JP2023063168A - 加飾部材、加飾部材の製造方法、エンブレム及び移動体 - Google Patents

加飾部材、加飾部材の製造方法、エンブレム及び移動体 Download PDF

Info

Publication number
JP2023063168A
JP2023063168A JP2021173516A JP2021173516A JP2023063168A JP 2023063168 A JP2023063168 A JP 2023063168A JP 2021173516 A JP2021173516 A JP 2021173516A JP 2021173516 A JP2021173516 A JP 2021173516A JP 2023063168 A JP2023063168 A JP 2023063168A
Authority
JP
Japan
Prior art keywords
layer
hard coat
decorative member
metal
laminate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021173516A
Other languages
English (en)
Inventor
崇宏 八木
Takahiro Yagi
比呂志 岸本
Hiroshi Kishimoto
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Nippon Printing Co Ltd
Original Assignee
Dai Nippon Printing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Nippon Printing Co Ltd filed Critical Dai Nippon Printing Co Ltd
Priority to JP2021173516A priority Critical patent/JP2023063168A/ja
Publication of JP2023063168A publication Critical patent/JP2023063168A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Lining Or Joining Of Plastics Or The Like (AREA)

Abstract

【課題】成形部と加飾部とハードコート層とを有する加飾成形体において、射出成形を行った際に加飾部が膨張してハードコート層が割れる不具合を低減し、製造効率を向上させる加飾部材、およびその製造方法を提供する。【解決手段】加飾部材10は、ハードコート層31と、ハードコート層31の一側に配置されてハードコート層31を支持するハードコート支持層32と、ハードコート支持層32の一側に配置された金属層41とを備えている。ハードコート層31は、180℃まで加熱されて10%伸ばしたときに割れが生じない。【選択図】図3

