された(Abedi et al., Int. J. Cancer, 71:624-9, 1997)。
2日目のプール血清300μlの腹腔内注射を行った。ウサギ血清の腹腔内注射の2時間後、B細胞リンパ増殖及び約10週以内又は約10週間の致死を誘導する用量である約1×103TD50のEBV(AKATAバーキットリンパ腫細胞株)によりhu-NOGマウスを静脈内で感染させた(Yajima et al., J. Infect. Dis., 198:673-682, 2008)
。
実施例2.1-三量体HCMV gBの産生
EBV融合/細胞進入タンパク質による上の結果は、EBVポリペプチドを組み合わせた場合に、予想外に高いレベルの抗体誘導を示した。これらの新規な知見に基づき、本発明者らは、HCMV等の他のHHV科に由来する融合/細胞進入タンパク質を組み合わせる場合に同様の結果を得ると予想した。この目的で、HCMVのような他のHHV科メンバーまでEBV研究でなされた観察結果を拡大することができることを示すため、同様の研究を計画した。
のDTTを含有する硫酸ドデシルリチウムサンプルローディングバッファー中で10分間沸騰させ、抗gBモノクローナル抗体2F12(米国メリーランド州タネイタウンのVirusys Corp.)、又はLS-C64457(米国ワシントン州シアトルのLifeSpan BioSciences, Inc.)でブロットしたところ、いずれも単量体に相当する120kDaのバンドを
示した(図9A)。また、精製したHCMV gBも修正した非還元条件下でPAGEによって分析し(タンパク質を、DTTを含まないドデシル硫酸リチウムサンプルバッファーと混合し、ネイティブランニングバッファー中3%~8%のPAGE上で分解した)、抗gBモノクローナル抗体LS-C64457によりブロットしたところ、三量体gBと一致する約360kDaの分子量を持つバンドを示した(図9B)。
同様に、HCMVのgH及びgLのコード配列を、NCBIウェブサイトの参照配列NC_006273.2、Merlin株、gHヌクレオチド109224~111452、gLヌクレオチド165022~165858から得た。三量体HCMV gH/gLの発現のための構築物を、MacVector(米国ノースカロライナ州エイペックスのMacVector, Inc.)を使用し、三量体EBV gH/gLを発現させるために使用された
設計に従って合成した。アミノ酸31~278をコードするgL配列を使用し、アミノ酸1~30に対応するシグナルペプチドをIgGκリーダー配列で置き換えた。アミノ酸24~718をコードするgH配列はgLの3’末端に連結され、15アミノ酸リンカー(Gly4Ser)3(配列番号3)配列によって隔てられた。T4ファージフィブリチンに由来するフォルドン三量体化ドメインコード配列をgHの3’末端に連結し、その後ろにタンパク質精製のためのHis6(配列番号49)コード配列が続いた。三量体gH/gLをコードするDNAを合成し、pOptiVEV(米国カリフォルニア州カールスバッドのInvitrogen)にクローニングし、シークエンシングによって配列を検証した。単量体HCMV gH/gL構築物をフォルドン三量体化ドメインコード配列のない三量体HCMV gH/gLのPCR増幅によって作製し、pOptiVEVにクローニングし、シークエンシングによって配列を検証した。
所望のHCMVポリペプチド構築物を生成したことから、多量体ポリペプチド及び/又は様々なポリペプチドの組み合わせが、単量体ポリペプチドよりも実質的に大きな免疫応答を生じるかどうかを判断するため、比較研究を行った。したがって、7群の12週齢~15週齢の雄性ニュージーランドホワイトウサギ5匹を、単一のHCMVエンベロープタンパク質25μg又はHCMVエンベロープタンパク質の組み合わせ(組み合わせにおいて各タンパク質25μg)により皮下免疫化した。各タンパク質25μgを水酸化アルミニウム(アラム;タンパク質1mg当たりアラム0.25μg)に吸着させ、ウサギで既知の活性を有するCpG-ODN25μg(TCGTCGTTGTCGTTTTGTCGTTの配列(配列番号51)を有するODN 2007)と混合した。使用したHCMVタンパク質/組み合わせは、単量体gH/gL、単量体UL128/UL130/UL1
31A、単量体gB(Sino gB)、三量体gB、単量体gH/gL+単量体UL128/UL130/UL131A、三量体gB+単量体gH/gL、又は三量体gB+単量体gH/gL+単量体UL128/UL130/UL131Aであった。0日目、21日目及び42日目にウサギを免疫化し、初回免疫の前、及び免疫化後10日目、31日目、52日目及び72日目に血清サンプルを採取した。線維芽細胞(細胞株MRC-5、米国バージニア州マナッサスのATCC)及び上皮細胞(細胞株ARPE-19、米国バージニア州マナッサスのATCC)を使用して、生HCMVに対する抗原特異性IgGの血清力価を決定した。三量体HCMV gB及び単量体HCMV gH/gLの組み換えタンパク質を室温で30分間共にインキュベートしたところ、高力価のタンパク質特異的IGgを誘導することが分かった(図11)。
ウエストグルーブのJackson ImmunoResearch Labs)と共にそれぞれ1時間、またVEC
TASTAIN ABC試薬(米国カリフォルニア州バーリンゲームのVector Labs)と
共に30分間インキュベートした。各工程の間でプレートをPBS中0.05%のTweenR 20で3回洗浄し、発色のためTrueBlue(米国ミズーリ州セントルイスのSigma-Aldrich)を添加した。CTL-ImmunoSpot(商標)S6 Micr
o Analyzer(米国オハイオ州クリーブランドのImmunoSpot, Cellular Technology Limited)を使用して、プレートをスキャンし、分析した。50%阻害濃度(IC5
0)値及び平均の標準誤差を、GraphPad Prism6ソフトウェアを用いて各血清希釈物の三連値の平均をlog血清濃度に対してプロットし、データの最良適合4パラメーター式を算出し、IC50中和力価として曲線の中点に血清希釈率を内挿することによって算出した。
UL131Aの組み合わせによるウサギの免疫化は、三量体gB、単量体gH/gL及び単量体UL128/UL130/UL131Aにより個別に誘発されたHCMV中和の合計よりも5倍高い補体依存性HCMV中和活性(10910.8のIC50)を誘発し、相乗効果を実証した(図12A)。三量体gB、単量体gH/gL及び単量体UL128/UL130/UL131Aの組み合わせによる免疫化によって誘発された補体依存性HCMV中和活性は、第II相臨床試験におけるHCMV感染の予防において50%有効性を実証した単量体gB(Sino gB)より20倍高かった。
ELISpotアッセイを使用して血清HCMV中和抗体力価を決定した。血清サンプルを合わせて、次いで三連で培養培地を用いて1:2の段階希釈によって分けた。各希釈物を、200pfuのHCMV株AD169WT131を含有する等量の培養培地と混合し、37℃で1時間インキュベートした後、MRC-5単層を含む96ウェルプレートのウェルに添加し、5%CO2にて37℃で培養した。細胞を無水エタノールで固定し、再水和し、PBS中1%BSAでブロックした後、抗IE1モノクローナル抗体MAB810(Millipore)、ビオチン標識化ヤギ抗マウス二次抗体及びABC試薬(Vector Laboratories)と共に、それぞれ1時間インキュベートした。各工程の間でプレートをPBS中0.05%のTween(商標)20で3回洗浄し、発色のためTrueBlueを添加した。CTL-ImmunoSpot(商標)S6 Micro Analyzer(オハイオ州クリーブランドのCellular Technology Limited)を使用してプレートをスキャ
ンし、分析した。50%阻害濃度(IC50)値及び平均の標準誤差を、GraphPad Prism7ソフトウェアを用いて各血清希釈物の三連値の平均をlog血清濃度に対してプロットし、データの最良適合4パラメーター式を算出し、IC50中和力価として曲線の中点に血清希釈率を内挿することによって算出した。
