JP2023084012A - エンジン - Google Patents
エンジン Download PDFInfo
- Publication number
- JP2023084012A JP2023084012A JP2021198070A JP2021198070A JP2023084012A JP 2023084012 A JP2023084012 A JP 2023084012A JP 2021198070 A JP2021198070 A JP 2021198070A JP 2021198070 A JP2021198070 A JP 2021198070A JP 2023084012 A JP2023084012 A JP 2023084012A
- Authority
- JP
- Japan
- Prior art keywords
- chamber
- engine
- fuel
- combustion
- flame
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
- 238000002485 combustion reaction Methods 0.000 claims abstract description 84
- 239000000446 fuel Substances 0.000 claims description 111
- 239000000203 mixture Substances 0.000 claims description 53
- 230000006835 compression Effects 0.000 claims description 40
- 238000007906 compression Methods 0.000 claims description 40
- 238000005192 partition Methods 0.000 claims description 12
- 239000007788 liquid Substances 0.000 claims description 5
- 238000002347 injection Methods 0.000 description 43
- 239000007924 injection Substances 0.000 description 43
- 239000007789 gas Substances 0.000 description 13
- 238000000034 method Methods 0.000 description 10
- 230000007423 decrease Effects 0.000 description 9
- 238000012360 testing method Methods 0.000 description 9
- 238000010586 diagram Methods 0.000 description 7
- 230000001629 suppression Effects 0.000 description 6
- 230000002159 abnormal effect Effects 0.000 description 5
- 238000002076 thermal analysis method Methods 0.000 description 5
- 238000009423 ventilation Methods 0.000 description 5
- 230000003247 decreasing effect Effects 0.000 description 4
- 230000003313 weakening effect Effects 0.000 description 4
- 230000002093 peripheral effect Effects 0.000 description 3
- 230000002123 temporal effect Effects 0.000 description 3
- 239000003502 gasoline Substances 0.000 description 2
- 239000003054 catalyst Substances 0.000 description 1
- 230000002542 deteriorative effect Effects 0.000 description 1
- 239000002737 fuel gas Substances 0.000 description 1
- 238000011835 investigation Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 230000010355 oscillation Effects 0.000 description 1
- 230000000149 penetrating effect Effects 0.000 description 1
- 238000005070 sampling Methods 0.000 description 1
- 238000000638 solvent extraction Methods 0.000 description 1
- 238000012546 transfer Methods 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/12—Engines characterised by precombustion chambers with positive ignition
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B19/00—Engines characterised by precombustion chambers
- F02B19/16—Chamber shapes or constructions not specific to sub-groups F02B19/02 - F02B19/10
- F02B19/18—Transfer passages between chamber and cylinder
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02T—CLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
- Y02T10/00—Road transport of goods or passengers
- Y02T10/10—Internal combustion engine [ICE] based vehicles
- Y02T10/12—Improving ICE efficiencies
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Combustion Methods Of Internal-Combustion Engines (AREA)
Abstract
【課題】燃焼室にプレチャンバを備えた特定のエンジンにおいて、高負荷高回転の運転領域で発生する強いノックを効果的に抑制する。【解決手段】シリンダブロック2およびシリンダヘッド3と共に燃焼室6を区画するピストン5を備えたエンジン1に関する。燃焼室6は、副室15と、プレチャンバ17によってその副室15と区画されている主室14とを有している。気筒4のボアストローク比を副室15の容積で除することによって得られる特定の比率が、6.6以上57.6以下となるように構成されている。【選択図】図11