Description

本発明は、加飾部材、加飾部材の製造方法、エンブレム及び移動体に関する。
例えば特許文献1に示すように、成形部と加飾部とハードコート層とを有する加飾成形体が知られている。加飾部材は、加飾部の一側に樹脂を射出成形して成形部を形成した後、加飾部の他側にハードコート層を形成することにより作製される。ハードコート層は、射出成形によって加熱された加飾部の温度が下がってから形成される。これは、加飾部にハードコート層を形成してから成形部を射出成形すると、射出成形の際に加飾部が膨張してハードコート層が割れる虞があるからである。
特開2017-215242号公報
しかしながら、このような加飾部材の製造方法は煩雑である。
本開示の実施形態は、加飾部材の製造効率を向上させることを目的とする。
本開示による加飾部材は、
ハードコート層と、
前記ハードコート層の一側に配置されて前記ハードコート層を支持するハードコート支持層と、
前記ハードコート支持層の一側に配置された金属層と、
を備え、
前記ハードコート層は、180℃まで加熱されて10%伸ばしたときに割れが生じない。
本開示による加飾部材において、
前記ハードコート層は、180℃まで加熱されて20%伸ばしたときに割れが生じなくてもよい。
本発明による加飾部材は、前記金属層のいずれかの面に配置された金属蒸着用のプライマー層を有していてもよい。
本開示による加飾部材は、
前記金属層の一側に配置された中間層と、
前記中間層の一側に配置された成形部と、
を更に備えてもよい。
本開示による加飾部材において、前記金属層は、可視光を反射可能な複数の金属粒部を含み、複数の金属粒部の間に隙間が設けられていてもよい。
本開示による加飾部材は、前記ハードコート支持層と前記金属層との間に配置され、前記ハードコート層から前記金属層に向かう方向に見て前記金属層の一部を被覆する隠蔽層を更に備えていてもよい。
本開示による加飾部材において、前記隠蔽層は、前記ハードコート支持層の一側面と交差する面に沿って広がる側面を有していてもよい。
本開示による加飾部材において、前記隠蔽層の厚みが15μm以上、好ましくは20μm以上であってもよい。
本開示による加飾部材において、前記ハードコート支持層と前記隠蔽層は、前記金属層に対向する凹凸面を形成し、
前記金属層は、前記凹凸面に対応して屈曲していてもよい。
本開示による加飾部材は、前記隠蔽層と前記金属層との間に接合層を備え、
前記隠蔽層の前記側面と前記接合層との間に隙間が形成されていてもよい。
本開示による加飾部材において、前記ハードコート層は、平坦部と前記平坦部に接続する湾曲部とを有し、
前記湾曲部における前記ハードコート層の厚みは、前記平坦部における前記ハードコート層の厚みよりも小さくてもよい。
本開示による加飾部材の製造方法は、
ハードコート層と、前記ハードコート層の一側に配置されて前記ハードコート層を支持するハードコート支持層と、前記ハードコート支持層の一側に配置された金属層と、前記金属層の一側に配置された中間層と、を含む積層体を作製する積層体作製工程と、
前記積層体作製工程において作製された前記積層体に、成形部を射出成形する射出成形工程と、を備えている。
本開示による加飾部材の製造方法において、
前記積層体作製工程は、
前記ハードコート層と前記ハードコート支持層とを含むハードコートフィルムを作製する工程と、
前記ハードコートフィルムの一側に前記金属層を蒸着する工程と、
前記金属層の一側に前記中間層を形成する工程と、を含んでいてもよい。
本開示による加飾部材の製造方法において、
前記積層体作製工程は、
前記ハードコート層と前記ハードコート支持層とを含むハードコートフィルムを作製する工程と、
前記金属層と前記金属層を支持する金属支持層とを含む金属フィルムを作製する工程と、
前記ハードコートフィルムの前記ハードコート支持層と前記金属フィルムの前記金属支持層とを接合層を介して貼り合わせる貼合工程と、
前記金属フィルムの一側に前記中間層を形成する中間層形成工程と、を含んでいてもよい。
本開示による加飾部材の製造方法において、前記積層体作製工程は、前記貼合工程で貼り合わされた前記ハードコートフィルムと前記金属フィルムとの間の空気を除去する空気除去工程を更に含んでもよい。
本開示による加飾部材の製造方法において、前記積層体作製工程は、前記ハードコートフィルムの一側に、前記ハードコート層から前記金属層に向かう方向に見て前記金属層の一部を被覆する隠蔽層を形成する工程を更に含んでいてもよい。
本開示による加飾部材の製造方法において、前記隠蔽層の厚みを15μm以上、好ましくは20μm以上としてもよい。
本開示による加飾部材の製造方法は、前記積層体作製工程で作製された前記積層体を賦形する積層体賦形工程を更に備えていてもよい。
本開示によるエンブレムは、上述した本開示による加飾部材を備える。
本開示による移動体は、本開示による加飾部材又は本開示によるエンブレムを備える。
本発明によれば、加飾部材の製造効率を向上させることができる。
図1は、第1の実施形態を説明する図であって、加飾部材を含む移動体を示す斜視図である。 図2は、図1の加飾部材を示す平面図である。 図3は、図2のIII-III線に沿った断面図であって、図2の加飾部材をセンサとともに示している。 図4は、図3のIVで示す部分を拡大して示す図である。 図5は、図2の加飾部材に含まれる金属層を拡大して示す平面図である。 図6は、図2の加飾部材の製造方法の一例を説明する図である。 図7は、図2の加飾部材の製造方法の一例を説明する図である。 図8は、図2の加飾部材の製造方法の一例を説明する図である。 図9は、図2の加飾部材の製造方法の一例を説明する図である。 図10は、図2の加飾部材の製造方法の一例を説明する図である。 図11Aは、図2の加飾部材の製造方法の一例を説明する図である。 図11Bは、図2の加飾部材の製造方法の一例を説明する図である。 図12Aは、図2の加飾部材の製造方法の他の一例を説明する図である。 図12Bは、図2の加飾部材の製造方法の他の一例を説明する図である。 図13は、図3のXIIIで示す部分を拡大して示す図である。 図14は、図2の加飾部材の製造方法の一例を説明する図である。 図15は、図2の加飾部材の製造方法の一例を説明する図である。 図16は、図3に対応する図であって、第2の実施形態を説明する図である。 図17は、図16のXVIIで示す部分を拡大して示す図である。 図18は、図16の加飾部材の製造方法の一例を説明する図である。 図19は、図16の加飾部材の製造方法の一例を説明する図である。 図20は、図16の加飾部材の製造方法の一例を説明する図である。 図21Aは、図3に対応する図であって、第1及び第2の実施形態の変形例を説明する図である。 図21Bは、図3に対応する図であって、第1及び第2の実施形態の他の変形例を説明する図である。 図21Cは、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 図21Dは、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 図21Eは、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 図21Fは、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 図21Gは、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 図21Hは、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 図21Iは、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 積層体の製造方法の変形例を説明する図である。 積層体の製造方法の他の変形例を説明する図である。 積層体の製造方法のさらに他の変形例を説明する図である。 図23は、図3に対応する図であって、第1及び第2の実施形態のさらに他の変形例を説明する図である。 図24は、加飾部材の他の適用例を示す斜視図である。
<<<第1の実施形態>>>
以下、図面を参照して本開示の第1の実施形態について説明する。なお、本件明細書に添付する図面においては、図示と理解のしやすさの便宜上、適宜縮尺及び縦横の寸法比等を、実物のそれらから変更し誇張してある。
方向の関係を図面間で明確にするため、いくつかの図面には、共通する符号を付した矢印により共通する方向を示している。図面の紙面に垂直な方向に沿って手前に向かう矢印を、例えば図2に示すように、円の中に点を設けた記号により示した。図面の紙面に垂直な方向に沿って紙面の奥に向かう矢印を、例えば図3に示すように、円の中に×を設けた記号により示した。
本明細書において用いる、形状や幾何学的条件ならびにそれらの程度を特定する、例えば、「平行」、「垂直」、「同一」等の用語や長さや角度の値等については、厳密な意味に縛られず、同様の機能を期待し得る程度の範囲を含めて解釈する。
図1乃至図15は第1の実施形態を説明する図である。このうち図1は、加飾部材の適用例を示す図であり、図2及び図3は、加飾部材の一具体例を示す平面図又は断面図である。加飾部材10は、意匠を表示し、加飾部材10が適用された物品等に意匠性を付与する。以下に説明する第1の実施形態による加飾部材10は、その製造効率を向上させるための工夫がなされている。
なお、図1乃至図3に示された例において、加飾部材10は、エンブレム3として、移動体1に適用されている。図1に示された移動体1は自動車である。ただし、エンブレム3及び加飾部材10が適用される移動体1は自動車に限られない。エンブレム3及び加飾部材10は、移動可能な装置としてのその他の移動体1にも適用可能である。自動車以外の移動体1として、鉄道車両、台車、船、飛行機、ヘリコプター、ドローン、ロボットが例示される。またそもそも、加飾部材10はエンブレム3への適用に限定されない。後述するように、加飾部材10はエンブレム以外の用途にも適用可能である。加飾部材10は、例えば、内装材、外装材、天井材、床材等の建材や、家電等のケースにも適用可能である。以下、図面に示された具体例を参照しながら、第1の実施形態を説明していく。
ところで、図1乃至図3に示すように、加飾部材10は、可視光よりも長波長の電磁波を用いたセンサ5に対面して配置される。センサ5は、一例として、移動体1の周囲の状況を監視する。センサ5の検出結果は、移動体1の制御装置4に送信される。制御装置4は、センサ5の検出結果に基づき、警報を発する又は移動体1の移動を制御する。例えば、センサ5は、移動体1の前方の障害物等を検出する。このセンサ5は、電磁波を発信可能かつ電磁波を受信可能である。センサ5が、障害物等で反射した反射波を受信することによって、障害物の有無や障害物までの距離を検出できる。センサ5は、ミリ波レーダ装置としてもよい。ミリ波レーダ装置は、波長が1mm以上10mm以下のミリ波を電磁波として用いてもよい。
図3に示すように、加飾部材10は、第1表面11及び第2表面12を有している。第1表面11及び第2表面12は対向している。第1表面11はエンブレム3の裏面となる。第2表面12はエンブレム3の表面となる。センサ5は、加飾部材10の第1表面11に対面している。センサ5で用いられる電磁波は、第1表面11及び第2表面12が対向する第3方向D3に、加飾部材10を透過する。第1表面11及び第2表面12は、電磁波の出射面及び入射面となる。第1表面11及び第2表面12は、少なくとも第3方向D3にセンサ5と対面する領域において、平坦となっている。平坦とすることによって、電磁波の拡散によるセンサ5の感度低下を抑制できる。
第1表面11及び第2表面12の間となる加飾部材10の第3方向D3に沿った厚みT10は、少なくとも第3方向D3にセンサ5と対面する領域において、センサ5で用いられる電磁波の半波長の整数倍となっている。このように厚みT10(mm)を調整しておくことによって、電磁波が高透過率で加飾部材10を透過できる。すなわち、加飾部材10中における電磁波の波長をλ(mm)とすると、次の関係式(1)が成り立つ。式中の「k」は、正の整数、すなわち自然数である。
TT=(λ/2)×k ・・・(1)
関係式(1)が成り立つ場合、第1表面11で固定端反射した電磁波の位相と、第1表面11から加飾部材10に入射して第2表面12で自由端反射した後に第1表面11から出射する電磁波の位相が、半波長分ずれる。したがって、第1表面11で反射した電磁波と、第1表面11から加飾部材10に入射して第2表面12で反射した後に第1表面11から出射する電磁波とが、打ち消し合う。同様に、第2表面12で固定端反射した電磁波の位相と、第2表面12から加飾部材10に入射して第1表面11で自由端反射した後に第2表面12から出射する電磁波の位相が、半波長分ずれる。したがって、第2表面12で反射した電磁波と、第2表面12から加飾部材10に入射して第1表面11で反射した後に第2表面12から出射する電磁波とが、打ち消し合う。これにより、電磁波の加飾部材10での反射が抑制される。結果として、電磁波は、加飾部材10を高透過率で透過できる。
図3に示すように、加飾部材10は、積層体20と積層体20の一側に配置された成形部60とを含んでいる。積層体20は、成形部60に対面する第1面21と、第1面21に対向する第2面22とを有する。積層体20の第2面22が加飾部材10の第2表面12を形成する。図示された例では、積層体20は賦形されており、積層体20の各層は、平坦部23と平坦部23の周縁部に周状に接続する湾曲部24とを有する。平坦部23と湾曲部24とによって、成形部60の一部を受容する凹部が形成されている。しかしながら、加飾部材10における積層体20の形状はこれに限られない。積層体20は平板状であってもよい。
以下、加飾部材10の構成について、図3及び図4を参照して詳述する。図4は、図3に示す積層体20のうち二点鎖線IVで囲まれた部分を拡大して示す図である。
<<積層体>>
図4に示すように、積層体20は、ハードコートフィルム30と意匠層40と中間層50とを含んでいる。ハードコートフィルム30と意匠層40と中間層50とは、この順で積層されている。
<ハードコートフィルム>
ハードコートフィルム30は、ハードコート機能を有する。具体的には、ハードコートフィルム30は、ハードコート層31とハードコート支持層32とを含む。ハードコート支持層32は、ハードコート層31と意匠層40との間に配置されている。なお、意匠層40はハードコートフィルム30を透過して観察される。したがって、ハードコートフィルム30は透明となっている。なお、本明細書で用いる「透明」とは、分光光度計((株)島津製作所製「UV-3100PC」、JIS K 0115準拠品)を用いて測定波長380nm~780nmの範囲内で測定したときの、各波長における透過率の平均値として特定される可視光透過率が、50%以上であることを意味し、好ましくは80%以上である。
ハードコート層31は、積層体20の第2表面12を形成する。ハードコート層31は加飾部材10の最表面を形成する。ハードコート層31は、耐擦傷性等を有する。
ハードコート層31は、180℃まで加熱されて10%伸ばしたときに割れを生じない。とりわけ、図示された例では、ハードコート層31は、180℃まで加熱されて20%伸ばしたときに割れを生じない。このようなハードコート層31は、後述する射出成形工程で加熱されても、割れを生じることなく伸張することができる。したがって、ハードコート層31を含む積層体20を作製した後に、射出成形によって成形部60を形成することができる。このため、加飾部材10の製造効率を向上させることができる。なお、180℃まで加熱されて10%伸ばしたときに割れを生じないハードコート層31や180℃まで加熱されて20%伸ばしたときに割れを生じないハードコート層31の作製方法は、例えば特開2020-193256号公報に開示されている。また、特願2021-060669号明細書にも開示されている。
なお、ハードコート層31が180℃まで加熱されて10%ないしは20%伸ばしたときに割れを生じないものであるか否かは、例えば次のようにして評価することができる。まず、上述したハードコートフィルム30を作製し、ハードコートフィルム30上に格子状パターンを印刷する。次に、加熱装置を用いて、ハードコートフィルム30を180℃まで加熱して軟化させる。次に、軟化したハードコートフィルム30を、凸面を有する成形型と真空成型機を用いて真空成型する。このとき、ハードコートフィルム30を成形型の凸面に吸着させて凸面に沿って伸張させる。次に、真空成型されたハードコートフィルム30上の格子状パターンを真空成型前の格子状パターンと比較することにより、真空成型によるハードコートフィルム30の各部の伸び率を算出する。具体的には、ハードコートフィルム30上の格子状パターンによって仕切られる各マス目の面積を真空成型の前後で比較することにより、真空成型によるハードコートフィルム30の各部の伸び率を算出する。また、目視により、ハードコートフィルム30の各部における割れの有無を観察する。これにより、ハードコートフィルム30を何パーセントまで伸ばしても割れが生じないかを評価することができる。上記評価に用いる真空成型機としては、例えば、株式会社ラヤマ・パック製卓上真空性成型機V.formerを用いることができる。
ハードコート層31は、ハードコート層形成用の材料を用いて形成することができる。ハードコート層形成用の材料およびハードコート層31の形成方法については、後で詳述する。
ハードコート層31の厚みは、特に限定されず、ハードコート層31としての機能を発揮可能な厚みとなるように適宜設定することができる。ハードコート層31の厚みは、例えば1μm以上100μm以下であり、好ましくは1μm以上50μm以下であり、さらに好ましくは1μm以上30μm以下である。
ハードコート支持層32は、ハードコート層31を支持する層である。ハードコート支持層32は、フィルム状の部材によって形成されている。ハードコート支持層32は、可視光を透過し、且つ、180℃まで加熱されて10%伸ばしたときに割れを生じない。あるいは、ハードコート支持層32は、可視光を透過し、且つ、180℃まで加熱されて20%伸ばしたときに割れを生じない。このようなハードコート支持層32を形成する材料としては、例えば、有機ガラスを採用可能である。有機ガラスとしては、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ABS(アクリロニトリル ブタジエン スチレン共重合体)等が挙げられる。これらの有機ガラスの中でも、ポリカーボネートは、耐衝撃性や透明性に優れており、ハードコート支持層32を形成する材料として好適である。
ハードコート支持層32の厚みは、特に制限されないが、例えば、50μm以上5mm以下であり、好ましくは100μm以上1mm以下であり、更に好ましくは100μm以上500μm以下である。
ハードコートフィルム30は、ハードコート機能以外の機能を期待されて設けられる層を含んでもよい。ハードコート機能以外の機能としては、紫外線吸収機能、反射防止機能、防眩機能、帯電防止機能、防汚機能等が例示される。
以上の構成を有するハードコートフィルム30の厚みT30は、0.05mm以上8mm以下としてもよく、0.10mm以上5mm以下としてもよく、0.20mm以上3mm以下としてもよい。
<意匠層>
意匠層40は、加飾部材10によって表現される意匠を形成する。図2に示す例では、意匠層40は、楕円形状の図形の中に「D」の文字を配置した意匠を形成する。意匠層40は、金属層41を含む。金属層41は、意匠層40に反射面を付与する。また、図示された例では、意匠層40は、隠蔽層44及びプライマー層47を含む。隠蔽層44及びプライマー層47は、ハードコートフィルム30と金属層41との間に配置されている。
隠蔽層44は、ハードコートフィルム30から意匠層40に向かう方向に見て、金属層41の一部を被覆する。図示された例では、隠蔽層44は、ハードコートフィルム30から意匠層40に向かう方向に見て、金属層41の一部を隠蔽する。隠蔽層44は、ハードコートフィルム30から意匠層40に向かう方向に見て、加飾部材10によって表示される意匠に応じた形状に形成される。図示された例では、隠蔽層44は、楕円形状の開口44aと楕円形状の開口で囲まれた領域に「D」の文字の形状の開口44bとを有する形に形成される。隠蔽層44と金属層41とによって、楕円形状の図形とその中に配置された「D」の文字とが表される。
隠蔽層形成用の材料として、可視光を遮蔽可能な材料、例えば、酸化チタンやカーボンブラックの顔料や染料を採用可能である。隠蔽層44は、隠蔽層形成用の材料をハードコートフィルム30上に印刷することにより形成可能である。隠蔽層形成用の材料を印刷する方法としては、グラビア印刷、グラビアオフセット印刷、スクリーン印刷等、公知の印刷方法を採用可能である。
図示された例では、図4に示すように、隠蔽層44は、ハードコート支持層32の一側面と交差する面に沿って広がる側面45を有している。隠蔽層44がこのような側面45を有していることにより、加飾部材10を第2表面12側から見た場合に側面45が観察され、隠蔽層44と金属層41とによって表される意匠に立体感を与えることができる。隠蔽層44の厚みT44は特に制限されないが、加飾部材10を肉眼で観察した場合であっても観察者が上記立体感を容易に感知することができるよう、隠蔽層44の厚みT44は12μm以上であることが好ましく、15μm以上であることが更に好ましい。この場合、後述するプライマー層47は、可能な限り薄い(例えば1μm程度である)ことが望ましい。
プライマー層(以下では「Pr層」とも呼ぶ)47は、金属蒸着用のプライマーで形成される。図4に示す例では、プライマー層47は、金属層41と隠蔽層44或いはハードコートフィルム30との密着性を向上させる目的で設けられている。プライマー層47は、ハードコートフィルム30の一側面の全面を覆うように形成されている。金属層41と隠蔽層44或いはハードコートフィルム30との密着性がそれ自体によって或いは他の層によって確保されている場合は、意匠層40はプライマー層47を含まなくてもよい。
プライマー層形成用の材料としては、例えば、アクリル系樹脂、ウレタン系樹脂、塩化ビニル-酢酸ビニル共重合樹脂、ポリエステル系樹脂、塩素化ポリオレフィン系樹脂等を採用可能であるが、これらに限られない。
プライマー層47は、上述したプライマー層形成用の材料をハードコートフィルム30及び隠蔽層44上に塗工し、必要に応じて硬化させることにより、形成される。プライマー層形成用の材料を塗工する方法としては、特に限定されず、上述した公知の塗工方法を採用することができる。
プライマー層47の厚みは、特に制限されないが、例えば、0.1μm以上10.0μm以下であり、好ましくは0.5μm以上5.0μm以下である。なお、隠蔽層44と金属層41とによって表される意匠に立体感を与えることが望まれる場合、隠蔽層44の厚みに応じてプライマー層47の厚みを決定することが好ましい。例えば、隠蔽層44の厚みが3μm~5μm程度である場合、プライマー層47の厚みが1μm~3μm程度であれば、隠蔽層44と金属層41とによって表される意匠に立体感を与えることができる。また、例えば、隠蔽層44の厚みが6μm~14μm程度である場合、プライマー層47の厚みが1μm~10μm程度であれば、隠蔽層44と金属層41とによって表される意匠に立体感を与えることができる。また、隠蔽層44の厚みが10μm~14μm程度である場合、プライマー層47の厚みが1μm~3μm程度であれば、隠蔽層44と金属層41とによって表される意匠に、効果的に立体感を与えることができる。
これは、次のような理由によると考えられる。すなわち、プライマー層47を隠蔽層44が形成されたハードコートフィルム30上にプライマー層形成用の材料を塗工して形成する場合、隠蔽層44の厚みに対するプライマー層47の厚みが適切であれば、ハードコートフィルム30から突出する隠蔽層44の周囲に、プライマー層47のメニスカスが形成される(図4参照)。そして、このプライマー層47上に金属層41が形成されることで、金属層41の隠蔽層44との境界部分に、後述する斜面42が形成される。このため、加飾部材10の第2表面12に光が入射すると、金属層41の斜面42がこの光を効果的に反射して、上記境界部分に光沢が発現するためであると考えられる。
なお、加飾部材10を肉眼で観察した場合であっても観察者が上記立体感を容易に感知することができるためには、上述したように、隠蔽層44の厚みT44を12μm以上、好ましくは15μm以上とし、プライマー層47の厚みを1μm程度とすることが望ましい。
金属層41は、薄い膜状の層として形成される。金属層41は、ハードコートフィルム30の一側面の全面を覆うように形成されている。上述したように、センサ5で用いられる電磁波が、加飾部材10を透過する。金属層41が、ハードコートフィルム30の全面に連続的に広がる層として形成されると、電磁波が遮断又は減衰される。そこで、図5に示すように、金属層41は、複数の金属粒部41aを含んでもよい。金属粒部41aは、金属光沢を有し、可視光を反射可能となっている。金属層41は、いわゆる海島構造の島を形成している。島状の金属粒部41aが、互いに離間している。複数の金属粒部41aの間には、海島構造の海を形成する隙間41bが設けられている。センサ5で用いられる電磁波、例えばミリ波は、この隙間41bを通過することによって、金属層41を透過する。また、隙間41bが形成されていることにより、金属層41は、後述する射出成形工程において積層体20の他の層が加熱されて伸張する際に、当該他の層に追随して伸張することができる。このような金属層41は、例えばインジウムを材料として、スパッタリングや真空蒸着等の蒸着により形成され得る。