での組み合わせのIC50は、各個別のタンパク質に対する91.94及び169.6のIC50と比較して(図15及び図17)、836.4(図18)であった。同様に、三量体HCMV gB免疫血清及び単量体gH/gL免疫血清のin vitroでの組み合わせのIC50は、2283及び169.6のIC50(図16及び図17、それぞれ、個別に各タンパク質に対して)と比較して、3093(図19)であった。これらの相乗効果の結果を図20に要約する。
HHVポリペプチドを含む抗原組成物を投与することによって高められた抗体力価を生じる可能性を更に特性評価する取り組みの一環で、HCMVタンパク質UL128、UL130及びUL131を組み換えにより産生させた。簡潔には、HCMV UL128のコード配列を、NCBIウェブサイトの参照配列GQ121041.1、Towne株、ヌクレオチド175653~176410から得た。また、HCMVのUL130及びUL131Aのコード配列を、NCBIウェブサイトの参照配列NC_006273.2、Merlin株、UL130ヌクレオチド176984~177628及びUL131Aヌクレオチド177911~178146につなげられたヌクレオチド177649~177802から得た。Merlin株に由来するUL128が変異を有し、機能しないことから、Towne株に由来するUL128を使用した。MacVectorを使用して、三量体UL128-UL130-UL131A発現のための構築物を設計した。アミノ酸28~171をコードするUL128配列、アミノ酸26~214をコードするUL130配列、及びアミノ酸19~129をコードするUL131A配列を、各コード配列間の15アミノ酸リンカー(Gly4Ser)3(配列番号3)によって連結した(図10)。T4ファージフィブリチンに由来するフォルドン三量体化ドメインコード配列をUL131Aの3’末端に連結し、その後ろにHis6(配列番号49)コード配列が続き、組み換えタンパク質の分泌のため、IgGκリーダー配列をUL128配列に対して5’に配置した(図10)。三量体UL128-UL130-UL131AをコードするDNAを合成し、pOptiVEV(米国カリフォルニア州カールスバッドのInvitrogen)にクローニングして、配列を検証した。単量体UL128-UL130-UL131A構築物を、フォルドン三量体化ドメインコード配列を含まない三量体UL128-UL130-UL131AのPCR増幅によって作製し、pOptiVEVにクローニングし、配列を検証した。
Fisher Scientific)をFree-style Max試薬(カリフォルニア州カールスバッドのInvitrogen)を使用して、得られたpOptiVEC-UL128-UL130-UL131A構築物を用いて安定的にトランスフェクトし、メトトレキサートの濃度を最大4μMまで徐々に増大させながら陽性形質移入体を選択した。上清を濃縮し、コバルトアフィニティ精製(米国マサチューセッツ州ウォルサムのThermo Fisher Scientific)を使用して精製した。抗His6(配列番号49)及び抗UL128抗体を使用して、単量体UL128-UL130-UL131A構築物によりトランスフェクトしたCHO細胞に由来する上清のウェスタンブロット分析は、単量体UL128/UL130/UL131Aと一致する約57kDaのバンドを示した(図9E)。
HCMVのgH、gL、UL128、UL130及びUL131Aのコード配列をNCBIウェブサイトから得た。五量体複合体gH/gL/UL128/UL130/UL131A発現のための構築物を、MacVectorを使用して設計し、図13に示す。該構築物は、アミノ酸31~278をコードするgL配列、アミノ酸24~718をコードするgH配列を含み、いずれの配列のシグナルペプチドもIgGκリーダー配列で置き換えられた。EV71配列内リボソーム進入部位(IRES)配列をgH配列とgL配列との間に挿入し、His6(配列番号49)コード配列をタンパク質精製のためgHの3’末端に付加させた。また、UL128、UL130及びUL131AのシグナルペプチドをIgGκリーダー配列で置き換え、アミノ酸28~171をコードするUL128配列、アミノ酸26~214をコードするUL130配列、及びアミノ酸19~129をコードするUL131A配列を各々の間のEV71 IRES配列の挿入によって共に連結した。UL128、UL130及びUL131Aは、UL128の5’末端及びgH-His6(配列番号49)コード配列の3’末端に配置された第2のCMVプロモーターによって駆動された。HCMVのgL及びgHは、ベクターpOptiVECに由来する第1のCMVプロモーターによって駆動された。
上で検討される他のHCMV構築物を用いる場合のように、HCMVのgH、gLのコード配列もNCBIウェブサイトから得られ、HCMV gOのコード配列も、NCBIウェブサイトの参照配列NC_006273.2、Merlin株、gOヌクレオチド107430~108848から得た。MacVectorを使用して、アミノ酸31~278をコードするgL配列及びアミノ酸24~718をコードするgH配列を含めてgH/gL/gO複合体発現のための構築物を設計し、図14に示す。いずれの配列のシグナルペプチドもIgGκリーダー配列で置き換えられた。EV71配列内リボソーム進入部位(IRES)配列をgH配列とgL配列との間に挿入し、His6(配列番号49)コード配列をタンパク質精製のためgHの3’末端に付着させた。また、gOのシグナルペプチドをIgGκリーダー配列で置き換え、アミノ酸31~466をコードするgO配列をgOの5’末端及びgH-His6(配列番号49)コード配列の3’末端に配置された第2のCMVプロモーターによって駆動させた。HCMVのgH及びgLは、ベクターpOptiVECに由来する第1のCMVプロモーターによって駆動された。
6群の7週齢~10週齢のBalb/cマウス(n=5)を、1μg、5μg若しくは25μgのHCMV三量体gB、又は1μg、5μg若しくは25μgのHCMV単量体gB(Sino gB、中国のSino Biological Inc.)により腹腔内(i.p.)経路によって免疫化した。抗原を水酸化アルミニウム(アラム;タンパク質1mg当たりアラム0.25μg)に吸着させ、マウスに対して最適化された30-merホスホロチオエート修飾CpG-ODN(AAAAAAAAAAAAAACGTTAAAAAAAAAAA
A(配列番号54))25μgと混合した。アラム+CpG-ODNのみにより免疫化したマウスは、陰性対照としての役割を果たした。0日目、21日目及び42日目にマウスを免疫化し、初回免疫の前、各免疫化の10日後、及び63日目に血清サンプルを採取した。個々のマウス血清サンプルを、ELISAによってgB特異的IgGの力価、また線維芽細胞(MRC-5)及び上皮細胞(ARPE-19)を使用してin vitro中和活性について分析した。
ベートした。各工程の間でプレートをPBS中0.1%のTween 20で3回洗浄し、発色のためTrueBlue(米国ミズーリ州セントルイスのSigma-Aldrich)を添加
した。CTL-ImmunoSpot(商標)S6 Micro Analyzer(米国オハイオ州クリーブランドのImmunoSpot, Cellular Technology Limited)を使用して
、プレートをスキャンし、分析した。50%阻害濃度(IC50)値及び平均の標準誤差を、GraphPad Prism6ソフトウェアを用いて各血清希釈物の三連値の平均をlog血清濃度に対してプロットし、データの最良適合4パラメーター式を算出し、IC50中和力価として曲線の中点に血清希釈率を内挿することによって算出した。
体HCMV gBはより補体依存性の応答を誘導することが示唆された(図21C)。HCMV血清反応陽性の健康なドナーの血漿に由来する高力価のHCMV中和抗体を含有する市販のサイトメガロウイルスCMV-IgIV免疫グロブリンであるCytoGam(商標)(米国ペンシルベニア州キング・オブ・プルシアのCSL Behring)は、三量体gB