Description
開示する技術は、燃焼室が、孔の開いた隔壁で大きな主室と小さな副室(プレチャンバ)とに区画されていて、その副室内に点火プラグが設置されているエンジンに関する。
近年、燃焼室にこのような副室と主室とを設け、副室の中の混合気に点火して隔壁の孔から主室に火炎を噴出させ、それによって主室の混合気を燃焼させる点火方式(プレチャンバ点火方式)が注目されている。プレチャンバ点火方式を用いることにより、主室での燃焼性が高まり、エンジンの熱効率を向上させることができる。
例えば特許文献1に、このプレチャンバ点火方式を採用したエンジンシステムが開示されている。このエンジンシステムには、プレチャンバプラグ30(副室およびその点火プラグに相当)と、主燃焼室26(主室に相当)に燃料を噴射するインジェクタ28とが備えられている。
インジェクタ28が燃料を噴射することで、主燃焼室26の中に混合気が形成される。その混合気の一部は隔壁の孔を通じて副室60にも流入する。副室60に流入した混合気を点火することで、副室60から主燃焼室26に火炎が噴出する。それによって主燃焼室26の混合気が燃焼する。
特許文献2にもまた、このプレチャンバ点火方式を採用したガスエンジンが開示されている。このガスエンジンでは、インジェクタ30が燃料であるガスを副室20の中に噴射する。
従って、このガスエンジンの場合、インジェクタ30が燃料を噴射することで、隔壁の孔を通じて燃料が主室8に流出し、それによって主室8に混合気が形成される。主室8よりも燃料が濃い副室20のリッチな混合気を点火することで、副室20から主室8に火炎が噴出し、それによって主室8のリーンな混合気を燃焼させる。
特許文献2では、主室8のリーンな混合気を安定して着火させるために、所定の副室指標(副室の容積を副室の開口面積の総和で除した値)に基づいて、主室8に噴出するガスの速度が4m/s以上7m/s以下になるようにしている。
一般に、プレチャンバ点火方式のうち、特許文献2のように、副室に燃料を噴射するタイプは「アクティブプレチャンバ」と呼ばれ、特許文献1のように、主室に燃料を噴射するタイプは「パッシブプレチャンバ」と呼ばれている。
ノック(ノッキングともいう)は、騒音や衝撃などを生じる異常燃焼であり、火花点火式エンジンにおいて特に問題視されている現象である。通常、ノックは、高負荷低回転の運転領域で発生する。詳細には、点火プラグによる着火で混合気の燃焼が開始すると、火炎伝播によって燃焼が拡大していく。その間、未燃混合気(エンドガス)が局所的に自着火する場合がある。自着火による燃焼は火炎伝播による燃焼よりも急峻なため、その圧力振動が騒音や衝撃を形成し、ノックを発生させる。
高負荷低回転の運転領域で発生するノックは、回転数が高まって火炎伝播が早まることで解消されていく。しかし、頻度は低いが、高負荷高回転の運転領域でもノックが発生する場合がある。高負荷高回転の運転領域で発生するノックは、高負荷低回転の運転領域で発生するノックよりも強くなる傾向がある(このノックを強ノックともいう)。そのため、強ノックは、エンジンにダメージを与える可能性が高く、エンジンの信頼性を低下させる原因となる。特に、圧縮比の高いエンジンで強ノックが発生し易いことから、強ノックは、熱効率の向上の妨げともなっている。
このような強ノックを含めたノックの問題は、上述したプレチャンバ点火方式においても重要である。すなわち、高負荷高回転の運転領域で副室から噴出される火炎の勢いが強いと、主室での火炎伝播が過度に早くなって異常燃焼が発生する場合がある。そのような異常燃焼によって燃焼室が気柱共鳴することで、プレチャンバ点火方式に起因した強ノックが発生する。
従って、副室から噴出される火炎の勢いを弱くすれば、強ノックの発生が抑制できると考えられる。ところが、本発明者らが、強ノックと火炎の勢いとの関係について調べたところ、単に火炎の勢いを弱めるだけでは、強ノックの発生を抑制できず、これらの関係に最適な条件があることを見出した。
開示する技術は、この知見に基づくものであり、燃焼室にプレチャンバを備えた特定のエンジンにおいて、高負荷高回転の運転領域で発生する強いノックを効果的に抑制することを課題とする。
開示する技術は、シリンダが形成されているシリンダブロックと、前記シリンダブロックの上に組み付けられて前記シリンダの上部を覆うシリンダヘッドと、前記シリンダの内部で往復動するように設けられて前記シリンダブロックおよび前記シリンダヘッドと共に燃焼室を区画するピストンと、前記燃焼室で点火する点火プラグと、を備えたエンジンに関する。
前記燃焼室は、前記点火プラグの電極を収容する副室と、貫通孔が形成された隔壁によって前記副室と区画されていて当該副室よりも容積が大きい主室と、を有している。そして、前記シリンダのボアストローク比を前記副室の容積で除することによって得られる特定の比率が、6.6以上57.6以下となるように構成されている。
すなわち、このエンジンの燃焼室は、貫通孔が形成された隔壁によって、主室と点火プラグの電極を収容した副室とに区画されており、このエンジンは、プレチャンバ点火方式による燃焼が行える。従って、副室内で点火することにより、貫通孔から噴出する火炎を用いて主室の混合気を燃焼できるので、主室での燃焼性が高まり、エンジンの熱効率を向上させることができる。
しかしながら、上述したように、プレチャンバ点火方式による燃焼では、高負荷高回転の運転領域で火炎の勢いが強くなると、強ノックが発生するおそれがある。それに対し、このエンジンでは、発明者らの知見に基づいて、エンジンの重要な物理的な条件を決める特定の比率が設定されている。そして、その比率が上述した特定の範囲となるように、エンジンが構成されている。
これら特定の比率および範囲は、強ノックと火炎の勢いとの間の関係に見出された最適な条件に基づき、高負荷高回転の運転領域において適切な火炎の勢いが得られるように設定されている。従って、このエンジンによれば、強ノックを効果的に抑制することができる。
前記比率は、8.5以上23.4以下となるように構成されている、としてもよい。
この範囲は、先の範囲よりも更に適切な火炎の勢いが得られる範囲に対応していることから、よりいっそう強ノックを効果的に抑制できる。
前記ボアストローク比は、1以上1.5以下に設定されている、としてもよい。
ボアストローク比の大きいエンジンは、燃焼速度および筒内温度が過度になり易いので、強ノックを抑制する観点からは好ましくない。従って、ボアストローク比は1未満が好ましいが、ボアストローク比の小さいエンジンは、燃費を向上する観点からは好ましくない。
それに対し、このエンジンでは、特定の比率を特定の範囲に設定することによって火炎の勢いを適切な範囲に設定できる。従って、ボアストローク比を比較的大きな1以上1.5以下の範囲に設定しても、強ノックを抑制できる。それにより、燃費の向上と強ノックの抑制とを両立できる。
前記エンジンの圧縮比は14以上25以下である、としてもよい。
圧縮比が小さいと、副室の混合気の充填度が低くなる。その結果、火炎の勢いが弱くなるので、中負荷等の運転時に失火するおそれがある。従って、圧縮比は14以上とするのが好ましい。一方、圧縮比が大きいと、副室の混合気の充填度が高くなる。その結果、火炎の勢いが強くなるので、強ノックが発生し易くなる。従って、圧縮比は25以下とするのが好ましい。
前記エンジンはまた、前記主室に燃料を噴射するインジェクタを更に備え、前記副室の中の混合気は、前記インジェクタが噴射した燃料が前記貫通孔を通じて前記副室に流入することによって形成される、としてもよい。