金属層41の厚みは、特に制限されないが、電磁波透過性の観点から10nm以上300nm以下であることが好ましく、30nm以上150nm以下であることがより好ましく、30nm以上100nm以下であることが、さらに好ましい。
図4に示すように、ハードコート支持層32と隠蔽層44とは、金属層41に対向する凹凸面を形成している。そして、図示された例では、金属層41は、上記凹凸面に対応して屈曲している。したがって、金属層41は、ハードコート支持層32の一側面と交差する面に沿って広がる斜面42を有している。金属層41がこのような斜面42を有していることにより、加飾部材10を第2表面12側から見た場合に斜面42が観察される。このことは、隠蔽層44と金属層41とによって表される意匠に立体感を与えることに寄与する。
さらに、意匠層40は、絵柄層を含んでいてもよい。絵柄層は、色彩やパターン、図形、デザイン、絵、写真、キャラクター、マーク、ピクトグラム、文字や数字などの絵柄が形成された層である。絵柄層は、印刷によって形成された印刷層でもよいし、転写によって形成された転写層であってもよい。絵柄層は、ハードコートフィルム30に含まれていてもよい。
<中間層>
中間層50は、後述する射出成形工程において射出される溶融樹脂と金属層41を接着することを目的として設けられる層である。さらに、中間層50は、溶融樹脂から意匠層40及びハードコートフィルム30への熱伝達を抑制することを目的として設けられてもよい。中間層50は、積層体20の第1面21を形成する。中間層形成用の材料としては、例えば、アクリル系樹脂組成物やウレタン系樹脂組成物、ポリエステル系樹脂、有機ガラスを採用可能である。中間層形成用の有機ガラスとしては、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ABS(アクリロニトリル ブタジエン スチレン共重合体)等が挙げられる。中間層50は、透明でも、不透明でもよい。中間層50は、着色されていてもよい。
中間層50は、例えば次のようにして金属層41上に形成することができる。まず、上述した中間層形成用の材料を転写用基材上に塗工し、必要に応じて硬化させることにより、当該転写用基材上に中間層50を形成する。次に、転写用基材上に形成された中間層50を、熱ラミネートによって金属層41上に転写する。これにより、金属層41上に中間層が形成される。なお、転写用基材上に中間層形成用の材料を塗工する方法としては、特に限定されず、上述した公知の塗工方法を採用することができる。また、中間層50は、フィルム状の部材を金属層41上に貼合することによっても形成することができる。
中間層50の厚みは、特に制限されない。中間層50が上記溶融樹脂と金属層41を接着することを目的として設けられる場合、中間層50の厚みは、例えば、1μm以上50μm以下であり、好ましくは1μm以上10μm以下であってよい。中間層50が溶融樹脂から意匠層40及びハードコートフィルム30への熱伝達を抑制することを目的として設けられる場合、中間層50の厚みは、例えば、50μm以上350μm以下であり、好ましくは110μm以上130μm以下であってよい。
<その他の層>
積層体20は、金属層41の凹凸を埋める充填層を更に含んでいてもよい。充填層により、意匠層40の中間層50に対面する面が平坦化される。充填層は、透明又は不透明な樹脂層としてもよい。
以上の構成を有する意匠層40の厚みT40は、15μm以上500μm以下としてもよく、15μm以上300μm以下としてもよく、15μm以上125μm以下としてもよい。
<<成形部>>
成形部60は、第1表面11を形成している。成形部60は、後述するように射出成形により作製される。成形部60をなす樹脂材料は特に限定されない。成形部60をなす樹脂材料として、ポリメチルメタクリレート(PMMA)、ポリプロピレン(PP)、ポリカーボネート(PC)、アクリロニトル・ブタジエン・スチレン(ABS)、アクリロニトリル・エチレン-プロピレン-ジエン・スチレン(AES)、アクリロニトリル・スチレン・アクリレート(ASA)が例示される。成形部60は、透明でも、不透明でもよい。成形部60は、着色されていてもよい。
上述したように、加飾部材10は、センサ5で用いられる電磁波を透過可能にするため、第1表面11及び第2表面12の間における第3方向D3に沿った厚みT10を調整される。射出成形で成形部60を作製することにより、加飾部材10の厚みT10を容易に調整できる。射出成形で成形部60を作製することにより、厚みの大きな加飾部材10を容易かつ迅速に作製できる。
図3に示すように、成形部60は、第2表面12を形成する成形層61を有している。成形層61は、積層体20に積層されている。図示された例では、成形層61は、積層体20の平坦部23と湾曲部24とによって形成される凹部内に配置されている。また、成形部60は、成形層61から延び出した成形形状部62を更に有している。成形形状部62は、加飾部材10の用途等に応じた形状を有している。一例として、成形形状部62は、エンブレム3をフロントパネル2に取り付けるための爪部であってもよい。射出成形による成形部60によれば、厚みT10の調整のための成形層61と同時に、用途に応じて種々の形状を有する成形形状部62を作製できる。ただし、成形部60から成形形状部62を省いてもよい。
成形層61の厚みは、特に制限されないが、0.5mm以上10mm以下としてもよく、1mm以上5mm以下としてもよく、2mm以上5mm以下としてもよい。
<<加飾部材の製造方法>>
次に、主として図6乃至図15を参照して、加飾部材10の製造方法について説明する。図6乃至図12並びに図14乃至図15は、加飾部材10の製造方法の一例を説明するための図である。図13は、図3に示す積層体20のうち二点鎖線XIIで囲まれた部分を拡大して示す図である。
まず、積層体20を作製する積層体作製工程を実施する。具体的には、図6に示すように、ハードコート支持層32を用意し、ハードコート支持層32の他側面上にハードコート層31を形成する。ハードコート層31は、ハードコート支持層32上に均一な厚みで形成される。ハードコート層31とハードコート支持層32とにより、ハードコートフィルム30が形成される。
次に、図7に示すように、ハードコート支持層32の一側面上に隠蔽層44を形成する。次に、図8に示すように、ハードコート支持層32及び隠蔽層44の一側面上にプライマー層47を形成する。そして、図9に示すように、プライマー層47の一側面上に金属層41を蒸着する。次に、図10に示すように、金属層41の一側面上に中間層50を形成する。以上により、積層体20が作製される。
次に、積層体20を賦形する積層体賦形工程を実施する。具体的には、図11Aに示すように、賦形型70を準備する。賦形型70は、加飾部材10における積層体20の形状に対応した形状を有している。図示された例では、賦形型70は、積層体20が平坦部23と湾曲部24とを有する形状に賦形されるように形成されている。図11Aに示された賦形型70は、互いに対向して配置された雌型71及び雄型72を有している。雌型71及び雄型72によって取り囲まれた空間が、成形用のキャビティとなる。
図11Bに示すように、積層体20を、加熱装置を用いて約180℃に加熱して軟化させ、雌型71のキャビティ内に配置する。次に、雌型71及び雄型72を閉じる。これにより、積層体20は、平坦部23と湾曲部24とを有する形状に賦形される。
あるいは、図12Aに示すように、まず、賦形型として真空成形型70を用意する。真空成型70は、加飾部材10における積層体20の形状に対応した形状を有している。真空成形型70は、積層体20が平坦部23と湾曲部24とを有する形状に賦形されるように形成されている。次に、積層体20を、加熱装置を用いて約180℃に加熱して軟化させ、真空成形型70上に配置する。そして、図12Bに示すように、真空成形型70の内部を真空吸引して、積層体20を真空成形型70に密着させる。これにより、積層体20は、平坦部23と湾曲部24とを有する形状に賦形される。
なお、積層体20が賦形される際、ハードコートフィルム30は湾曲部24において伸張する。このため、図13に示すように、湾曲部24におけるハードコートフィルム30の各層31,32の厚みT31,T32は、平坦部23におけるハードコートフィルム30の各層31,32の厚みT31,T32よりも小さくなる。
次に、賦形された積層体20に成形部60を射出成形する射出成形工程を実施する。具体的には、インサート成形により成形部60を形成する。まず、図14に示すように、射出成形型75を準備する。射出成形型75は、製造されるべき加飾部材10に対応した形状を有している。図14に示された射出成形型75は、互いに対向して配置された第1雌型76及び第2雌型77を有している。第1雌型76及び第2雌型77の間にキャビティが形成される。また、射出成形型75は、第1雌型76及び第2雌型77の間の空間に配置される雄型78を有している。第1雌型76、第2雌型77及び雄型78によって取り囲まれた空間が、成形用のキャビティとなる。
図14に示すように、雄型78を第2雌型77のキャビティ内に配置する。同様に、積層体20を第1雌型76のキャビティ内に配置する。次に、図15に示すように、第1雌型76及び第2雌型77を閉じる。その後、ポート79を通じて射出成形型75のキャビティ内に溶融樹脂を射出する。射出成形型75の内部で、樹脂が固化して成形部60が形成される。成形部60は、固化する際に積層体20と接合して一体化する。
以上のようにして、射出成形型75内に加飾部材10が製造される。なお、積層体20を賦形型70で賦形する際、ハードコートフィルム30は湾曲部24において伸張する。また、溶融樹脂を射出する際、溶融樹脂からの熱が積層体20に伝わって、積層体20の中間層50、意匠層40及びハードコートフィルム30が伸張する。ここで、上述したように、積層体20のハードコート層31及びハードコート支持層32は、180℃まで加熱されて10%ないしは20%伸ばしたときに割れを生じない。したがって、加熱装置又は溶融樹脂からの熱が積層体に伝わると、ハードコートフィルム30は、積層体20の他の層40,50に追随して、割れを生じることなく伸張することができる。
なお、図11A及び図11Bに示す積層体賦形工程と図14及び図15に示す射出成形工程とを同時に実施してもよい。すなわち、射出成形型75で積層体20を平坦部23と湾曲部24とを有する形状に賦形してもよい。
<<<第2の実施形態>>>
次に、図16乃至図20を参照して、本開示の第2の実施形態について説明する。図16乃至図20に示す加飾部材110は、図1乃至図15に示す加飾部材10と比較して、意匠層40が金属層41を支持する金属支持層81と接合層85とを有している点で異なっている。その他の構成は、図1乃至図15に示す加飾部材10と略同一である。図16乃至図20に示す第2の実施形態において、図1乃至図15に示す加飾部材10と同様の部分には同一符号を付して詳細な説明は省略する。
<金属支持層>
金属支持層81はフィルム状の部材である。金属支持層81の一側面上に、プライマー層47及び金属層41がこの順で形成されている。金属支持層81は、その他側面が隠蔽層44に対面するように配置される。金属支持層形成用の材料としては、可視光を透過し、且つ、180℃まで加熱されて10%ないし20%伸ばしたときに割れを生じない材料が採用される。例えば、金属支持層形成用の材料として、ポリメチルメタクリレート(PMMA)やポリカーボネート(PC)を採用可能である。
金属支持層81の厚みは、特に制限されないが、例えば、50μm以上500μm以下であり、好ましくは50μm以上100μm以下である。
プライマー層47は、図17乃至図20に示す例では、金属層41と金属支持層81との密着性を向上させる目的で設けられている。プライマー層47は、金属支持層81の一側面の全面を覆うように形成されている。金属層41と金属支持層81との密着性がそれ自体によって或いは他の層によって確保されている場合は、意匠層40はプライマー層47を含まなくてもよい。
図16及び図17に示す例において、金属支持層81とプライマー層47と金属層41とにより、金属フィルム80が構成される。
<接合層>
接合層85は、ハードコートフィルム30及び隠蔽層44と金属フィルム80とを接合(接着、粘着または熱融着)させる。
接合層形成用の材料としては、可視光を透過可能な熱可塑性樹脂や(メタ)アクリル酸エステル系共重合体などを採用可能である。熱可塑性樹脂としては、特に限定されず、例えばアクリル樹脂、塩化ビニル-酢酸ビニル共重合体、ポリアミド樹脂、ポリエステル樹脂、塩素化ポリプロピレン、塩素化ゴム、ウレタン樹脂、エポキシ樹脂、スチレン樹脂等を採用可能である。これらの樹脂は、単独で使用してもよく、2種以上を組み合わせて使用してもよい。接合層形成用の材料としては、後述する積層体賦形工程や射出成形工程で積層体20が加熱された際に、接合層85に隣接する層から剥離しない材料が好ましい。
接合層85は、図示された例では、上述した接合層形成用の材料を金属支持層81の他側面上に塗工することにより形成されるが、これに限られない。接合層85は、上述した接合層形成用の材料を、ハードコートフィルム30及び隠蔽層44の一側面上に塗工することにより形成されてもよい。接合層形成用の材料を塗工する方法としては、特に限定されず、上述した公知の塗工方法を採用することができる。
また、接合層85は、転写により形成されてもよい。すなわち、まず、転写用基材上に離型層及び接合層85を積層し、この接合層85を金属支持層81の他側面上又はハードコートフィルム30及び隠蔽層44の一側面上に転写することにより形成されてもよい。この場合、転写用基材は、接合層85を金属支持層81等に転写する際に、離型層と共に剥離される。転写用基材としては、例えばポリエステル樹脂フィルムやポリオレフィン樹脂フィルム等、一般的な転写フィルムの剥離層として用いられるものを採用可能である。離型層は、シリコーン樹脂等を用いて形成される。
接合層85の厚みは、特に限定されないが、例えば10μm以上200μm以下であり、好ましくは10μm以上50μm以下である。
<<加飾部材の製造方法>>
次に、主として図18~図20を参照して、第2の実施形態の加飾部材110の製造方法について説明する。
まず、積層体20を作製する積層体作製工程を実施する。具体的には、図6に示す例と同様に、ハードコートフィルム30を作製する。次に、図7に示す例と同様に、ハードコートフィルム30のハードコート支持層32上に隠蔽層44を形成する。また、金属フィルム80を作製する。具体的には、図18に示すように、金属支持層81の一側面上にプライマー層形成用の材料を塗工してプライマー層47を形成し、さらに上述した金属層形成用の材料を蒸着して金属層41を形成する。
次に、図18に示すように、金属フィルム80の他側面上に接合層85を形成する。次に、接合層85を介して、金属フィルム80とハードコートフィルム30及び隠蔽層44とを貼合させる。その後、オートクレーブ処理等を実施することにより、金属フィルム80とハードコートフィルム30との間の空気を除去する。これにより、図19に示すように、接合層85及び金属フィルム80が、ハードコート支持層32と隠蔽層44とによって形成される凹凸面に対応して屈曲する。したがって、図17に示すように、接合層85及び金属層41に、ハードコート支持層32の一側面と交差する面に沿って広がる斜面86,42が形成される。このことは、隠蔽層44と金属層41とによって表される意匠に立体感を与えることに寄与する。
その後、図20に示すように、金属層41上に中間層50を形成する。以上により、積層体20が作製される。その後、図11A及び図11Bあるいは図12に示す例と同様に積層体20を賦形し、図14及び図15に示す例と同様に成形部60を形成する。以上により加飾部材110が作製される。
ところで、このようにして作製された加飾部材110では、図17に示すように、隠蔽層44の側面45と接合層85との間に隙間88が形成される。このような加飾部材110では、隙間88を介して接合層85及び金属層41の斜面86,42が観察される。このことも、隠蔽層44と金属層41とによって表される意匠に立体感を与えることに寄与する。
<<<変形例>>>
以上、具体例を参照しながら第1及び第2の実施形態を説明してきたが、以上の具体例が第1及び第2の実施形態を限定することを意図していない。上述した第1及び第2の実施形態は、その他の様々な具体例で実施されることが可能であり、その要旨を逸脱しない範囲で、種々の省略、置き換え、変更、追加等を行うことができる。
例えば、図21Aに示すように、積層体20は、隠蔽層44を含まなくてもよい。
また、プライマー層47は、ハードコートフィルム30と隠蔽層44との間に配置されていてもよい。例えば、図21Bに示すように、積層体20は、ハードコートフィルム30の一側に、プライマー層47、隠蔽層44、金属層41及び中間層50がこの順で配置されることにより、作製されていてもよい。
また、プライマー層47は、プライマー支持層48によって支持されていてもよい。この場合、プライマー支持層48は、プライマー層47を、プライマー層47の金属層41に対面する側とは反対の側から支持する。プライマー支持層48を形成する材料としては、例えば、有機ガラスを採用可能である。有機ガラスとしては、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ABS(アクリロニトリル ブタジエン スチレン共重合体)等が挙げられる。これらの有機ガラスの中でも、ポリカーボネートは、耐衝撃性や透明性に優れており、プライマー支持層48を形成する材料として好適である。
図21Cに示す例では、積層体20は、ハードコートフィルム30の一側に、隠蔽層44、接合層85、プライマー支持層48、プライマー層47、金属層41及び中間層50がこの順で配置されることにより、作製されている。また、図21Dに示す例では、積層体20は、ハードコートフィルム30の一側に、接合層85、隠蔽層44、プライマー支持層48、プライマー層47、金属層41及び中間層50がこの順で配置されることにより、作製されている。
また、隠蔽層44は、隠蔽層支持層46よって支持されていてもよい。この場合、隠蔽層支持層46は、隠蔽層44のいずれの側に配置されていてもよい。隠蔽層支持層46を形成する材料としては、例えば、有機ガラスを採用可能である。有機ガラスとしては、例えば、ポリカーボネート、ポリメチルメタクリレート、ポリアクリレート、ポリエチレンテレフタレート、ポリエチレンナフタレート、ポリオレフィン、ABS(アクリロニトリル ブタジエン スチレン共重合体)等が挙げられる。これらの有機ガラスの中でも、ポリカーボネートは、耐衝撃性や透明性に優れており、隠蔽層支持層46を形成する材料として好適である。
図21Eに示す例では、積層体20は、ハードコートフィルム30の一側に、接合層85、隠蔽層支持層46、隠蔽層44、接合層85、プライマー支持層48、プライマー層47、金属層41及び中間層50がこの順で配置されることにより、作製されている。また、図21Fに示す例では、積層体20は、ハードコートフィルム30の一側に、接合層85、隠蔽層44、隠蔽層支持層46、接合層85、プライマー支持層48、プライマー層47、金属層41及び中間層50がこの順で配置されることにより、作製されている。
また、金属層41は、ハードコートフィルム30に接合層85を介して対面するように配置されていてもよい。図21Gに示す例では、積層体20は、ハードコートフィルム30の一側に、接合層85、金属層41、プライマー層47、プライマー支持層48及び中間層50がこの順で配置されることにより、作製されている。また、図21Hに示す例では、積層体20は、ハードコートフィルム30の一側に、接合層85、隠蔽層44、金属層41、プライマー層47、プライマー支持層48及び中間層50がこの順で配置されることにより、作製されている。また、図21Iに示す例では、積層体20は、ハードコートフィルム30の一側に、隠蔽層44、接合層85、金属層41、プライマー層47、プライマー支持層48及び中間層50がこの順で配置されることにより、作製されている。
また、積層体20は、ハードコートフィルム30に金属層41等を転写することにより作製されてもよい。図22Aに示す例では、次のようにして積層体20を作製する。まず、支持基材96に離型層97を積層してなる転写フィルム95を準備する。次に、転写フィルム95の離型層97の上にプライマー層47及び金属層41をこの順で積層する。次に、転写フィルム95に積層された金属層41とハードコートフィルム30のハードコート支持層32とを、接合層85を介して貼合させる。その後、転写フィルム95をプライマー層47から剥離する。その後、プライマー層47上に中間層50を積層することにより、積層体20を得る。また、図22Bに示す例では、次のようにして積層体20を作製する。まず、支持基材96に離型層97を積層してなる転写フィルム95を準備する。次に、転写フィルム95の離型層97の上にプライマー層47、金属層41及び隠蔽層44をこの順で積層する。次に、転写フィルム95に積層された金属層41及び隠蔽層44とハードコートフィルム30のハードコート支持層32とを、接合層85を介して貼合させる。その後、転写フィルム95をプライマー層47から剥離する。その後、プライマー層47上に中間層50を積層することにより、積層体20を得る。また、図22Cに示す例では、次のようにして積層体20を作製する。まず、支持基材96に離型層97を積層してなる転写フィルム95を準備する。次に、転写フィルム95の離型層97の上にプライマー層47及び金属層41をこの順で積層する。また、ハードコートフィルム30のハードコート支持層32上に隠蔽層44を形成する。次に、転写フィルム95に積層された金属層41とハードコートフィルム30のハードコート支持層32及びハードコート支持層32上に形成された隠蔽層44とを、接合層85を介して貼合させる。その後、転写フィルムをプライマー層47から剥離する。その後、プライマー層47上に中間層50を積層することにより、積層体20を得る。
また、隠蔽層44は、可視光を透過可能な材料で形成されてもよい。この場合、隠蔽層44の凹凸により、隠蔽層44と金属層41とによって表される意匠に模様を付与することができる。例えば、隠蔽層44が筋状に形成されている場合、隠蔽層44と金属層41とによって表される意匠に筋状の模様を付与することができる。
また、意匠層40は隠蔽層44を含まなくてもよい。また、金属層41は、ハードコートフィルム30の全面を覆うように形成されていなくてもよい。金属層41は、ハードコートフィルム30の一部のみを覆うように形成されていてもよい。
また、金属層41は、ハードコート支持層32と隠蔽層44とによって形成される凹凸面に対応して屈曲していなくてもよい。例えば、図23に示すように、積層体20は、ハードコート支持層32と隠蔽層44とによって形成される凹凸を埋める充填層90を含み、充填層90の一側面上に金属層41が形成されていてもよい。充填層90は、透明又は不透明な樹脂層としてもよい。
また、ハードコートフィルム30は、ハードコート支持層32にハードコート層31を転写することにより作製されてもよい。この場合、例えば、次の方法によりハードコートフィルム30を作製することができる。まず、転写用基材上にハードコート層31、プライマー層および接合層をこの順で積層する。次に、転写用基材上に積層されたハードコート層31、プライマー層および接合層を、ハードコート支持層32に貼合させる。その後、転写用基材をハードコート層31から剥離する。これにより、ハードコートフィルム30が作製される。
また、加飾部材10,110は、成形部60及び中間層50を含まなくてもよい。
さらに、上述した加飾部材10,110は、センサ5に対面して配置されていなくてもよい。図24に示された例のように、加飾部材10,110は、移動体1のハンドルやダッシュボードに取り付けられたエンブレム3として用いられてもよい。加飾部材10,110は、エンブレム3以外の用途に用いられてもよい。
加飾部材10,110は、移動体1のフロントパネル2等の外装部材として用いられてもよい。さらに、加飾部材10,110は、移動体1以外にも適用可能である。加飾部材10,110は、内装材、外装材、天井材、床材等の建材や、家電等のケースにも適用可能である。
<<ハードコート層形成用の材料およびハードコート層の形成方法>>
以下に、ハードコート層31を形成するためのハードコート層形成用の材料およびハードコート層31の形成方法について、詳述する。
[ハードコート層形成用の材料I]
ハードコート層形成用の材料は、例えば、
(A)下記一般式(1)で示される化合物(a1)と、下記一般式(2)で示されるイソシアヌレート環を有するイソシアネート(a2)との反応物であるウレタン化合物と、
(B)下記一般式(3)で示されるイソシアヌレート環を有する化合物と、
(C)平均一次粒径が10nm~100nmの無機粒子と、
を含む、硬化性樹脂組成物(以下、「ハードコート層形成用の材料I」とも呼ぶ。)である。
Figure 2023063168000002