と比べて、HCMV株AD169wt131に対して、はるかに低いHCMV中和活性を示した。MRC-5細胞株を使用して、10mg/mlのCytoGam(商標)は、三量体HCMV gBにより免疫化したマウスに由来する血清の約30分の1の補体非依存性HCMV中和活性を実証した。熱不活性化はCytoGam(商標)に対する影響がなく、これは、三量体HCMV gB又は単量体HCMV gBにより免疫化したマウスに由来する非熱不活性化血清と比較して、その補体依存性HCMV中和活性をより一層低いものとした。
Claims (93)
- 以下のヒトヘルペスウイルスポリペプチド:
ヒトヘルペスウイルスgBの細胞外ドメインを含む糖タンパク質B(gB)ポリペプチド、
ヒトヘルペスウイルスgp350の細胞外ドメインを含む糖タンパク質350(gp350)ポリペプチド、
糖タンパク質L(gL)ポリペプチド、及び、
ヒトヘルペスウイルスgHの細胞外ドメインを含む糖タンパク質H(gH)ポリペプチド、
の少なくとも2つ、又は前記少なくとも2つのヒトヘルペスウイルスポリペプチドをコードする1つ以上の核酸を含む抗原性組成物であって、
前記抗原性組成物が、gH/gLヘテロ二量体の形態でgHポリペプチドとgLポリペプチドとを含む場合には、前記抗原性組成物が、前記gp350ポリペプチド及び/又は前記gBポリペプチドを更に含む、抗原性組成物。 - 前記ヒトヘルペスウイルスが、ヒトサイトメガロウイルス(HCMV)、単純ヘルペスウイルス1(HSV-1)、単純ヘルペスウイルス2(HSV-2)、水痘帯状疱疹ウイルス(VZV)、エプスタインバーウイルス(EBV)、ヒトヘルペスウイルス6(HHV-6)、ヒトヘルペスウイルス7(HHV-7)、又はカポジ肉腫関連ヘルペスウイルス(KSHV)である、請求項1に記載の組成物。
- 前記gBポリペプチド、前記gp350ポリペプチド、及び/又は前記gHポリペプチドが存在する場合、それぞれが、対応するgB、gp350及び/又はgHの各細胞内ドメインを更に含む、請求項1又は2に記載の組成物。
- 前記細胞外ドメインが、ポリペプチドリンカー配列を介して前記細胞内ドメインに融合される、請求項3に記載の組成物。
- 前記ポリペプチドリンカー配列が、約6個~約70個のアミノ酸長である、又は前記ペプチドリンカーが約15個のアミノ酸長である、請求項4に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドの少なくとも2つが融合タンパク質を形成し、該融合タンパク質が、任意に、前記少なくとも2つのヒトヘルペスウイルスポリペプチドを連結するポリペプチドリンカー配列を含む、先行する請求項のいずれか一項に記載の組成物。
- 前記少なくとも少なくとも2つのヒトヘルペスウイルスポリペプチドの少なくとも3つが融合タンパク質を形成し、前記融合タンパク質が、任意に、前記少なくとも3つのヒトヘルペスウイルスポリペプチドを連結する1つ以上のポリペプチドリンカー配列を含む、先行する請求項のいずれか一項に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gBポリペプチド、と、前記gp350ポリペプチド、前記gLポリペプチド及び前記gHポリペプチドの1つ以上とを含み、前記gBポリペプチドが単量体又は多量体である、先行する請求項のいずれか一項に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gBポリペプチドと、前記gLポリペプチドと、前記gHポリペプチドとを含む、先行する請求項のいずれか一項に記載の組成物。
- 前記gBポリペプチドが単量体、二量体、又は三量体であり、前記gLポリペプチド及び前記gHポリペプチドがgH/gLヘテロ二量体を形成し、任意に、前記gBポリペプチドが単量体であり、前記gHポリペプチド及び前記gLポリペプチドが単量体gH/gLヘテロ二量体を形成する、請求項9に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドがHCMVポリペプチドである、先行する請求項のいずれか一項に記載の組成物。
- 前記組成物が、HCMV糖タンパク質O(gO)ポリペプチドを更に含む、請求項11に記載の組成物。
- 前記組成物が、HCMVユニークロング128(UL128)ポリペプチド、HCMVユニークロング130(UL130)ポリペプチド、HCMVユニークロング131A(UL131A)ポリペプチド、また任意にHCMV糖タンパク質M(gM)ポリペプチド及び/又はHCMV糖タンパク質N(gN)ポリペプチドを更に含む、請求項11又は12に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、ヒトEBVポリペプチドである、請求項1~10のいずれか一項に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gp350ポリペプチドと前記gBポリペプチドとを含む、請求項14に記載の組成物。
- 前記gp350ポリペプチドが単量体、二量体、三量体又は四量体のgp350であり、前記gBポリペプチドが単量体、二量体又は三量体のgBであり、任意に、前記gp350ポリペプチドが単量体又は四量体であり、前記gBポリペプチドが三量体である、請求項15に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gp350ポリペプチドと、前記gHポリペプチドと、前記gLポリペプチドとを含む、請求項14に記載の組成物。
- 前記gp350ポリペプチドが単量体であり、前記gHポリペプチド及び前記gLポリペプチドが単量体gH/gLヘテロ二量体を形成する、又は前記gp350ポリペプチドが四量体であり、前記gHポリペプチド及び前記gLポリペプチドが三量体gH/gLヘテロ二量体を形成する、請求項17に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gBポリペプチドと、前記gHポリペプチドと、前記gLポリペプチドとを含む、請求項14に記載の組成物。
- 前記gBポリペプチドが三量体gBであり、前記gHポリペプチド及び前記gLポリペプチドが単量体又は三量体のgH/gLヘテロ二量体を形成する、請求項19に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、単量体gp350ポリペプチドと、三量体gBポリペプチドと、前記gHポリペプチド及び前記gLポリペプチドによって形成された単量体gH/gLヘテロ二量体とを含む、請求項14に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、四量体gp350ポリペプチドと、三量体gBポリペプチドと、前記gHポリペプチド及び前記gLポリペプチドによって形成された三量体gH/gLヘテロ二量体とを含む、請求項14に記載の組成物。
- ヒトEBV糖タンパク質42(gp42)ポリペプチド、BDFL2ポリペプチド、及び/又はヒトEBV BMRF-2ポリペプチドを更に含む、請求項14~22のいずれか一項に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、ヒトHSV-1ポリペプチド又はヒトHSV-2ポリペプチドである、請求項1~10のいずれか一項に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gHポリペプチドと、前記gLポリペプチドと、前記gBポリペプチドとを含み、前記gHポリペプチド及び前記gLポリペプチドが単量体、二量体、三量体又は四量体であり、前記gBポリペプチドが単量体、二量体又は三量体であり、任意に、前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gHポリペプチド及び前記gLポリペプチドによって形成された単量体gH/gLヘテロ二量体と、単量体gBポリペプチドとを含む、請求項24に記載の組成物。