すなわち、このエンジンはパッシブプレチャンバを採用する。副室に燃料を噴射するアクティブチャンバと異なり、主室に燃料を噴射するパッシブプレチャンバでは、副室の中の燃料量は間接的にしか調整できない。従って、その火炎の勢いは、貫通孔の大きさ等の、エンジンの物理的な条件により、ほぼ一義的に決まってしまう。従って、パッシブプレチャンバは、アクティブプレチャンバよりも、燃費の良い安定した燃焼を実現するのは難しい。
それに対し、上述したように、特定の比率が特定の範囲となるようにエンジンを構成することで、高負荷高回転の運転領域において適切な火炎の勢いを形成できる。従って、パッシブプレチャンバでも、燃費の良い安定した燃焼を実現することが可能になる。
前記インジェクタが液体の燃料を噴射する、としてもよい。
気体の燃料であれば、インジェクタから噴射した直後から空気と混合できる。従って、小さな副室内に噴射しても、副室内に均一な混合気を形成でき、貫通孔を通じて主室に円滑に噴出させることができる。それに対し、液体の燃料を小さな副室内に噴射すると、その液滴が隔壁に付着し、副室内に均一な混合気を形成することは難しい。貫通孔を通じて主室に噴出させることも容易でない。
従って、燃料が液体である場合は、アクティブチャンバよりもパッシブプレチャンバの方が好ましい。容積の大きな主室に燃料を噴射するので、均一な混合気を形成できる。その混合気の一部が副室に流入するので、副室の混合気も均一にできる。
前記隔壁に4個以上6個以下の前記貫通孔が形成されていて、これら貫通孔が前記点火プラグの電極を中心とした周方向に間隔を隔てて並ぶように配置されている、としてもよい。
貫通孔が3個以下であると、副室から噴出される火炎が周方向に分布する範囲が狭くなるので、主室での燃焼が不均一になるおそれがある。従って、4個以上が好ましい。一方、貫通孔が7個以上であると、周方向に分布する火炎の範囲は拡がるが、隔壁の強度低下などの問題があるので、実現が難しい。
しかも、貫通孔の個数は火炎の勢いにも影響する。それに対し、4個以上6個以下の個数であれば、噴孔の大きさを適切な範囲に設定でき、周方向に火炎を適度に分布させながら噴流ポテンシャルを上述した最適な範囲に設定できる。
開示する技術によれば、燃焼室にプレチャンバを備えた特定のエンジンにおいて、高負荷高回転の運転領域で発生する強いノックが効果的に抑制できるようになる。従って、エンジンの熱効率を向上できる。
以下、開示する技術について説明する。ただし、以下の説明は本質的に例示に過ぎない。
<エンジンの構成>
図1に、開示する技術を適用したエンジン1の要部を示す。このエンジン1は、車両に搭載される車両駆動用のレシプロエンジンである。エンジン1は、液体燃料であるガソリンを使用して、吸気、圧縮、燃焼、および排気からなる4つの行程を繰り返し行う(4ストロークエンジン)。
図1に、開示する技術を適用したエンジン1の要部を示す。このエンジン1は、車両に搭載される車両駆動用のレシプロエンジンである。エンジン1は、液体燃料であるガソリンを使用して、吸気、圧縮、燃焼、および排気からなる4つの行程を繰り返し行う(4ストロークエンジン)。
このエンジン1は、熱効率が向上するように、圧縮比ε(幾何学的圧縮比)が通常のエンジンよりも高く設定されていて、少ない燃料で効率的に燃焼できるように構成されている。そして、プレチャンバ点火方式(パッシブプレチャンバ)の採用により、通常のエンジンよりも急速な燃焼が行えるように構成されている。
エンジン1は、シリンダブロック2およびシリンダヘッド3を備えている。シリンダブロック2には、4つの気筒4(シリンダ)が形成されている(図1では1つのみ表示)。シリンダヘッド3は、シリンダブロック2の上に組み付けられていて、気筒4の上部を覆っている。
気筒4の内部には、ピストン5が設置されている。ピストン5には、クランクシャフトに連結されたコンロッド7が接続され、これにより、ピストン5が気筒4を往復動する。シリンダブロック2、シリンダヘッド3およびピストン5により、燃焼が行われる燃焼室6が区画されている。更にこのエンジン1の場合、その燃焼室6が、後述するようにプレチャンバ17によって主室14と副室15とに区画されている。
エンジン1の圧縮比εは、要求される仕様に基づいて設定される。このエンジン1の場合、従来のエンジンよりも更に高い熱効率の向上を目指していることから、圧縮比εは14以上25以下に設定するのが好ましく、16以上18以下がより好ましい。
圧縮比εが小さいと、主室14から副室15への混合気、つまり空気および燃料(排気ガスを含む場合もある)の充填度が低くなる。副室15への混合気の充填度が低くなると、副室15の中の混合気の密度が小さくなるので、後述するようにプレチャンバ17から噴出される火炎の勢いが弱くなる。それにより、燃料量が相対的に少ない中負荷等の運転時に失火するおそれがある。従って、そのような失火を抑制する観点から、圧縮比εは14以上とするのが好ましい。
一方、圧縮比εが大きいと、主室14から副室15への混合気の充填度が高くなる。それにより、燃料量が相対的に多い高負荷高回転の運転時に強ノックが発生し易くなる。従って、強ノックを抑制する観点から、圧縮比εは25以下とするのが好ましい。
シリンダヘッド3には、吸気ポート8および排気ポート9が形成されている。これら吸気ポート8および排気ポート9には、図示は省略しているが、吸気バルブおよび排気バルブが燃焼室6側の開口を開閉するように設けられている。
図示は省略しているが、吸気ポート8には吸気通路が接続され、排気ポート9には排気通路が接続されている。また、このエンジン1にはEGRシステムが設けられている。すなわち、排気通路には、三元触媒を通過した排気ガスの一部を吸気通路に環流するEGR通路が接続されている。このEGR通路には、EGRクーラと、EGR通路を流れる排気ガスの流量を制御するEGRバルブとが設けられている。
熱効率の向上の観点からは、エンジン1にEGRシステムを設けるのが好ましいが、必須ではない。また、このエンジン1には、過給機は設けられていない。すなわち、エンジン1は自然吸気エンジンである。ただし、エンジン1の仕様によっては過給機を設置してもよい。
シリンダヘッド3には、インジェクタ11、プレチャンバプラグ12、および、ノーマルプラグ13(第2の点火プラグ)が取り付けられている。インジェクタ11は、気筒4の軸線上に設けられ、燃焼室6を上方から見たとき、燃焼室6の中央部に臨むよう設けられている。プレチャンバプラグ12およびノーマルプラグ13は、インジェクタ11を挟んでその両側に配置されている。
プレチャンバプラグ12は、吸気ポート8の側から斜め下方に延びて、その先端部分が燃焼室6に臨むよう配置されている。ノーマルプラグ13は、排気ポート9の側から斜め下方に延びて、その先端部分が燃焼室6に臨むよう配置されている。なお、プレチャンバプラグ12を排気ポート9の側に設け、ノーマルプラグ13を吸気ポート8の側に配置してもよい。
ノーマルプラグ13は、その先端部分に電極13aを有している。ノーマルプラグ13の電極13aは、主室14に臨んでいる。主室14は、燃焼室6の容積の大部分を占めており、その主体を構成している。エンジン1が行う本来の燃焼は、この主室14において行われる。
(プレチャンバプラグ12)
プレチャンバプラグ12は、点火プラグ16(第1の点火プラグ)と、その先端部分に設けられたプレチャンバ17とを有している。このプレチャンバ17が燃焼室6の一部を区画することにより、プレチャンバ17の内部に副室15が形成されている。
プレチャンバプラグ12は、点火プラグ16(第1の点火プラグ)と、その先端部分に設けられたプレチャンバ17とを有している。このプレチャンバ17が燃焼室6の一部を区画することにより、プレチャンバ17の内部に副室15が形成されている。