(式中、Zは、重合性炭素-炭素二重結合含有基である。Rは、酸素原子を含んでも良い2価の炭化水素基である。Rは、水素原子又は1価の炭化水素基である。Rは、単結合又は2価の炭化水素基である。nは1~3の整数であり、mは1~3の整数であり、n+mは2~4を満たす数である。nが2以上のとき、2つ以上のZ及びRは同一であっても異なってもよい。mが2以上のとき、2つ以上のRは同一であっても異なってもよい。4-n-mが2のとき、2つのRは同一であっても異なってもよい)
Figure 2023063168000003
(式中、Rはそれぞれ独立に、同一又は異種の、酸素原子を含んでも良い2価の炭化水素基である。)
Figure 2023063168000004
(式中、Zはそれぞれ独立に、同一又は異種の、重合性炭素-炭素二重結合含有基である。Rはそれぞれ独立に、同一又は異種の、酸素原子を含んでも良い2価の炭化水素基である。)
このハードコート層形成用の材料Iは、イソシアヌレート環を有する上記(A)および(B)成分を含むことによって、分子間の凝集力を向上させることができる。さらには、イソシアヌレート環と重合性炭素-炭素二重結合含有基との間の基によって疎水性を付与することができる。そのため、硬化物に優れた伸張性、および極性の高いエタノールやメタノール等の薬品に対しての耐性を付与することができる。さらに、(C)成分を含むことによって、耐摩耗性に優れる硬化物となる。(A)成分のみであると、組成物中のイソシアヌレート環同士の分子間凝集力による耐薬品性が不十分となるが、(B)成分を含むことによってこれを補い、硬化物に優れた伸び性、耐薬品性を付与することができる。
A.ウレタン化合物(A)
このハードコート層形成用の材料Iに用いられるウレタン化合物(A)は、下記一般式(1)で示される化合物(a1)と、下記一般式(2)で示されるイソシアヌレート環を有するイソシアネート(a2)との反応物である
Figure 2023063168000005
(式中、Zは、重合性炭素-炭素二重結合含有基である。Rは、酸素原子を含んでも良い2価の炭化水素基である。Rは、水素原子又は1価の炭化水素基である。Rは、単結合又は2価の炭化水素基である。nは1~3の整数であり、mは1~3の整数であり、n+mは2~4を満たす数である。nが2以上のとき、2つ以上のZ及びRは同一であっても異なってもよい。mが2以上のとき、2つ以上のRは同一であっても異なってもよい。4-n-mが2のとき、2つのRは同一であっても異なってもよい。)
Figure 2023063168000006
(式中、Rはそれぞれ独立に、同一又は異種の、酸素原子を含んでも良い2価の炭化水素基である。)
1.一般式(1)で示される化合物(a1)
上記一般式(1)で示される化合物(a1)中、Zは、重合性炭素-炭素二重結合含有基である。
重合性炭素-炭素二重結合含有基としては、重合性炭素-炭素二重結合を含んでいれば特に限定されるものではないが、例えば、ビニル基、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基、及びアリル基が挙げられる。nが2以上(即ち、2または3)のとき、2つ又は3つのZは、同一でも又は相異なっていてもよい。
は、酸素原子を含んでも良い2価の炭化水素基であり、例えば、炭素数1~3の直鎖状、分岐状、若しくは環状の2価の脂肪族炭化水素基や、当該脂肪族炭化水素基の炭素-炭素結合間に、1つ以上のエーテル結合、エステル結合、又はカルボニル基等を含む基が挙げられる。好ましくは、炭素数1~3の直鎖状のアルキレン基であり、特に好ましくは、メチレン基、エチレン基、プロピレン基である。nが2以上(即ち、2または3)のとき、2つ又は3つのRは、同一でも又は相異なっていてもよい。
は、水素原子又は1価の炭化水素基であり、好ましくは、水素原子又は炭素数1~3の直鎖状、分岐状、若しくは環状のアルキル基であり、特に好ましくは、水素原子又はメチル基である。4-n-mが2のとき、2つのRは、それぞれ同一でも又は相異なっていてもよい。
は、単結合又は2価の炭化水素基であり、好ましくは、単結合または炭素数1~3の直鎖状、分岐状、若しくは環状のアルキレン基であり、特に好ましくは、単結合またはメチレン基である。mが2以上(即ち、2または3)のとき、2つ又は3つのRは、同一でも又は相異なっていてもよい。
nは1~3の整数であり、mは1~3の整数であり、n+mは2~4を満たす数である。すなわち、n及びmの組み合わせが、(n、m)=(1、1)、(1、2)、(2、1)、(3、1)、(2、2)または(1、3)である。
化合物(a1)としては、ペンタエリスリトールが(メタ)アクリル変性されたもの、すなわち、ペンタエリスリトールに含まれる4つのヒドロキシ基のうちの1つ、2つ、または、3つの水酸基が(メタ)アクリル酸と反応したものであることが好ましい。1つのヒドロキシ基が(メタ)アクリル酸と反応したものはペンタエリスリトールモノアクリレートであり、n=1、m=3、Z=(メタ)アクリロイルオキシ基、R及びRはメチレン基である。2つのヒドロキシ基が(メタ)アクリル酸と反応したものはペンタエリスリトールジアクリレートであり、n=2、m=2、Z=(メタ)アクリロイルオキシ基、R及びRはメチレン基である。3つのヒドロキシ基が(メタ)アクリル酸と反応したものはペンタエリスリトールトリアクリレート(PETA)であり、n=3、m=1、Z=(メタ)アクリロイルオキシ基、R及びRはメチレン基である。
特に、化合物(a1)は、ペンタエリスリトール中の3つの水酸基が(メタ)アクリル酸で変性されたペンタエリスリトールトリアクリレート(PETA)が主成分であることが好ましい。これは、ペンタエリスリトールモノアクリレートやペンタエリスリトールジアクリレートの量比が大きい場合は、後述する一般式(2)で示されるイソシアヌレート環を有するイソシアネート(a2)と反応した場合に、反応物であるウレタン化合物(A)が高分子化する可能性があり、反応物であるウレタン化合物(A)と、後述する化合物(B)との分散性を低下させてしまい、諸物性に悪影響を与える可能性があるからである。
したがって、化合物(a1)は、上記一般式(1)中におけるnが3、mが1、Zが(メタ)アクリロイルオキシ基、R及びRがメチレン基である化合物が主成分であること好ましい。
ここで、主成分であるとは、上述した通り、ウレタン化合物(A)を高分子化させることなく、諸物性に悪影響を及ぼさない程度にペンタエリスリトールモノアクリレートやペンタエリスリトールジアクリレートが含まれていてもよいことを意味する。
なお、上記化合物(a1)は、単独で用いてもよく、2種以上を併用しても良い。
また、化合物(a1)としては、2-ヒドロキシプロピルアクリレート(HPA)も好ましい。この場合、n=1、m=1、Z=(メタ)アクリロイルオキシ基、R及びRはメチレン基、2つのRは水素原子及びメチル基である。
2.一般式(2)で示されるイソシアヌレート環を有するイソシアネート(a2)
一般式(2)中、Rはそれぞれ独立に、同一又は異種の、酸素原子を含んでも良い2価の炭化水素基である。
上記Rとしては、例えば、炭素数6~13の直鎖状、分岐状、若しくは環状の2価の脂肪族炭化水素基や、1つ以上のエーテル結合、エステル結合、又はカルボニル基等を含む炭素数7~13の2価の脂肪族炭化水素基が挙げられる。
このように、Rが所定の炭素数を有する脂肪族炭化水素基であるイソシアネート(a2)である場合、硬化物とした際に伸張性が良好となり、加工性に優れる硬化物を得ることができる。また、疎水性を付与することが可能となることにより耐薬品性に優れた硬化物を得ることができる。さらには、硬化物内のイソシアヌレート環の移動度を向上させることができるため、イソシアヌレート環同士の分子間凝集力による結合を向上させることができると推定される。
中でも、炭素数6~8のアルキレン基が好ましく、特には、へキシレン基、シクロヘキシレン基が好ましい。
このようなイソシアヌレート環を有するイソシアネートは、分子中に2個のイソシアネート基を有するジイソシアネートから誘導される。上記ジイソシアネートとしては、ヘキサメチレンジイソシアネート、イソホロンジイソシアネート、ジシクロヘキシルメタン-4,4’-ジイソシアネート、ジシクロヘキシルメタン-2,4’-ジイソシアネート、2,4-トリレンジイソシアネート、2,5-トリレンジイソシアネート、1,3-キシリレンジイソシアネート、1,4-キシリレンジイソシアネート、ジフェニルメタン-4,4’-ジイソシアネート、3-メチルジフェニルメタンジイソシアネート、リジンジイソシアネート等のジイソシアネートが挙げられるが、特に、ヘキサメチレンジイソシアネート、イソホロンジイソシアネートが好ましい。
3.その他
ハードコート層形成用の材料Iのウレタン化合物(A)は、上記一般式(1)で示される化合物(a1)と、上記一般式(2)で示されるイソシアヌレート環を有するイソシアネート(a2)とをウレタン化反応させて得られる化合物である。特には、上記一般式(1)中におけるnが3、mが1、Zが(メタ)アクリロイルオキシ基、R及びRがメチレン基である化合物(a1)と、上記一般式(2)中におけるRが直鎖状、分岐状、又は環状の2価の脂肪族炭化水素基であるイソシアネート(a2)との反応物であることが好ましい。
ウレタン化合物(A)を得る方法としては特に限定されず、一般的に公知の方法に従って、製造することができる。例えば、反応容器に、上記一般式(1)で示される化合物(a1)と、上記一般式(2)で示されるイソシアヌレート環を有するイソシアネート(a2)と、必要に応じてウレタン化触媒、重合禁止剤、及び有機溶剤を投入し、所定の温度を維持して反応させる。
各成分の反応割合は、上記一般式(1)で示される化合物(a1)に含まれる水酸基と、上記一般式(2)で示されるイソシアヌレート環を有するイソシアネート(a2)が当量となるように反応させることが好ましいが、製造においては、水酸基/イソシアネート基の当量比が、通常0.8~1.1の範囲で反応させる。
なお、イソシアネート(a2)及び化合物(a1)は、どちらか一方の原料を予め投入した後に、予め投入した原料以外の原料を滴下して反応させてもよい。また、ウレタン化反応は、通常60~120℃の範囲で行われる。ウレタン化反応の終点は、イソシアネート基を示す2270cm-1の赤外吸収スペクトルの消失や、JIS K 7301に記載の方法でイソシアネート基の含有量を求めることで確認することができる。ウレタン化触媒としては、ジブチルスズジラウレート等のスズ化合物やトリエチルアミン等のアミンを用いることができる。
ウレタン化合物(A)の分子量については、反応物であるウレタン化合物(A)と、後述する化合物(B)との分散性を向上させ、均一な物性となる点において、重量平均分子量が1000以上25000以下であることが好ましい。
ここで、本明細書における重量平均分子量は(Mw)は、ゲル・パーミエーション・クロマトグラフィー(GPC)により、標準ポリスチレン換算値として求める。
例えば、測定装置としては、東ソー社製GPC HLC-8220を用い、カラムにはShodex LF-404×2本を直列で接続、検出器には示差屈折率(RI)検出器、標準ポリスチレンとして、Agilent Technologies製Easical Type PS-2ポリスチレン(分子量範囲580~364,000)を用いることができる。
ハードコート層形成用の材料Iである硬化性樹脂組成物中のウレタン化合物(A)の量は、特に限定されないが、硬化性樹脂組成物の固形分100質量部中18質量部~60質量部の範囲内、特に36質量部~54質量部の範囲内であることが好ましい。硬化物に必要とされる諸物性を得ることができるからである。
なお、ウレタン化合物(A)と、後述する「D.その他の成分」で示すウレタン化合物(D)との混合物の状態で配合する場合には、ウレタン化合物(A)と、後述するウレタン化合物(D)との混合物の配合量は、硬化性樹脂組成物の固形分100質量部中10質量部~90質量部の範囲内、特に20質量部~70質量部の範囲内であることが、硬化物に必要とされる諸物性をより向上させることができるため好ましい。
B.イソシアヌレート環を有する化合物(B)
ハードコート層形成用の材料Iの(B)成分は、下記一般式(3)で示されるイソシアヌレート環を有する化合物である。
Figure 2023063168000007
(式中、Zはそれぞれ独立に、同一又は異種の、重合性炭素-炭素二重結合含有基である。Rはそれぞれ独立に、同一又は異種の、酸素原子を含んでも良い2価の炭化水素基である。)
(B)成分を加えることによって、硬化物の架橋密度とイソシアヌレート環の密度とのバランスを向上させることができ、伸張性を損なうことなく、耐薬品性を向上させることができるといった効果を奏することができる。
上記一般式(3)において、Zは、それぞれ独立に、同一又は異種の、重合性炭素-炭素二重結合含有基である。
また、上記重合性炭素-炭素二重結合含有基としては、上記一般式(1)におけるZで例示したものと同様のものが挙げられる。特に、重合性の観点から、(メタ)アクリロイル基、(メタ)アクリロイルオキシ基が好ましい。
はそれぞれ独立に、同一又は異種の、酸素原子を含んでも良い2価の炭化水素基であるが、好ましくは、炭素数2~7のアルキレン基、又は、エステル基を含む炭素数5~15の2価の脂肪族炭化水素基であることが好ましい。疎水性とすることにより、耐アルコール性を向上させることができると共に、硬化物内のイソシアヌレート環の移動度を向上させることができるため、イソシアヌレート環同士の分子間凝集力による結合を向上させることができると推定されるからである。
本開示においては、特に3つRのうち少なくとも1つが、エステル基を含む炭素数5~15の2価の脂肪族炭化水素基である化合物であることが好ましい。この場合、他のRが炭素数2~7の直鎖状のアルキレン基であることが好ましい。
3つRのうち少なくとも1つが、エステル基を含む炭素数5~15の2価の脂肪族炭化水素基である化合物としては、適宜選択して、市販品を用いてもよく、例えば、下記式で示されるεカプロラクトン変性トリス-(2-アクリロキシエチル)イソシアヌレート(NKエステル A9300-1CL,NKエステル A9300-3CL(新中村化学工業製))が挙げられる。また、その他の(B)成分としては、下記式で示される、εカプロラクトン変性されていないトリス-(2-アクリロキシエチル)イソシアヌレート(NKエステル A9300(新中村化学工業製))が挙げられる。
A9300-1CL
Figure 2023063168000008
A9300-3CL
Figure 2023063168000009
A9300
Figure 2023063168000010
また、このような3つのRのうち少なくとも1つが、エステル基を含む炭素数5~15の2価の脂肪族炭化水素基である化合物は、ヒドロキシ基を有するイソシアヌル酸トリスヒドロキシアルキル(例えば、イソシアヌル酸トリスヒドロキシエチル)に、ε-カプロラクトンを付加し、さらにその後アクリル酸を付加するといった2段階で合成することができる。
化合物(B)の量は、特に限定されないが、硬化性樹脂組成物の固形分100質量部中36質量部~82質量部の範囲内、特に46質量部~72質量部の範囲内であることが、硬化物に必要とされる諸物性を得るためには好ましい範囲であるといえる。
C.無機粒子(C)
ハードコート層形成用の材料Iの(C)成分は、平均一次粒径が10nm~100nmの無機粒子である。無機粒子としては、例えば、シリカ(コロイダルシリカ、ヒュームドシリカ、沈降性シリカなど)、アルミナ、ジルコニア、チタニア、酸化亜鉛などの金属酸化物からなる無機粒子が好ましく挙げられ、透明性と耐摩耗性の向上の観点から、シリカあるいはアルミナからなる無機粒子であることが好ましい。粒子形状は、球、楕円体、多面体、鱗片形などが挙げられ、特に制限されないが、硬度がより高くなり優れたハードコート性が得られる点で、球状が好ましい。
無機粒子としては、非反応性でもよいし、表面に反応性官能基を有する反応性無機粒子であってもよい。反応性官能基としては、ビニル基、(メタ)アクリロイル基、アリル基、エポキシ基、およびシラノール基等が好ましく挙げられ、高硬度性および耐スクラッチ性の向上の観点から、ビニル基、(メタ)アクリロイル基、およびアリル基がより好ましい。
ハードコート層形成用の材料Iの(C)成分の平均一次粒径が10nm~100nmの無機粒子は、平均連結数2~20個で連結凝集した無機粒子群(異形無機粒子)を形成していても良い。連結凝集は、規則的であっても不規則的であってもよい。
また、異形無機粒子は表面に反応性官能基を有していてもよい。反応性官能基としては、ビニル基、(メタ)アクリロイル基、アリル基、エポキシ基、およびシラノール基等が好ましく挙げられる。
ハードコート層形成用の材料Iである硬化性樹脂組成物は、(C)成分の量は、特に限定されないが、硬化性樹脂組成物の固形分100質量部中5質量部~20質量部の範囲内、特に10質量部~15質量部の範囲内であれば、確実に、優れた耐摩耗性を得ることができるために好ましい。
D.その他の成分
ハードコート層形成用の材料Iは、さらに、上記一般式(1)で示される化合物と、イソシアヌレート構造を含まず、脂環構造を有するイソシアネートとの反応物であるウレタン化合物(D)を含むものであることが好ましい。このような、イソシアヌレート構造を含まず、脂環構造を有するイソシアネートとしては、イソホロンジイソシアネート(IPDI)等が挙げられる。
このように、(A)成分とは異なるウレタン化反応物を含むことにより、より一層伸び性に優れた硬化物となるために好ましい。
またハードコート層形成用の材料Iは、組成物の粘度を調整したり、硬化被膜の平滑性、均一性、被塗体に対する密着性等を向上させるために、溶剤を含有していても良い。溶剤としては公知のものが使用でき、例えば、エタノール、プロパノール、イソプロパノール、ブタノール等のアルコール類、トルエン、キシレン等の芳香族炭化水素類、酢酸エチル、酢酸ブチル等のエステル類、アセトン、メチルエチルケトン、メチルイソブチルケトン等のケトン類、2-メトキシエタノール、2-エトキシエタノール、2-エトキシプロパノール、2-(2-エトキシエトキシ)エタノール、1,4-ジオキサン、テトラヒドロフラン等のエーテル類等が挙げられる。溶剤は、2種以上を混合して用いてもよい。
ハードコート層形成用の材料Iである硬化性樹脂組成物において、溶剤の含有割合は、目的に応じて適宜調整されれば良く特に限定されないが、硬化性樹脂組成物100質量部に対し、25質量部以上70質量部以下であることが好ましく、更に30質量部以上50質量部以下であることが好ましい。
またハードコート層形成用の材料Iである硬化性樹脂組成物は、硬化に紫外線を用いる紫外線硬化性とする場合には、硬化を速やかに行うため、本開示の組成物に光重合開始剤、重合促進剤、光開始助剤等を添加してもよい。光重合開始剤としては、公知のものが使用でき、例えばアセトフェノン系化合物、ベンゾインエーテル系化合物、ベンゾフェノン系化合物、チオキサントン系化合物等が挙げられる。また、重合促進剤及び光開始助剤として、例えばトリエタノールアミン、メチルジエタノールアミン、トリイソプロパノールアミン等が使用できる。
なお、硬化に電子線を用いる電子線硬化性とする場合には、光重合開始剤、重合促進剤、光開始助剤等を添加する必要は無い。この場合、固形分中のウレタン化合物(A)及び化合物(B)の含有割合を高めることができ、耐摩耗性及び引張伸び性を向上し易い点から好ましい。
またハードコート層形成用の材料Iには、必要に応じて、更に、例えば光安定剤、酸化防止剤、可塑剤、難燃剤、界面活性剤、レベリング剤、熱重合禁止剤、帯電防止剤、防曇剤、抗菌剤、充填剤、顔料、染料、着色剤等の各種の添加剤を含有させることができる。
E.その他
ハードコート層形成用の材料Iは、ウレタン化合物(A)、上記化合物(B)、無機粒子(C)、及び必要に応じて各種添加剤や溶剤を所定の割合で配合し、常法により均一に混合して得ることができる。
[ハードコート層形成用の材料Iを用いたハードコート層の形成方法]
ハードコート層31は、上述したハードコート層形成用の材料Iの硬化物である。
ハードコート層31は、基材(ハードコート支持層32)上に、上記ハードコート層形成用の材料Iを所望の厚さで塗工し、所望により溶剤を用いた場合、乾燥して溶剤を除去し、次いで、活性エネルギー線を照射して硬化させることにより形成することができる。このようにして得られた樹脂硬化物は、優れた耐摩耗性、伸び性、及び耐薬品性を有する硬化物となる。
上記ハードコート層形成用の材料Iを基材(ハードコート支持層32)上に塗工する方法として特に限定されず、適宜公知の方法を適用でききる。塗工方法としては例えば、ディッピング法、フローコート法、スプレー法、スピンコート法、グラビアコート法、マイクログラビアコート法、ダイコート法、スリットリバース法、ロールコート法、ブレードコート法、エアーナイフコート法、オフセット法、バーコート法等のいずれの方法によっても塗布することもできる。また、グラビア印刷、グラビアオフセット印刷、スクリーン印刷等の印刷方法により画像様に塗工することもできる。
なお、塗工量については硬化物の目的に応じて適宜選択されればよく、特に制限されない。例えば、ガラス代替品を目的とする場合、活性エネルギー線の照射によって硬化した硬化物層の膜厚が、2μm以上20μm以下、好ましくは3μm以上15μm以下、より好ましくは4μm以上10μm以下となるように塗工することが好ましい。
ハードコート層形成用の材料Iに、適宜必要に応じて加えた溶剤を蒸発させるためには、熱風加熱、赤外線加熱、遠赤外線加熱等の公知の乾燥方法を適宜採用できる。
乾燥条件は、溶剤の沸点、基材の材質、塗布量等によって、好ましい範囲が異なるが、一般的には、60℃以上180℃以下の温度で、10秒以上30分以下行う方法等が挙げられる。
活性エネルギー線としては、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯、タングステンランプ等の光源から発せられる紫外線、通常20~2000kVの粒子加速器から取り出される電子線、α線、β線、γ線等を用いることができる。
[ハードコート層形成用の材料II]
また、ハードコート層形成用の材料は、例えば、熱硬化性成分、および活性エネルギー線硬化性成分等の硬化性成分を含む硬化性組成物(以下、「ハードコート層形成用の材料II」とも呼ぶ。)であってもよい。ハードコート層形成用の材料IIである硬化性組成物に含まれる硬化性成分としては、耐候性、耐摩耗性および耐薬品性という観点から、活性エネルギー線硬化性成分が好ましい。
熱硬化性成分としては、例えば、エポキシ樹脂、メラミン樹脂、グアナミン樹脂、尿素樹脂、不飽和ポリエステル、熱硬化性ウレタン樹脂、熱硬化性(メタ)アクリル樹脂およびアミノアルキッド樹脂等の熱硬化性樹脂が挙げられる。
活性エネルギー線硬化性成分は、活性エネルギー線の照射を受けて硬化する成分である。活性エネルギー線としては、例えば、紫外線(UV)、X線およびγ線等の電磁波;電子線(EB)、α線およびイオン線等の荷電粒子線が挙げられる。
活性エネルギー線硬化性成分としては、例えば、分子中に3個以上の(メタ)アクリロイル基を有する多官能(メタ)アクリレートモノマーが挙げられる。多官能(メタ)アクリレートモノマーとしては、例えば、ウレタン(メタ)アクリレートモノマー;トリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレート、ジトリメチロールプロパンテトラ(メタ)アクリレート、ペンタエリスリトールトリ(メタ)アクリレート、ペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールトリ(メタ)アクリレート、ジペンタエリスリトールテトラ(メタ)アクリレート、ジペンタエリスリトールペンタ(メタ)アクリレートおよびジペンタエリスリトールヘキサ(メタ)アクリレート等の脂肪族モノマー;トリス(2-(メタ)アクリロキシエチル)イソシアヌレート等のイソシアヌレート骨格を有するモノマー;ならびにこれらの変性体が挙げられる。
上記変性体としては、例えば、エチレンオキサイド(EO)変性体、プロピレンオキサイド(PO)変性体およびカプロラクトン(CL)変性体が挙げられる。高湿度環境下において加水分解の影響が小さく、ハードコート層の耐候性をより向上できるという観点から、CL変性体が好ましい。上記変性体としては、具体的には、EO変性トリメチロールプロパントリ(メタ)アクリレート、PO変性トリメチロールプロパントリ(メタ)アクリレート、EO変性ジペンタエリスリトールヘキサ(メタ)アクリレート、PO変性ジペンタエリスリトールヘキサ(メタ)アクリレート、CL変性ジペンタエリスリトールヘキサ(メタ)アクリレートおよびCL変性トリス(2-(メタ)アクリロキシエチル)イソシアヌレートが挙げられる。
ウレタン(メタ)アクリレートモノマーは、ポリイソシアネートと、水酸基を有する(メタ)アクリレートとを反応させて得られ、分子中にウレタン結合および(メタ)アクリロイル基を有するモノマーである。