- HSV-1又はHSV-2の糖タンパク質D(gD)ポリペプチドを更に含み、該gDポリペプチドが単量体、二量体、三量体又は四量体である、請求項25に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、ヒトVZVポリペプチドである、請求項1~10のいずれか一項に記載の組成物。
- 前記少なくとも2つのヘルペスウイルスポリペプチドが、前記gHポリペプチドと、前記gLポリペプチドと、前記gBポリペプチドとを含み、前記gHポリペプチド及び前記gLポリペプチドが単量体、二量体、三量体又は四量体であり、前記gBポリペプチドが単量体、二量体又は三量体であり、任意に、前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gHポリペプチド及び前記gLポリペプチドによって形成された単量体gH/gLヘテロ二量体と、単量体gBポリペプチドとを含む、請求項27に記載の組成物。
- ヒトVZV糖タンパク質C(gC)ポリペプチド、ヒト糖タンパク質E(gE)ポリペプチド、及びヒトVZV糖タンパク質I(gI)ポリペプチドの1つ以上を更に含む、請求項28に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、ヒトHHV-6ポリペプチド又はヒトHHV-7ポリペプチドである、請求項1~10のいずれか一項に記載の組成物。
- 前記少なくとも2つのヘルペスウイルスポリペプチドが、前記gHポリペプチドと、前記gLポリペプチドと、前記gBポリペプチドとを含み、前記gHポリペプチド及び前記gLポリペプチドが単量体、二量体、三量体又は四量体であり、前記gBポリペプチドが単量体、二量体又は三量体であり、任意に、前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gHポリペプチド及び前記gLポリペプチドによって形成された単量体gH/gLヘテロ二量体と、単量体gBポリペプチドとを含む、請求項30に記載の
組成物。 - 前記少なくとも2つのヒトヘルペスウイルスポリペプチドがヒトKSHVポリペプチドである、請求項1~10のいずれか一項に記載の組成物。
- 前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gHポリペプチドと、前記gLポリペプチドと、前記gBポリペプチドとを含み、前記gHポリペプチド及び前記gLポリペプチドが単量体、二量体、三量体又は四量体であり、前記gBポリペプチドが単量体、二量体又は三量体であり、任意に、前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、前記gHポリペプチド及び前記gLポリペプチドによって形成された単量体gH/gLヘテロ二量体と、単量体gBポリペプチドとを含む、請求項32に記載の組成物。
- ヒトKSHV糖タンパク質M(gM)ポリペプチド、ヒトKSHV糖タンパク質N(gN)ポリペプチド、ヒトKSHVオープンリーディングフレーム68(ORF68)ポリペプチド、及びヒトKSHV糖タンパク質K8.1ポリペプチドの1つ以上を更に含む、請求項33に記載の組成物。
- 前記1つ以上の核酸が、前記少なくとも2つのヒトヘルペスウイルスポリペプチドの発現を可能とするウイルスベクター中にある、先行する請求項のいずれか一項に記載の組成物。
- 薬学的に許容可能な賦形剤及び/又はアジュバントを更に含む、先行する請求項のいずれか一項に記載の組成物。
- 被験体においてヒトヘルペスウイルス感染を予防又は治療する方法であって、治療有効量の先行する請求項のいずれか一項に記載の組成物を前記被験体に投与することを含む、方法。
- 被験体においてヒトヘルペスウイルスに対する免疫を誘導する方法であって、治療有効量の請求項1~36のいずれか一項に記載の組成物を前記被験体に投与することを含む、方法。
- 前記被験体が、造血幹細胞又は固形臓器の移植後に移植後リンパ増殖性障害(PTLD)を発症するリスクがあり、原発性免疫不全症候群を患う、請求項37又は38に記載の方法。
- 前記組成物中の前記少なくとも2つのヒトヘルペスウイルスポリペプチドが、順次又は同時に投与される、請求項37~39のいずれか一項に記載の方法。
- ヒトヘルペスウイルスポリペプチドをコードする組み換え核酸構築物であって、該核酸構築物が、ヒトヘルペスウイルスgLポリペプチドをコードする第1の核酸分子と、ヒトヘルペスウイルスgHポリペプチドをコードする第2の核酸分子と、ヒトヘルペスウイルスUL128ポリペプチドをコードする第3の核酸分子と、ヒトヘルペスウイルスUL130ポリペプチドをコードする第4の核酸分子と、ヒトヘルペスウイルスUL131Aポリペプチドをコードする第5の核酸分子とを含み、前記ポリペプチドが宿主細胞において前記核酸構築物から発現されると五量体複合体が形成され、前記コードされるポリペプチドのいずれもが膜貫通ドメイン配列又は細胞内ドメイン配列を含まない、組み換え核酸構築物。
- 前記第1の核酸に制御可能に連結された第1のプロモーターと、前記第3の核酸分子に制御可能に連結された第2のプロモーターとを更に含む、請求項41に記載の組み換え核酸構築物。
- 前記第1の核酸分子と前記第2の核酸分子との間に位置する第1の配列内リボソーム進入部位(IRES)と、前記第3の核酸分子と前記第4の核酸分子との間に位置する第2のIRESと、前記第4の核酸分子と前記第5の核酸分子との間に位置する第3のIRESとを更に含む、請求項41又は42に記載の組み換え核酸構築物。
- IgGカッパー軽鎖リーダーペプチドをコードする第1、第2、第3、第4及び第5のヌクレオチド配列を更に含み、該IgGカッパー軽鎖リーダーペプチドをコードする第1、第2、第3、第4及び第5のヌクレオチド配列がそれぞれ、前記第1の核酸分子、第2の核酸分子、第3の核酸分子、第4の核酸分子及び第5の核酸分子とインフレームである、請求項41~43のいずれか一項に記載の組み換え核酸構築物。
- ヒトヘルペスウイルスポリペプチドをコードする組み換え核酸構築物であって、該核酸構築物が、ヒトヘルペスウイルスgLポリペプチドをコードする第1の核酸分子と、ヒトヘルペスウイルスgHポリペプチドをコードする第2の核酸分子と、ヒトヘルペスウイルスgOポリペプチドをコードする第3の核酸分子とを含む、組み換え核酸構築物。
- 前記第1の核酸に制御可能に連結された第1のプロモーターと、前記第3の核酸分子に制御可能に連結された第2のプロモーターとを更に含む、請求項45に記載の組み換え核酸構築物。
- 前記第1の核酸分子と前記第2の核酸分子との間に位置する配列内リボソーム進入部位(IRES)を更に含む、請求項45又は46に記載の組み換え核酸構築物。
- IgGカッパー軽鎖リーダーペプチドをコードする第1、第2及び第3のヌクレオチド配列を更に含み、前記IgGカッパー軽鎖リーダーペプチドをコードする第1、第2及び第3のヌクレオチド配列がそれぞれ、前記第1の核酸分子、第2の核酸分子及び第3の核酸分子とインフレームである、請求項45~47のいずれか一項に記載の組み換え核酸構築物。
- 前記ヒトヘルペスウイルスが、ヒトサイトメガロウイルス(HCMV)、単純ヘルペスウイルス1(HSV-1)、単純ヘルペスウイルス1(HSV-2)、水痘帯状疱疹ウイルス(VZV)、エプスタインバーウイルス(EBV)、ヒトヘルペスウイルス6(HHV-6)、ヒトヘルペスウイルス7(HHV-7)、又はカポジ肉腫関連ヘルペスウイルス(KSHV)である、請求項41~48のいずれか一項に記載の組み換え核酸構築物。
- 宿主細胞における請求項41~49のいずれか一項に記載の組み換え核酸構築物の発現によって形成されるタンパク質複合体。
- エプスタインバーウイルス(EBV)に対する免疫を受動的に移入させる方法であって、免疫細胞又は高力価抗EBV免疫グロブリンを、それを必要とする被験体に投与することを含み、前記免疫細胞又は高力価抗EBV免疫グロブリンが、該高力価抗EBV免疫グロブリンに対して選択された1つ以上の血液、血漿又は血清試料から得られたものである、方法。