図2に、プレチャンバプラグ12の先端部分を示す。プレチャンバ17は、点火プラグ16の先端部分を覆う半球状の隔壁からなり、その内部に副室15が形成されている。点火プラグ16の電極(中心電極16aおよび側方電極16b)は、その副室15の中に収容されている。
詳細には、その電極は、点火プラグ16の軸線上に位置するように、副室15の略中心部位に配置されている。それにより、プレチャンバ17の全域において、電極の点火部位からプレチャンバ17までの距離はほぼ同一である。
プレチャンバ17には、プレチャンバ17を貫通する複数(図例では4個)の噴孔18(貫通孔に相当)が形成されている。これら噴孔18を通じて、副室15は主室14と連通している。これらの噴孔18は、電極を中心とした周方向に間隔を隔てて並ぶように配置されている。
具体的には、図2の(b)に示すように、プレチャンバプラグ12の先端部分をその軸方向から見た場合に、プレチャンバ17の頂点Aを通るプレチャンバプラグ12の軸線を中心にして、その周方向に90°の間隔で、噴孔18が配置されている。
これら噴孔18は、いずれも、図2(a)に示すように、側面視で、プレチャンバ17の頂点Aから約45°の位置に約45°の方向に延びるよう形成されている。これにより、各噴孔18からは、点火プラグ16の軸線に対して約45°の角度で火炎が噴出する。なお、噴孔18の個数は4個に限らない。後述するように、噴孔18の個数は4個以上6個以下が好ましい。
これらの噴孔18は、第1に、主室14で形成される混合気を副室15の中に流入させる機能を有する。第2に、その流入した混合気に点火することで副室15の中で発生する火炎を主室14に噴出/放射させる機能を有する。それにより、プレチャンバ17から噴出する火炎が、主室14の混合気に点火してその火炎伝播を促進するので、主室14の混合気の燃焼を早めることができる。
すなわち、プレチャンバプラグ12を備えたこのエンジン1では、プレチャンバ点火方式(パッシブプレチャンバ)による点火を行うことができる。
(プレチャンバ点火方式の特徴)
プレチャンバ点火方式による点火を行うこのエンジン1では、少なくとも吸気行程の中期(例えばクランク角で-300°ATDC)において燃料の噴射が行われる。エンジン1の運転領域によっては、圧縮行程において燃料の一部を分割噴射してもよい。
プレチャンバ点火方式による点火を行うこのエンジン1では、少なくとも吸気行程の中期(例えばクランク角で-300°ATDC)において燃料の噴射が行われる。エンジン1の運転領域によっては、圧縮行程において燃料の一部を分割噴射してもよい。
吸気行程での燃料の噴射により、燃料が霧化していくことで、主室14で混合気が形成される。混合気の空燃比は、理論空燃比(λ=1)からリーンな空燃比(λ>1)の間で制御するのが好ましい。例えば、燃費の向上およびノックの抑制の双方に有利になるように、中負荷の運転領域では、EGRガスの導入とともに混合気が理論空燃比になるように制御し、高負荷高回転の運転領域では、混合気がリーンな空燃比になるように制御してもよい。
主室14に形成された混合気の一部は、噴孔18を通じて副室15に流入する。そして、圧縮行程の上死点の近傍で、点火プラグ16が点火することによって副室15の中の混合気が燃焼し、噴孔18から火炎が噴出する。その火炎により、主室14の混合気が点火されて燃焼する。
なお、エンジン1の温度が低い始動時などは、燃料が霧化し難いので、プレチャンバ点火方式で安定した燃焼を行うのは難しい。従って、そのような場合は、ノーマルプラグ13により、従来と同じように、主室14の混合気に点火して燃焼を行うのが好ましい。
図3に、プレチャンバ点火方式による燃焼時の圧力の経時変化を示す。これは、中負荷の運転領域において、所定の条件下でプレチャンバ点火方式で燃焼を行った時に得たデータである。図3において、グラフG1は主室14の圧力変化を示し、グラフG2は副室15の圧力変化を示している。
上述したように、吸気行程から圧縮行程にかけて主室14で形成される混合気の一部が、噴孔18を通じて副室15に流入する。その際、副室15の噴孔18は通気抵抗になる。そのため、ピストン5の上昇によって主室14の圧力は上昇するが、副室15は主室14よりも圧力の立上りが緩やかになる。すなわち、副室15の圧力は主室14よりも低い。この副室15と主室14との圧力差が大きくなるほど、副室15に流入する混合気の充填度は低くなる。
そして、副室15に流入した混合気は、圧縮行程の上死点の近傍(例えば-10°ATDC)で着火される。それにより、副室15の中で混合気が燃焼して、副室15の圧力が急上昇し、圧縮行程の上死点後は、副室15の圧力が主室14の圧力よりも高くなる。そして、副室15の圧力がピークに達し、主室14と副室15の圧力差が最大となる(ΔPmax)。この副室15と主室14との圧力差が大きくなるほど、プレチャンバ17から噴出する火炎の勢いは強くなる。
プレチャンバ17から噴出する火炎の勢いは、主室14の混合気の燃焼速度に大きく影響する。開示する技術では、プレチャンバ17から噴出する火炎の勢いを判定するための指標として、噴流ポテンシャル(RET)が用いられている。噴流ポテンシャルは、副室15と主室14との間でのエネルギの伝達率に相当する。図4に、噴流ポテンシャルを算出するための数式を示す。
そして、図5に、図3に対応した噴流ポテンシャルの経時変化を示す。噴流ポテンシャルにより、プレチャンバ17から噴出する火炎の勢いが判定できる。すなわち、噴流ポテンシャルが大きいと火炎の勢いは強いと判定でき、噴流ポテンシャルが小さいと火炎の勢いは弱いと判定できる。
具体的には、図3に示すΔPmaxのタイミングが、プレチャンバ17から火炎が噴出するタイミングに相当するので、その時の噴流ポテンシャル(RETmax)により、プレチャンバ17から噴出する火炎の勢いが判定できる。
RETmaxは、圧縮比εが大きくなるほど、副室15の中の混合気の密度が大きくなるので、大きくなる。また、副室15の容積が大きくなるほど、副室15で発生する熱エネルギが多くなるので、RETmaxは大きくなる。RETmaxはまた、噴孔18の大きさや個数、気筒4の容積や形状等によっても影響を受ける。
(プレチャンバ点火方式の課題)
プレチャンバ17から噴出する火炎の勢いは、上述したように、圧縮比ε、噴孔18の大きさや個数、副室15の容積などの、エンジン1の物理的な条件(これらをエンジン構成要素ともいう)の影響を受ける。そのため、燃焼条件が大きく異なる中負荷と高負荷高回転の双方の運転領域において、燃費の良い安定した燃焼を実現するのは難しい。
プレチャンバ17から噴出する火炎の勢いは、上述したように、圧縮比ε、噴孔18の大きさや個数、副室15の容積などの、エンジン1の物理的な条件(これらをエンジン構成要素ともいう)の影響を受ける。そのため、燃焼条件が大きく異なる中負荷と高負荷高回転の双方の運転領域において、燃費の良い安定した燃焼を実現するのは難しい。
すなわち、燃料量は、基本的にはエンジン1の出力要求に応じて決まるので、プレチャンバ17から噴出する火炎の勢いは、エンジン構成要素の影響を強く受ける。そのため、燃料量が相対的少ない中負荷と、燃料量が相対的に多く、しかも行程間隔が短い高負荷高回転との双方の運転領域において、燃費の良い安定した燃焼を両立し得るエンジン構成要素を見出すことは難しい。
中負荷の運転領域において、熱効率の向上の観点から燃料量を必要最小限とし、その状態で混合気の失火を抑制するためには、主室14での火炎伝播を早くするのが好ましい。そこで、主室14での火炎伝播を早くするために、プレチャンバ17から噴出する火炎の勢いが強くなるようエンジン構成要素を設定すると、高負荷高回転の運転領域では、主室14での火炎伝播が過度に早くなり、強ノックが発生し易くなる。