ポリイソシアネートとしては、例えば、ヘキサメチレンジイソシアネート、リジンジイソシアネートおよびリジントリイソシアネートなどの脂肪族ポリイソシアネート;イソホロンジイソシアネート、ノルボルナンジイソシアネート、メチレンビス(4-シクロヘキシルイソシアネート)、1,3-ビス(イソシアナトメチル)シクロヘキサン、2-メチル-1,3-ジイソシアナトシクロヘキサンおよび2-メチル-1,5-ジイソシアナトシクロヘキサンなどの脂環式ポリイソシアネートが挙げられる。ポリイソシアネートとしては、脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートの多量体、例えばイソシアヌレート体などの三量体、を使用することもできる。ポリイソシアネートにおけるイソシアネート基数は、好ましくは2以上12以下、より好ましくは2以上8以下である。
水酸基を有する(メタ)アクリレートとしては、例えば、ヒドロキシエチル(メタ)アクリレート、ヒドロキシプロピル(メタ)アクリレート、4-ヒドロキシブチル(メタ)アクリレート、2-(メタ)アクリロイロキシエチル-2-ヒドロキシエチル-フタル酸、トリメチロールプロパンジ(メタ)アクリレート、グリセリンジ(メタ)アクリレート、ビス((メタ)アクリロキシエチル)ヒドロキシエチルイソシアヌレート、ペンタエリスリトールトリ(メタ)アクリレート、ジトリメチロールプロパントリ(メタ)アクリレートおよびジペンタエリスリトールペンタ(メタ)アクリレート;ならびにこれらのEO、POまたはCL変性体が挙げられる。これらの中でも、ハードコート層の耐摩耗性および耐候性の向上という観点から、ペンタエリスリトールトリ(メタ)アクリレートおよびジペンタエリスリトールペンタ(メタ)アクリレート;ならびにこれらのEO、POまたはCL変性体が好ましい。
上記多官能(メタ)アクリレートモノマーにおける(メタ)アクリロイル基数は、ハードコート層の耐摩耗性および耐候性の向上という観点から、3以上であり、好ましくは3以上8以下、より好ましくは3以上6以下である。
上記多官能(メタ)アクリレートモノマーの中でも、イソシアヌレート骨格を有するモノマーおよびその変性体が好ましい。イソシアヌレート骨格を有するモノマーは、脂肪族モノマーに比べて、ハードコート層の伸び率をより向上できる傾向にある。
上記多官能(メタ)アクリレートモノマーの中でも、ポリイソシアネートが脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートの多量体であるウレタン(メタ)アクリレートモノマーも好ましい。このようなウレタン(メタ)アクリレートモノマーは、ポリイソシアネートが脂肪族ポリイソシアネートまたは脂環式ポリイソシアネートであるウレタン(メタ)アクリレートモノマーに比べて、ハードコート層の伸び性をより向上できる傾向にある。これは、上記多量体を用いることにより、得られるウレタン(メタ)アクリレートにおいて硬化反応に寄与しない部分構造が大きくなり、したがって硬化後に得られる硬化物においてソフトセグメントとハードセグメントとが明瞭に分かれ、伸び率に寄与するソフトセグメントが機能しやすいためであると考えられる。
活性エネルギー線硬化性成分としては、従来からエネルギー線硬化性樹脂として慣用されている重合性オリゴマーも挙げられる。重合性オリゴマーとしては、例えば、分子中に2個以上の(メタ)アクリロイル基を有するオリゴマーが挙げられ、具体的には、ポリエーテル系ウレタン(メタ)アクリレート、ポリカーボネート系ウレタン(メタ)アクリレートおよびポリエステル系ウレタン(メタ)アクリレート等のウレタン(メタ)アクリレートオリゴマー、エポキシ(メタ)アクリレートオリゴマー、ポリエステル(メタ)アクリレートオリゴマー、ならびにポリエーテル(メタ)アクリレートオリゴマーが挙げられる。これらの中でも、ハードコート層の耐摩耗性および耐候性をより向上できるという観点から、ウレタン(メタ)アクリレートオリゴマーが好ましい。
ウレタン(メタ)アクリレートオリゴマーは、ポリオールおよびジイソシアネートを反応させて得られるイソシアネート化合物と、水酸基を有する(メタ)アクリレートとを反応させて得られ、分子中にウレタン結合および(メタ)アクリロイル基を有するオリゴマーである。
ポリオールとしては、例えば、ポリエーテルポリオール、ポリカーボネートポリオールおよびポリエステルポリオールが挙げられる。ジイソシアネート、および水酸基を有する(メタ)アクリレートとしては、上述した化合物が挙げられる。
ウレタン(メタ)アクリレートオリゴマーにおける(メタ)アクリロイル基数は、好ましくは2以上15以下、より好ましくは4以上8以下である。これにより、例えば、ハードコート層の硬化収縮を抑制し、高い表面硬度と耐久性とに優れたハードコート層を形成できる。
活性エネルギー線硬化性成分としては、以上に説明した成分とともに、分子中に1個の(メタ)アクリロイル基を有するモノ(メタ)アクリレート、および分子中に2個の(メタ)アクリロイル基を有するジ(メタ)アクリレートをさらに用いてもよい。
活性エネルギー線硬化性成分の重合性二重結合当量は、好ましくは2.0mmol/g以上、より好ましくは2.0mmol/g以上8.0mmol/g以下、さらに好ましくは2.1mmol/g以上7.5mmol/g以下である。重合性二重結合当量は、上記成分1分子が有する重合性二重結合基(特にCH2=CH-)のモル数を上記成分の分子量で除した値を表す。なお、活性エネルギー線硬化性成分がオリゴマーである場合は、分子量は数平均分子量を指す。重合性二重結合当量は、例えば、上記成分のEO変性、PO変性およびCL変性などにより調整できる。
重合性二重結合当量が大きい成分を用いると、ハードコート層の伸び率が低くなる傾向にあり、重合性二重結合当量が小さい成分を用いると、ハードコート層の伸び率が高くなる傾向にある。また、活性エネルギー線硬化性成分を2種以上用いる場合は、重合性二重結合当量が大きい成分、および重合性二重結合当量が小さい成分の量比によっても、ハードコート層の伸び率を調整できる。
活性エネルギー線硬化性成分の含有割合は、上記硬化性組成物の固形分全量に対して、好ましくは50質量%以上100質量%以下、より好ましくは60質量%以上100質量%以下、さらに好ましくは70質量%以上100質量%以下である。これにより、例えば、ハードコート層の耐摩耗性および耐候性をより向上できる。固形分とは、溶剤以外の全成分を指す。
硬化性組成物は、活性エネルギー線として紫外線を用いる場合は、紫外線を照射することによって硬化反応を開始しうる光重合開始剤を含有することが好ましい。光重合開始剤としては、例えば、アセトフェノン系化合物、ベンゾイン系化合物、アシルホスフィンオキシド系化合物、ベンゾフェノン系化合物、チオキサントン系化合物およびアミノベンゾフェノン系化合物が挙げられる。
ハードコート層形成用の材料IIは、活性エネルギー線として紫外線を用いる場合は、光増感剤を更に含有してもよい。光増感剤としては、例えば、トリエタノールアミン、N-メチルジエタノールアミンおよびトリブチルアミン等の3級アミン化合物;o-トリルチオ尿素等の尿素化合物;ナトリウムジエチルジチオホスフェートおよびs-ベンジルイソチウロニウム-p-トルエンスルホネート等の硫黄化合物が挙げられる。
光重合開始剤および光増感剤の含有割合は、それぞれ、ハードコート層形成用の材料IIである上記硬化性組成物における固形分中、好ましくは0.05質量%以上20質量%以下、より好ましくは0.5質量%以上10質量%以下である。活性エネルギー線として電子線等の荷電粒子線を用いる場合は、光重合開始剤および光増感剤を使用する必要はない。
ハードコート層形成用の材料IIは、耐摩耗性および耐候性を向上させ、優れた透明性を得るという観点から、シリコーン化合物を含有できる。シリコーン化合物としては、例えば、ポリシロキサンからなるシリコーンオイル、ポリエーテル変性シリコーンオイル、アラルキル変性シリコーンオイル、フロロアルキル変性シリコーンオイル、長鎖アルキル変性シリコーンオイル、高級脂肪酸エステル変性シリコーンオイル、高級脂肪酸アミド変性シリコーンオイルおよびフェニル変性シリコーンオイルが挙げられる。シリコーン化合物は、アミノ基、エポキシ基、メルカプト基、カルボキシ基、ヒドロキシ基、(メタ)アクリロイル基およびアリル基等の反応性官能基を有する反応性シリコーン化合物であってもよく、該反応性官能基を有さない非反応性シリコーン化合物であってもよい。
ハードコート層形成用の材料IIである硬化性組成物中におけるシリコーン化合物の含有量は、硬化性成分100質量部に対して、好ましくは0.05質量部以上30質量部以下、より好ましくは0.05質量部以上10質量部以下である。これにより、例えば、優れた耐候性および耐摩耗性が得られ、硬化収縮を抑制できる。
ハードコート層形成用の材料IIおよびハードコート層は、耐候性向上剤を含有できる。これにより、例えば、ハードコート層の耐候性を向上できる。耐候性向上剤としては、例えば、紫外線吸収剤、酸化防止剤および光安定剤が挙げられる。
紫外線吸収剤としては、例えば、二酸化チタン、酸化セリウムおよび酸化亜鉛等の無機系紫外線吸収剤;ベンゾトリアゾール系紫外線吸収剤、トリアジン系紫外線吸収剤、ベンゾフェノン系紫外線吸収剤、オキシベンゾフェノン系紫外線吸収剤、サリチル酸エステル系紫外線吸収剤およびシアノ(メタ)アクリレート系紫外線吸収剤等の有機系紫外線吸収剤が挙げられる。これらの中でも、有機系紫外線吸収剤が好ましく、トリアジン系紫外線吸収剤がより好ましい。
トリアジン系紫外線吸収剤の中でも、ヒドロキシフェニルトリアジン系紫外線吸収剤が好ましい。ヒドロキシフェニルトリアジン系紫外線吸収剤としては、例えば、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、2,4-ビス[2-ヒドロキシ-4-ブトキシフェニル]-6-(2,4-ジブトキシフェニル)-1,3,5-トリアジン、2-[4-[(2-ヒドロキシ-3-トリデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンおよび2-[4-[(2-ヒドロキシ-3-(2’-エチル)ヘキシル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジンが挙げられる。
酸化防止剤としては、例えば、フェノール系酸化防止剤、リン系酸化防止剤およびイオン系酸化防止剤が挙げられる。
光安定剤としては、例えば、ヒンダードアミン系光安定剤が挙げられる。ヒンダードアミン系光安定剤としては、例えば、2,2,6,6-テトラメチル-4-ピペリジンステアリン、2,2,4,4-テトラメチル-21-オキソ-3,20-ジアザ-7-オキサジスピロ[5,1,11,2]ヘニコサン-20-プロパン酸テトラデシル、テトラキス(2,2,6,6-テトラメチルピペリジン-4-カルボン酸)1,2,3,4-ブタンテトライル、ビス(2,2,6,6-テトラメチル-4-ピペリジニル)セバケート、セバシン酸ビス(1,2,2,6,6-ペンタメチル-4-ピペリジル)、2-[[3,5-ビス(1,1-ジメチルエチル)-4-ヒドロキシフェニル]メチル]-2-ブチルプロパン二酸ビス[1,2,2,6,6-ペンタメチル-4-ピペリジニル]、デカン二酸ビス[2,2,6,6-テトラメチル-1-(オクチルオキシ)ピペリジン-4-イル]、テトラキス(1,2,2,6,6-ペンタメチル-4-ピペリジル)-1,2,3,4-ブタンテトラカルボキシレート、コハク酸ジメチル・1-(2-ヒドロキシエチル)-4-ヒドロキシ-2,2,6,6-テトラメチル-4-ピペリジン重縮合物、1,2,2,6,6-ペンタメチル-4-ピペリジニル-メタクリレート、ポリ[[6-(1,1,3,3-テトラメチルブチル)アミノ]-1,3,5-トリアジン-2,4-ジイル][(2,2,6,6-テトラメチルピペリジル)イミノ]ヘキサメチレン[(2,2,6,6-テトラメチルピペリジル)イミノ]]が挙げられる。
耐候性向上剤を用いる場合は、硬化性組成物の固形分中およびハードコート層中における耐候性向上剤の含有割合は、好ましくは0.1質量%以上30質量%以下、より好ましくは0.1質量%以上20質量%以下、さらに好ましくは0.1質量%以上15質量%以下である。
硬化性組成物およびハードコート層は、粒子を含有できる。これにより、例えば、ハードコート層の耐摩耗性を向上できる。粒子としては、例えば、無機粒子および有機粒子が挙げられる。
無機粒子としては、例えば、アルミナ、シリカ、ジルコニア、チタニア、酸化亜鉛および酸化鉄等の金属酸化物から構成される無機粒子、またはダイヤモンドもしくは炭化ケイ素から構成される無機粒子が挙げられる。これらの中でも透明性および耐摩耗性の向上という観点から、シリカまたはアルミナから構成される無機粒子が好ましい。粒子形状は、例えば、球、楕円体、多面体および鱗片形が挙げられ、硬度がより高くなり優れた耐摩耗性が得られるという観点から、球状が好ましい。
無機粒子は、非反応性無機粒子であってもよく、表面に反応性官能基を有する反応性無機粒子であってもよい。反応性官能基としては、例えば、(メタ)アクリロイル基、ビニル基、アリル基、エポキシ基およびシラノール基が挙げられ、硬度および耐摩耗性の向上という観点から、(メタ)アクリロイル基、ビニル基およびアリル基が好ましい。
有機粒子としては、例えば、架橋(メタ)アクリル樹脂粒子、ポリカーボネート樹脂粒子などの合成樹脂粒子が挙げられる。
粒子の平均一次粒子径は、好ましくは10nm以上1000nm以下、より好ましくは10nm以上100nm以下である。平均粒子径は、レーザー回折式粒度分布測定装置による体積平均粒子径である。平均一次粒子径が10nm以上1000nm以下の粒子は、平均連結数2個以上20個以下で連結凝集した粒子群(異形粒子)を形成していてもよい。連結凝集は、規則的であっても不規則的であってもよい。
ハードコート層形成用の材料IIの固形分中およびハードコート層中における粒子の含有割合は、好ましくは20質量%未満、より好ましくは5質量%以上20質量%未満、さらに好ましくは5質量%以上15質量%以下である。これにより、例えば、ハードコート層の耐候性を維持しつつ、耐摩耗性をより向上できる。粒子の含有割合が大きいと、ハードコート層の伸び率が低下する傾向にある。
ハードコート層中における粒子の面積率は、好ましくは22%以下、より好ましくは20%以下である。上記面積率の下限は特に限定されないが、例えば6%である。
ハードコート層中の粒子の面積率は、ハードコート層の薄膜切片を走査型透過電子顕微鏡(STEM)観察し、画像解析することで測定できる。測定方法は、例えば以下のとおりである。まず、ミクロトームを用いて、ハードコート層から厚さ70nmの薄膜切片を抽出し、STEM観察で断面画像を取得する。画像解析ソフトImageJを用いて、断面画像における粒子とバインダー(通常は硬化性成分の硬化物)とを2値化判断して黒白画像を抽出して、粒子の面積率を算出する。具体的には、まず、STEM画像から1024×512ピクセルの画像を選択抽出する。次にRolling Ball法でベースラインを調整した後に、Otsu法で2値化判定する。最後に、黒色部面積と白色部面積との合計(対象領域の面積)に対する黒色部面積の割合を算出する。ベースラインや2値化のときの解析ルールは、実画像と解析後画像を人間の視覚で判断して、明らかな粒子をバインダーと判断していなければよいものとする。ただし、上記薄膜切片は、ハードコート層の最表面を含まず、ハードコート層の中間部から選択する。
ハードコート層は、添加剤を含有できる。添加剤としては、例えば、重合禁止剤、帯電防止剤、接着性向上剤、レベリング剤、チクソ性付与剤、カップリング剤、可塑剤、消泡剤、難燃剤、界面活性剤、防曇剤、抗菌剤、充填剤および着色剤が挙げられる。
ハードコート層形成用の材料IIは、例えばその塗布性を向上させるという観点から、有機溶剤を含有してもよい。有機溶剤としては、例えば、トルエン、キシレン、ヘキサンおよびオクタン等の炭化水素系溶剤;エタノール、プロパノール、ブタノール、ペンタノール、ヘキサノール、オクタノールおよびデカノール等のアルコール系溶剤;アセトン、メチルエチルケトン、メチルイソブチルケトン、ジイソブチルケトンおよびシクロヘキサノン等のケトン系溶剤;酢酸エチル、酢酸ブチル、酢酸アミル、酪酸エチル、酪酸ブチル、ステアリン酸ブチル、安息香酸メチル、乳酸メチル、乳酸エチルおよび乳酸ブチル等のエステル系溶剤が挙げられる。
[ハードコート層形成用の材料IIを用いたハードコート層の形成方法]
ハードコート層は、例えば、以下のようにして形成する。基材上にハードコート層形成用の材料IIである硬化性組成物を所望の厚さで塗布して塗膜を形成し、有機溶剤を用いた場合は乾燥して有機溶剤を除去して塗膜を形成する。次いで、熱硬化性成分を用いた場合は、硬化に必要な温度で該塗膜を加熱して硬化させる。活性エネルギー線硬化性成分を用いた場合は、該塗膜に活性エネルギー線を照射して硬化させる。活性エネルギー線の照射は、硬化性組成物の塗膜側から行ってもよく、基材側から行ってもよい。このようにして、ハードコート層を形成できる。硬化処理は、硬化性組成物の塗布後であって他の層の形成前に行ってもよく、他の層の形成後に行ってもよい。
ハードコート層形成用の材料IIを基材上に塗布する方法としては、例えば、ディッピング法、フローコート法、スプレー法、スピンコート法、グラビアコート法、マイクログラビアコート法、ダイコート法、スリットリバース法、ロールコート法、ブレードコート法、エアーナイフコート法、オフセット法およびバーコート法が挙げられる。
活性エネルギー線といて電子線を用いる場合、電子線の照射線量は、好ましくは0.5Mrad以上30Mrad以下、より好ましくは1Mrad以上20Mrad以下、さらに好ましくは3Mrad以上15Mrad以下である。
活性エネルギー線として紫外線を用いる場合、例えば、波長190nm以上380nm以下の紫外線を含む光を照射する。光源としては、例えば、キセノンランプ、低圧水銀灯、高圧水銀灯、超高圧水銀灯、メタルハライドランプ、カーボンアーク灯およびタングステンランプが挙げられる。
以上に説明してきた第1及び第2の実施形態並びに変形例において、加飾部材10,110は、ハードコート層31と、ハードコート層31の一側に配置されてハードコート層31を支持するハードコート支持層32と、ハードコート支持層32の一側に配置された金属層41と、を備えている。ハードコート層31は、180℃まで加熱されて10%伸ばしたときに割れが生じない。とりわけ、図示された例では、ハードコート層31は、180℃まで加熱されて20%伸ばしたときに割れが生じない。
このような加飾部材10,110によれば、加飾部材10,110の製造効率を従来の加飾部材の製造効率と比較して向上させることができる。具体的には、ハードコート層31が180℃まで加熱されて10%ないしは20%伸ばしたときに割れが生じないので、ハードコート層31と金属層41とを含む積層体20を加熱しながら賦形型70等を用いて賦形する際に、ハードコート層31が割れる虞が少ない。これに対し、従来の加飾部材のハードコート層は、180℃まで加熱されて10%伸ばしたときに割れが生じる。このため、従来、加飾部材は、次の手順で作製する必要があった。すなわち、金属層を含む意匠層を形成し、意匠層を加熱装置で加熱して賦形型で賦形する。その後、加熱装置で加熱された意匠層の温度が下がった後にハードコート層を意匠層上に形成する。これは、意匠層上にハードコート層を形成した後に意匠層及びハードコート層を加熱して賦形型で賦形すると、賦形の際に意匠層が伸張してハードコート層が割れる虞があるからである。このように、従来の加飾部材の製造方法が煩雑であった。
また、このような加飾部材10,110は優れた耐熱性を有する。すなわち、ハードコート層31が180℃まで加熱されて10%ないしは20%伸ばしたときに割れが生じないので、加飾部材10,110が高温下に置かれてもハードコート層31が割れて白濁する虞が低く、加飾部材10,110の美観が損なわれる虞が低い。例えば、加飾部材が自動車の外装に用いられる場合、一般に加飾部材は120℃の高温に耐えることが望まれる。この点、上述した加飾部材10,110は180℃まで加熱されてもハードコート層31が白濁して美観が損なわれる虞が低いため、自動車の外装への適用に適している。
また、以上に説明してきた第1の実施形態及び変形例において、加飾部材10は、金属層41のいずれかの面に配置された金属蒸着用のプライマー層47を更に備えている。これにより、金属層41と金属層41に隣接する層との密着性を向上させることができる。
また、以上に説明してきた第1及び第2の実施形態並びに変形例において、加飾部材10,110は、金属層41の一側に配置された中間層50と、中間層50の一側に配置された成形部60と、を更に備えている。このような加飾部材10,110の場合も、加飾部材10,110の製造効率を従来の加飾部材の製造効率と比較して向上させることができる。具体的には、ハードコート層31が180℃まで加熱されて10%ないしは20%伸ばしたときに割れが生じないので、ハードコート層31と金属層41と中間層50とを含む積層体20上に成形部60を射出成形しても、射出成形の際に加わる熱によってハードコート層31が割れる虞が少ない。したがって、加飾部材10,110は、まずハードコート層31を含む積層体20を作製し、次に積層体20上に成形部60を射出成形するだけで作製することができる。これに対し、従来の加飾部材のハードコート層は、180℃まで加熱されて10%伸ばしたときに割れが生じる。このため、従来、加飾部材は、次の手順で作製する必要があった。すなわち、金属層を含む意匠層上に中間層を形成し、中間層上に成形部を射出成形する。その後、射出成形で加熱された意匠層及び中間層の温度が下がった後にハードコート層を意匠層上に形成する。これは、意匠層上にハードコート層を形成した後に成形部を射出成形すると、射出成形の際に意匠層及び中間層が膨張してハードコート層が割れる虞があるからである。このように、従来の加飾部材の製造方法が煩雑であった。
また、以上に説明してきた第1及び第2の実施形態において、金属層41は、可視光を反射可能な複数の金属粒部41aを含んでいる。また、複数の金属粒部41aの間に隙間41bが設けられている。このような金属層41によれば、この具体例によれば、加飾部材10,110に入射する外光が金属粒部41aにおいて高反射率で反射する。その一方で、センサ5で用いられる電磁波は加飾部材10,110を高透過率で透過できる。また、このような金属層41は、積層体20上に成形部60を射出成形する際、積層体20の他の層に追随して伸張することができる。
また、以上に説明してきた第1及び第2の実施形態において、加飾部材10,110は、隠蔽層44を更に備えている。隠蔽層44は、ハードコート支持層32と金属層41との間に配置され、ハードコート層31から金属層41に向かう方向に見て、金属層41の一部を被覆する。このような加飾部材10,110によれば、隠蔽層44と金属層41との組み合わせにより、多彩な意匠を表示することができる。
また、以上に説明してきた第1及び第2の実施形態において、隠蔽層44は、ハードコート支持層32の一側面と交差する面に沿って広がる側面45を有する。隠蔽層44がこのような側面45を有していることにより、加飾部材10を第2表面12側から見た場合に側面45が観察され、隠蔽層44と金属層41とによって表される意匠に立体感を与えることができる。
また、以上に説明してきた第1及び第2の実施形態において、ハードコート支持層32と隠蔽層44とは、金属層41に対向する凹凸面を形成している。金属層41は、上記凹凸面に対応して屈曲している。このような金属層41は、ハードコート支持層32の一側面と交差する面に沿って広がる斜面42を有している。金属層41がこのような斜面42を有していることにより、加飾部材10を第2表面12側から見た場合に斜面42が観察される。このことは、隠蔽層44と金属層41とによって表される意匠に立体感を与えることに寄与する。
また、以上に説明してきた第2の実施形態において、加飾部材110は、隠蔽層44と金属層41との間に接合層85を備え、隠蔽層44の上記側面45と接合層85との間に隙間88が形成されている。このような加飾部材110では、隙間88を介して接合層85及び金属層41の斜面86,42が観察される。このことは、隠蔽層44と金属層41とによって表される意匠に立体感を与えることに寄与する。
また、以上に説明してきた第1及び第2の実施形態において、ハードコート層31は、平坦部23と平坦部23に接続する湾曲部24とを有している。湾曲部24におけるハードコート層31の厚みは、平坦部23におけるハードコート層31の厚みよりも小さい。
また、以上に説明してきた第1及び第2の実施形態において、加飾部材10,110の製造方法は、積層体作製工程と射出成形工程とを含む。積層体作製工程では、ハードコート層31と、ハードコート層31の一側に配置されてハードコート層31を支持するハードコート支持層32と、ハードコート支持層32の一側に配置された金属層41と、金属層41の一側に配置された中間層50と、を含む積層体20を作製する。射出成形工程では、積層体作製工程において作製された積層体20に、成形部60を射出成形する。
このような加飾部材10,110の製造方法によれば、加飾部材10,110の製造効率を、従来の加飾部材の製造効率と比較して向上させることができる。
また、以上に説明してきた第1の実施形態において、積層体作製工程は、ハードコート層31とハードコート支持層32とを含むハードコートフィルム30を作製する工程と、ハードコートフィルム30の一側に金属層41を蒸着する工程と、金属層41の一側に中間層50を形成する工程と、を含む。
また、以上に説明してきた第2の実施形態において、積層体作製工程は、ハードコート層31とハードコート支持層32とを含むハードコートフィルム30を作製する工程と、金属層41と金属層41を支持する金属支持層81とを含む金属フィルム80を作製する工程と、ハードコートフィルム30のハードコート支持層32と金属フィルム80の金属支持層81とを接合層85を介して貼り合わせる貼合工程と、金属フィルム80の一側に中間層50を形成する中間層形成工程と、を含む。
また、以上に説明してきた第2の実施形態において、積層体作製工程は、貼合工程で貼り合わされたハードコートフィルム30と金属フィルム80との間の空気を除去する空気除去工程を更に含む。
また、以上に説明してきた第1及び第2の実施形態において、積層体作製工程は、ハードコートフィルム30の一側に、ハードコート層31から金属層41に向かう方向に見て金属層41の一部を被覆する隠蔽層44を形成する工程を更に含む。このようにして作製された加飾部材10,110によれば、隠蔽層44と金属層41との組み合わせにより、多彩な意匠を表示することができる。
また、以上に説明してきた第1及び第2の実施形態において、加飾部材10,110の製造方法は、積層体作製工程で作製された積層体20を賦形する積層体賦形工程を更に備えている。これにより、積層体20を所望の三次元形状にすることができ、加飾部材10,110はより複雑な意匠を表示することができる。
以下、本開示について実施例に基づき、より具体的に説明する。これらの記載は本開示を何ら制限するものではない。
<ハードコート層の実施例1>
・ハードコート層伸び評価用積層体α1の作製
以下のハードコート層形成用の材料αをPETフィルム上に塗布して、厚さ4μmのハードコート層31を形成した。次に、ハードコート層31上にプライマー層を形成した。さらに、プライマー層上にヒートシール層を形成した。このようにして転写フィルムを作製した。転写フィルムは、転写フィルム用基材としてのPETフィルムと、PETフィルム上に形成された転写層とを備えている。転写層は、ハードコート層31とプライマー層とヒートシール層を備える。
次に、ハードコート層伸び評価用積層体(以下単に「評価用積層体」とも呼ぶ。)用基材として、メタクリル樹脂とポリカーボネート樹脂とを含む二種二層構成フィルム(製品名:テクノロイ(登録商標)C001,住化アクリル販売株式会社製)を準備した。評価用積層体用基材の厚みは125μmであった。評価用積層体用基材の全面に格子状パターンを印刷した。格子状パターンの各マス目は、一辺の長さが10mmの正方形状であった。
次に、評価用積層体用基材上に転写フィルムを、評価用積層体用基材と転写フィルムのヒートシール層とが接するようにして配置し、真空プレス機を用いて両者をプレスして貼り合わせた。真空プレス機およびプレス条件は以下の通りであった。
・真空プレス機:ミカドテクノス製VS30-3030
・プレス条件
プレス温度:125℃
プレス時間:20秒
加圧力:10kN
その後、転写フィルム用基材であるPETフィルムを剥がし、評価用積層体α1を得た。評価用積層体の層構成は、評価用積層体用基材/ヒートシール層/プライマー層/ハードコート層31である。得られた評価用積層体α1のハードコート層31の厚さは、4μmであった。
[ハードコート層形成用の材料α]
上述したハードコート層形成用の材料Iのウレタン化合物(A)27質量部と、アクリレート化合物(B)18質量部と、無機粒子(C)12.5質量部と、溶剤42.5質量部を混合して、ハードコート層形成用の材料αを作製した。ハードコート層形成用の材料αの作製に用いたウレタン化合物(A)、アクリレート化合物(B)、無機粒子(C)および溶剤は、以下の通りであった。
・ウレタン化合物(A):HDIヌレート体-(PETA)3
※IPDI-(PETA)2との混合物
(HDIヌレート体-(PETA)3:ペンタエリスリトールトリアクリレートとヘキサメチレンジイソシアネートから誘導されたイソシアヌレート環を有するイソシアネートとの反応物、IPDI-(PETA)2:ペンタエリスリトールトリアクリレートとイソホロンジイソシアネートとの反応物)
・アクリレート化合物(B):下記式で表されるNKエステル A9300-1CL(新中村化学工業製)
Figure 2023063168000011
・無機粒子(C):シリカ ELCON V8803-25(日揮触媒化成社製)固形分40%、最大粒径25nm、溶剤MIBK(メチルイソブチルケトン)、反応性異形シリカ、平均一次粒径10nm~100nmのシリカ粒子が2~20個連結凝集したものであり、反応性基がエチレン性不飽和結合含有基
・溶剤:MEK(メチルエチルケトン)
<ハードコート層の実施例2>
転写フィルムのハードコート層31の厚さを8μmとしたこと以外は、ハードコート層の実施例1の場合と同様にして評価用積層体α2を作製した。得られた評価用積層体α2のハードコート層31の厚さは、8μmであった。
<ハードコート層の実施例3>
ハードコート層形成用の材料として、以下の材料βを用いたこと以外は、ハードコート層の実施例2の場合と同様にして評価用積層体βを作製した。得られた評価用積層体βのハードコート層31の厚さは、8μmであった。
[ハードコート層形成用の材料β]
上述したハードコート層形成用の材料IIの硬化性成分100質量部と有機溶剤20質量部とを混合して、ハードコート層形成用の材料βを作製した。ハードコート層形成用の材料βの作製に用いた硬化性成分および有機溶剤は、以下の通りであった。
・硬化性成分:NKエステル A9300-1CL(CL変性トリス-(2-アクリロキシエチル)イソシアヌレート、新中村化学工業製)
・有機溶剤:メチルエチルケトン
<ハードコート層の実施例4>
ハードコート層形成用の材料として、以下の材料γを用いたこと以外は、ハードコート層の実施例2の場合と同様にして評価用積層体γを作製した。得られた評価用積層体γのハードコート層31の厚さは、8μmであった。
[ハードコート層形成用の材料γ]
上述したハードコート層形成用の材料IIの硬化性成分100質量部と有機溶剤20質量部とを混合して、ハードコート層形成用の材料γを作成した。ハードコート層形成用の材料γの作成に用いた硬化性成分および有機溶剤は、以下の通りであった。
・硬化性成分:
・NKエステル A9300-1CL(CL変性トリス-(2-アクリロキシエチル)イソシアヌレート、新中村化学工業製) 65質量部
・UA-184E 35質量部
※ UA-184E:ヘキサメチレンジイソシアネートから誘導されたイソシアヌレート環を有するイソシアネートと、1モルCL変性ヒドロキシエチルアクリレートとの反応物であるウレタンアクリレート、合成品 ・有機溶剤:メチルエチルケトン
<ハードコート層の比較例1>
ハードコート層形成用の材料として、以下の材料δを用いたこと以外は、ハードコート層の実施例1の場合と同様にして評価用積層体δを作製した。得られた評価用積層体δのハードコート層の厚さは、4μmであった。
[ハードコート層形成用の材料δ]
・6官能ウレタンアクリレートオリゴマー 50質量部
・2官能カプロラクトン系ウレタンアクリレートオリゴマー 50質量部
・ハロゲン系リン酸エステル難燃剤(製品名:CR-570,大八化学社製) 30質量部
・ヒドロキシフェニルトリアジン系紫外線吸収剤(製品名:Tinuvin479,BASFジャパン社製) 0.7質量部
・反応性官能基を有する光安定剤(1,2,2,6,6-ペンタメチル-4-ピペリジニルメタクリレート,製品名:サノールLS-3410,日本乳化剤株式会社製) 4.2質量部
・非反応性シリコーン化合物(ポリエーテル変性シリコーンオイル) 0.3質量部
・耐傷フィラー(シリカ粒子,平均粒子径:2μm) 0.8質量部
[ハードコート層の伸びの評価]
各評価用積層体のハードコート層の伸びを、以下の方法により評価した。
まず、上述した凸面を有する成形型として、半円筒形状の外周面を有する成形型を準備した。評価用積層体を180℃まで加熱して軟化させ、成形型の半円筒形状の曲面上に配置した。 次に、この成形型と真空成型機を用いて、評価用積層体を180℃で真空成型した。使用した真空成型機は、株式会社ラヤマ・パック製卓上真空性成型機V.formerであった。真空成型により、評価用積層体は、成形型の半円筒形状の外周面に沿って、上記曲面の円周方向および円周方向と直交する方向(以下「縦方向」とも呼ぶ。)に伸びた。
次に、真空成形した評価用積層体のハードコート層を目視で観察し、ハードコート層の割れの有無を観察した。
上述の手順を繰り返すことにより、各評価用積層体におけるハードコート層の、割れが生じない最大の伸び率を測定した。伸び率は、評価用積層体に描かれた格子状パターンの各マス目の寸法の変形量から算出した。具体的には、評価用積層体のうち成形型の半円筒形状の外周面に沿って成形された部分の、上記円周方向における伸び率(円周方向伸び率)の平均値と上記縦方向における伸び率(縦方向伸び率)の平均値とを求め、これら平均値の積を評価用積層体の伸び率(面積伸び率)とした。なお、本明細書において「ハードコート層を(X)%伸ばしたとき」とは、「ハードコート層の面積伸び率が(100+X)%であったとき」を意味する。
各評価用積層体におけるハードコート層の割れが生じない最大の伸び率を、以下の表1に示す。
Figure 2023063168000012
表1から理解されるように、ハードコート層形成用の材料α~γを用いて形成したハードコート層は、180℃まで加熱されて10%伸ばしたときに割れが生じなかった。とりわけ、ハードコート層形成用の材料α~γを用いて8μmの厚さで形成したハードコート層は、180℃まで加熱されて20%伸ばしたときに割れが生じなかった。その一方で、ハードコート層形成用の材料δを用いて形成したハードコート層の、割れが生じない最大の伸び率は、105.1%であった。このことは、ハードコート層形成用の材料δを用いて形成したハードコート層は180℃まで加熱されて10%伸ばしたときに割れが生じた、ということを意味する。
<<加飾部材の実施例1>>
以下の方法により、積層体α1及び加飾部材α1を作製した。
<ハードコート層転写フィルムの作製>
まず、ハードコート層転写フィルムαを作製した。具体的には、転写フィルム用基材として、ポリエステルフィルム(製品名:コスモシャイン(登録商標)A4100,東洋紡株式会社製)を準備した。転写フィルム用基材の厚みは50μmであった。
次に、転写フィルム用基材上に上記ハードコート層形成用の材料αを塗布し、厚さ4μmのハードコート層31を形成した。
次に、ハードコート層31の面にコロナ放電処理をした後、以下のプライマー層形成用の樹脂組成物を塗布して、厚さ4μmのプライマー層を形成した。
(プライマー層形成用の樹脂組成物)
・ ポリカーボネート系ウレタンアクリル共重合体※1:100質量部
・ ヒドロキシフェニルトリアジン系紫外線吸収剤※2:17質量部
・ ヒドロキシフェニルトリアジン系紫外線吸収剤※3:13質量部
・ ヒンダードアミン系光安定剤※4:8質量部
・ブロッキング防止剤※5:9質量部
・硬化剤(ヘキサンメチレンジイソシアネート):25質量部
※1,ポリカーボネート系ウレタンアクリル共重合体におけるウレタン成分とアクリル成分の質量比は70/30である。
※2,チヌビン400(商品名)、2-[4-[(2-ヒドロキシ-3-ドデシルオキシプロピル)オキシ]-2-ヒドロキシフェニル]-4,6-ビス(2,4-ジメチルフェニル)-1,3,5-トリアジン、BASFジャパン株式会社製
※3,チヌビン479(商品名)、2-(2-ヒドロキシ-4-[1-オクチルオキシカルボニルエトキシ]フェニル)-4,6-ビス(4-フェニルフェニル)-1,3,5-トリアジン、BASFジャパン株式会社製
※4,チヌビン123(商品名)、ビス(1-オクチロキシ-2,2,6,6-テトラメチル-4-ピペリジル)セバケート)、BASFジャパン株式会社製
※5,シリカ粒子、平均粒径:3μm
その後、プライマー層上に、アクリル系樹脂(重量平均分子量(Mw):7.6×10)を塗布し、厚さ4μmの接合層(厚さ:5μm)を形成した。これにより、ハードコート層転写フィルムαを作製した。ハードコート層転写フィルムαは、転写フィルム用基材と、転写フィルム用基材上に形成された転写層とを備えている。転写層は、ハードコート層31とプライマー層と接合層とを含む。
<ハードコートフィルムの作製>
次に、ハードコート支持層32として、メタクリル樹脂とポリカーボネート樹脂とを含む二種二層構成フィルム(製品名:テクノロイ(登録商標)C001,住化アクリル販売株式会社製)を準備した。ハードコート支持層32の厚みは200μmであった。
次に、ハードコート支持層32上にハードコート層転写フィルムαを、ハードコート支持層32とハードコート層転写フィルムαの接合層85とが接するようにして配置し、ハードコート層転写フィルムαの転写層をハードコート支持層32に熱転写した。
その後、ハードコート層転写フィルムαの転写フィルム用基材を剥がし、ハードコートフィルムαを得た。ハードコートフィルムの層構成は、ハードコート支持層32/接合層/プライマー層/ハードコート層31である。
<隠蔽層の形成>
次に、隠蔽層形成用の材料として、スクリーンインキ(製品名:XFM-971,帝国インキ製造株式会社製)を準備した。次に、ハードコートフィルムαのハードコート支持層32上に、隠蔽層形成用の材料をスクリーン印刷して、隠蔽層44を形成した。隠蔽層44の厚みは12μmであった。
<プライマー層の形成>
次に、プライマー層形成用の材料として、アクリルポリオール(製品名:アラコートDA105,荒川化学工業株式会社製)100質量部とイソシアネート系化合物(製品名:アラコートCL102H,荒川化学工業株式会社製)9質量部とを混合し、希釈溶剤(メチルエチルケトン(MEK)、酢酸エチルおよびメチルイソブチルケトン(MIBK)の混合溶剤)で希釈したものを準備した。次に、隠蔽層44が形成されたハードコートフィルムαにプライマー層形成用の材料を塗工して、ハードコートフィルムα及び隠蔽層44上にプライマー層47を形成した。プライマー層47の厚みは1μmであった。
<金属層の形成>
プライマー層47が形成されたハードコートフィルムαを常温で一週間養生した後、プライマー層47上に、株式会社アルバック製の高真空蒸着装置EX-900を用いてインジウムを真空蒸着して、金属層41を形成した。金属層41の厚みは80nmであった。
<中間層の形成>
次に、金属層41上に中間層50を形成した。中間層50は、第1中間層及び第2中間層を含む。具体的には、第1中間層形成用の材料として、昭和インク工業株式会社製SIVM用HSを100質量部に対して、昭和インク工業株式会社製OPNo.81硬化剤を5~10質量部の割合で混合したものを準備した。また、第2中間層として、厚さ125μmのABSシート(製品名:PZ100BK,ニチモウ株式会社製)を準備した。次に、金属層41上に第1中間層形成用の材料を塗工して、第1中間層を形成した。第1中間層の厚みは1μmであった。次に、第1中間層に第2中間層を積層した。これにより、中間層50が形成された。これにより、積層体α1が作製された。
<成形部の形成>
次に、積層体α1を、図12A~12Bに示す方法で真空成形して、平坦部23と湾曲部24とを有する形状に賦形した。その後、成形部形成用の樹脂PC/ABS(製品名:サイコロイ,SABICイノベーティブプラスチックジャパン合同会社製)を準備した。賦形された積層体α1に対して、加熱した成形部形成用の樹脂を図14~15に示す方法で射出成形して、中間層50上に成形部60を射出成形した。これにより、加飾部材α1が作製された。なお、射出成形時のハードコート層31の温度は180℃程度であった。
<<加飾部材の実施例2>>
ハードコート層31の厚さを8μmとしたこと以外は、加飾部材の実施例1の場合と同様にして、積層体α2及び加飾部材α2を作製した。
<<加飾部材の実施例3>>
隠蔽層44の厚みを8μmとしたこと以外は、加飾部材の実施例2の場合と同様にして、積層体α3及び加飾部材α3を作製した。
<<加飾部材の実施例4>>
隠蔽層44の厚みを4μmとしたこと以外は、加飾部材の実施例2の場合と同様にして、積層体α4及び加飾部材α4を作製した。
<<加飾部材の実施例5>>
プライマー層47の厚みを10μmとしたこと以外は、加飾部材の実施例2の場合と同様にして、積層体α5及び加飾部材α5を作製した。
<<加飾部材の実施例6>>
隠蔽層44の厚みを8μmとし、プライマー層47の厚みを10μmとしたこと以外は、加飾部材の実施例2の場合と同様にして、積層体α6及び加飾部材α6を作製した。
<<加飾部材の実施例7>>
隠蔽層44の厚みを4μmとし、プライマー層47の厚みを10μmとしたこと以外は、加飾部材の実施例2の場合と同様にして、積層体α7及び加飾部材α7を作製した。
<<加飾部材の実施例8>>
隠蔽層44と金属層41との間にプライマー層47を形成しなかったこと以外は、加飾部材の実施例2の場合と同様にして、積層体α8及び加飾部材α8を作製した。
<<加飾部材の実施例9>>
隠蔽層44と金属層41との間にプライマー層47を形成しなかったこと、及び、隠蔽層44の厚みを8μmとした以外は、加飾部材の実施例2の場合と同様にして、積層体α9及び加飾部材α9を作製した。
<<加飾部材の実施例10>>
隠蔽層44と金属層41との間にプライマー層47を形成しなかったこと、及び、隠蔽層44の厚みを4μmとした以外は、加飾部材の実施例2の場合と同様にして、積層体α10及び加飾部材α10を作製した。
<<加飾部材の実施例11>>
隠蔽層形成用の材料としてグラビアインキ(製品名:化X(NT),昭和インク工業社製)を準備し、このグラビアインキをグラビア印刷して隠蔽層44を形成したこと以外は、加飾部材の実施例2の場合と同様にして、積層体α11及び加飾部材α11を作製した。
<<加飾部材の実施例12>>
ハードコート層形成用の材料として上記ハードコート層形成用の材料βを用いたこと以外は、加飾部材の実施例2の場合と同様にして、積層体β1及び加飾部材β1を作製した。
<<加飾部材の実施例13>>
ハードコート層形成用の材料として上記ハードコート層形成用の材料γを用いたこと以外は、加飾部材の実施例2の場合と同様にして、積層体γ1及び加飾部材γ1を作製した。
<<加飾部材の比較例1>>
ハードコート層形成用の材料として上記ハードコート層形成用の材料δを用いたこと以外は、加飾部材の実施例2の場合と同様にして、積層体δ1及び加飾部材δ1を作製した。
<<加飾部材の実施例14>>
以下の方法により、積層体α12及び加飾部材α12を作製した。
<ハードコートフィルムの作製>
加飾部材の実施例1の場合と同様にして、ハードコートフィルムαを作製した。
<隠蔽層の形成>
次に、加飾部材の実施例1の場合と同様にして、隠蔽層44を形成した。
<金属フィルムの作製>
また、以下の方法により、金属フィルム80を作製した。
具体的には、金属支持層81として、厚さ125μmのアクリル基材(製品名:テクノロイ(登録商標)S001,住友化学アクリル販売株式会社製)を準備した。
次に、金属支持層81にプライマー層形成用の材料を塗工して、プライマー層47を形成した。プライマー層形成用の材料は、加飾部材の実施例1のプライマー層形成用の材料と同じであった。プライマー層47の厚みは1μmであった。
プライマー層47が形成された金属支持層81を常温で一週間養生した後、プライマー層47上に、株式会社アルバック製の高真空蒸着装置EX-900を用いてインジウムを真空蒸着して、金属層41を形成した。金属層41の厚みは80nmであった。
<中間層の形成>
次に、金属フィルム80の金属層41上に中間層50を形成した。中間層50は、第1中間層及び第2中間層を含む。具体的には、第1中間層形成用の材料として、昭和インク工業株式会社製SIVM用HS100質量部に対して、昭和インク工業株式会社製OPNo.81硬化剤5~10質量部の割合で混合したものを準備した。また、第2中間層として、厚さ50μmのABSシート(製品名:PZ100BK,ニチモウ株式会社製)を準備した。次に、金属層41上に第1中間層形成用の材料を塗工して、第1中間層を形成した。第1中間層の厚みは1μmであった。次に、第1中間層に第2中間層を積層した。これにより、中間層50が形成された。
<接合層の形成>
次に、東亞合成株式会社製のアロンアタックMPTシリーズを準備し、これの粘着層を金属フィルム80の金属支持層81上に転写して接合層85を形成した。
<積層体の作製>
次に、ハードコートフィルムαの隠蔽層44と金属フィルム80上の接合層85とを対面させて、ハードコートフィルムαおよび隠蔽層44と金属フィルム80とを貼合した。その後、オートクレーブ処理(加熱温度:80℃、圧力:0.5MPa、加熱加圧時間:30分)を行って、ハードコートフィルムαおよび隠蔽層44と金属フィルム80との間の空気を除去した。これにより、積層体α12が得られた。
<成形部の形成>
次に、積層体α12を十分に乾燥させた後、加飾部材の実施例1の場合と同様にして、積層体α12を賦形し、賦形された積層体α12の中間層50上に成形部60を射出成形した。これにより、加飾部材α12が作製された。
<<加飾部材の実施例15>>
ハードコート層31の厚さを8μmとしたこと以外は、加飾部材の実施例14の場合と同様にして、積層体α13及び加飾部材α13を作製した。
<<加飾部材の実施例16>>
隠蔽層44の厚みを8μmとしたこと以外は、加飾部材の実施例15の場合と同様にして、積層体α14及び加飾部材α14を作製した。
<<加飾部材の実施例17>>
隠蔽層44の厚みを4μmとしたこと以外は、加飾部材の実施例15の場合と同様にして、積層体α15及び加飾部材α15を作製した。
<<加飾部材の実施例18>>
ハードコート層形成用の材料として上記ハードコート層形成用の材料βを用いたこと以外は、加飾部材の実施例15の場合と同様にして、積層体β2及び加飾部材β2を作製した。
<<加飾部材の実施例19>>
ハードコート層形成用の材料として上記ハードコート層形成用の材料γを用いたこと以外は、加飾部材の実施例15の場合と同様にして、積層体γ2及び加飾部材γ2を作製した。
<<加飾部材の比較例2>>
ハードコート層形成用の材料として上記ハードコート層形成用の材料δを用いたこと以外は、加飾部材の実施例15の場合と同様にして、積層体δ2及び加飾部材δ2を作製した。
[加飾部材の評価]
以下の方法により、加飾部材の評価を行った。
各加飾部材のハードコート層31を目視で観察し、ハードコート層31の割れの有無を確認した。
また、各加飾部材の隠蔽層44を目視で確認し、隠蔽層44の割れの有無を確認した。
評価結果を、以下の表2に示す。
Figure 2023063168000013
表2から理解されるように、ハードコート層形成用の材料α~γを用いて作製された加飾部材α1~15、β1~2、γ1~2のハードコート層は、割れが生じなかった。その一方で、ハードコート層形成用の材料δを用いて作製された加飾部材δ1~2のハードコート層は、割れが生じた。
また、隠蔽層形成用の材料としてXFM-971を用いた場合も、化X(NT)を用いた場合も、隠蔽層44に割れは生じなかった。
[立体感の評価]
さらに、実施例1~10の加飾部材α1~α10について、金属層41と隠蔽層44とによって表される意匠の立体感を評価した。具体的には、各加飾部材の金属層41と隠蔽層44との境界部分の光沢の程度を評価した。光沢が強いほど、金属層41と隠蔽層44との境界部分にはっきりとした立体感が現れた。
評価結果を、以下の表3に示す。
Figure 2023063168000014
表3において、「○」および「△」は立体感が表れたことを意味し、「×」は立体感が現れなかったことを意味する。また「○」は「△」よりもはっきりとした立体感が表れたことを意味する。
表3から理解されるように、プライマー層47の厚みが1μmである場合には、金属層41と隠蔽層44との境界部分に立体感が表れ、とりわけ隠蔽層44の厚みが12μmの場合にはっきりとした凹凸感が現れた。また、プライマー層47の厚みが10μmである場合には、隠蔽層44の厚みが8~12μmの場合に立体感が表れた。一方で、加飾部材がプライマー層47を含まない場合、立体感は表れなかった。また、隠蔽層44の厚みが4μmであり、プライマー層47の厚みが10μmである場合にも、立体感は表れなかった。
1:移動体、3:エンブレム、5:センサ、10,110:加飾部材、11:第1表面、12:第2表面、20:積層体、30:ハードコートフィルム、31:ハードコート層、32:ハードコート支持層、40:意匠層、41:金属層、41a:金属粒部、41b:隙間、42:斜面、44:隠蔽層、45:側面、47:プライマー層、50:中間層、60:成形部、61:成形層、62:成形形状部、80:金属フィルム、81:金属支持層、85:接合層、88:隙間

Claims (18)

  1. ハードコート層と、
    前記ハードコート層の一側に配置されて前記ハードコート層を支持するハードコート支持層と、
    前記ハードコート支持層の一側に配置された金属層と、
    を備え、
    前記ハードコート層は、180℃まで加熱されて10%伸ばしたときに割れが生じない加飾部材。
  2. 前記ハードコート層は、180℃まで加熱されて20%伸ばしたときに割れが生じない、請求項1に記載の加飾部材。
  3. 前記金属層のいずれかの面に配置された金属蒸着用のプライマー層を更に備えた、請求項1又は2に記載の加飾部材。
  4. 前記金属層の一側に配置された中間層と、
    前記中間層の一側に配置された成形部と、
    を更に備えた請求項1乃至3のいずれか一項に記載の加飾部材。
  5. 前記金属層は、可視光を反射可能な複数の金属粒部を含み、複数の金属粒部の間に隙間が設けられている、請求項1乃至4のいずれか一項に記載の加飾部材。
  6. 前記ハードコート支持層と前記金属層との間に配置され、前記ハードコート層から前記金属層に向かう方向に見て前記金属層の一部を被覆する隠蔽層を更に備えた、請求項1乃至5のいずれか一項に記載の加飾部材。
  7. 前記隠蔽層は、前記ハードコート支持層の一側面と交差する面に沿って広がる側面を有する、請求項6に記載の加飾部材。
  8. 前記ハードコート支持層と前記隠蔽層は、前記金属層に対向する凹凸面を形成し、
    前記金属層は、前記凹凸面に対応して屈曲している、請求項6又は7に記載の加飾部材。
  9. 前記隠蔽層と前記金属層との間に接合層を備え、
    前記隠蔽層の前記側面と前記接合層との間に隙間が形成されている、請求項7に記載の加飾部材。
  10. 前記ハードコート層は、平坦部と前記平坦部に接続する湾曲部とを有し、
    前記湾曲部における前記ハードコート層の厚みは、前記平坦部における前記ハードコート層の厚みよりも小さい、請求項1乃至9のいずれか一項に記載の加飾部材。
  11. ハードコート層と、前記ハードコート層の一側に配置されて前記ハードコート層を支持するハードコート支持層と、前記ハードコート支持層の一側に配置された金属層と、前記金属層の一側に配置された中間層と、を含む積層体を作製する積層体作製工程と、
    前記積層体作製工程において作製された前記積層体に、成形部を射出成形する射出成形工程と、
    を備えた、加飾部材の製造方法。
  12. 前記積層体作製工程は、
    前記ハードコート層と前記ハードコート支持層とを含むハードコートフィルムを作製する工程と、
    前記ハードコートフィルムの一側に前記金属層を蒸着する工程と、
    前記金属層の一側に前記中間層を形成する工程と、
    を含む、請求項11に記載の加飾部材の製造方法。
  13. 前記積層体作製工程は、
    前記ハードコート層と前記ハードコート支持層とを含むハードコートフィルムを作製する工程と、
    前記金属層と前記金属層を支持する金属支持層とを含む金属フィルムを作製する工程と、
    前記ハードコートフィルムの前記ハードコート支持層と前記金属フィルムの前記金属支持層とを接合層を介して貼り合わせる貼合工程と、
    前記金属フィルムの一側に前記中間層を形成する中間層形成工程と、
    を含む、請求項11に記載の加飾部材の製造方法。
  14. 前記積層体作製工程は、前記貼合工程で貼り合わされた前記ハードコートフィルムと前記金属フィルムとの間の空気を除去する空気除去工程を更に含む、請求項13に記載の加飾部材の製造方法。
  15. 前記積層体作製工程は、前記ハードコートフィルムの一側に、前記ハードコート層から前記金属層に向かう方向に見て前記金属層の一部を被覆する隠蔽層を形成する工程を更に含む、請求項12乃至14のいずれか一項に記載の加飾部材の製造方法。
  16. 前記積層体作製工程で作製された前記積層体を賦形する積層体賦形工程を更に備えた、請求項11乃至15のいずれか一項に記載の加飾部材の製造方法。
  17. 請求項1乃至10のいずれか一項に記載の加飾部材を備えるエンブレム。
  18. 請求項1乃至10のいずれか一項に記載の加飾部材又は請求項17に記載のエンブレムを備える移動体。
JP2021173516A 2021-10-22 2021-10-22 加飾部材、加飾部材の製造方法、エンブレム及び移動体 Pending JP2023063168A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021173516A JP2023063168A (ja) 2021-10-22 2021-10-22 加飾部材、加飾部材の製造方法、エンブレム及び移動体

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021173516A JP2023063168A (ja) 2021-10-22 2021-10-22 加飾部材、加飾部材の製造方法、エンブレム及び移動体

Publications (1)

Publication Number Publication Date
JP2023063168A true JP2023063168A (ja) 2023-05-09

Family

ID=86270298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021173516A Pending JP2023063168A (ja) 2021-10-22 2021-10-22 加飾部材、加飾部材の製造方法、エンブレム及び移動体

Country Status (1)

Country Link
JP (1) JP2023063168A (ja)

Similar Documents

Publication Publication Date Title
US9605120B2 (en) Decorative sheet, and decorative resin-molded article employing same
US10265895B2 (en) Decorative sheet for three-dimensional molding and method for producing same, and decorative molded article using decorative sheet and method for producing same
JP6815984B2 (ja) 真空成形用3次元成型品加飾用積層フィルム、その製造方法及び3次元成型品加飾方法
KR102359728B1 (ko) 삼차원 성형용 전사 필름
WO2017051539A1 (ja) 加飾フィルムおよびその製造方法、並びに加飾成型体
KR20170134961A (ko) 가식 시트
JP5673281B2 (ja) 三次元成形用加飾シート及びその製造方法、並びに該加飾シートを用いた加飾樹脂成形品及びその製造方法
JP5861414B2 (ja) 射出成形同時積層用フィルム及び成形品、並びにそれらの製造方法
JP6883043B2 (ja) 2段硬化性積層板
JP6870675B2 (ja) 三次元成形用転写フィルム
JP5673280B2 (ja) 三次元成形用加飾シート及び該加飾シートを用いた加飾樹脂成形品の製造方法
JPWO2020075619A1 (ja) ポリカーボネートシートのプレス成形体の製造方法
KR102362477B1 (ko) 장식 시트 및 장식 수지 성형품
JP6919167B2 (ja) 三次元成形用転写フィルム、その製造方法、及び樹脂成形品の製造方法
US20230148217A1 (en) Film insert molded article and manufacturing method for film insert molded article
JP2023063168A (ja) 加飾部材、加飾部材の製造方法、エンブレム及び移動体
WO2021199360A1 (ja) 加飾シート及び加飾樹脂成形品
JP6467840B2 (ja) 積層シート及び加飾樹脂成形品
JP6988332B2 (ja) 三次元成形フィルム及び樹脂成形品
JP2013212614A (ja) 転写シートの製造方法、加飾シートの製造方法及び加飾成形品の製造方法
JP6922343B2 (ja) 加飾シート及び加飾樹脂成形品
JP7276730B2 (ja) 転写フィルム、ハードコートフィルム、ならびにハードコート成形体およびその製造方法
JP6955644B1 (ja) 転写シート及びこれを利用した樹脂成形品の製造方法
WO2021246295A1 (ja) 成形用樹脂シートおよびそれを用いた成形品
JP2022058249A (ja) 加飾シート及び加飾樹脂成形品