- 前記1つ以上の血液、血漿又は血清試料がヒトの血液、血漿又は血清試料である、請求項51に記載の方法。
- 前記高力価抗EBV免疫グロブリンの力価が、選択されていない血液、血漿又は血清試料から得られた抗EBV免疫グロブリンの平均力価よりも最大25倍高い、請求項51又は52に記載の方法。
- 前記高力価抗EBV免疫グロブリンの力価が、選択されていない血液、血漿又は血清試料から得られた抗EBV免疫グロブリンの平均力価よりも4倍~25倍又は10倍~20倍高い、請求項51又は53のいずれか一項に記載の方法。
- 前記血液、血漿又は血清試料が、請求項1~10及び請求項14~23のいずれか一項に記載の組成物により、又は四量体gp350、三量体gH/gL若しくは三量体gB等の宿主細胞へのEBVの結合、融合及び侵入の媒介に関与する多量体EBVタンパク質により免疫化したドナーから得られる、請求項51~54のいずれか一項に記載の方法。
- 前記被験体が、造血幹細胞又は固形臓器の移植後に移植後リンパ増殖性障害(PTLD)を発症するリスクがある、又は上咽頭癌(NPC)、バーキットリンパ腫、ホジキンリンパ腫、非ホジキンリンパ腫、胃癌、重症伝染性単核球症、慢性活動性EBV感染、多発性硬化症、全身性エリテマトーデス、若しくはは関節リウマチを有する若しくはそれらを発症するリスクがある、請求項51~55のいずれか一項に記載の方法。
- 前記被験体が、造血幹細胞又は固形臓器の移植後に移植後リンパ増殖性障害(PTLD)を発症するリスクがあり、原発性免疫不全症候群を患う、請求項56に記載の方法。
- 前記被験体がEBVに対して血清反応陰性である、請求項51~57のいずれか一項に記載の方法。
- 前記被験体が、同時に、抗CD20抗体投与、抗ウイルス療法、インターフェロンアルファ投与、放射線療法、及び化学療法の1つ以上を受けている、請求項51~58のいずれか一項に記載の方法。
- 前記高力価抗EBV免疫グロブリンを前記被験体に投与する工程の前に、
高いEBV中和活性を備える1以上のヒト被験体から得られた血液、血漿又は血清試料を識別することと、
高いEBV中和活性を備える前記血液、血漿又は血清試料から高力価抗EBV免疫グロブリンを収集することと、
を更に含む、請求項51~59のいずれか一項に記載の方法。 - 前記識別する工程が、前記血液、血漿又は血清試料をRaji B細胞中和アッセイ及び/又はHeLa細胞中和アッセイに供することを含み、任意に、前記血液、血漿又は血清試料が、選択されていない血液、血漿又は血清試料の平均IC50よりも4倍~25倍又は10倍~20倍高いIC50を有する場合に、前記血液、血漿又は血清試料が高いEBV中和活性を備えると識別される、請求項60に記載の方法。
- 前記高力価抗EBV免疫グロブリンを前記被験体に投与する工程の前に、
高力価抗EBV免疫グロブリンを生成するのに十分な量で、以下のEBVポリペプチド:EBV gp350ポリペプチド、EBV gHポリペプチドとEBV gLポリペプチドとを含むEBV gH/gLヘテロ二量体、及びEBV gBポリペプチドの少なくとも2つを含む免疫原性組成物を1以上のヒトドナー被験体に投与することと、
前記1以上のヒトドナー被験体から前記高力価抗EBV免疫グロブリンを収集することと、
を更に含む、請求項51~61のいずれか一項に記載の方法。 - 前記EBV gp350ポリペプチドが単量体、二量体、三量体又は四量体であり、前記EBV gBポリペプチドが単量体、二量体又は三量体であり、前記gH/gLヘテロ二量体が単量体、二量体、三量体又は四量体である、請求項62に記載の方法。
- 前記HeLa細胞中和アッセイが、GFP標識化EBVでHeLa細胞を感染させてEBVに感染したHeLa細胞を生じさせることと、前記血液、血漿又は血清試料を前記EBVに感染したHeLa細胞とインキュベートすることと、フローサイトメトリー又はELISpotアッセイによって前記血液、血漿又は血清試料の中和活性を分析することと、任意に、前記血液、血漿又は血清試料のIC50を計算することとを含む、請求項61に記載の方法。
- ヒトサイトメガロウイルス(HCMV)に対する免疫を受動的に移入させる方法であって、免疫細胞又は高力価抗HCMV免疫グロブリンを、それを必要とする被験体に投与することを含み、前記免疫細胞又は高力価抗HCMV免疫グロブリンが、該高力価抗HCMV免疫グロブリンに対して選択された1つ以上の血液、血漿又は血清試料から得られたものである、方法。
- 前記1つ以上の血液、血漿又は血清試料がヒトの血液、血漿又は血清試料である、請求項65に記載の方法。
- 前記血液、血漿又は血清試料が、請求項1~13のいずれか一項に記載の組成物により、又は三量体gH/gL若しくは三量体gB等の宿主細胞へのHCMVの結合、融合及び侵入の媒介に関与する多量体HCMVタンパク質により免疫化したドナーから得られたものである、請求項65又は66に記載の方法。
- HCMV感染にかかるリスクがある前記被験体が、妊婦、移植患者、化学療法若しくは放射線療法により免疫抑制されている患者、又はヒト免疫不全ウイルス(HIV)に感染した患者である、請求項65~67のいずれか一項に記載の方法。
- 前記高力価抗HCMV免疫グロブリンを前記被験体に投与する工程の前に、
1以上のヒトドナー被験体に対して、前記被験体において高力価抗HCMV免疫グロブリン応答を生成するのに十分な量で、HCMV gBポリペプチド、HCMV gHポリペプチドとHCMV gLポリペプチドとを含むHCMV gH/gLヘテロ二量体、HCMV糖タンパク質O(gO)ポリペプチド、HCMV UL128ポリペプチド、HCMV UL130ポリペプチド、及びHCMVユニークUL131Aポリペプチドの少なくとも2つを含む免疫原性組成物を投与することと、
前記1以上のヒトドナー被験体から前記高力価抗HCMV免疫グロブリンを収集することと、
を更に含む、請求項65~68のいずれか一項に記載の方法。 - 前記HCMV gBポリペプチドが単量体、二量体又は三量体であり、前記gH/gLヘテロ二量体が単量体、二量体、三量体又は四量体である、請求項69に記載の方法。
- 単純ヘルペスウイルス1型(HSV-1)又は単純ヘルペスウイルス2型(HSV-2)に対する免疫を受動的に移入させる方法であって、免疫細胞又は抗HSV-1及び/又は抗HSV-2の高力価免疫グロブリンを、それを必要とする被験体に投与することを含み、前記免疫細胞、又は抗HSV-1若しくは抗HSV-2の高力価免疫グロブリンが、抗HSV-1又は抗HSV-2の高力価免疫グロブリンに対して選択された1つ以上の血
液、血漿又は血清試料から得られたものである、方法。 - 前記1つ以上の血液、血漿又は血清試料がヒトの血液、血漿又は血清試料である、請求項71に記載の方法。
- 前記血液、血漿又は血清試料が、請求項1~10及び請求項24~26のいずれか一項に記載の組成物により、又は三量体gH/gL若しくは三量体gB等の宿主へのHSV-1若しくはHSV-2の結合、融合及び侵入の媒介に関与するHSV-1若しくはHSV-2の多量体タンパク質により免疫化したドナーから得られたものである、請求項71又は72のいずれか一項に記載の方法。
- 前記被験体がHSV-1又はHSV-2の感染によって引き起こされる脳炎を発症するリスクがある、又は前記被験体が活動性のHSV-2若しくはHSV-1の感染及び/又は単純ヘルペスウイルス(HSV)関連脳炎を有する妊婦である、請求項71~73のいずれか一項に記載の方法。
- 前記抗HSV-1又はHSV-2の高力価免疫グロブリンを前記被験体に投与する工程の前に、
1以上のヒトドナー被験体に対して、抗HSV-1又はHSV-2の高力価免疫グロブリンを生成するのに十分な量で、HSV-1又はHSV-2の糖タンパク質D(gD)ポリペプチド、HSV-1又はHSV-2のgHポリペプチドとHSV-1又はHSV-2のgLポリペプチドとを含むHSV-1又はHSV-2のgH/gLヘテロ二量体、HSV-1又はHSV-2のgBポリペプチドの少なくとも2つを含む免疫原性組成物を投与することと、
前記1以上のヒトドナー被験体から前記抗HSV-1及び/又は抗HSV-2の高力価免疫グロブリンを収集することと、