強ノックを抑制するために、点火時期を遅らせる制御を行うと、熱効率が低下する。従って、中負荷と高負荷高回転の双方の運転領域において燃費の良い安定した燃焼を実現するのは難しい。パッシブプレチャンバであれば、アクティブプレチャンバよりも更に難しい。
すなわち、アクティブプレチャンバの場合、副室15の中に燃料を噴射するので、副室15の中の燃料量を直接的に調整できる。従って、制限はあるが、分割噴射などの燃料の噴射条件を変更することで、プレチャンバ17から噴出する火炎の勢いを弱めて強ノックを抑制することができる。
それに対し、パッシブプレチャンバの場合、主室14に燃料を噴射するので、副室15の中の燃料量は間接的にしか調整できない。パッシブプレチャンバでの火炎の勢いは、エンジン構成要素により、ほぼ一義的に決まってしまう。従って、パッシブプレチャンバは、アクティブプレチャンバよりも、副室15の中の燃料量を調整できる範囲および条件は大幅に制限される。
そこで、本発明者らは、パッシブプレチャンバを採用するこのエンジン1において、強ノックを抑制するための対策について検討を行っている。その中で、単にプレチャンバ17から噴出する火炎の勢いを弱めるだけでは、逆に強ノックを促進させる場合があり、これらの関係に最適な条件があることを見出した。
開示する技術は、この知見に基づくものである。そして、このエンジン1は、この知見に基づき、中負荷の運転領域での燃費の良い安定した燃焼を実現しながら、強ノックが効果的に抑制できるように構成されている。
<強ノックの抑制>
上述したように、このエンジン1は、プレチャンバ点火方式の採用により、中負荷の運転領域では、主室14の混合気の燃焼速度を早めて火炎伝播を促進できる。それにより、主室14の混合気の濃度が必要最小限であっても安定して燃焼できるので、熱効率が向上する。
上述したように、このエンジン1は、プレチャンバ点火方式の採用により、中負荷の運転領域では、主室14の混合気の燃焼速度を早めて火炎伝播を促進できる。それにより、主室14の混合気の濃度が必要最小限であっても安定して燃焼できるので、熱効率が向上する。
その一方で、プレチャンバ点火方式の採用により、高負荷高回転の運転領域では、強ノックが発生し易くなる。しかも、このエンジン1は、通常のエンジン1に比べて圧縮比εが高いので、よりいっそう強ノックが発生し易い。それに対し、プレチャンバ17から噴射する火炎の勢いを弱めることで、燃費を悪化させずに強ノックを抑制することが考えられる。
ところが、本発明者らが、試験(後述する熱解析も含む)を行い、強ノックとプレチャンバ17から噴出する火炎の勢いとの関係について調べていたところ、火炎の勢いを弱め過ぎると、かえって強ノックが促進されるようになり、強ノックを効果的に抑制するためには、火炎に適度な勢いが必要なことを見出した。
図6に、試験で採用したエンジンの主な諸元(エンジン構成要素)を示す。試験に用いたエンジンは、上述した実施形態のエンジン1と同様に、自然吸気のガソリンエンジンであり、主室14に燃料が噴射されるように構成されている(パッシブプレチャンバ)。試験では、その内容に応じて、図6に示す各エンジン構成要素の範囲で適宜条件を設定した。
(強ノックと噴流ポテンシャルとの関係)
図7に、強ノックの発生と噴流ポテンシャルとの関係について調べた結果を示す。
図7に、強ノックの発生と噴流ポテンシャルとの関係について調べた結果を示す。
図7は、高負荷高回転の運転領域でのKi値と噴流ポテンシャルとの関係を示している。具体的には、圧縮比εが17のエンジンにおいて、6000rpm、かつ、全開負荷(いわゆるフルスロットルの状態)で運転した時のKi値と噴流ポテンシャルとの関係を示している。
試験では、副室15の容積および噴孔18の直径を変えることにより、異なる噴流ポテンシャルが得られるように条件が設定されている。なお、この試験に用いたエンジンのボアストローク比は1.1に設定されている。
Ki値は、ノックの強さ(ノック強度)を表す指標である。Ki値は、シリンダの中で発生する圧力波の振動データに基づいて算出される。振動データは、ノックセンサ、筒内圧センサなどを用いて検出される。ここでのKi値は、300回の燃焼サイクルで発生したノック強度の平均値を示している。従って、そのサンプリング期間中に、頻度が低くても強ノックが発生すると、その強度および頻度に応じてKi値が高くなる。
図8に、図7に示すグラフ上の点P1および点P2における振動データの一例を示す。実線のグラフD1が、噴流ポテンシャルが0(ゼロ)を示す点P1の振動データである。破線のグラフD2が、噴流ポテンシャルが1.2を示す点P2の振動データである。縦軸は燃焼室6の熱発生率を表している。
グラフD1は、プレチャンバ17が無いエンジン、つまり点火プラグ16が主室14に露出したエンジンでの試験結果である(通常の点火方式に相当)。グラフD2は、直径φが1.0mmの噴孔18か4個形成されていて、副室15の容積が0.31ccのプレチャンバ17が設けられたエンジンでの試験結果である。点火時期は、いずれも上死点の直前(-10°ATDC)である。
グラフD1では、点火後の所定の期間を経過した後に大きな圧力変動、つまり強ノックの発生が認められる。それに対し、グラフD2では、グラフD1のような大きな圧力変動は認められない。グラフD2では、強ノックが抑制されていることが判る。Ki値は、このような振動データに基づいて算出されている。
図7に示すように、噴流ポテンシャルの減少に対して、Ki値に変曲点が認められた。具体的には、噴流ポテンシャルが2から小さくなるに従ってKi値は減少し、噴流ポテンシャルが1.2の周辺で極小となった。その後、噴流ポテンシャルが小さくなるに従ってKi値は増加した。Ki値の変化量は、噴流ポテンシャルが極小値以上の範囲よりも、噴流ポテンシャルが極小値以下の範囲の方が大きい傾向が認められた。
火炎の勢いが強い場合には(噴流ポテンシャルが極小値以上の領域)、その勢いに応じて主室14での火炎伝播が早くなるので、異常燃焼が発生し易くなる。その結果、燃焼圧力が急上昇して主室14が気柱共鳴すると、プレチャンバ点火方式に起因した強ノックが発生する。従って、そのような場合には、原因となっている火炎の勢い、つまり噴流ポテンシャルを小さくすることで強ノックを抑制できる。
それに対し、火炎の勢いが弱い場合には(噴流ポテンシャルが極小値以下の領域)、その勢いに応じて主室14での火炎伝播が遅くなるので、異常燃焼が発生し難くなる。従って、プレチャンバ点火方式に起因した強ノックは抑制できる。
その一方で、火炎の勢いが弱くなると、主室14の周辺部分に火炎が届き難くなる。それにより、高回転の運転領域では、火炎が主室14の周辺部分に行き渡らなくなることで、逆に、主室14の周辺部分に存在しているエンドガスの自着火を誘発し、強ノックが発生し易くなる、と考えられる。
これまでに蓄積したデータに基づけば、測定誤差を含め、実用上好ましいKi値の範囲は、1以下である。より好ましくは、0.5以下である。図7に、Ki値が1以下となる範囲および0.5以下となる範囲を示す。
Ki値が1以下となる範囲は、噴流ポテンシャルが0.95以上1.6以下となる範囲に対応している。Ki値が0.5以下となる範囲は、噴流ポテンシャルが1.05以上1.5以下となる範囲に対応している。
従って、これら適切なKi値の範囲に対応した範囲の噴流ポテンシャルが得られるように、エンジン構成要素を設定することで、強ノックを効果的に抑制できる。しかも、これら噴流ポテンシャルの範囲であれば、火炎の勢いをある程度確保できるので、中負荷の運転領域においても失火を抑制できる。すなわち、中負荷の運転領域での燃費の良い安定した燃焼を実現しながら、強ノックが効果的に抑制できる。中負荷と高負荷高回転の双方の運転領域で適切な燃焼を実現できる。
<噴流ポテンシャルに関連するエンジン構成要素>
噴流ポテンシャルに関連するエンジン構成要素としては、圧縮比ε、噴孔18の大きさ、噴孔18の個数、ボア、ストローク、副室15の容積、行程容積などが挙げられる。
噴流ポテンシャルに関連するエンジン構成要素としては、圧縮比ε、噴孔18の大きさ、噴孔18の個数、ボア、ストローク、副室15の容積、行程容積などが挙げられる。
(圧縮比ε)
エンジンの圧縮比εは、要求されるエンジンの仕様に基づいて設定される。ノックを抑制する観点からは圧縮比εは低い方が好ましいが、低い圧縮比εは、熱効率を向上する観点からは不利である。従って、このエンジン1では、通常よりも高い圧縮比εが採用されており、上述したように、14以上25以下の範囲で適宜設定される。
エンジンの圧縮比εは、要求されるエンジンの仕様に基づいて設定される。ノックを抑制する観点からは圧縮比εは低い方が好ましいが、低い圧縮比εは、熱効率を向上する観点からは不利である。従って、このエンジン1では、通常よりも高い圧縮比εが採用されており、上述したように、14以上25以下の範囲で適宜設定される。
(噴孔18の大きさ、個数)
噴孔18は、孔径が0.7mm以上1.5mm以下の大きさに形成し、4個以上6個以下とするのが好ましい。そして、これら噴孔18が点火プラグ16の電極を中心とした周方向に間隔を隔てて並ぶように配置するのが好ましい。なお、噴孔18は円形ではあるが正円でなくてもよい。
噴孔18は、孔径が0.7mm以上1.5mm以下の大きさに形成し、4個以上6個以下とするのが好ましい。そして、これら噴孔18が点火プラグ16の電極を中心とした周方向に間隔を隔てて並ぶように配置するのが好ましい。なお、噴孔18は円形ではあるが正円でなくてもよい。
噴孔18の大きさに関しては、噴孔18が大きくなれば通気抵抗が小さくなり、噴孔18が小さくなれば通気抵抗が大きくなる。通気抵抗が小さいと、副室15に混合気が流入し易くなるとともに副室15から排気ガスが流出し易くなる。従って、副室15の吸排気の観点からは噴孔18は大きい方が好ましい。
一方、プレチャンバ17から噴出される火炎の勢いは、噴孔18が大きくなれば弱くなり、噴孔18が小さくなれば強くなる。従って、噴孔18の大きさは噴流ポテンシャルの大小に直接的に影響する。それに対し、噴孔18を上述した範囲の大きさにすることで、適度な通気抵抗を確保しながら噴流ポテンシャルを上述した最適な範囲に設定できる。
噴孔18の個数に関しては、噴孔18が3個以下であると、プレチャンバ17から噴出される火炎が周方向に分布する範囲が狭くなるので、主室14での燃焼が不均一になるおそれがある。噴孔18が7個以上であると、周方向に分布する火炎の範囲は拡がるが、プレチャンバ17の強度低下などの問題があるので、実現が難しい。
しかも、噴孔18の個数は噴流ポテンシャルにも影響する。例えば、プレチャンバ17の開口面積が同じであれば、噴孔18が少ないと噴孔18を大きくする必要があり、噴孔18が多いと噴孔18を小さくする必要がある。それに対し、4個以上6個以下の個数であれば、噴孔18の大きさを適切な範囲に設定できるので、燃焼室6の周方向に火炎を適度に分布させながら噴流ポテンシャルを上述した最適な範囲に設定できる。
(ボア、ストローク)
図9に簡略化して示すように、ボアBは気筒4の内径である。ストロークSは、気筒4の中をピストン5が下死点(実線で示す位置)から上死点(二点鎖線で示す位置)まで移動する距離である。
図9に簡略化して示すように、ボアBは気筒4の内径である。ストロークSは、気筒4の中をピストン5が下死点(実線で示す位置)から上死点(二点鎖線で示す位置)まで移動する距離である。
そして、これらの比率であるストロークSをボアBで割った値(S/B)は、一般に「ボアストローク比」と呼ばれている。容積が同じ場合、ボアストローク比が大きくなるほど、ストロークSは大きく、ボアBは小さくなる。そして、ボアストローク比が小さくなるほど、ストロークSは小さく、ボアBは大きくなる。
ストロークSが大きくなると、ピストン5の移動速度が大きくなるので、燃焼室6の中の流動が大きくなり、燃焼が促進される。ボアBが小さくなると、燃焼室6の表面積が小さくなるので、熱損失が抑制される。従って、ボアストローク比の大きいエンジンは、中負荷等の運転領域では、熱効率を向上する観点からは好ましいが、高負荷高回転の運転領域では、燃焼速度および筒内温度が過度になり易いので、強ノックを抑制する観点からは好ましくない。
逆に、ストロークSが小さくなると、ピストン5の移動速度が小さくなるので、燃焼室6の中の流動が小さくなり、ボアBが大きくなるとそれに伴って熱損失も増える。従って、ボアストローク比の小さいエンジンは、高負荷高回転の運転領域では、燃焼速度および筒内温度が抑制されるので、強ノックを抑制する観点からは好ましいが、中負荷等の運転領域では、熱効率を向上する観点からは好ましくない。
それに対し、このエンジン1のボアストローク比は、比較的大きい1以上1.5以下の範囲に設定されている。強ノックを抑制する観点からは、ボアストローク比は1未満が好ましいが、このエンジン1の場合、噴流ポテンシャルを最適な範囲に設定することによって強ノックを抑制できる。従って、燃費の向上を優先した設定にできる。
また、ボアBが小さいとプレチャンバ17から燃焼室6の外縁部までの距離が短くなるので、火炎が燃焼室6の周辺部分に届き易くなる。それにより、高回転の運転領域でも、エンドガスを効果的に燃焼させることが可能になる。従って、ボアストローク比を上述した範囲に設定することで、中負荷の運転領域での燃費の良い安定した燃焼を実現しながら、強ノックを効果的に抑制することが可能になる。
(副室15の容積)
プレチャンバ17から噴出する火炎は、副室15の中の混合気に着火することで形成される。従って、その混合気によって得られる熱エネルギが大きいほど、火炎の勢いは強くなる。副室15の容積が大きいほど、収容できる混合気の量が増えるので、その混合気によって得られる熱エネルギも大きくなる。従って、副室15の容積は、噴流ポテンシャルに大きく影響する。
プレチャンバ17から噴出する火炎は、副室15の中の混合気に着火することで形成される。従って、その混合気によって得られる熱エネルギが大きいほど、火炎の勢いは強くなる。副室15の容積が大きいほど、収容できる混合気の量が増えるので、その混合気によって得られる熱エネルギも大きくなる。従って、副室15の容積は、噴流ポテンシャルに大きく影響する。
図10に、熱解析によって得られた、強ノックの抑制を可能にする副室15の容積Vpcと噴流ポテンシャルとの関係を示す。副室15の容積Vpcは、噴流ポテンシャルが大きくなるに従って所定の変化量で大きくなる。そして、2点鎖線で示すように、エンジン1の圧縮比εに応じて副室15の容積Vpcは大小に変化する。具体的には、圧縮比εが大きくなれば、副室15の容積Vpcは小さくなり、圧縮比εが小さくなれば、副室15の容積Vpcは大きくなる。
例えば、噴流ポテンシャルが1.2となる最適な条件で見た場合、圧縮比εが14のエンジン1では、副室15の容積Vpc(点P3)は0.31ccに設定するのが好ましく、圧縮比εが25のエンジン1では、副室15の容積Vpc(点P4)は0.12ccに設定するのが好ましい。
(行程容積)
行程容積は、ピストン5が下死点から上死点まで動く行程で排出される容積であり、図9では、ストロークSで示す範囲での気筒4の容積に相当する。行程容積が大きくなるほど、燃焼室6に収容できる混合気の量が増える。それに応じて燃料の量が増えると、強ノックが発生し易くなる。従って、行程容積が大きくなれば、それに応じて設定できるエンジン構成要素の範囲は制限される。