を更に含む、請求項71~74のいずれか一項に記載の方法。 - 前記HSV-1又はHSV-2のgBポリペプチドが単量体、二量体又は三量体であり、前記HSV-1又はHSV-2のgH/gLヘテロ二量体が単量体、二量体、三量体又は四量体である、請求項75に記載の方法。
- 水痘帯状疱疹ウイルス(VZV)に対する免疫を受動的に免疫移入させる方法であって、免疫細胞又は高力価抗VZV免疫グロブリンを、それを必要とする被験体に投与することを含み、前記免疫細胞又は高力価抗VZV免疫グロブリンが、該高力価抗VZV免疫グロブリンに対して選択された1つ以上の血液、血漿又は血清試料から得られたものである、方法。
- 前記1つ以上の血液、血漿又は血清試料がヒトの血液、血漿又は血清試料である、請求項77に記載の方法。
- 前記血液、血漿又は血清試料が、請求項1~10及び請求項27~29のいずれか一項に記載の組成物により、又は三量体gH/gL若しくは三量体gB等の宿主細胞へのVZVの結合、融合及び侵入の媒介に関与する多量体VZVタンパク質により免疫化したドナー被験体から得られたものである、請求項77又は78に記載の方法。
- 前記被験体が帯状ヘルペス(帯状疱疹)又は水痘(水疱瘡)を発症するリスクがある、請求項77~79のいずれか一項に記載の方法。
- 前記高力価抗VZV免疫グロブリンを前記被験体に投与する工程の前に、
1以上のヒトドナー被験体に対して、高力価抗VZV免疫グロブリンを生成するのに十分な量で、VZV gHポリペプチドとVZV gLポリペプチドとを含むVZV gH/gLヘテロ二量体、VZV gBポリペプチド、VZV糖タンパク質C(gC)ポリペプチド、VZV糖タンパク質E(gE)ポリペプチド、及びVZV糖タンパク質I(gI)ポリペプチドの少なくとも2つを含む免疫原性組成物を投与することと、
前記1以上のヒトドナー被験体から前記高力価抗VZV免疫グロブリンを収集することと、
を更に含む、請求項77~80のいずれか一項に記載の方法。 - 前記VZV gBポリペプチドが単量体、二量体又は三量体であり、前記VZV gH/gLヘテロ二量体が単量体、二量体、三量体又は四量体である、請求項81に記載の方法。
- ヒトヘルペスウイルス6(HHV-6)又はヒトヘルペスウイルス7(HHV-7)に対する免疫を受動的に移入させる方法であって、免疫細胞又は抗HHV-6若しくは抗HHV-7の高力価免疫グロブリンを、それを必要とする被験体に投与することを含み、前記免疫細胞又は前記抗HHV-6若しくは抗HHV-7の高力価免疫グロブリンが、該抗HHV-6又は抗HHV-7の高力価免疫グロブリンに対して選択された1つ以上の血液、血漿又は血清試料から得られたものである、方法。
- 前記1つ以上の血液、血漿又は血清試料がヒトの血液、血漿又は血清試料である、請求項83に記載の方法。
- 前記血液、血漿又は血清試料が、請求項1~10及び請求項30~31のいずれか一項に記載の組成物により、又は三量体gH/gL若しくは三量体gB等の宿主細胞へのHHV-6若しくはHHV-7の結合、融合及び侵入の媒介に関与するHHV-6若しくはHHV-7の多量体タンパク質により免疫化したドナー被験体から得られたものである、請求項83又は84に記載の方法。
- 前記抗HHV-6又は抗HHV-7の高力価免疫グロブリンを前記被験体に投与する工程の前に、
1以上のヒトドナー被験体に対して、抗HHV-6又は抗HHV-7の高力価免疫グロブリンを生成するのに十分な量で、HHV-6又はHHV-7のgHポリペプチドとHHV-6又はHHV-7のgLポリペプチドとを含むHHV-6又はHHV-7のgH/gLヘテロ二量体、及びHHV-6又はHHV-7のgBポリペプチドを含む免疫原性組成物を投与することと、
前記1以上のヒトドナー被験体から前記抗HHV-6又は抗HHV-7の高力価免疫グロブリンを収集することと、
を更に含む、請求項83~85のいずれか一項に記載の方法。 - 前記HHV-6又はHHV-7のgBポリペプチドが単量体、二量体又は三量体であり、前記HHV-6又はHHV-7のgH/gLヘテロ二量体が単量体、二量体、三量体又は四量体である、請求項86に記載の方法。
- カポジ肉腫ヘルペスウイルス(KSHV)に対する免疫を受動的に移入させる方法であって、免疫細胞又は高力価抗KSHV免疫グロブリンを、それを必要とする被験体に投与することを含み、前記免疫細胞又は高力価抗KSHV免疫グロブリンが、該高力価抗KSHV免疫グロブリンに対して選択された1つ以上の血液、血漿又は血清試料から得られたものである、方法。
- 前記1つ以上の血液、血漿又は血清試料がヒトの血液、血漿又は血清試料である、請求項88に記載の方法。
- 前記血液、血漿又は血清試料が、請求項1~10及び請求項32~34のいずれか一項に記載の組成物により、又は三量体gH/gL若しくは三量体gB等の宿主細胞へのKSHVの結合、融合及び侵入の媒介に関与する多量体KSHVタンパク質により免疫化したドナーから得られたものである、請求項88又は89に記載の方法。
- 前記被験体が、KSHV関連カポジ肉腫、原発性滲出性リンパ腫、多中心性キャッスルマン病、KSHV関連炎症性サイトカイン症候群、又はKSHV免疫再構築炎症反応症候群を発症するリスクがある、請求項88~90のいずれか一項に記載の方法。
- 前記高力価抗KSHV免疫グロブリンを前記被験体に投与する工程の前に、
1以上のヒトドナー被験体に対して、高力価抗KSHV免疫グロブリンを生成するのに十分な量で、KSHV gHポリペプチドとKSHV gLポリペプチドとを含むKSHV gH/gLヘテロ二量体、KSHV gBポリペプチド、KSHV gMポリペプチド、KSHV gNポリペプチド、KSHV ORF68ポリペプチド、及びKSHV K8.1ポリペプチドの少なくとも2つを含む免疫原性組成物を投与することと、
前記1以上のヒトドナー被験体から前記高力価抗KSHV免疫グロブリンを収集することと、
を更に含む、請求項88~91のいずれか一項に記載の方法。 - 前記KSHV gBポリペプチドが単量体、二量体又は三量体であり、前記gH/gLヘテロ二量体が単量体、二量体、三量体又は四量体である、請求項92に記載の方法。
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US201762451396P | 2017-01-27 | 2017-01-27 | |
US62/451,396 | 2017-01-27 | ||
JP2019540440A JP2020515522A (ja) | 2017-01-27 | 2018-01-26 | 免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 |
PCT/US2018/015459 WO2018140733A1 (en) | 2017-01-27 | 2018-01-26 | Vaccine compositions of herpesvirus envelope protein combinations to induce immune response |
Related Parent Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019540440A Division JP2020515522A (ja) | 2017-01-27 | 2018-01-26 | 免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2023085447A true JP2023085447A (ja) | 2023-06-20 |
JP7649342B2 JP7649342B2 (ja) | 2025-03-19 |
Family
ID=62978761
Family Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019540440A Pending JP2020515522A (ja) | 2017-01-27 | 2018-01-26 | 免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 |
JP2023061167A Active JP7649342B2 (ja) | 2017-01-27 | 2023-04-05 | 免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 |
Family Applications Before (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2019540440A Pending JP2020515522A (ja) | 2017-01-27 | 2018-01-26 | 免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 |
Country Status (6)
Country | Link |
---|---|
US (3) | US11572389B2 (ja) |
EP (1) | EP3573649A4 (ja) |
JP (2) | JP2020515522A (ja) |
AU (1) | AU2018213378B2 (ja) |
CA (1) | CA3050914A1 (ja) |
WO (1) | WO2018140733A1 (ja) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
MA46584A (fr) | 2016-10-21 | 2019-08-28 | Modernatx Inc | Vaccin contre le cytomégalovirus humain |
WO2018170256A1 (en) | 2017-03-15 | 2018-09-20 | Modernatx, Inc. | Herpes simplex virus vaccine |
US11389529B2 (en) | 2017-07-13 | 2022-07-19 | City Of Hope | Expression system for expressing herpesvirus glycoprotein complexes |
JP7614842B2 (ja) | 2018-04-03 | 2025-01-16 | サノフイ | 抗原性エプスタインバーウイルスポリペプチド |
US12070495B2 (en) | 2019-03-15 | 2024-08-27 | Modernatx, Inc. | HIV RNA vaccines |
JP7692897B2 (ja) | 2019-09-10 | 2025-06-16 | オブシディアン セラピューティクス, インコーポレイテッド | 調節可能な制御のためのca2-il15融合タンパク質 |
US11406703B2 (en) | 2020-08-25 | 2022-08-09 | Modernatx, Inc. | Human cytomegalovirus vaccine |
US20230372473A1 (en) * | 2020-10-08 | 2023-11-23 | Virothera Limited | Vaccine compositions |
CN114933649B (zh) * | 2021-03-10 | 2023-04-21 | 北京智仁美博生物科技有限公司 | 抗水痘-带状疱疹病毒的抗体及其用途 |
JP2024514183A (ja) * | 2021-04-13 | 2024-03-28 | モデルナティエックス インコーポレイテッド | エプスタイン-バーウイルスmRNAワクチン |
Family Cites Families (17)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4617379A (en) | 1983-06-14 | 1986-10-14 | Miles Laboratories, Inc. | High titer cytomegalovirus immune serum globulin |
CN101374944B (zh) | 2005-12-16 | 2012-02-08 | 里博瓦克斯生物工艺有限公司 | 用于获得永生化抗体分泌细胞的方法 |
US7704510B2 (en) * | 2006-06-07 | 2010-04-27 | The Trustees Of Princeton University | Cytomegalovirus surface protein complex for use in vaccines and as a drug target |
US9089537B2 (en) * | 2010-02-26 | 2015-07-28 | The Trustees Of The University Of Pennslyvania | Subunit vaccines for herpes viruses and methods of use |
JP2013544504A (ja) * | 2010-10-11 | 2013-12-19 | ノバルティス アーゲー | 抗原送達プラットフォーム |
JP6099573B2 (ja) * | 2011-01-31 | 2017-03-22 | ザ トラスティーズ オブ ザ ユニバーシティ オブ ペンシルバニア | 新規なヘルペス抗原をコードする核酸分子、それを含むワクチン及びその使用方法 |
WO2013120499A1 (en) * | 2012-02-15 | 2013-08-22 | Curevac Gmbh | Nucleic acid comprising or coding for a histone stem-loop and a poly (a) sequence or a polyadenylation signal for increasing the expression of an encoded pathogenic antigen |
JP6619648B2 (ja) * | 2012-05-16 | 2019-12-11 | イミューン デザイン コーポレイション | Hsv−2のためのワクチン |
ES2753138T3 (es) * | 2012-07-06 | 2020-04-07 | Glaxosmithkline Biologicals Sa | Complejos de proteínas de citomegalovirus |
JP6373836B2 (ja) * | 2012-07-26 | 2018-08-15 | ザ・ヘンリー・エム・ジャクソン・ファンデイション・フォー・ジ・アドヴァンスメント・オヴ・ミリタリー・メディシン、インコーポレイテッド | 多量体融合タンパク質ワクチン及び免疫療法 |
WO2014068001A1 (en) * | 2012-10-30 | 2014-05-08 | Redbiotec Ag | Recombinant particle based vaccines against human cytomegalovirus infection |
EP3054971B1 (en) * | 2013-10-11 | 2021-03-10 | The United States of America, represented by the Secretary, Department of Health and Human Services | Epstein-barr virus vaccines |
AU2014362234B2 (en) * | 2013-12-11 | 2019-09-12 | The Henry M. Jackson Foundation For The Advancement Of Military Medicine, Inc. | Human herpesvirus trimeric glycoprotein B, protein complexes comprising trimeric gB and their use as vaccines |