行程容積は、ピストン5が下死点から上死点まで動く行程で排出される容積であり、図9では、ストロークSで示す範囲での気筒4の容積に相当する。行程容積が大きくなるほど、燃焼室6に収容できる混合気の量が増える。それに応じて燃料の量が増えると、強ノックが発生し易くなる。従って、行程容積が大きくなれば、それに応じて設定できるエンジン構成要素の範囲は制限される。
<強ノックの抑制に対応した特定の比率>
開示する技術では、上述したエンジン構成要素に基づいて、熱解析により、特定の比率(仕様決定比率)が設定されている。
開示する技術では、上述したエンジン構成要素に基づいて、熱解析により、特定の比率(仕様決定比率)が設定されている。
すなわち、上述したように、火炎の勢いが弱い場合に発生する強ノック(弱噴流時強ノック)は、火炎とエンドガスとの位置関係が重要である。そのため、燃焼室14の形態や混合気の状態の影響を受ける。
例えば、副室15の容積が同じ場合、ボアや行程容積を小さくすると火炎が燃焼室14の周辺部分まで達し易くなるので、弱噴流時強ノックは発生し難いのに対し、ボアや行程容積が大きくすると火炎が燃焼室14の周辺部分まで達し難くなるので、弱噴流時強ノックは発生し易い。
そこで、弱噴流時強ノックの抑制に関するこのような条件を適切かつ効果的に特定するために、特定の比率で整理する必要があり、仕様決定比率が設定されている。そして、この仕様決定比率が所定の範囲に収まるようにエンジンを構成することで、噴流ポテンシャルを上述した適切な範囲に収めることが可能になり、強ノックを効果的に抑制できる。
具体的には、ボアストローク比S/Bを副室15の容積Vpcで除することによって得られる比率(S/B)/Vpcを、仕様決定比率として設定し、この仕様決定比率が6.6以上57.6以下の範囲に収まるように、エンジン1は構成されている。
図11に、熱解析によって得られた、仕様決定比率と噴流ポテンシャルとの関係を示す。この熱解析では、圧縮比εは上述した所定の範囲、つまり14以上25以下を満たすように設定されている。同様に、ボアストローク比は1以上1.5以下を、噴孔18の孔径は0.7mm以上1.5mm以下を、噴孔18の個数は、4個以上6個以下を、それぞれ満たすように設定されている。そして、副室15の容積Vpcは、行程容積を500ccに設定した状態で、圧縮比εに対応して、図10に示した所定の範囲を満たすように設定されている。
図11に示すように、これら各条件を満たし得る仕様決定比率は、噴流ポテンシャルが大きくなるに従って減少する。上述した各条件のうち、実線で示すグラフは、圧縮比εが25等、最も強ノックが発生し易い条件に対応し、破線で示すグラフは、圧縮比εが14等、最も強ノックが発生し難い条件に対応している。仕様決定比率は、同じ噴流ポテンシャルで比較した場合、強ノックが発生し易い条件よりも強ノックが発生し難い条件の方が小さい値になる。
それに対し、このエンジン1では、上述したKi値が1以下となる範囲に対応した仕様決定比率の範囲として、6.6以上57.6以下の範囲が設定されている。図11において、その上限値57.6は点P5に相当し、その下限値6.6は点P6に相当する。
すなわち、このエンジン1では、仕様決定比率の範囲が、上述した各条件のうち、最も強ノックが発生し易い厳しい条件の下で設定されている。具体的には、圧縮比εは25であり、ボアストローク比は1.5であり、それぞれの上限値が採用されている。噴孔18の個数は4個である。
従って、上述した各条件のその他の範囲であれば、これよりも条件は厳しくないので、これよりも容易に仕様決定比率の範囲が設定でき、強ノックを効果的に抑制できる。
更には、仕様決定比率は、8.5以上23.4以下に設定するのが好ましい。すなわち、この範囲は、上述したKi値が0.5以下となる範囲に対応しており、強ノックを更に安定的かつ効果的に抑制できる。図11において、その上限値23.4は点P7に相当し、その下限値8.5は点P8に相当する。
このように、開示する技術を適用したエンジン1によれば、中負荷の運転領域での燃費の良い安定した燃焼を実現しながら、高負荷高回転の運転領域での強ノックの発生を効果的に抑制できるようになる。従って、熱効率に優れたエンジンを実現できる。
なお、開示する技術は、上述した実施形態に限定されず、それ以外の種々の構成をも包含する。例えば、上述した実施形態で示したエンジン1の構造は一例であり、主室14に臨むノーマルプラグ13は無くてもよい。気筒4の個数も4つに限らない。
1 エンジン
2 シリンダブロック
3 シリンダヘッド
4 気筒(シリンダ)
5 ピストン
6 燃焼室
11 インジェクタ
12 プレチャンバプラグ
13 ノーマルプラグ
14 主室
15 副室
16 点火プラグ
17 プレチャンバ
18 噴孔(貫通孔)
2 シリンダブロック
3 シリンダヘッド
4 気筒(シリンダ)
5 ピストン
6 燃焼室
11 インジェクタ
12 プレチャンバプラグ
13 ノーマルプラグ
14 主室
15 副室
16 点火プラグ
17 プレチャンバ
18 噴孔(貫通孔)
Claims (7)
- シリンダが形成されているシリンダブロックと、
前記シリンダブロックの上に組み付けられて前記シリンダの上部を覆うシリンダヘッドと、
前記シリンダの内部で往復動するように設けられて前記シリンダブロックおよび前記シリンダヘッドと共に燃焼室を区画するピストンと、
前記燃焼室で点火する点火プラグと、
を備えたエンジンであって、
前記燃焼室は、
前記点火プラグの電極を収容する副室と、
貫通孔が形成された隔壁によって前記副室と区画されていて当該副室よりも容積が大きい主室と、
を有し、
前記シリンダのボアストローク比を前記副室の容積で除することによって得られる特定の比率が、6.6以上57.6以下となるように構成されている、エンジン。 - 請求項1に記載のエンジンにおいて、
前記比率が、8.5以上23.4以下となるように構成されている、エンジン。 - 請求項1または2に記載のエンジンにおいて、
前記ボアストローク比が、1以上1.5以下に設定されている、エンジン。 - 請求項1~3のいずれか1つに記載のエンジンにおいて、
前記エンジンの圧縮比が14以上25以下である、エンジン。 - 請求項1~4のいずれか1つに記載のエンジンにおいて、
前記主室に燃料を噴射するインジェクタを更に備え、
前記副室の中の混合気は、前記インジェクタが噴射した燃料が前記貫通孔を通じて前記副室に流入することによって形成される、エンジン。 - 請求項5に記載のエンジンにおいて、
前記インジェクタが液体の燃料を噴射する、エンジン。 - 請求項6に記載のエンジンにおいて、
前記隔壁に4個以上6個以下の前記貫通孔が形成されていて、これら貫通孔が前記点火プラグの電極を中心とした周方向に間隔を隔てて並ぶように配置されている、エンジン。
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021198070A JP2023084012A (ja) | 2021-12-06 | 2021-12-06 | エンジン |
US17/989,043 US11976585B2 (en) | 2021-12-06 | 2022-11-17 | Engine |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021198070A JP2023084012A (ja) | 2021-12-06 | 2021-12-06 | エンジン |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2023084012A true JP2023084012A (ja) | 2023-06-16 |
Family
ID=86608306
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2021198070A Pending JP2023084012A (ja) | 2021-12-06 | 2021-12-06 | エンジン |
Country Status (2)
Country | Link |
---|---|
US (1) | US11976585B2 (ja) |
JP (1) | JP2023084012A (ja) |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102020105921A1 (de) * | 2020-03-05 | 2021-09-09 | Bayerische Motoren Werke Aktiengesellschaft | Fremd gezündete Hubkolben-Brennkraftmaschine mit einem Vorkammerzündsystem |
Family Cites Families (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3283751A (en) * | 1963-06-28 | 1966-11-08 | Inst Khim Fysiki | Internal combustion engine with jet ignition of a non-uniformly distributed working mixture from a precombustion chamber cut-off by the piston |
US4924829A (en) * | 1989-09-11 | 1990-05-15 | General Motors Corporation | Apparatus for torch jet assisted spark ignition |
US5611307A (en) * | 1991-10-14 | 1997-03-18 | The University Of Melbourne | Internal combustion engine ignition device |
US9850806B2 (en) * | 2013-03-12 | 2017-12-26 | Prometheus Applied Technologies, Llc | Active scavenge prechamber |
JP6714198B2 (ja) | 2016-10-14 | 2020-06-24 | 本田技研工業株式会社 | ガスエンジン |
EP3453856B1 (en) * | 2017-09-08 | 2019-10-16 | MASERATI S.p.A. | Gasoline internal combustion engine, with a combustion pre-chamber and two spark plugs |
JP7312362B2 (ja) | 2020-01-21 | 2023-07-21 | マツダ株式会社 | エンジンシステム |
JP2023504941A (ja) * | 2020-02-24 | 2023-02-07 | マーレ インターナショナル ゲゼルシャフト ミット ベシュレンクテル ハフツング | 予燃焼室を備えた火花点火エンジン並びにエンジン用の予燃焼室及びアダプタインサート |
-
2021
- 2021-12-06 JP JP2021198070A patent/JP2023084012A/ja active Pending
-
2022
- 2022-11-17 US US17/989,043 patent/US11976585B2/en active Active
Also Published As
Publication number | Publication date |
---|---|
US11976585B2 (en) | 2024-05-07 |
US20230175428A1 (en) | 2023-06-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN111164285B (zh) | 用于机动车的内燃机 | |
US7104250B1 (en) | Injection spray pattern for direct injection spark ignition engines | |
US7536994B2 (en) | Internal combustion engine and fuel injection method in internal combustion engine | |
US20050199218A1 (en) | Method and apparatus for controlling operation of internal combustion engine, and the internal combustion engine | |
US9803539B2 (en) | Internal-combustion engine | |
JP7388224B2 (ja) | プレチャンバを備える内燃機関 | |
CN116057262A (zh) | 包括至少一个配备有预燃室、喷射器和两个火花塞的气缸的内燃机及其运行方法 | |
Smith et al. | A comparison of spray-guided stratified-charge combustion performance with outwardly-opening piezo and multi-hole solenoid injectors | |
JP2023020228A (ja) | エンジンシステム | |
JP2023020229A (ja) | エンジンシステム | |
JP4069750B2 (ja) | 筒内直噴火花点火式内燃機関 | |
JP4258935B2 (ja) | 火花点火式往復動型エンジン | |
US11976585B2 (en) | Engine | |
US20230175429A1 (en) | Engine | |
US6651612B2 (en) | In-cylinder injection type spark-ignition internal combustion engine | |
JP2000248945A (ja) | 筒内直接噴射エンジン | |
JP2023084013A (ja) | エンジン | |
JP4682885B2 (ja) | 筒内直接噴射式内燃機関 | |
WO2020196207A1 (ja) | 副室式内燃機関 | |
EP1088972B1 (en) | In-cylinder direct-injection spark-ignition engine | |
US11821353B2 (en) | Engine and method of manufacturing the same | |
US11834981B2 (en) | Engine | |
US11753985B2 (en) | Engine | |
JP4048937B2 (ja) | 筒内直接噴射式内燃機関 | |
JP4020792B2 (ja) | 筒内噴射式内燃機関 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20240521 |