EP3031822A1 (en) * | 2014-12-08 | 2016-06-15 | Novartis AG | Cytomegalovirus antigens |
WO2018081459A1 (en) * | 2016-10-26 | 2018-05-03 | Modernatx, Inc. | Messenger ribonucleic acids for enhancing immune responses and methods of use thereof |
MX2019004913A (es) * | 2016-10-26 | 2019-09-16 | Curevac Ag | Vacunas de nanoparticulas lipidicas que comprenden acido ribonucleico mensajero (arnm). |
WO2019055887A1 (en) * | 2017-09-16 | 2019-03-21 | City Of Hope | PSEUDO-VIRAL PARTICLES OF MULTIVALENT EPSTEIN-BARR VIRUS AND USES THEREOF |
-
2018
- 2018-01-26 CA CA3050914A patent/CA3050914A1/en active Pending
- 2018-01-26 JP JP2019540440A patent/JP2020515522A/ja active Pending
- 2018-01-26 US US16/480,098 patent/US11572389B2/en active Active
- 2018-01-26 EP EP18744000.3A patent/EP3573649A4/en active Pending
- 2018-01-26 AU AU2018213378A patent/AU2018213378B2/en active Active
- 2018-01-26 WO PCT/US2018/015459 patent/WO2018140733A1/en unknown
-
2021
- 2021-02-02 US US17/165,310 patent/US20210163542A1/en not_active Abandoned
-
2023
- 2023-04-05 JP JP2023061167A patent/JP7649342B2/ja active Active
- 2023-10-25 US US18/494,219 patent/US20240270796A1/en active Pending
Also Published As
Publication number | Publication date |
---|---|
WO2018140733A1 (en) | 2018-08-02 |
US20190367561A1 (en) | 2019-12-05 |
EP3573649A4 (en) | 2020-12-30 |
EP3573649A1 (en) | 2019-12-04 |
US20210163542A1 (en) | 2021-06-03 |
CA3050914A1 (en) | 2018-08-02 |
AU2018213378A1 (en) | 2019-08-01 |
JP2020515522A (ja) | 2020-05-28 |
JP7649342B2 (ja) | 2025-03-19 |
AU2018213378B2 (en) | 2025-03-06 |
US20240270796A1 (en) | 2024-08-15 |
US11572389B2 (en) | 2023-02-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7649342B2 (ja) | 免疫応答を誘導するヘルペスウイルスエンベロープタンパク質の組み合わせのワクチン組成物 | |
JP6679484B2 (ja) | ヒトヘルペスウイルス三量体糖タンパク質B、三量体gBを含むタンパク質複合体、及びワクチンとしてのそれらの使用 | |
AU2020217310B2 (en) | Recombinant herpes simplex virus 2 (hsv-2) vaccine vectors | |
JP5492418B2 (ja) | ウイルス関連疾患を予防するためのウイルス遺伝子産物およびワクチン接種の方法 | |
WO2019151760A1 (ko) | 신규 다가 hpv 백신 조성물 | |
DK2556150T3 (en) | A viral particle released after infection of mammalian cells by human cytomegalovirus (HCMV) containing a fusion protein and use thereof | |
US20240016925A1 (en) | Novel vaccine adjuvant | |
KR102405246B1 (ko) | 암세포 표적화 영역과 hvem의 세포외 도메인의 융합 단백질을 발현할 수 있는 발현 카세트를 가지는 재조합 헤르페스 심플렉스 바이러스 및 그 용도 | |
CA2944230A1 (en) | Human cytomegalovirus vaccine compositions and method of producing the same | |
EP0759995B1 (en) | Fusion glycoprotein from hcmv and hsv | |
CA2632402A1 (en) | Treatment of epstein-barr virus-associated diseases | |
US20190231862A1 (en) | Gene vaccine for preventing and treating severe fever with thrombocytopenia syndrome | |
CN119874937A (zh) | 一种重组i型单纯疱疹病毒疫苗及其应用 | |
HK1012415B (en) | Fusion glycoprotein from hcmv and hsv |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20230501 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20230501 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20240416 |
|
A601 | Written request for extension of time |
Free format text: JAPANESE INTERMEDIATE CODE: A601 Effective date: 20240711 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20241015 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20241105 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20250131 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20250212 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20250307 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 7649342 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |