JP2023055588A - 磁壁移動素子の初期化方法および磁気装置 - Google Patents

磁壁移動素子の初期化方法および磁気装置 Download PDF

Info

Publication number
JP2023055588A
JP2023055588A JP2021165125A JP2021165125A JP2023055588A JP 2023055588 A JP2023055588 A JP 2023055588A JP 2021165125 A JP2021165125 A JP 2021165125A JP 2021165125 A JP2021165125 A JP 2021165125A JP 2023055588 A JP2023055588 A JP 2023055588A
Authority
JP
Japan
Prior art keywords
magnetic
magnetic field
domain wall
wire
wall motion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021165125A
Other languages
English (en)
Inventor
賢一 青島
Kenichi Aoshima
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Broadcasting Corp
Original Assignee
Nippon Hoso Kyokai NHK
Japan Broadcasting Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Hoso Kyokai NHK, Japan Broadcasting Corp filed Critical Nippon Hoso Kyokai NHK
Priority to JP2021165125A priority Critical patent/JP2023055588A/ja
Publication of JP2023055588A publication Critical patent/JP2023055588A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Optical Modulation, Optical Deflection, Nonlinear Optics, Optical Demodulation, Optical Logic Elements (AREA)
  • Mram Or Spin Memory Techniques (AREA)
  • Hall/Mr Elements (AREA)

Abstract

【課題】電流供給により磁性細線の磁壁を移動させて書込みをする磁壁移動素子について、電流密度を高くすることなく磁壁を生成することができる初期化方法を提供する。【解決手段】磁壁移動素子10は、垂直磁気異方性の磁性層11とスピンホール効果を有するチャネル層12とを積層してx方向に沿った細線状に形成してなる磁性細線1、および磁性細線1の下側に配置された磁性細線1に沿った棒磁石状のナノ磁石54a,54bを備える。外部磁界を下向きに印加して磁性層11を下向きの単磁区とした後、外部磁界Hinitを細線方向に印加しながら電流Iinitを磁性細線1に供給することにより、磁性層11のナノ磁石54aの漏れ磁界Hpinが上向きに印加されている領域で、磁化反転する。【選択図】図5C

Description

本発明は、磁壁移動素子の初期化方法、ならびに、磁壁移動素子を二次元配列した磁気メモリまたは空間光変調器を備える磁気装置に関する。
メモリセルにおける磁気抵抗効果素子の抵抗の高低を2値のデータとする磁気抵抗ランダムアクセスメモリ(Magnetoresistive Random Access Memory:MRAM)においては、書込み、すなわち磁気抵抗効果素子の一部の磁性膜(自由層)の磁化反転方式として、初期の磁界印加方式に対して、高速化およびセルの微細化のために、電流を膜面垂直に供給する方式のSTT(Spin Transfer Torque:スピン注入トルク)-MRAMが開発されている。そしてさらなる高速化のために、磁壁移動方式のMRAM(例えば、特許文献1、非特許文献1)や、SOT(Spin Orbit Torque:スピン軌道トルク)-MRAM(例えば、特許文献2,3)が開発されている。
磁壁移動方式は、磁気抵抗効果素子の自由層を両側に延伸した細線状に形成して、その長手方向の所定の2点間における磁化方向を変化させる。詳しくは、幅が数nm~数百nmの細線状に形成された磁性体(以下、磁性細線)は、その長手方向に2以上の磁区が生成し易く、さらに当該長手方向(細線方向)に電流を所定の電流密度以上で供給されると、磁区同士を区切るように生成している磁壁がSTT効果によって電流の逆方向に(正極側へ)移動する。また、このような磁性細線の所定領域(磁化反転可能領域)における磁化反転を利用して、磁性細線を磁気光学材料で形成して光変調素子とした磁気光学式の空間光変調器が開発されている(例えば、特許文献4,5)。
SOT-MRAMは、磁気抵抗効果素子の自由層に、Ta(タンタル)等のスピンホール効果(Spin Hall Effect:SHE)を有するスピンホール層を積層して備える。スピンホール層は、膜面(xy面)内における一方向(x方向)に電流を供給されると、y方向の互いに逆向きのスピンを有する電子が上下の各表層に分かれて蓄積され、自由層との界面近傍の電子が自由層の磁化方向を反転させる。SOT効果は磁性細線における磁壁移動にも作用することが知られ(例えば、非特許文献2~7)、STT効果を超える磁壁移動の高速化、低電流化が期待されている。さらに非特許文献4では、磁壁の磁気構造によって磁壁を移動させるスピンの向きが異なることが報告されている。また、非特許文献7では、外部から面内方向に磁界を印加することで、磁壁移動が高速化することが報告されている。また、SOT効果を利用した、磁性細線を光変調素子とした空間光変調器が開発されている(例えば、特許文献6)。
特許第5598697号公報 国際公開第2017/090730号 国際公開第2019/054484号 特許第4939489号公報 特開2018-073871号公報 特開2020-134754号公報
S. Fukami, T. Suzuki, K. Nagahara, N. Ohshima, Y. Ozaki, S. Saito, R. Nebashi, N. Sakimura, H. Honjo, K. Mori, C. Igarashi, S. Miura, N. Ishiwata, T. Sugibayashi, "Low-Current Perpendicular Domain Wall Motion Cell for Scalable High-Speed MRAM", 2009 Symposium on VLSI Technology Digest of Technical Papers, 12A-2 Luqiao Liu, O. J. Lee, T. J. Gudmundsen, D. C. Ralph, R. A. Buhrman, "Current-Induced Switching of Perpendicularly Magnetized Magnetic Layers Using Spin Torque from the Spin Hall Effect", Physical Review Letters, Volume 109, 096602, 2012 Soo-Man Seo, Kyoung-Whan Kim, Jisu Ryu, Hyun-Woo Lee, Kyung-Jin Lee, "Current-induced motion of a transverse magnetic domain wall in the presence of spin Hall effect", Applied Physics Letters, Volume 101, 022405 (2012) A. V. Khvalkovskiy, V. Cros, D. Apalkov, V. Nikitin, M. Krounbi, K. A. Zvezdin, A. Anane, J. Grollier, A. Fert, "Matching domain-wall configuration and spin-orbit torques for efficient domain-wall motion", Physical Review B87, 020402(R), 2013 Kab-Jin Kim, et al., "Fast domain wall motion in the vicinity of the angular momentum compensation temperature of ferrimagnets", Nature Materials volume 16, pp. 1187-1192, 2017 黒川雄一郎,粟野博之,"Pt/[Tb/Co]n多層配線の電流誘起磁壁移動におけるPt層の効果",第40回 日本磁気学会学術講演概要集,5pE-3,2016年 Kenichi Aoshima, Nobuhiko Funabashi, Ryo Higashida, Kenji Machida, "Current induced domain wall motion with a Ta/Gd-Fe/Si-N magnetic nanowire for a magneto-optical light modulator", AIP Advances 10, 015336, 2020
磁性細線を備える磁気抵抗効果素子や光変調素子(以下、磁壁移動素子)を二次元配列したMRAMや空間光変調器は、初期設定として、すべての磁壁移動素子の磁性細線について、磁化反転可能領域の一端に磁壁を生成して、磁化反転可能領域における磁化方向を揃える必要がある。そのために、一例として、磁壁移動素子が磁性細線の端部における下側に硬磁性体を備えて、外部磁界印加により硬磁性体および磁性細線をそれぞれ一様な磁化方向とした後に、磁性細線に電流を供給して、硬磁性体から印加される磁界で局所的に磁化反転させて磁壁を生成する。この磁壁を生成するための電流の電流密度が高いので、磁壁移動に必要な電流がSOT効果等で小さくすることができても、初期設定で大電流を供給されるために、配線や磁壁移動素子毎に設けられるスイッチング素子(トランジスタ)を大電流に耐えられる構造とする必要がある。
本発明は前記問題点に鑑み創案されたもので、供給する電流の電流密度を高くすることなく、磁性細線に磁壁を生成することができる磁壁移動素子の初期化方法、ならびに電流密度の高くない電流による初期化が可能な磁気メモリや空間光変調器を備える磁気装置を提供することが課題である。
すなわち、本発明に係る磁壁移動素子の初期化方法は、垂直磁気異方性材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の上側または下側であって細線方向における一部に配置された硬磁性材料からなる磁界印加部材と、を備え、前記磁性細線に電流を細線方向に供給されると、前記磁性層に生成している磁壁が、前記一部を含まない所定領域内を細線方向に移動する磁壁移動素子の初期化方法である。そして、前記磁壁移動素子の初期化方法は、前記硬磁性材料が垂直磁気異方性を有し、前記磁壁移動素子に、前記磁界印加部材の保磁力以上の磁界を上向きまたは下向きに印加する第1磁化工程と、前記磁壁移動素子に磁界を細線方向における一方向に印加しながら、前記磁性細線に電流を細線方向に供給する初期磁区形成工程と、を順に行う。また、前記磁壁移動素子の別の初期化方法は、前記硬磁性材料が面内磁気異方性を有し、前記磁壁移動素子に、前記磁界印加部材の保磁力以上の磁界を、前記磁性細線の細線方向における一方向に印加する第1磁化工程と、前記磁壁移動素子に、前記磁性層の保磁力以上の磁界を、上向きまたは下向きに印加する第2磁化工程と、前記磁壁移動素子に前記磁界印加部材の保磁力未満の磁界を細線方向における一方向に印加しながら、前記磁性細線に電流を細線方向に供給する初期磁区形成工程と、を順に行う。あるいは、前記第2磁化工程を行わず、前記初期磁区形成工程を、前記磁界の印加方向または前記電流の供給方向の一方を反転させて2回行う。かかる手順により、磁壁移動素子の磁性細線に電流密度の高くない電流を供給して、磁性細線を局所的に磁化反転させて磁壁を生成させることができる。
本発明に係る磁気装置は、二次元配列した磁壁移動素子および前記磁壁移動素子毎のスイッチング素子を備える空間光変調器と、前記磁壁移動素子に前記スイッチング素子を介して電流を供給する電流源と、前記空間光変調器のすべての前記磁壁移動素子に磁界を印加する磁界印加手段と、を備える。前記磁気装置において、前記磁壁移動素子は、垂直磁気異方性の磁気光学材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の上側または下側であって細線方向における一部に配置された硬磁性材料からなる磁界印加部材と、を備え、前記磁性層の所定領域を細線方向に挟む両外側の少なくとも一方の領域に、前記磁界印加部材が発する磁界が前記磁性細線の膜面垂直方向に印加され、前記磁性細線に電流を細線方向に供給されることにより、前記磁性層に生成している磁壁が細線方向に移動して前記磁性層の前記所定領域における磁化方向が反転するように構成される。そして、前記空間光変調器は、前記磁壁移動素子を、前記磁性細線の細線方向を揃えて二次元配列し、前記磁界印加手段は、前記磁性細線の細線方向に磁界を印加することを特徴とする。
本発明に係る別の磁気装置は、二次元配列した磁壁移動素子および前記磁壁移動素子毎のスイッチング素子を備える磁気メモリと、前記磁壁移動素子に前記スイッチング素子を介して電流を供給する電流源と、前記磁気メモリのすべての前記磁壁移動素子に磁界を印加する磁界印加手段と、を備える。前記磁気装置において、前記磁壁移動素子は、垂直磁気異方性の磁気光学材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の所定領域における前記磁性層側に順次積層した非磁性金属膜または絶縁膜の一方および前記磁性層の保磁力以上の保磁力を有する垂直磁気異方性材料からなる参照層と、前記磁性細線の上側または下側であって細線方向における一部に配置された硬磁性材料からなる磁界印加部材と、を備え、前記磁性層の前記所定領域を細線方向に挟む両外側の少なくとも一方の領域に、前記磁界印加部材が発する磁界が前記磁性細線の膜面垂直方向に印加され、前記磁性細線に電流を細線方向に供給されることにより、前記磁性層に生成している磁壁が細線方向に移動して前記磁性層の前記所定領域における磁化方向が反転するように構成される。そして、前記磁気メモリは、前記磁壁移動素子を、前記磁性細線の細線方向を揃えて二次元配列し、前記磁界印加手段は、前記磁性細線の細線方向に磁界を印加することを特徴とする。
かかる構成により、磁気装置の空間光変調器や磁気メモリにおいて、磁界印加手段で磁性細線の磁性層を一様な磁化方向とした後に、磁性細線の細線方向に磁界印加手段が磁界を印加しながら電流源が電流を供給することにより、前記電流の電流密度が高くなくても磁性層に磁壁を生成することができる。
本発明に係る磁壁移動素子の初期化方法によれば、磁壁移動素子の磁性細線に電流密度の高い電流を供給する必要がないので、磁性細線、および磁性細線に接続されるスイッチング素子や配線を大電流に耐える構造とする必要がない。そして、本発明に係る磁気装置によれば、空間光変調器や磁気メモリの高精細化が容易となる。
本発明の第1実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の構造および動作を模式的に説明する断面図である。 本発明の第1実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の構造および動作を模式的に説明する断面図である。 磁性細線におけるネール型磁壁の磁気構造、およびスピン軌道トルク効果による磁壁の移動を説明する概念図である。 磁性細線におけるネール型磁壁の磁気構造、および磁界印加とスピン軌道トルク効果による磁壁の移動を説明する概念図である。 磁性細線におけるネール型磁壁の磁気構造、および磁界印加とスピン軌道トルク効果による磁壁の移動を説明する概念図である。 本発明の第1実施形態に係る磁壁移動素子の初期化方法における第1磁化工程を説明する模式図である。 本発明の第1実施形態に係る磁壁移動素子の初期化方法における第2磁化工程を説明する模式図である。 本発明の第1実施形態に係る磁壁移動素子の初期化方法における初期磁区形成工程を説明する模式図である。 本発明の第1実施形態に係る磁壁移動素子の初期化方法における初期磁区形成工程を説明する模式図である。 図1Aおよび図1Bに示す磁壁移動素子を備える空間光変調器の等価回路図である。 本発明の第1実施形態の変形例に係る磁壁移動素子の初期化方法における第1磁化工程後の模式図である。 本発明の第1実施形態の変形例に係る磁壁移動素子の初期化方法における初期磁区形成工程を説明する模式図である。 本発明の第1実施形態の変形例に係る磁壁移動素子の初期化方法における初期磁区形成工程を説明する模式図である。 本発明の第1実施形態の変形例に係る磁壁移動素子の初期化方法における初期磁区形成工程を説明する模式図である。 本発明の第1実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の変形例の構造および動作を模式的に説明する断面図である。 本発明の第1実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の変形例の構造および動作を模式的に説明する断面図である。 図8Aおよび図8Bに示す磁壁移動素子を備える磁気メモリの等価回路図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の構造および動作を模式的に説明する断面図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の構造および動作を模式的に説明する断面図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法における第1磁化工程を説明する模式図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法における第2磁化工程を説明する模式図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法における初期磁区形成工程を説明する模式図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法における初期磁区形成工程を説明する模式図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の変形例の構造および動作を模式的に説明する断面図である。 本発明の第2実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子の変形例の構造および動作を模式的に説明する断面図である。 本発明に係る初期化方法を実施した、磁壁移動素子を模擬した実施例のサンプルの磁性細線の磁気光学顕微鏡写真である。 本発明に係る初期化方法を実施した、磁壁移動素子を模擬した実施例のサンプルの磁性細線の磁気光学顕微鏡写真である。 比較例に係る初期化方法を実施した、磁壁移動素子を模擬した実施例のサンプルの磁性細線の磁気光学顕微鏡写真である。
以下、本発明に係る磁壁移動素子の初期化方法および磁気装置を実現するための形態について、図面を参照して説明する。図面に示す磁壁移動素子および磁気装置、ならびにそれらの要素は、明確に説明するために、大きさや位置関係等を誇張していることがあり、また、形状や構造を単純化していることがある。
〔第1実施形態〕
(磁壁移動素子)
本発明の第1実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子(以下、第1実施形態に係る磁壁移動素子)10は、図1Aおよび図1Bに示すように、垂直磁気異方性材料からなる磁性層11とスピンホール効果を有するチャネル層12とを上から順に積層して細線状に形成してなる磁性細線1と、磁性細線1の下面(チャネル層12)に互いに細線方向に離間して接続した、面内磁気異方性の硬磁性材料からなるナノ磁石(磁界印加部材)54a,54bと、を備え、さらに、ナノ磁石54a,54bの下面に接続する電極61,62を備える。また、磁壁移動素子10においては、磁性細線1の周囲等の空白部に絶縁体が設けられる。本明細書では適宜、磁性細線1の細線方向をx方向、細線幅方向をy方向、厚さ方向をz方向と称する。磁壁移動素子10は、光変調素子であり、上方から入射した光を反射して偏光方向を2値の角度に変化させた光を出射する(例えば、特許文献4,5参照)。したがって、磁壁移動素子10は、後記するように、画素として二次元配列されて空間光変調器90を構成する。画素とは、空間光変調器による表示の最小単位での情報(明/暗)を表示する手段を指す。
磁性層11は、磁壁移動素子10の主要部材であり、一部の領域の磁化方向が上向きまたは下向きの所望の方向を示して、カー効果により、入射した光を反射する際に偏光方向を2値の角度(+θk/-θk)に変化させる。磁性層11は、細線状に形成された垂直磁気異方性材料からなり、図1Aおよび図1Bに示すように、磁壁DWによって細線方向に区切られ、異なる磁化方向(図中、ハッチングを付した矢印で表す)の2つの磁区、すなわち上向きの磁区と下向きの磁区とに分割されている。磁性層11は、後記するように、この磁壁DWが電気的手段によって細線方向に移動させられ、磁壁DWの移動の始点-終点間における磁化方向が移動の前後で変化する。磁性層11における磁壁DWの移動の始点-終点間の領域を、磁化反転可能領域1SWと称し、画素の開口部とすることができる。磁性層11は、磁化反転可能領域1SWの細線方向両外側に隣接した領域が、それぞれ磁化方向が上向き、下向きに固定された領域となり、磁化固定領域1FX1,1FX2と称する。磁壁移動素子10において、磁性層11は、ナノ磁石54a,54bのそれぞれの直上の領域同士の間の領域が、細線方向に、磁化固定領域1FX1、磁化反転可能領域1SW、磁化固定領域1FX2に区画される。
磁壁移動素子10は、磁性層11の磁化反転可能領域1SWで反射した光を所望の偏光方向に変化させる。そのために、磁性層11は、垂直磁気異方性材料の、保磁力が比較的大きくないものを適用されることが好ましく、さらに磁気光学効果の高いものが好ましく、MRAMの磁気抵抗効果素子等に適用されるCPP-GMR(Current Perpendicular to the Plane Giant MagnetoResistance:垂直通電型巨大磁気抵抗)素子やTMR(Tunnel MagnetoResistance:トンネル磁気抵抗)素子の磁化自由層に用いられる公知の磁性材料を適用することができる。具体的には、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを膜厚比1:2~4程度に交互に繰り返し積層したCo/Pd多層膜等の多層膜、Tb-Fe-Co,Gd-Fe等の希土類金属と遷移金属との合金(RE-TM合金)、L10系の規則合金としたFePt, FePd,CrPt3等が挙げられる。本実施形態においては、保磁力が小さく、磁気光学効果の高いGd-Fe合金が特に好適である。
磁性細線1を構成する磁性層11およびチャネル層12のそれぞれは、厚さと幅が一様な直線状であることが好ましい。磁性層11は、厚さおよび幅に対して十分に長い細線状に形成される。さらに、磁性層11は、厚さと幅の積である断面積が小さいほど、磁性細線1に供給する電流を小さくすることができる。一方、磁性層11は、磁化の保持のためにある程度の保磁力Hcfを有するように、厚さおよび幅を有することが好ましく、また、厚さが大きいほど光変調度が高く(カー回転角θkが大きく)なり、具体的には、厚さが5nm以上であることが好ましく、10nm以上であることがより好ましい。ただし、磁性層11は、材料にもよるが、厚さが20nm程度を超えると光変調度の上昇が鈍化し、さらに厚膜化すると垂直磁気異方性が保持され難い場合がある。また、磁性層11が厚いと磁壁DWが移動し難くなる。したがって、磁性層11は、厚さが30nm以下であることが好ましく、20nm以下であることがより好ましい。また、画素の開口部である磁性層11の磁化反転可能領域1SWが広いことが好ましく、入射光の波長にもよるが、幅、および磁化反転可能領域1SWの細線方向長が、200~300nm程度以上であることが好ましい。また、磁性層11の磁化固定領域1FX1,1FX2はそれぞれ、細線方向長が細線幅の1/2以上であることが好ましい。
チャネル層12は、電流を流すパスであり、磁性層11の片面、ここでは下面に積層され、磁性層11と同じ平面(xy面)視形状に形成される。チャネル層12は、電流が流れるとスピンホール効果(SHE)によってスピン流を発生させる薄膜であり、例えば、常磁性の遷移金属の中でも高比重のTa,Pt,Wが適用される。また、チャネル層12は、BiSb,BiSe等のトポロジカル絶縁体を適用することもできる。チャネル層12は、厚さが1nm以上であることが好ましく、10nm以下であることが好ましい。
ナノ磁石54は、z方向の漏れ磁界を磁性層11の細線方向における一部に印加する。ナノ磁石54は、磁壁移動素子10においては2個設けられ、-x側をナノ磁石54a、+x側をナノ磁石54bと称する。ナノ磁石54aは、磁性層11の磁化固定領域1FX1に+z方向の磁界+Hpinを印加し、ナノ磁石54bは、磁化固定領域1FX2に-z方向の磁界-Hpinを印加する。ナノ磁石54は、x方向長がy方向長および厚さよりも長い、磁性細線1の細線方向に沿った極小の棒磁石であり、ここでは+x側をN極とする。なお、別途記載のない限り、各図面において、ナノ磁石54a,54bおよび後記のナノ磁石51,52は、極性「N」、「S」を付し、さらに、N極側にハッチングを付して表す。また、図1Aおよび図1Bに、ナノ磁石54からの磁力線を破線で表す。ナノ磁石54は、その上方や下方であってx方向両外側近傍に、+z方向、-z方向の漏れ磁界を発生させ、上方で発生した一部が磁性層11に到達する。磁壁移動素子10においては、ナノ磁石54a,54bが磁性細線1のx方向に互いに離間し、磁性細線1の細線方向の両外側に張り出して配置され、-x側のナノ磁石54aはN極が、+x側のナノ磁石54bはS極が、それぞれ磁性層11の下側に配置されている。したがって、-x側の磁化固定領域1FX1にはナノ磁石54aのN極側から+z方向の磁界+Hpinが印加され、+x側の磁化固定領域1FX2にはナノ磁石54bのS極側から-z方向の磁界-Hpinが印加される。また、ナノ磁石54a,54bは、磁性細線1の下面(チャネル層12)に接続して設けられ、ナノ磁石54a,54bの下面に電極61,62が接続する。したがって、ナノ磁石54a,54bは、電極61,62と共に、磁性細線1への電流Iwの供給経路を構成する。
ナノ磁石54は、保磁力Hcpが十分に大きいことが好ましく、少なくとも磁性層11の保磁力Hcfよりも大きい。また、ナノ磁石54は、後記するように、磁性層11に印加される漏れ磁界+Hpin,-Hpinが必要な強さとなるような磁力を有する。そのために、ナノ磁石54は、面内磁気異方性を有する硬磁性体からなり、例えば、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを膜厚比2~4:1程度に交互に繰り返し積層したCo/Pt多層膜等の多層膜が適用される。
電極61および電極62は、磁性細線1に、外部から電流を細線方向(+x方向、-x方向)に供給するための端子である。そのために、電極61,62は、磁性層11の磁化固定領域1FX1,1FX2のx方向外側で、磁性細線1に電気的に接続する。本実施形態に係る磁壁移動素子10においては、電極61,62は、それぞれナノ磁石54a,54bを介在して磁性細線1に接続する。電極61,62は、Cu,Al,Au,Ag,Ta,Cr,Pt,Ru等の金属やその合金のような一般的な金属電極材料で、磁性細線1に供給する電流の大きさに対応した厚さや幅に形成される。
磁壁移動素子10において、磁性細線1やナノ磁石54a,54bの周囲等の空白部に設けられる絶縁体は、SiO2,SiN,Al23等の半導体素子に設けられる公知の無機絶縁材料が適用され、部位によって異なる材料を設けてもよい。特に、磁性層11がRE-TM合金等の酸化し易い材料からなる場合には、磁性層11と接触する部位、具体的には磁性細線1の上面や側面に、SiN等の非酸化物やMgOを適用することが好ましい。また、磁壁移動素子10(空間光変調器90)の製造時においては、このような絶縁材料を厚さ1~10nm程度の保護膜として、チャネル層12、磁性層11をそれぞれ形成する材料と連続して成膜することが好ましい。
(磁性細線における磁壁移動)
本実施形態に係る磁壁移動素子の、電流供給による磁性細線における磁壁移動について、図2、図3、および図4を参照して説明する。これらの図面では、磁性細線1の、磁性層11が、磁化反転可能領域1SW(図1A、図1B参照)に2つの磁壁DW1,DW2を有していると仮定し、磁壁DW1,DW2を含む部分を特に細線方向(x方向)に拡大して表す。まず、磁壁の磁気構造について説明する。強磁性体である磁性層11は、磁化方向が下向きの磁区D1と上向きの磁区D2との境界では、磁化方向が下向きから上向きに急激に切り換わらず、隣り合う磁気モーメントm,mを同じ向きに揃えようとする交換相互作用が働くので、磁区D1-磁区D2間には、磁気モーメントmが磁区D1側から磁区D2側へ少しずつ傾斜して配列した磁壁DW1が生成する。同様に、磁化方向が上向きの磁区D2と下向きの磁区D3との境界の磁壁DW2においては、配列した磁気モーメントmが磁区D2側から磁区D3側へ少しずつ傾斜している。これらの図面の磁壁DW1のように、-x側が下向き、+x側が上向きの磁化方向となる磁壁を、down-up磁壁と称する。反対に、磁壁DW2のように、-x側が上向き、+x側が下向きの磁化方向となる磁壁を、up-down磁壁と称する。
ここで、垂直磁気異方性材料からなる磁性体の磁壁には2種類の磁気構造がある。一つは、図2、図3、および図4に示すように、磁壁DW1,DW2における磁気モーメントmが、磁壁面(yz面)に垂直な細線方向(x方向)に向けて傾斜して、xz面内で180°回転するネール(Neel)型磁壁である。もう一つは、磁気モーメントmが、細線幅方向(y方向)に向けて傾斜して、磁壁面(yz面)内で180°回転するブロッホ(Bloch)型磁壁である(図示省略)。さらにそれぞれの磁壁において、磁気モーメント回転方向が、右旋回(right-handed chirality)と左旋回(left-handed chirality)とを示し得る。図2に示す磁壁DW1,DW2は右旋回のネール型の磁気構造であり、図3に示す磁壁DW1および図4に示す磁壁DW2は左旋回のネール型の磁気構造である。通常、細線状に形成された垂直磁気異方性の磁性体において、磁壁は、磁気構造がこれら4通りに交互に変化しながら移動する。ただし、細線幅が十分に細い場合には、ネール型磁壁になり易く、右旋回と左旋回の2通りに変化する。さらに、磁性細線1の積層構造(チャネル層12/磁性層11/絶縁体)に依拠するジャロシンスキー-守谷相互作用(Dzyaloshinskii - Moriya Interaction:DMI)による有効磁界(up-down磁壁においては+x方向、down-up磁壁においては-x方向)により、右旋回のネール型が優勢である。
このような磁性細線1に、電流Iwを細線方向の一方向(+x方向)に供給しているとき、図2上段に示すように、チャネル層12にyz面の単位面積当たりの電流Jが+x方向に流れる。すると、チャネル層12においては、スピンホール効果によってスピン流が誘起されて、細線幅方向の互いに逆向き(-y方向、+y方向)のスピンを有する電子e-が、上下の各表層に分かれて蓄積される。したがって、上側の磁性層11との界面近傍に、-y方向のスピンを有する電子e-が偏在する。-y方向のスピンを有する電子e-は、磁性層11の磁壁DW1,DW2の磁気モーメントmをxz面内で反時計回りに回転させる。なお、図2、図3、および図4において、磁壁DW1,DW2の磁気モーメントmに回転方向を表す矢印を付す。また、同時に、磁性層11にも、チャネル層12との抵抗差に応じた電流密度の電流が流れる。この電流密度が十分に高いと、磁性層11は、ジュール熱が発生して温度が上昇することによって保磁力がHcfから一時的にHcf´(≦Hcf)に低下して磁気異方性が低下し、磁気モーメントmが弱くなって回転し易くなる。その結果、右旋回のネール型の磁壁DW1,DW2が、見かけ上、白抜きの破線矢印で示すように電流Iwと同じ+x方向に移動して、後側の磁区D1が伸長し、前側の磁区D3が短縮し、間の磁区D2が+x方向に移動する。反対に、図2下段に示すように、磁性細線1に電流Iwを-x方向に供給しているときには、チャネル層12における磁性層11との界面近傍に+y方向のスピンを有する電子e-が偏在する。+y方向のスピンを有する電子e-は、磁性層11の磁壁DW1,DW2の磁気モーメントmをxz面内で時計回りに回転させるので、見かけ上、磁壁DW1,DW2が-x方向に移動する。すなわち、磁壁が電流の供給方向に移動する。
一方、図3に示す磁性細線1においては、磁壁DW1が左旋回のネール型の磁気構造である。図3上段に示すように、このような磁性細線1に電流Iwを+x方向に供給しているとき、積層したチャネル層12の界面近傍に、-y方向のスピンを有する電子e-が偏在する。-y方向のスピンを有する電子e-は、磁壁DW1の磁気モーメントmを反時計回りに回転させるので、左旋回のネール型の磁壁DW1は、見かけ上、白抜きの破線矢印で示すように電流Iwと逆の-x方向に移動する。そして、図3下段に示すように、電流Iwを-x方向に供給されていると、+y方向のスピンを有する電子e-が、磁気モーメントmを時計回りに回転させるので、見かけ上、磁壁DW1が+x方向に移動する。すなわち、左旋回のネール型の磁壁は、電流の供給方向と逆方向に移動する。このように、磁性細線において、磁壁は、磁気構造によって、電流の供給方向に対する移動方向が異なる。しかし、前記したように、磁壁は、右旋回のネール型の磁気構造が優勢であるので、図2に示すように電流の供給方向に移動する。
ここで、図3および図4に示すように、外部から、細線方向における所定の一方向の磁界Hassが磁性層11に印加されていると、磁壁DW1,DW2は、磁性層11の細線幅にかかわらず、磁気モーメント回転方向が一方向のネール型の磁気構造で安定する。具体的には、図3に示すように、磁性層11に磁界Hassが+x方向に印加されていることにより、down-up磁壁DW1は左旋回のネール型の磁気構造、up-down磁壁DW2は右旋回のネール型の磁気構造で、それぞれ安定する。反対に、図4に示すように、磁性層11に磁界Hassが-x方向に印加されていることにより、down-up磁壁DW1は右旋回のネール型の磁気構造、up-down磁壁DW2は左旋回のネール型の磁気構造で、それぞれ安定する。このように、磁界印加により磁壁DW1,DW2の磁気構造が安定すると、磁壁DW1,DW2を電流Iwの供給で高速に移動させることができ、また、低い電流密度の電流Iwで移動させることができる。
ただし、磁界Hassを印加されていると、down-up磁壁DW1とup-down磁壁DW2とは、磁気モーメント回転方向が異なるので、電流Iwの供給による移動方向が互いに逆になる。詳しくは、図3上段に示すように、磁性細線1に電流Iwを+x方向に供給しているとき、磁壁DW1は電流Iwと逆の-x方向に移動し、磁壁DW2は電流Iwと同じ+x方向に移動する。その結果、磁区D2が前後に伸張し、後側の磁区D1および前側の磁区D3が共に短縮する。反対に、図3下段に示すように、磁性細線1に電流Iwを-x方向に供給しているとき、磁壁DW1は+x方向に移動し、磁壁DW2は-x方向に移動する。その結果、後側の磁区D1および前側の磁区D3が共に伸張し、間の磁区D2が前後に短縮し、最終的には磁区D2が消失し、それを区切る磁壁DW1,DW2も消失して下向きの磁区D1,D3が一体化する。一方、図4上段に示すように、磁性細線1に電流Iwを+x方向に供給しているとき、図3下段と同様に、磁壁DW1が+x方向に移動し、磁壁DW2が-x方向に移動して、磁区D2が前後に短縮する。そして、図4下段に示すように、磁性細線1に電流Iwを-x方向に供給しているとき、図3上段と同様に、磁壁DW1が-x方向に移動し、磁壁DW2が+x方向に移動して、磁区D2が前後に伸張する。
このように、磁性細線1にその細線方向に電流を供給することにより、磁性層11において磁壁DWを電流の供給方向に移動させることができる。また、外部から磁性層11に磁界を細線方向に印加しながら電流を供給することにより、磁壁DWを高速移動させ、また、磁界の印加方向によって、磁壁DWを電流の供給方向と同じ方向または逆方向に移動させることができる。さらに、磁性層11の磁区の数にかかわらず、電流が細線方向に流れる領域全体を、上向きまたは下向きの所望の磁化方向にすることができる。詳しくは、電流の供給方向と磁界の印加方向とが同じ方向のときに上向きの磁化方向になり(図3上段、図4下段)、逆方向のときに下向きの磁化方向になる(図3下段、図4上段)。
(磁壁移動素子の動作)
本実施形態に係る磁壁移動素子10の、磁性細線1の磁性層11の磁化反転可能領域1SWにおける磁化反転動作について、図1Aおよび図1Bを参照して説明する。磁壁移動素子10は、磁性細線1が、下面に接続されたナノ磁石54a,54bを介して電流Iwを供給されるので、ナノ磁石54a,54bの直上の領域におけるチャネル層12では、電流Iwが細線方向(x方向)だけでなく膜面垂直方向(z方向)にも分流し、スピンホール効果が低い。言い換えると、磁性細線1は、ナノ磁石54a,54bと接続した各領域の間の領域において、電流Iwが細線方向に十分な電流密度で流れ、SOT効果が発現し易い。磁性細線1のこの領域をSOT領域と称する。したがって、磁性細線1に電極61,62から電流Iwを供給したとき、磁性層11のSOT領域内で磁壁DWが移動して磁化反転し得る。さらに、磁壁移動素子10においては、ナノ磁石54a,54bによって、磁性層11の磁化固定領域1FX1に上向きの漏れ磁界+Hpinが、磁化固定領域1FX2に下向きの漏れ磁界-Hpinが、それぞれ印加されている。したがって、磁化固定領域1FX1,1FX2では、磁気モーメントmが磁界+Hpin,-Hpinと同じ向きを維持しようするので、上向き、下向きの磁化方向が維持されて磁化反転せず、すなわち磁壁DWが移動してこない。このように、磁壁移動素子10は、磁性層11が、SOT領域の両端の磁化固定領域1FX1,1FX2における磁化方向が固定されているので、電流Iwの供給方向や磁界Hassの印加方向に応じて、磁化反転可能領域1SWに限定して磁化反転し、磁性層11のSOT領域から磁壁DWが消失しない。したがって、磁壁移動素子10は、電流Iwの供給方向を切り替えて、繰り返し、磁化反転可能領域1SWを磁化反転させることができる。
磁性層11の磁化反転可能領域1SWにおける磁化方向を、図1Aに示す上向きの状態から下向きの状態に磁化反転させるときには、磁壁DWを-x方向に移動させるために、図1Bに示すように、電極61を電流源の-極に、電極62を+極に接続して電流Iwを-x方向に供給する。反対に、磁化反転可能領域1SWの磁化方向を図1Bに示す下向きから上向きに磁化反転させるときには、図1Aに示すように、電極61を+極に、電極62を-極に接続して電流Iwを+x方向に供給する。図1A、図1B、および後記図面において、磁性細線1に細線方向に流れる電流Iwを、太破線矢印で表す。
さらに、電流Iwを供給する際に磁界Hassを印加することにより、低い電流密度の電流Iwで磁壁DWを移動させて磁化反転可能領域1SWを磁化反転させることができ、また、電流密度に対して高速で磁化反転可能領域1SWを磁化反転させることができる。磁壁DWはup-down磁壁であるので、図1A、図1B、および図3に示すように、磁界Hassを+x方向に印加して右旋回の磁気構造で安定させる。あるいは、図4に示すように磁界Hassを-x方向に印加してもよく、この場合には、電流Iwの供給方向と磁化反転可能領域1SWの磁化方向との関係が入れ替わる。なお、磁界Hassは、磁化固定領域1FX1,1FX2においてz方向の磁界+Hpin,-Hpinを打ち消さないような強さに設定することが好ましい。
そして、前記したように、磁性層11の磁化反転可能領域1SWで反射した光は、磁化方向によって、偏光方向が入射光に対して角度+θk/-θk回転(旋光)した2値の光のいずれかとなる。したがって、2値の光の一方を明(白)に、他方を暗(黒)に設定することにより、磁壁移動素子10は反射型の空間光変調器の画素に使用することができる。
磁性細線1に供給する電流Iwの電流密度が高いほど、y方向における一方向のスピンを有する電子e-がチャネル層12の磁性層11との界面に多く蓄積するので、そして、磁性層11の一時保磁力Hcf´が小さくなるので、高速で磁壁DWが移動して磁化反転可能領域1SWが磁化反転する。一方で、電流Iwの電流密度が高いと、磁性細線1が劣化し易くなる。また、磁性細線1に電流Iwを供給している時に磁界Hassを印加すると、電流密度に対して高速で磁化反転可能領域1SWが磁化反転し、さらに磁界Hassが大きいほどより高速になる。磁壁移動速度は、電流Iwの電流密度、および磁界Hassの印加の有無やその強さ等に依存するので、これらに応じて、磁壁DWの移動距離が磁化反転可能領域1SWの細線方向長以上になるように、電流Iwの供給時間を設定する。磁化反転可能領域1SWの細線方向長が1μm程度であれば、磁壁移動速度によるが、電流Iwの供給時間は10ns程度である。このような極めて短時間の直流電流を供給するために、供給時間をピーク期間に設定した直流パルス電流として電流Iwを供給することが好ましい。また、電流Iwの供給と磁界Hassの印加とは、開始と停止をそれぞれ同時としてもよいし、ずらしてもよい。ただし、電流Iwの供給のみでも磁壁DWが低速であるが移動し得るので、電流Iwを供給しているときには常時、磁界Hassを印加しているように制御することが好ましい。
なお、磁性層11は、厚さが大きくなると、チャネル層12との界面当たりにおいて、体積が増大して磁気モーメントmが強くなり、一方、チャネル層12の界面近傍の電子e-が有する角運動量は一定であるので、SOT効果により磁壁DWを移動させるためには、一般的には、電流Iwの電流密度を高くする必要がある。さらには、磁性層11の断面積の拡大と相まって、電流Iwを大きくすることになる。しかし、本実施形態では、外部磁界Hassの印加によって、磁性層11の磁壁DWが右旋回のネール型の磁気構造に揃えられて安定していることにより、磁性層11がある程度厚くても低い電流密度で磁気モーメントを回転させることができると考えられる。
(磁壁移動素子の初期化方法)
磁壁移動素子10の磁性細線1の磁化反転動作で説明した、磁性細線1におけるSOT効果による磁気モーメントの回転は、磁壁内に限られない。細線方向に電流を供給しながら、上向きまたは下向きの磁区に逆向きの磁界を印加することにより、磁区内の磁気モーメントを180°回転させることができる。ただし、磁壁内の傾いた磁気モーメントを回転させる、すなわち磁壁を移動させるよりも大きな運動量が必要である。そこで、磁壁移動と同様に、磁界を細線方向にも印加することにより、電流密度を高くせずに、下向きまたは上向きの磁界を印加した部分を磁化反転させて磁壁を生成することができる。以下、磁壁移動素子の初期化方法について、図5A~図5Dを参照して説明する。
初期化処理は、磁壁移動素子10のナノ磁石54a,54bの極性を所定の方向に着磁し、また、磁性細線1の磁性層11のSOT領域において、細線方向に磁区が2つに分割されて、磁化固定領域1FX1側を上向き、磁化固定領域1FX2側を下向きの磁化方向として、これら2つの磁区の境界に磁壁DWを生成する。本発明の第1実施形態に係る初期化方法は、磁壁移動素子10に、ナノ磁石(磁界印加部材)54の保磁力Hcp以上の磁界Hmag1を+x方向(細線方向における一方向)に印加する着磁工程(第1磁化工程)と、磁性層11の保磁力Hcf以上の磁界Hmag2を下向きに印加する単磁区化工程(第2磁化工程)と、磁界Hinitを+x方向(細線方向における一方向)に印加しながら、磁性細線1に電流Iinitを+x方向(細線方向)に供給する初期磁区形成工程と、を順に行う。
着磁工程は、磁壁移動素子10の磁性材料のうち保磁力が最も大きいナノ磁石54を、所定の極性に着磁する。ここでは、+x側がN極、-x側がS極の棒磁石とする。そのために、図5Aに示すように、外部から磁壁移動素子10に、ナノ磁石54の保磁力Hcp以上の磁界Hmag1(Hmag1≧Hcp)を+x方向に印加する。磁界Hmag1は、ナノ磁石54の保磁力Hcpよりも大きいこと(Hmag1>Hcp)が好ましい。
単磁区化工程は、磁性細線1の磁性層11を上向きまたは下向きの単磁区構造とする。ここでは、図5Bに示すように、外部から磁壁移動素子10に、磁性層11の保磁力Hcf以上の磁界Hmag2(Hmag2≧Hcf)を-z方向(下向き)に印加する。磁界Hmag2は、磁性層11の保磁力Hcfよりも大きいこと(Hmag2>Hcf)が好ましい。単磁区化工程により、垂直磁気異方性材料からなる磁性層11の全体が下向きの磁化方向となる。
初期磁区形成工程は、単磁区構造の磁性層11に、磁壁DWを挟んだ2つの磁区を生成する。ここでは、単磁区化工程で磁性層11が下向きの単磁区構造とされたので、上向きの磁区を部分的に生成する。図3および図4を参照して説明したように、磁性細線1に、磁界を細線方向に印加しながらその方向と同じ方向に電流を供給すると、上向きの磁区を伸張することができる。また、磁性層11に、ナノ磁石54aによって、その直上の+x側近傍の領域には、+z方向の漏れ磁界+Hpinが印加されている。同様に、ナノ磁石54bによって、その直上の-x側近傍の領域には、-z方向の漏れ磁界-Hpinが印加されている。そこで、ここでは図5Cに示すように、外部から+x方向に磁界Hinitを印加しながら、磁性細線1に電極61,62およびナノ磁石54a,54bを介して電流Iinitを+x方向に供給する。
電流Iinitにより、磁性層11は、発生したジュール熱で温度が上昇して保磁力が一時的に低下して磁気モーメントが弱くなる。また、チャネル層12のSOT領域においては、+x方向に流れる電流Iinitにより、スピンホール効果によって、磁性層11との界面近傍に-y方向のスピンを有する電子e-が偏在する(図3上段参照)。すると、磁性層11は、逆向き(+z方向)の磁界+Hpinを印加されている領域の磁気モーメントが、チャネル層12の-y方向のスピンを有する電子e-によって、下向き(-z方向)から反時計回りに回転して+x方向を経て+z方向に反転する。さらに、+x方向の磁界Hinitによって、磁気モーメントが-z方向から+x方向への反時計回りの回転を促進される。
その結果、図5Cに示すように、磁性層11は、磁界+Hpinを印加されている領域が上向きの磁区に分割され、この磁区を挟んで磁壁DW´,DWが生成される。この上向きの磁区を初期形成磁区と称する。-x側の磁壁DW´は、down-up磁壁であり、+x方向の磁界Hinitによって左旋回のネール型の磁気構造となる(図3の磁壁DW1参照)。+x側の磁壁DWは、up-down磁壁であり、有効磁界と同じ+x方向の磁界Hinitによって右旋回のネール型の磁気構造となる。
磁性層11に初期形成磁区および磁壁DW´,DWが生成された後も引き続き、電流Iinitを供給し、磁界Hinitを印加していると、前記の磁性細線における磁壁移動で説明したように、磁性層11において、磁壁DW´が電流Iinitの供給方向と逆向きの-x方向に移動し、磁壁DWが+x方向に移動して、上向きの初期形成磁区が図3上段に示すように両方向に伸張する。ナノ磁石54aの直上の領域ではスピンホール効果が低いので、図5Dに示すように、この領域の手前(+x側の境界)、すなわちSOT領域の端で磁壁DW´が停止し、ナノ磁石54aの直上の領域は下向きの磁化方向が維持される。一方、ナノ磁石54bによって-z方向の漏れ磁界-Hpinが印加されている領域においても、下向きの磁化方向が維持されるので、図5Dに示すように、この領域の手前(-x側の境界)で磁壁DWが停止する。したがって、初期化処理により、磁壁移動素子10は、図1Aに示すように、磁性層11に、上向きの磁化方向の磁化固定領域1FX1および下向きの磁化方向の磁化固定領域1FX2が形成され、磁化固定領域1FX2の-x側の境界に磁壁DWが配置されて磁化反転可能領域1SWにおいて上向きの磁化方向となる。また、このように、磁性層11は、SOT領域外であるナノ磁石54aの直上の領域では下向きの磁化方向が維持されて、その+x側の境界に磁壁DW´が存在するが、図1Aおよび図1Bでは省略し、磁化固定領域1FX1と同じ上向きの磁化方向とする。この磁壁DW´は、初期化処理後、すなわち磁性層11の磁化反転可能領域1SWにおける磁化反転動作においては移動しない。また、磁性層11のナノ磁石54aの直上の領域が狭い場合には、磁界+Hpinを印加されている領域が上向きに磁化反転する際に、-x側の端まで共に磁化反転して磁壁DW´が生成しないことがある。
このように、本実施形態に係る磁壁移動素子の初期化方法は、外部から磁界を、軸方向を変えて3回印加し、最後の磁界印加の際に磁性細線1に電流を供給する。なお、単磁区化工程で磁界Hmag2を上向きに印加してもよく、この場合には、初期磁区形成工程は、磁界Hinitの印加方向と電流Iinitの供給方向とを互いに逆向きとする。また、下向きの単磁区構造とした磁性層に対する初期磁区形成工程において、磁界Hinitの印加方向と電流Iinitの供給方向とを互いに逆向きとしても、上向きの初期形成磁区を形成することはできる。ただし、電流Iinitによって上向きの磁区を短縮するように磁壁DW´,DWが移動するので(図3下段、図4上段)、初期形成磁区を形成するために、より大きな運動量が必要となる。
1つの磁区の一部の領域を磁化反転させて磁壁を生成するために必要な運動量は、磁壁を移動させるために必要な運動量よりも大きい。したがって、初期磁区形成工程において、電流Iinitおよび磁界Hinitは、それぞれ電流Iw以上、磁界Hass以上(Iinit≧Iw、Hinit≧Hass)に設定することが好ましい。しかし、電流Iinitが大きいと、磁壁移動素子10を備える空間光変調器90において、配線や磁壁移動素子10毎に設けられるスイッチング素子(トランジスタ)をこのような電流Iinitに耐えられる構造とする必要がある。したがって、電流Iinitは、電流Iwに対して大き過ぎないことが好ましく、電流Iwと同じ大きさであることが最も好ましい。一方、磁界Hinitが強いほど電流Iinitの電流密度を低くすることができる。ただし、磁界Hinitが過剰に強いと、ナノ磁石54a,54bからの漏れ磁界+Hpin,-Hpinが打ち消されて却って磁化反転し難く、また、磁壁DWを磁化固定領域1FX1,1FX2で停止させることができないので、磁界Hinitは磁界Hpinを打ち消さない程度の強さとすることが好ましく、磁界Hpin以下である(Hinit≦Hpin)ことがより好ましい。言い換えると、電流Iwに対して大き過ぎない電流Iinitとの組み合わせによって磁化反転可能な磁界Hinit,Hpinに設定し、さらに、ナノ磁石54が、磁界Hinitで打ち消されない強さの漏れ磁界Hpinを発生させる磁力を有することが好ましい。
磁性層11の磁界+Hpinが印加されている領域における磁化反転(図5C参照)に要する時間(磁壁生成時間)は、電流Iinitの電流密度、磁界Hinitの強さ、ナノ磁石54の漏れ磁界Hpinの強さ、および磁性層11の保磁力等に依存するので、これらに応じて、電流Iinitの供給および磁界Hinitの印加の時間を設定する。磁壁生成時間は、前記の磁性層11の磁化反転可能領域1SW全体における磁壁移動による磁化反転よりも長いが極めて短時間であり、このような直流電流を供給するために、供給時間をピーク期間に設定した直流パルス電流として電流Iinitを供給することが好ましい。供給時間は、マージンを含めて設定することが好ましい。さらに、磁界+Hpinによって磁性層11が局所的に磁化反転した後、磁化反転可能領域1SW全体を磁化反転(磁壁移動)させることが好ましい。したがって、電流Iinitの供給および磁界Hinitの印加の時間を磁壁移動時間も含めて設定する。または、少なくとも磁壁DWが生成するまで電流Iinitを供給し、その後、一旦停止してから、あるいはすぐに電流Iwに大きさを切り換え、一方、磁界Hinitの印加は継続しまたは磁界に強さを切り換え、磁化反転可能領域1SWを完全に磁化反転させてもよい。なお、磁性細線における磁壁移動と同様に、電流Iinitの供給と磁界Hinitの印加とは、開始と停止をそれぞれ同時としてもよいし、ずらしてもよいが、電流Iinitを供給しているときには常時、磁界Hinitを印加しているように制御することが好ましい。
(空間光変調器)
磁壁移動素子10は、一例として、図6に示す空間光変調器90に配列された画素9の光変調素子として搭載される。なお、図6においては、簡潔に説明するために、磁壁移動素子10について、磁性細線1(抵抗器の図記号で表す)および電極61,62(線で表す)のみを示し、また、4列×4行の16個の画素9を示す。画素9は、磁壁移動素子10と共に、磁壁移動素子10の電極61に接続するトランジスタ71をさらに備える。空間光変調器90は、1T1R型のメモリセルを備える選択トランジスタ型のMRAMの回路構成に類似し、列方向に延設したワード線84および行方向に延設したビット線81を備える。ビット線81はトランジスタ71を経由して電極61に接続し、ワード線84はトランジスタ71のゲートに入力する。また、電極62は、すべての画素9の共通電位に接続する。
トランジスタ71は、例えばMOSFET(金属酸化膜半導体電界効果トランジスタ)であり、Si基板の表層に形成される。したがって、Si基板を土台として、画素9を配列することができる。ビット線81およびワード線84は、電極61,62と同様に金属電極材料で形成される。さらに、これらの配線およびトランジスタ71は、電流Iw,Iinitに対応した構造とする。例えば、電流Iw,Iinitが1.0mA以下であれば、0.13μmプロセスのMOSFETを適用することができる。また、配線間や隣り合う画素9,9のそれぞれの磁性細線1同士等の間隙には、SiO2やAl23等の、半導体素子に設けられる公知の無機絶縁材料が充填される。
空間光変調器90において、磁壁移動素子10は、磁性細線1の細線方向がすべての画素9で揃うように配列される。これは、磁壁移動素子10の初期化処理で、またはさらに書込み(磁性細線1の磁化反転動作)で、空間光変調器90の外部から細線方向に磁界を印加するためである。ただし、画素9の配列方向と磁壁移動素子10の磁性細線1の細線方向(x方向)とは合わせなくてよい。例えば、画素の開口率を高くするために、磁性細線1の細線方向長が長くなるように、配列の対角線方向を細線方向に設計することができる。また、隣の画素9の磁性細線1やナノ磁石54と互いに磁気的な影響を受けることのないように、間隔を空けて画素9のレイアウトを設計する。また、画素9における磁化反転可能領域1SWの配置がすべての画素9で揃うようにレイアウトを設計されていることが好ましい。
(磁気装置)
本発明の実施形態に係る磁気装置は、空間光変調器90と、空間光変調器90の磁壁移動素子10の磁性細線1にトランジスタ(スイッチング素子)71を介して電流を供給する電流源と、空間光変調器90のすべての磁壁移動素子10に磁界を印加する磁界発生装置(磁界印加手段)と、を備える(図示省略)。この磁気装置は、磁界発生装置が、磁性細線1の細線方向および膜面垂直方向(上向きまたは下向き)に向きを切り替えて磁界を印加し、また、磁壁移動素子10のナノ磁石(磁界印加部材)54の保磁力Hcp以上の磁界、および磁性細線1の磁性層11の保磁力Hcf以上の磁界に強さを切り換える。磁気装置はさらに、列デコーダや行デコーダ等の空間光変調器90の周辺回路を備える(図示省略)。
電流源は、パルス電流源であることが好ましく、電流Iw,Iinitを直流パルス電流として空間光変調器90に供給する。磁界発生装置は、空間光変調器90(磁壁移動素子10)の初期化において磁界Hmag1,Hmag2,Hinitを印加し、さらに書込みで磁界Hassを印加してもよい。そのために、磁界発生装置は、磁界を空間光変調器90全体に一様な強さかつ方向に印加することができ、さらに磁界を2段階以上の強さに切り換えることができ、最大でナノ磁石54の保磁力Hcp以上の磁界Hmag1を印加するものとする。磁界発生装置は、公知の装置を適用することができ、このような強い磁界を発生させることができる電磁石方式の装置が好適である。また、磁界発生装置は、空間光変調器90に対して2軸方向(x方向とz方向)に切り替えて磁界を印加することができるように、例えば、当該磁界発生装置または空間光変調器90の向きを90°変える支持部材を備える。
(書込方法)
空間光変調器90の書込み、すなわち、所望の明暗のパターンに応じて、画素9毎に磁性層11の磁化反転可能領域1SWにおける磁化方向を上向きまたは下向きにする方法の一例は、以下の通りである。磁性細線1に電流Iwを供給するためのビット線81(トランジスタ71のソース)と電極62との電位差をVwとすると、電流源の一方の端子を0Vに接続し、この端子にすべての画素9の電極62を接続する。そして、磁化反転可能領域1SWを下向きの磁化方向にする(図1A参照)ためには、電流Iwを+x方向に供給するように、電流源の他方の端子を電位+Vwと選択した行のビット線81とに接続し、書き込む対象の画素9の列のワード線84をゲート電源に接続する。反対に、磁化反転可能領域1SWを上向きの磁化方向にする(図1B参照)ためには、電流Iwを-x方向に供給するように、電流源の他方の端子を電位-Vwに接続する。
(初期化方法)
空間光変調器90に二次元配列された磁壁移動素子10の初期化処理は、前記した通りであり、空間光変調器90の製造時または使用前に行うことができる。初期化処理は、空間光変調器90に対して、製造時だけでなく、起動時毎や定期的に行ってもよい。空間光変調器90の起動時等に行う場合には、更新処理(リフレッシュ)として、単磁区化工程および初期磁区形成工程のみを行うこともでき、比較的保磁力の小さい磁性細線1の磁性層11を図1Aまたは図1Bに示す所定の磁化状態とする。
本発明の実施形態に係る磁気装置は、磁壁移動素子10のナノ磁石54の着磁(着磁工程)を行わず、更新処理(単磁区化工程、初期磁区形成工程)のみを行う構成でもよい。この場合には、磁界発生装置は、磁界Hmag2,Hinit、さらに磁界Hassを印加するので、磁性層11の保磁力Hcf以上の磁界Hmag2を印加することができればよく、ヘルムホルツ方式の装置を適用することができる。
(変形例)
空間光変調器90は、すべての画素9のトランジスタ71のソースを共通電位に接続し、電極62をビット線81に接続してもよい。また、空間光変調器90は、x方向に隣り合う2つの画素9において、一方の磁壁移動素子10の電極61と電極62の配置を入れ替えて、2つの磁壁移動素子10の電極62および電極62に接続するナノ磁石54b,54aを一体化して共有することができる。このような空間光変調器90において、これら2つの画素9の磁壁移動素子10は、電流Iinit,Iwの供給方向と磁界Hinit,Hassの印加方向との関係が異なる。したがって、初期化処理(初期磁区形成工程)や書込みにおいて、画素9のxアドレスが奇数か偶数かによって電流Iinit,Iwの供給方向を反転させる。
本実施形態に係る磁気装置は、磁界発生装置が磁界Hassを+x方向、-x方向の双方向に切り替えて印加する構成として、空間光変調器90の書込みにおいて、磁性細線1への電流Iwの供給方向を、+x方向または-x方向の一方向とすることができる。したがって、空間光変調器90の画素9は、スイッチング素子として、トランジスタ71に代えてダイオードを備えていてもよい。このような構成により、磁気装置は、空間光変調器90を簡易な構成とすることができる。
磁性細線1は、チャネル層12が磁性層11の上面に積層されていてもよい。このような磁性細線1を備える磁壁移動素子10は、電流Iwの供給方向と磁壁DWの移動方向との関係が逆になる。また、この場合、チャネル層12は、磁性層11に入出射する光を十分に透過するように、光の透過率が比較的高い材料を選択したり、厚さを抑えることが好ましい。
磁壁移動素子10は、磁性細線1の下面に直接に電極61,62を接続してもよく、そのために、ナノ磁石54(54a,54b)を磁性細線1の上側に配置する。このような磁壁移動素子10においては、ナノ磁石54は磁性細線1の上面に接続せずに、間に絶縁膜を設けることができる。絶縁膜は厚さ3nm以上であることが好ましく、ただし、ナノ磁石54と磁性細線1との間隔が長いと、ナノ磁石54の磁力に対して、磁性細線1に印加される漏れ磁界+Hpin,-Hpinが弱くなるので、過剰に厚くしないことが好ましい。さらに、このように、磁壁移動素子10においてナノ磁石54が磁性細線1と絶縁している場合、空間光変調器90は、x方向に隣り合う画素9において、-x側の磁壁移動素子10のナノ磁石54bと+x側の磁壁移動素子10のナノ磁石54aとを一体化して共有することができる。
磁壁移動素子10は、ナノ磁石54(54a,54b)を1つのみ備える構成とすることもできる。例えば、ナノ磁石54aのみを備え、電極62は磁性細線1の下面に直接に接続する。このような磁壁移動素子10は、磁性層11が磁化固定領域1FX2に下向きの漏れ磁界を印加されない。したがって、初期化処理の初期磁区形成工程においては、磁壁DWがSOT領域の+x側の端まで到達しないように、電流Iinitの供給時間を調整する。同様に、磁化反転可能領域1SWを上向きに磁化反転させるときも、電流Iwの供給時間を調整する。また、磁化固定領域1FX2を、磁壁DWが停止する範囲としてマージンを十分に設けて、x方向に長く設計することが好ましい。
(磁壁移動素子の初期化方法の変形例)
SOT効果により磁性細線の磁壁を移動させる際に磁界を細線方向に印加することにより、特定の磁化方向の磁区を、その前後の磁壁を互いに逆向きに移動させて伸張または短縮させることができる(図3、図4参照)。また、磁性細線は、通常、外部から磁界を印加される前(初磁化状態)において、磁区が細線方向に分割されている。これらのことから、本実施形態に係る磁壁移動素子10は、初期化処理において、膜面垂直方向に磁界を印加して磁性層11を単磁区化しなくても、磁化反転可能領域1SWに1つの磁壁を設けることができる。すなわち本発明の第1実施形態の変形例に係る初期化方法は、磁壁移動素子10に、ナノ磁石(磁界印加部材)54の保磁力Hcp以上の磁界Hmag1を+x方向(細線方向における一方向)に印加する着磁工程(第1磁化工程)と、磁界Hinitを+x方向(細線方向)に印加しながら、磁性細線1に電流Iinitを細線方向に供給する初期磁区形成工程と、を順に行い、初期磁区形成工程は、電流Iinitの供給方向を+x方向と-x方向とに切り替えて2回行う。以下、本変形例に係る磁壁移動素子の初期化方法について、図7A~図7Dを参照して説明する。
着磁工程は、図5Aに示す前記実施形態と同様である。着磁工程により、図7Aに示すように、磁壁移動素子10のナノ磁石54a,54bが、+x側がN極、-x側がS極の棒磁石となる。また、この時点で、磁性細線1の磁性層11は、その保磁力Hcf以上の磁界を膜面垂直方向(z方向)に印加されておらず、1ないし2以上の磁壁により、細線方向に磁区が分割されている。ここでは、2つの磁壁DW2,DW1により、上向き、下向き、上向きの3つの磁区に分割されているものとする。
初期磁区形成工程は、図5Bに示す前記実施形態と同様に、磁性細線1に、磁界Hinitを+x方向に印加しながらその方向と同じ方向に電流Iinitを供給する。すると、磁性層11のSOT領域において、上向きの磁区が伸張し、下向きの磁区が短縮する。ここでは、磁性層11は、図7Aに示すように、SOT領域に2つの磁壁DW2,DW1が下向きの磁区を挟んで生成しているので、磁壁DW2,DW1が互いに近付くように移動して、下向きの磁区が消失し、図7Bに示すように上向きの単磁区構造になる。
本変形例において、初期磁区形成工程は、引き続き磁界Hinitを+x方向に印加しながら、電流Iinitを-x方向に反転させて供給する。すると、図7Cに示すように、磁性層11は、ナノ磁石54bによって-z方向の漏れ磁界-Hpinが印加されている領域において、上向き(+z方向)から時計回りに回転して+x方向を経て-z方向に反転する。その結果、磁性層11は、この領域が下向きの磁区に分割され、この初期形成磁区を挟んで磁壁DW,DW´が生成される。引き続き、電流Iinitを供給し、磁界Hinitを印加することにより、図7Dに示すように、初期形成磁区が伸張するように、-x側の磁壁DWは-x方向に移動して、ナノ磁石54aによって+z方向の漏れ磁界+Hpinが印加されている領域の手前で停止する。+側の磁壁DW´は+x方向に移動して、ナノ磁石54bの直上の領域の手前、すなわちSOT領域の端で停止する。したがって、初期化処理により、磁壁移動素子10は、図1Bに示すように、磁性層11に、上向きの磁化方向の磁化固定領域1FX1および下向きの磁化方向の磁化固定領域1FX2が形成され、磁化固定領域1FX1の+x側の境界に磁壁DWが配置されて磁化反転可能領域1SWにおいて下向きの磁化方向となる。
なお、電流Iinitが十分に電流密度が高く、または磁界Hinitが十分に強い場合、磁界Hinitを+x方向に印加しながら電流Iinitを+x方向に供給しているときに(図7B参照)、図7Cに示すように、磁性層11は、ナノ磁石54bによって-z方向の漏れ磁界-Hpinが印加されている領域において、下向きの初期形成磁区が形成される。ただし、この段階では、初期形成磁区は漏れ磁界-Hpinが印加されている領域から伸張せず、電流Iinitの供給方向を-x方向に反転させると、図7Dに示すように伸張する。
初期磁区形成工程前(着磁工程後)において、磁性層11が、図7Aに示す磁化方向とは逆に、下向き、上向き、下向きの3つの磁区に分割されている場合には、磁性層11は、初期磁区形成工程により次のように磁化状態が変化する。まず、磁界Hinitを+x方向に印加しながらその方向と同じ方向に電流Iinitを供給すると、上向きの磁区が伸張するように、-x側の磁壁は-x方向に移動して、ナノ磁石54aの直上の領域の手前、すなわちSOT領域の端で停止する。+x側の磁壁は+x方向に移動して、ナノ磁石54bによって-z方向の漏れ磁界-Hpinが印加されている領域の手前で停止する。すなわち図5Dに示す状態になり、磁性層11が磁化反転可能領域1SWにおいて上向きの磁化方向となり、-x側の磁壁は磁壁DW´に、+側の磁壁は磁壁DWになる。そして、引き続き磁界Hinitを+x方向に印加しながら、電流Iinitを-x方向に反転させて供給すると、磁壁DWが-x方向に移動して、磁性層11が磁化反転可能領域1SWにおいて下向きの磁化方向となる。したがって、磁性層11は、初期磁区形成工程前の磁化状態にかかわらず、初期磁区形成工程により、図1Bに示すように、磁壁DWが磁化固定領域1FX1の+x側の境界に配置され、磁化反転可能領域1SWにおいて下向きの磁化方向となる。
このように、本変形例に係る磁壁移動素子の初期化方法は、外部から磁界を、強さを2段階に変えて磁性細線1の細線方向に印加し、後の弱い磁界印加の際に、磁性細線1に電流を供給方向を反転させて2回供給する。なお、本変形例に係る初期化方法において、初期磁区形成工程は、先に電流Iinitを-x方向(磁界Hinitの印加方向と逆向き)に供給してから、その後+x方向に反転させて供給してもよい。この場合には、図1Aに示すように、磁壁DWが磁化固定領域1FX2の-x側の境界に配置され、磁化反転可能領域1SWにおいて上向きの磁化方向となる。また、初期磁区形成工程は、電流Iinitを+x方向または-x方向の一方向に供給し、磁界Hinitの印加方向を+x方向から-x方向にまたは-x方向から+x方向に反転させてもよい。
本変形例に係る磁壁移動素子の初期化方法によれば、磁壁移動素子10の磁性層11に、その初磁化状態にかかわらず、所定の位置に磁壁DWを配置することができる。したがって、前記実施形態に係る磁壁移動素子の初期化方法と同様に、空間光変調器90に外部から、そのすべての磁壁移動素子10に磁界を印加して初期化することができる。また、本変形例に係る磁壁移動素子の初期化方法を行うために、磁気装置は、磁界発生装置が、空間光変調器90の書込みも含めて空間光変調器90に対して1軸方向(x方向)にのみ磁界を印加すればよいので、簡易な構成とすることができる。また、磁気装置は、更新処理、すなわち初期磁区形成工程のみを行う構成でもよい。この場合にも、磁界発生装置は、x方向にのみ磁界を印加すればよいので、1軸のヘルムホルツ方式の装置を適用することができ、さらに簡易な構成とすることができる。
(磁気抵抗効果素子)
本発明の第1実施形態に係る磁壁移動素子は、磁性細線の磁性層の磁化反転可能領域上に絶縁膜および垂直磁気異方性の磁性膜を積層することで、磁気抵抗効果素子を構成することができる。以下、変形例に係る磁壁移動素子およびそれを備える磁気メモリの構成について、図8A、図8B、および図9を参照して説明する。第1実施形態(図1~図6参照)と同一の要素については同じ符号を付し、説明を省略する。
本発明の第1実施形態の変形例に係る磁壁移動素子10Aは、図8Aおよび図8Bに示すように、磁性層11とチャネル層12とを上から順に積層した磁性細線1と、磁性細線1の下面(チャネル層12)に互いに細線方向に離間して接続した、面内磁気異方性の硬磁性材料からなるナノ磁石(磁界印加部材)54a,54bと、磁性層11の細線方向中央における上面に積層された障壁層(絶縁膜)3および磁化固定層(参照層)43と、を備え、さらに、ナノ磁石54a,54bのそれぞれの下面に接続する電極61,62、および磁化固定層43の上面に接続する電極63を備える。したがって、磁壁移動素子10Aは、前記実施形態に係る磁壁移動素子10に対して、磁性細線1の磁性層11上に障壁層3、磁化固定層43、および電極63を順に積層した構成である。磁壁移動素子10Aは磁気抵抗効果素子であり、MRAMのメモリセルの記憶素子とすることができる。
磁性細線1の構成は、前記実施形態で説明した通りである。ただし、磁壁移動素子10Aにおいては、磁性層11の上に障壁層3および磁化固定層43が積層されるために、チャネル層12は磁性層11の下に積層される必要がある。また、磁性層11は、磁気光学効果が不要であり、一方、ある程度の大きさの保磁力を有していることが好ましい。また、磁性層11は、厚さおよび幅が、磁化の保持や熱擾乱耐性のために必要な大きさであればよく、具体的には、厚さが5nm以上、幅が10nm以上であることが好ましい。同様に、磁化反転可能領域1SWおよびその両側の磁化固定領域1FX1,1FX2(図8A、図8B参照)の各細線方向長は、10nm以上かつ細線幅の1/2以上であることが好ましい。また、磁性層11は、幅が300nm以下であることが、磁区が幅方向に分割され難く好ましい。
障壁層3および磁化固定層43は、磁性層11と合わせた3層の積層構造からなるTMR素子を構成して、磁壁移動素子10Aの読出しとして、磁性層11の磁化反転可能領域1SWにおける磁化方向を検出するために設けられる。すなわち、磁性層11の、磁化固定層43の直下における領域が、前記TMR素子の磁化自由層となり、したがって、この領域が磁化反転可能領域1SWに内包されるように磁化固定層43が配置される。そのために、磁化固定層43は、細線方向(x方向)において、磁化反転可能領域1SW内に配置され、細線方向長が磁化反転可能領域1SWよりも短い。障壁層3および磁化固定層43は、その直下の磁性層11と合わせて、TMR素子として好適な材料および形状であればよい。なお、磁化固定層43は、細線幅方向(y方向)においては、磁性細線1以下の長さ(幅)でもよいし、磁性細線1の外側へ張り出して大きく形成されていてもよい。磁化固定層43は、磁化方向が上向きまたは下向きに固定され、ここでは上向きとする。したがって、磁化固定層43は、保磁力が磁性層11の保磁力Hcf以上であり、保磁力Hcfよりも大きいことが好ましい。また、磁化固定層43は、当該磁化固定層43が発する磁界が磁壁DWの移動を阻害しないように、磁力がナノ磁石54よりも十分に弱い構成とする。そのために、磁化固定層43は、磁性層11と同様に公知の垂直磁気異方性材料を適用することができ、特に、CPP-GMR素子やTMR素子の磁化固定層(参照層)に用いられる材料が好適である。また、磁化固定層43は、厚さが磁性層11の厚さ以上であることが好ましい。障壁層3は、公知のTMR素子の障壁層の絶縁膜であり、MgOを適用することが好ましく、厚さ3nm未満であることが好ましい。障壁層3は、少なくとも磁性層11と磁化固定層43との間に設けられ、保護膜を兼ねて磁性層11の上面全体に設けられていてもよい。電極63は、電極61,62と同様に金属電極材料で形成される。
本変形例に係る磁壁移動素子10Aの、電流供給による磁性細線における磁壁移動は、前記実施形態に係る磁壁移動素子10と同様である。そして、磁壁移動素子10Aは、磁化固定層43とその直下の領域における磁性層11とで磁化方向が平行であるときよりも反平行であるときの方が、磁化固定層43-磁性層11間の膜面垂直方向の抵抗が高い。すなわち、磁壁移動素子10Aは、磁性層11の磁化反転可能領域1SWにおける磁化方向が上向きのとき(図8A参照)には、電極61-63間や電極62-63間の抵抗が低く、磁化反転可能領域1SWの磁化方向が下向きのとき(図8B参照)には抵抗が高い。したがって、磁壁移動素子10Aは、例えば、低抵抗の状態をデータ“0”、高抵抗の状態をデータ“1”と設定して、MRAMのメモリセルの記憶素子に使用することができる。
本変形例に係る磁壁移動素子10Aの初期化方法は、図5A~図5Dに示す前記実施形態に係る磁壁移動素子10と同様である。ただし、単磁区化工程(第2磁化工程)においては、磁化固定層(参照層)43の保磁力以上の磁界Hmag2を上向きに印加して、磁性層11の全体を上向きの磁化方向にすると共に、磁化固定層43の磁化方向を上向きにする。
(磁気メモリ)
磁壁移動素子10Aは、一例として、図9に示す磁気メモリ90Aに配列されたメモリセル9Aの磁気抵抗効果素子として搭載される。なお、図9においては、簡潔に説明するために、4列×4行の16個のメモリセル9Aを示し、また、磁壁移動素子10Aについて、磁性細線1、障壁層3、および磁化固定層43(符号1Aを付す)を抵抗器と可変抵抗器の図記号を組み合わせて表し、電極61,62,63を線で表す。メモリセル9Aは、磁壁移動素子10Aと共に、磁壁移動素子10Aの電極61に接続するトランジスタ71、および電極63にアノードが接続するダイオード72を備える。磁気メモリ90Aは、1T1R型のメモリセルを備える選択トランジスタ型のMRAMの回路構成に類似して、列方向に延設したビット線82およびワード線84、ならびに行方向に延設したソース線81Aを備え、さらに、ビット線82に直交して行方向に延設した読出ワード線83を備える。ビット線82は電極62に接続し、ソース線81Aはトランジスタ71を経由して電極61に接続し、ワード線84はトランジスタ71のゲートに入力し、読出ワード線83はダイオード72を経由して電極63に接続する。
空間光変調器90と同様に、トランジスタ71はSi基板の表層に形成されて、このSi基板を土台として、メモリセル9Aを配列することができる。一方、ダイオード72は、磁性細線1や磁化固定層43の上側に設けられるために、これらの材料にもよるが、150℃程度の低温で成膜可能な多結晶シリコン(poly-Si)で形成されることが好ましい。
磁気メモリ90Aの書込みは、前記実施形態に係る磁壁移動素子10を備える空間光変調器90の書込みと同様に行うことができる。選択した(書き込む対象の)行のソース線81Aを電流源の一方の端子に接続し、選択したメモリセル9Aの列のビット線82を電流源の他方の端子に接続すると共に、同列のワード線84をゲート電源に接続する。データ“0”を書き込む場合には、ソース線81Aを電流源の+(電位+Vw)の端子に接続し、ビット線82を電流源の-(電位0V)の端子に接続する。データ“1”を書き込む場合には、電流源の+/-の端子を入れ替えて接続する。また、書込みにおいては、磁壁移動素子10Aの磁化固定層43に電流が流れないように、すべての読出ワード線83を電位+Vw以上に接続することが好ましい。
磁気メモリ90Aの読出しは、すべてのワード線84を0Vに接続して、すべてのメモリセル9Aのトランジスタ71をOFFにする。そして、選択したメモリセル9Aのビット線82に定電流源の+極を、読出ワード線83に-極を、それぞれ接続して、定電流Irを供給しながら、定電流源と並列に接続した電圧計により、抵抗値を測定する。なお、定電流Irは、磁壁移動素子10Aの磁性層11の磁壁DWが移動しない程度の大きさに設定する。また、読出しにおいては、非選択の列のビット線82を定電流源の-極以下の電位に接続し、非選択の行の読出ワード線83を+極以上の電位に接続することが好ましい。
(磁気装置)
本発明の実施形態の変形例に係る磁気装置は、磁気メモリ90Aと、磁気メモリ90Aの磁壁移動素子10Aの磁性細線1にトランジスタ(スイッチング素子)71を介して電流を供給する電流源と、磁気メモリ90Aのすべての磁壁移動素子10Aに磁界を印加する磁界発生装置(磁界印加手段)と、を備える(図示省略)。この磁気装置は、磁界発生装置が、磁性細線1の細線方向および膜面垂直方向(上向きまたは下向き)に向きを切り替えて磁界を印加し、また、磁壁移動素子10Aのナノ磁石(磁界印加部材)54の保磁力Hcp以上の磁界、および磁化固定層(参照層)43の保磁力以上の磁界に強さを切り換える。磁気装置はさらに、列デコーダや行デコーダ等の磁気メモリ90Aの周辺回路を備える(図示省略)。磁気装置のその他の構成は、前記実施形態と同様である。
磁気装置は、空間光変調器90を備える磁気装置と同様に、磁界発生装置が磁界Hassを+x方向、-x方向の双方向に切り替えて印加する構成として、磁気メモリ90Aのメモリセル9Aは、スイッチング素子として、トランジスタ71に代えてダイオードを備えていてもよい。また、磁気メモリ90Aは、空間光変調器90と同様に、x方向に隣り合うメモリセル9Aにおいて、一方の磁壁移動素子10Aの電極61と電極62の配置を入れ替えて、2つの磁壁移動素子10Aの電極62および電極62に接続するナノ磁石54b,54aを一体化して共有することができる。
本変形例に係る磁気装置は、前記実施形態と同様に、磁壁移動素子10Aのナノ磁石54の着磁(着磁工程)を行わず、更新処理(単磁区化工程、初期磁区形成工程)のみを行う構成でもよい。本変形例においては、更新処理により、磁壁移動素子10Aの磁性層11を所定の磁化状態とすると共に、磁化固定層43を上向きの磁化方向にする。あるいは、更新処理により磁性層11を所定の磁化状態とするだけでもよく、この場合には、前記実施形態の変形例に係る初期化方法(図7A~図7D参照)を適用することができ、すなわち初期磁区形成工程のみを行う。したがって、磁界発生装置は、x方向にのみ磁界を印加すればよいので、1軸のヘルムホルツ方式の装置を適用することができる。
本変形例に係る磁壁移動素子10Aは、障壁層3に代えて、Cu,Ag,Alのような非磁性金属からなる厚さ1~10nmの中間層を備えてもよい。この中間層および磁化固定層43ならびに磁性層11を合わせた3層の積層構造からなるCPP-GMR素子を構成することができる。また、磁壁移動素子10Aは、前記実施形態に係る磁壁移動素子10と同様に、磁性細線1の下面に直接に電極61,62を接続して、ナノ磁石54(54a,54b)を磁性細線1の上側に配置してもよい。
〔第2実施形態〕
本発明の第1実施形態に係る磁壁移動素子は、磁性細線に磁化方向を固定するための磁界を印加するナノ磁石として、細線方向の棒磁石を適用するが、膜面垂直方向の棒磁石を適用することもできる。以下、本発明の第2実施形態に係る磁壁移動素子の初期化方法について、図10Aおよび図10Bを参照して説明する。第1実施形態(図1~図9参照)と同一の要素については同じ符号を付し、説明を省略する。
(磁壁移動素子)
本発明の第2実施形態に係る磁壁移動素子の初期化方法を行う磁壁移動素子(以下、第1実施形態に係る磁壁移動素子)10Bは、図10Aおよび図10Bに示すように、垂直磁気異方性材料からなる磁性層11とスピンホール効果を有するチャネル層12とを上から順に積層して細線状に形成してなる磁性細線1と、磁性細線1の下面(チャネル層12)に互いに細線方向に離間して接続した、垂直磁気異方性の硬磁性材料からなるナノ磁石(磁界印加部材)51,52と、を備え、さらに、ナノ磁石51,52の下面に接続する電極61,62を備える。また、磁壁移動素子10Bにおいては、前記第1実施形態と同様に、磁性細線1の周囲等の空白部に絶縁体が設けられる。磁壁移動素子10Bは、第1実施形態に係る磁壁移動素子10と同様に、反射型の光変調素子であり、画素として二次元配列されて空間光変調器90を構成する。
ナノ磁石51とナノ磁石52は、z方向に沿った極小の棒磁石であり、互いに逆向きの極性を有し、-x側のナノ磁石51が上側をS極とし、+x側のナノ磁石52が上側をN極とする。ナノ磁石51,52は、平面(xy面)視で外側近傍に当該ナノ磁石51,52の極性と逆向きの漏れ磁界を発生させる。したがって、ナノ磁石51は、磁性層11の磁化固定領域1FX1に+z方向の漏れ磁界+Hpin1を印加し、ナノ磁石52は、磁化固定領域1FX2に-z方向の漏れ磁界-Hpin2を印加する。図10Aおよび図10Bに、ナノ磁石51,52からの磁力線を破線で表す。ナノ磁石51,52は、磁界+Hpin1,-Hpin2により、磁性層11の磁化固定領域1FX1,1FX2における磁化方向を固定し、磁壁移動素子10の初期化において磁性層1に磁壁DWを生成する。磁壁移動素子10Bにおいては、ナノ磁石51,52は、磁性細線1のx方向に互いに離間して、両端に配置される。また、ナノ磁石51,52は、磁性細線1の下面(チャネル層12)に接続して設けられ、ナノ磁石51,52の下面に電極61,62が接続する。したがって、ナノ磁石51,52は、電極61,62と共に、磁性細線1への電流Iwの供給経路を構成する。
ナノ磁石51,52は、保磁力Hcp1,Hcp2が十分に大きいことが好ましく、少なくとも磁性層11の保磁力Hcfよりも大きい。また、ナノ磁石51,52は、後記するように、磁性層11に印加される漏れ磁界+Hpin1,-Hpin2が必要な強さとなるような磁力を有する。そのために、ナノ磁石51およびナノ磁石52は、垂直磁気異方性を有する硬磁性体からなり、例えば、Fe,Co,Ni等の遷移金属とPd,Ptのような貴金属とを膜厚比1:2~4程度に交互に繰り返し積層したCo/Pd多層膜等の多層膜が適用される。また、ナノ磁石51とナノ磁石52とは、極性を互いに逆向きに着磁することができるように、保磁力Hcp1,Hcp2が互いに異なることが好ましい。そのために、ナノ磁石51とナノ磁石52は、例えば、平面視形状のアスペクト比を異なるものとする。ここでは、ナノ磁石52の方が保磁力が大きい(Hcp1<Hcp2)ものとする。
(磁壁移動素子の動作)
本実施形態に係る磁壁移動素子10Bの、電流供給による磁性細線における磁壁移動は、第1実施形態に係る磁壁移動素子10と同様である。すなわち、磁性層11の磁化反転可能領域1SWにおける磁化方向を、図10Aに示す上向きの状態から下向きの状態に磁化反転させるときには、磁壁DWを-x方向に移動させるために、図10Bに示すように、電極61を電流源の-極に、電極62を+極に接続して電流Iwを-x方向に供給する。反対に、磁化反転可能領域1SWの磁化方向を図10Bに示す下向きから上向きに磁化反転させるときには、図10Aに示すように、電極61を+極に、電極62を-極に接続して電流Iwを+x方向に供給する。さらに、電流Iwを供給する際に磁界Hassを印加することにより、低い電流密度の電流Iwで磁壁DWを移動させて磁化反転可能領域1SWを磁化反転させることができ、また、電流密度に対して高速で磁化反転可能領域1SWを磁化反転させることができる。
(磁壁移動素子の初期化方法)
磁壁移動素子の初期化方法について説明する。初期化処理は、磁壁移動素子10Bのナノ磁石51,52の極性をそれぞれ所定の方向に着磁し、また、磁性細線1の磁性層11のSOT領域において、細線方向に磁区が2つに分割されて、磁化固定領域1FX1側を上向き、磁化固定領域1FX2側を下向きの磁化方向として、これら2つの磁区の境界に磁壁DWを生成する。初期化処理は、第1実施形態と同様に、磁壁移動素子10Bを二次元配列して備える空間光変調器90の製造時または使用前に行うことができる。本発明の第2実施形態に係る初期化方法は、磁壁移動素子10Bに、ナノ磁石(磁界印加部材)52の保磁力Hcp2以上の磁界Hmag1を上向きに印加する第1着磁工程(第1磁化工程)と、ナノ磁石(磁界印加部材)52の保磁力Hcp2未満かつナノ磁石(磁界印加部材)51の保磁力Hcp1以上の磁界Hmag2を下向きに印加する第2着磁工程(第2磁化工程)と、磁界Hinitを+x方向(細線方向における一方向)に印加しながら、磁性細線1に電流Iinitを+x方向(細線方向)に供給する初期磁区形成工程と、を順に行う。
第1着磁工程および第2着磁工程は、ナノ磁石51,52を互いに逆向きの極性に着磁すると共に、磁性細線1の磁性層11を上向きまたは下向きの単磁区構造とする。第1着磁工程は、磁壁移動素子10Bの磁性材料のうち保磁力が最も大きいナノ磁石52を、+z側がN極、-z側がS極の棒磁石とする。そのために、図11Aに示すように、外部から、ナノ磁石52の保磁力Hcp2以上の磁界Hmag1(Hmag1≧Hcp2)を+z方向(上向き)に印加する。磁界Hmag1は、ナノ磁石52の保磁力Hcp2よりも大きいことが好ましい。第1着磁工程により、垂直磁気異方性材料からなるナノ磁石51,52および磁性層11のすべてが上向きの磁化方向となる。
第2着磁工程は、ナノ磁石52の極性を変えずに、ナノ磁石51を、+z側がS極、-z側がN極の棒磁石とする。そのために、図11Bに示すように、外部から、ナノ磁石52の保磁力Hcp2未満かつナノ磁石51の保磁力Hcp1以上の磁界Hmag2(Hcp1≦Hmag2<Hcp2)を-z方向(下向き)に印加する。磁界Hmag2は、ナノ磁石51の保磁力Hcp1よりも大きいことが好ましい。第2磁化工程により、ナノ磁石51および磁性層11が磁化反転して下向きの磁化方向になる一方、ナノ磁石52は上向きの磁化方向を維持する。
初期磁区形成工程は、単磁区構造の磁性層11に、磁壁DWを挟んだ2つの磁区を生成する。ここでは、第2着磁工程で磁性層11が下向きの単磁区構造とされたので、第1実施形態と同様に、部分的に上向きの磁区(初期形成磁区)を形成する。また、磁性層11に、ナノ磁石51によって、その直上の+x側近傍の領域には、+z方向の漏れ磁界+Hpin1が印加されている。同様に、ナノ磁石52によって、その直上の-x側近傍の領域には、-z方向の漏れ磁界-Hpin2が印加されている。そこで、図11Cに示すように、外部から+x方向に磁界Hinitを印加しながら、磁性細線1に電極61,62およびナノ磁石51,52を介して電流Iinitを+x方向に供給する。すると、磁性層11は、磁界+Hpin1を印加されている領域が上向きの磁区に分割され、この初期形成磁区を挟んで磁壁DW´,DWが生成される。引き続き、電流Iinitを供給し、磁界Hinitを印加していると、磁性層11において、磁壁DW´が電流Iinitの供給方向と逆向きの-x方向に移動し、磁壁DWが+x方向に移動して、上向きの初期形成磁区が両方向に伸張する。ナノ磁石51の直上の領域ではスピンホール効果が低いので、図11Dに示すように、この領域の+x側の境界で磁壁DW´が停止し、前記領域は下向きの磁化方向が維持される。一方、ナノ磁石52によって-z方向の漏れ磁界-Hpin2が印加されている領域においても、下向きの磁化方向が維持されるので、図11Dに示すように、この領域の-x側の境界で磁壁DWが停止する。このように、磁性層11は、SOT領域外であるナノ磁石51の直上の領域では下向きの磁化方向が維持されて、その+x側の境界に磁壁DW´が存在するが、図10Aおよび図10Bでは省略し、磁化固定領域1FX1と同じ上向きの磁化方向とする。
このように、本実施形態に係る磁壁移動素子の初期化方法は、外部から磁界を2段階で上下に印加することにより、ナノ磁石51,52を互いに逆向きの極性に着磁し、かつ磁性細線1の磁性層11を単磁区構造とした後、磁界を細線方向に切り換え、同時に磁性細線1に電流を供給する。なお、第2着磁工程の後、磁性層11の保磁力Hcf以上の磁界を上向きに印加して、磁性層11を再び上向きに磁化反転させてもよい。そして、次に、初期磁区形成工程において、磁界Hinitの印加方向と電流Iinitの供給方向とを互いに逆向きとする。特に、ナノ磁石51とナノ磁石52との磁力差が大きく、漏れ磁界+Hpin1に対して漏れ磁界-Hpin2が大幅に強い場合、初期磁区形成工程において、磁性層11を漏れ磁界-Hpin2により下向きに磁化反転させる方が、電流Iinitの電流密度を低くすることができる。また、ナノ磁石52よりもナノ磁石51が保磁力が大きい(Hcp1>Hcp2)場合には、第1着磁工程においてナノ磁石51を着磁し、第2着磁工程においてナノ磁石52を着磁する。
(磁気装置)
第2実施形態に係る磁壁移動素子10Bは、前記したように二次元配列されて空間光変調器90を構成し、第1実施形態と同様に、この空間光変調器90と、その空間光変調器90の周辺回路と、電流源と、磁界発生装置(磁界印加手段)と、を備えた磁気装置を構成する(図示省略)。本実施形態に係る磁気装置は、磁界発生装置が、磁性細線1の細線方向および膜面垂直方向(上向きまたは下向き)に向きを切り替えて磁界を印加し、また、磁壁移動素子10Bのナノ磁石(磁界印加部材)52の保磁力Hcp2以上の磁界、およびナノ磁石(磁界印加部材)52の保磁力Hcp2未満であってナノ磁石(磁界印加部材)51の保磁力Hcp1以上の磁界に強さを切り換える。また、本実施形態に係る磁気装置は、第1実施形態で説明したように、磁壁移動素子10Bのナノ磁石51,52の着磁(第1着磁工程、第2着磁工程)を行わず、更新処理(単磁区化工程、初期磁区形成工程)のみを行う構成でもよい。単磁区化工程は、第1実施形態に係る磁壁移動素子の初期化方法と同様に、磁性細線1の磁性層11の保磁力Hcf以上の磁界を下向き(または上向き)に印加する。また、磁気装置は、更新処理のみを行う場合、第1実施形態の変形例に係る初期化方法(図7A~図7D参照)を適用することができ、すなわち初期磁区形成工程のみを行う。
(磁気抵抗効果素子)
本実施形態に係る磁壁移動素子10Bは、第1実施形態と同様に、磁性細線1の磁性層11の磁化反転可能領域1SW上に障壁層(絶縁膜)3および磁化固定層(参照層)43を積層することで、磁気抵抗効果素子を構成することができる(図8A、図8B参照)。そして、この磁壁移動素子は、磁気メモリ90Aのメモリセル9Aの記憶素子とすることができる。
(変形例)
本実施形態に係る磁気装置は、第1実施形態に係る磁気装置と同様に、磁界発生装置が磁界Hassを+x方向、-x方向の双方向に切り替えて印加する構成として、空間光変調器90の画素9は、スイッチング素子として、トランジスタ71に代えてダイオードを備えていてもよい。また、空間光変調器90は、x方向に隣り合う画素9において、一方の磁壁移動素子10Bをx方向に反転した配置として、2つの磁壁移動素子10Bの電極62および電極62に接続するナノ磁石52を一体化して共有することができる。磁気メモリ90Aについても同様である。また、本実施形態に係る磁壁移動素子10Bは、第1実施形態に係る磁壁移動素子10と同様に、ナノ磁石51またはナノ磁石52の一方のみを備える構成とすることもできる。例えば、ナノ磁石51のみを備え、電極62は磁性細線1の下面に直接に接続する。このような磁壁移動素子10Bは、初期化処理において、第1着磁工程(第1磁化工程)を行わず、はじめに第2着磁工程(第2磁化工程)を行う。
磁壁移動素子10Bは、第1実施形態に係る磁壁移動素子10と同様に、磁性細線1の下面に直接に電極61,62を接続して、ナノ磁石51,52を磁性細線1の上側に配置してもよい。さらに本実施形態においては、ナノ磁石51,52の直下に発生する当該ナノ磁石51,52の極性の向きの磁界を磁性層11に印加することもできる。詳しくは、図12Aおよび図12Bに示すように、第2実施形態の変形例に係る磁壁移動素子10Cは、ナノ磁石51A,52Aが、磁性細線1の電極61,62と接続した各領域の間の領域(SOT領域)においてx方向に互いに離間して、磁性細線1の上側に設けられる。本変形例に係る磁壁移動素子10Cにおいては、前記実施形態のナノ磁石51,52と比較して、ナノ磁石51A,52Aは、その磁力に対して強い磁界-Hpin1,+Hpin2を磁性層11に印加する。言い換えると、ナノ磁石51A,52Aは、必要な磁界-Hpin1,+Hpin2に対してそれほど強い磁力としなくてよい。一方で、ナノ磁石51A,52Aは、磁力が過剰に強いと、極性と逆向きの漏れ磁界で磁壁DWの移動を阻害する場合があるので、適切な磁力となるように設計される。
本変形例に係る磁壁移動素子10Cにおいては、磁壁DWがdown-up磁壁であるので、図12Aおよび図12Bに示すように、磁壁DWを電流Iwの供給方向に高速移動させるためには、磁界Hassを-x方向に印加する。また、磁壁移動素子10Cは、前記実施形態に係る磁壁移動素子の初期化方法(図11A~図11D参照)と同様の手順で初期化することができる。
本発明の効果を確認するために、図10Aおよび図10Bに示す本発明の第2実施形態に係る磁壁移動素子を模擬したサンプルを作製して、単磁区化した磁性層に外部から磁界を印加しながら電流を供給して、磁化状態を観察した。
(サンプル作製)
磁性細線は、0.5μm幅の直線状に形成した。磁性細線の積層構造、および磁性層の保磁力Hcfを表1に示す。ナノ磁石は、磁性細線を横切る150nm幅(磁性細線の細線方向長(x方向長))の直線状に形成し、x方向に3.0μmの間隔(中心同士)で2個設け、互いに異なる保磁力とするために、磁性細線の細線幅方向(y方向)長を、-x側:500μm、+x側:3μmに形成した。ナノ磁石の積層構造および保磁力Hcp1,Hcp2を表1に示す。サンプルの作製は、まず、熱酸化SiO2が表面に形成されたSi基板上に、SiN膜を成膜してトレンチを形成し、ナノ磁石を構成する積層膜を成膜して埋め込んだ。その上に、磁性細線を構成する積層膜を成膜して直線状に成形し、さらに、磁性細線の周囲にSiNを埋め込んだ。ナノ磁石および磁性細線は、それぞれ、マグネトロンスパッタリングで成膜し、電子線描画、イオンミリング、およびリフトオフにより形成された。そして、2個のナノ磁石のそれぞれから磁性細線の細線方向外側約6~8μmにおける磁性細線の表面の保護膜を除去して、Agを埋め込んで電極を形成した(電極同士の間隔17μm)。
Figure 2023055588000002
(初期化処理)
サンプルに、上向きに800mT(+800mT)、下向きに250mT(-250mT)、上向きに60mT(+60mT)の磁界を順次印加して、-x側のナノ磁石を下向き(-z方向)の極性に、+x側のナノ磁石を上向き(+z方向)の極性にし、磁性細線の磁性層を上向き(+z方向)の単磁区構造とした。サンプルに磁界(Hinit)を細線方向に印加しながら、電極を介して磁性細線にパルス幅2μsのパルス電流(Iinit)を10回供給した。表2に、磁界Hinitおよび電流Iinitを示す。外部磁界Hinitおよび電流Iinitは、正(+)が+x方向の、負(-)が-x方向の印加、供給方向を表す。電流の供給後、サンプルを磁気光学顕微鏡で観察し、下向きの磁区の分割(磁壁の生成)の有無を判定した。さらに、磁気光学顕微鏡で観察して、下向きの磁区の伸張を視認できたものを、磁区の伸張(磁壁の移動)有と判定した。観察後、再びサンプルに60mTの磁界を上向きに印加して、磁界Hinitおよび電流Iinitによる処理を行った。同じ条件で5回処理を行って、磁壁の生成率および移動率を算出した。磁壁の生成率および移動率を表2に示す。また、サンプルの磁気光学顕微鏡写真を図13Aに示す。サンプルに下向きに60mT(-60mT)の磁界を印加して、磁性細線の磁性層を下向きの単磁区構造とし、同様の処理および観察を行った。磁壁の生成率および移動率を表2に示す。また、サンプルの磁気光学顕微鏡写真を図13Bに示す。図13A、図13B、および後記図14は、+x方向を下に向けて示す。磁性細線(磁性層)において、白っぽく(明るく)見えるのが下向きの磁区、黒っぽく(暗く)見えるのが上向きの磁区である。
Figure 2023055588000003
比較例として、磁性細線の磁性層を下向きの単磁区構造としたサンプルに、外部から磁界を印加せずにパルス電流を、1.6mAから0.1mA刻みで2.1mAまで電流値を変化させて-x方向に供給した。サンプルの磁気光学顕微鏡写真を図14に示す。
図13Aに示すように、上向きの単磁区構造の磁性細線に磁界を印加しながら電流を供給すると、磁界の印加方向および強さによっては、磁性細線の磁性層に、上向きの極性とした+x側のナノ磁石の両側(-x側と+x側)近傍で下向きの磁区が分割され、すなわち磁壁が生成された。特に、表2および図13Aに示すように、電流の供給方向と逆向きに磁界を印加することが有効であり、磁性層の保磁力と同等またはそれよりも弱い磁界でも磁壁を生成することができた。さらに、磁界の印加方向と逆向きに電流を供給することにより、形成された下向きの磁区がそれぞれ伸張し、+x側のナノ磁石の+x側に形成された磁区は、最長で+x側の電極との接続部の手前まで(7μm以上)伸張した。一方、ナノ磁石の-x側に形成された磁区は、長くても-x側のナノ磁石の手前までの伸張であり、磁性層が、-x側のナノ磁石によってその手前の領域において上向きの磁化方向に固定されることが確認された。反対に、図13Bに示すように、下向きの単磁区構造の磁性細線に磁界を印加しながら電流を供給すると、磁性細線の磁性層に、下向きの極性とした-x側のナノ磁石の両側近傍で上向きの磁区が分割され、特に、電流の供給方向と同じ向きに磁界を印加することが有効である。また、本実施例のサンプルにおいては、上向きの極性とした+x側のナノ磁石の方が磁力が強いので、図13Aに示す、このナノ磁石からの下向きの漏れ磁界による上向きから下向きへの磁化反転が容易であった。
また、磁性細線に外部から磁界を印加せずにパルス電流を供給した場合、図14に示すように、電流が1.7mA以下では磁化状態の変化が見られず、1.8mA以上で、磁性細線の磁性層に磁壁が生成して、-x側のナノ磁石の近傍で上向きの磁区が分割された。電流が1.8~2.0mAでは磁壁の移動に至らず、2.1mAでナノ磁石の-x側近傍で形成された磁区が-x方向に僅かに(1μm未満)移動した。なお、2.1mAでは、-x側のナノ磁石のさらに-x側の電極近傍でも上向きの磁区が形成されたが、これは、このような大きな電流で、磁性層の温度が上昇して磁化の揺らぎが大きくなったことにより磁区が分割されたと推測される。
以上、本発明に係る磁壁移動素子の初期化方法および磁気装置を実施するための各実施形態について述べてきたが、本発明はこれらの実施形態に限定されるものではなく、請求項に示した範囲で種々の変更が可能である。
10,10A,10B,10C 磁壁移動素子
1 磁性細線
11 磁性層
12 チャネル層
3 障壁層(絶縁膜)
43 磁化固定層(参照層)
51,52 ナノ磁石(磁界印加部材)
54,54a,54b ナノ磁石(磁界印加部材)
61,62 電極
63 電極
71 トランジスタ(スイッチング素子)
90 空間光変調器
90A 磁気メモリ
9 画素
9A メモリセル

Claims (12)

  1. 垂直磁気異方性材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の上側または下側であって細線方向における一部に配置された垂直磁気異方性の硬磁性材料からなる磁界印加部材と、を備え、前記磁性細線に電流を細線方向に供給されると、前記磁性層に生成している磁壁が、前記一部を含まない所定領域内を細線方向に移動する磁壁移動素子の初期化方法であって、
    前記磁壁移動素子に、前記磁界印加部材の保磁力以上の磁界を前記磁性細線の膜面垂直方向に印加する第1磁化工程と、
    前記磁壁移動素子に磁界を細線方向における一方向に印加しながら、前記磁性細線に電流を細線方向に供給する初期磁区形成工程と、を順に行うことを特徴とする磁壁移動素子の初期化方法。
  2. 前記磁壁移動素子は、前記磁界印加部材を、前記所定領域を細線方向に挟む両外側に備え、前記磁界印加部材の一方が他方よりも保磁力が大きく、
    前記第1磁化工程の後かつ前記初期磁区形成工程の前に、前記磁壁移動素子に、前記磁界印加部材の前記一方の保磁力未満かつ前記他方の保磁力以上の磁界を前記第1磁化工程と逆向きに印加する第2磁化工程を行うことを特徴とする請求項1に記載の磁壁移動素子の初期化方法。
  3. 垂直磁気異方性材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の上側または下側であって細線方向における一部に配置された面内磁気異方性の硬磁性材料からなる磁界印加部材と、を備え、前記磁性細線に電流を細線方向に供給されると、前記磁性層に生成している磁壁が、前記一部を含まない所定領域内を細線方向に移動する磁壁移動素子の初期化方法であって、
    前記磁壁移動素子に、前記磁界印加部材の保磁力以上の磁界を、前記磁性細線の細線方向における一方向に印加する第1磁化工程と、
    前記磁壁移動素子に、前記磁性層の保磁力以上の磁界を、前記磁性細線の膜面垂直方向に印加する第2磁化工程と、
    前記磁壁移動素子に前記磁界印加部材の保磁力未満の磁界を細線方向における一方向に印加しながら、前記磁性細線に電流を細線方向に供給する初期磁区形成工程と、を順に行うことを特徴とする磁壁移動素子の初期化方法。
  4. 垂直磁気異方性材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の上側または下側であって細線方向における一部に配置された面内磁気異方性の硬磁性材料からなる磁界印加部材と、を備え、前記磁性細線に電流を細線方向に供給されると、前記磁性層に生成している磁壁が、前記一部を含まない所定領域内を細線方向に移動する磁壁移動素子の初期化方法であって、
    前記磁壁移動素子に、前記磁界印加部材の保磁力以上の磁界を、前記磁性細線の細線方向における一方向に印加する第1磁化工程と、
    前記磁壁移動素子に前記磁界印加部材の保磁力未満の磁界を細線方向に印加しながら、前記磁性細線に電流を細線方向に供給する初期磁区形成工程と、を順に行い、
    前記初期磁区形成工程は、前記磁界の印加方向または前記電流の供給方向の一方を反転させて2回行うことを特徴とする磁壁移動素子の初期化方法。
  5. 二次元配列した磁壁移動素子および前記磁壁移動素子毎のスイッチング素子を備える空間光変調器と、前記磁壁移動素子に前記スイッチング素子を介して電流を供給する電流源と、前記空間光変調器のすべての前記磁壁移動素子に磁界を印加する磁界印加手段と、を備える磁気装置であって、
    前記磁壁移動素子は、垂直磁気異方性の磁気光学材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の上側または下側であって細線方向における一部に配置された硬磁性材料からなる磁界印加部材と、を備え、前記磁性層の所定領域を細線方向に挟む両外側の少なくとも一方の領域に、前記磁界印加部材が発する磁界が前記磁性細線の膜面垂直方向に印加され、前記磁性細線に電流を細線方向に供給されることにより、前記磁性層に生成している磁壁が細線方向に移動して前記磁性層の前記所定領域における磁化方向が反転し、
    前記空間光変調器は、前記磁壁移動素子を、前記磁性細線の細線方向を揃えて二次元配列し、
    前記磁界印加手段は、前記磁性細線の細線方向に磁界を印加することを特徴とする磁気装置。
  6. 前記磁界印加手段は、前記磁性細線の膜面垂直方向に向きを切り替えて磁界を印加し、前記膜面垂直方向の磁界が前記磁性層の保磁力以上であることを特徴とする請求項5に記載の磁気装置。
  7. 二次元配列した磁壁移動素子および前記磁壁移動素子毎のスイッチング素子を備える磁気メモリと、前記磁壁移動素子に前記スイッチング素子を介して電流を供給する電流源と、前記磁気メモリのすべての前記磁壁移動素子に磁界を印加する磁界印加手段と、を備える磁気装置であって、
    前記磁壁移動素子は、垂直磁気異方性材料からなる磁性層とスピンホール効果を有するチャネル層とを積層して細線状に形成してなる磁性細線と、前記磁性細線の所定領域における前記磁性層側に順次積層した非磁性金属膜または絶縁膜の一方および前記磁性層の保磁力以上の保磁力を有する垂直磁気異方性材料からなる参照層と、前記磁性細線の上側または下側であって細線方向における一部に配置された硬磁性材料からなる磁界印加部材と、を備え、前記磁性層の前記所定領域を細線方向に挟む両外側の少なくとも一方の領域に、前記磁界印加部材が発する磁界が前記磁性細線の膜面垂直方向に印加され、前記磁性細線に電流を細線方向に供給されることにより、前記磁性層に生成している磁壁が細線方向に移動して前記磁性層の前記所定領域における磁化方向が反転し、
    前記磁気メモリは、前記磁壁移動素子を、前記磁性細線の細線方向を揃えて二次元配列し、
    前記磁界印加手段は、前記磁性細線の細線方向に磁界を印加することを特徴とする磁気装置。
  8. 前記磁界印加手段は、前記磁性細線の膜面垂直方向に向きを切り替えて磁界を印加し、前記膜面垂直方向の磁界が前記参照層の保磁力以上であることを特徴とする請求項7に記載の磁気装置。
  9. 前記磁壁移動素子は、前記磁界印加部材を前記所定領域の両外側にそれぞれ備え、前記両外側の一方の前記磁界印加部材から上向きの磁界が、他方の前記磁界印加部材から下向きの磁界が、前記磁性層に印加されることを特徴とする請求項5ないし請求項8のいずれか一項に記載の磁気装置。
  10. 前記磁界印加手段は、前記磁界印加部材の保磁力以上の磁界と、前記磁界印加部材の少なくとも1つの保磁力未満の磁界と、を切り替えて印加することを特徴とする請求項5ないし請求項9のいずれか一項に記載の磁気装置。
  11. 選択した前記磁壁移動素子の前記磁性細線に前記電流源が電流を供給すると共に、前記磁界印加手段が前記磁性細線の細線方向に磁界を印加して、前記所定領域における前記磁性層の磁化方向を反転させることを特徴とする請求項5ないし請求項10のいずれか一項に記載の磁気装置。
  12. 前記電流源が、選択された前記磁壁移動素子の前記磁性細線に電流を所定の一方向のみに供給し、前記磁界印加手段が、前記磁性細線の細線方向における両方向のいずれかに向きを切り替えて磁界を印加して、前記所定領域における前記磁性層の磁化方向を反転させることを特徴とする請求項11に記載の磁気装置。
JP2021165125A 2021-10-06 2021-10-06 磁壁移動素子の初期化方法および磁気装置 Pending JP2023055588A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021165125A JP2023055588A (ja) 2021-10-06 2021-10-06 磁壁移動素子の初期化方法および磁気装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021165125A JP2023055588A (ja) 2021-10-06 2021-10-06 磁壁移動素子の初期化方法および磁気装置

Publications (1)

Publication Number Publication Date
JP2023055588A true JP2023055588A (ja) 2023-04-18

Family

ID=86004042

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021165125A Pending JP2023055588A (ja) 2021-10-06 2021-10-06 磁壁移動素子の初期化方法および磁気装置

Country Status (1)

Country Link
JP (1) JP2023055588A (ja)

Similar Documents

Publication Publication Date Title
US10529914B2 (en) Magnetic memory
US7307876B2 (en) High speed low power annular magnetic devices based on current induced spin-momentum transfer
US7573737B2 (en) High speed low power magnetic devices based on current induced spin-momentum transfer
US7502249B1 (en) Method and system for using a pulsed field to assist spin transfer induced switching of magnetic memory elements
US8976577B2 (en) High density magnetic random access memory
US7969762B2 (en) Spintronic device with control by domain wall displacement induced by a current of spin-polarized carriers
JP5354389B2 (ja) スピンバルブ素子及びその駆動方法並びにこれらを用いる記憶装置
US8432728B2 (en) Magnetic recording element
JP5847190B2 (ja) 双極性スピン転移反転
JP2005191032A (ja) 磁気記憶装置及び磁気情報の書込み方法
JP2007080952A (ja) 多値記録スピン注入磁化反転素子およびこれを用いた装置
KR20100094974A (ko) 자기 메모리 소자, 그 구동 방법 및 불휘발성 기억장치
TWI422083B (zh) Magnetic memory lattice and magnetic random access memory
JP5354388B2 (ja) スピンバルブ記録素子及び記憶装置
CN115996628A (zh) 自旋轨道矩磁随机存储器及其操作方法
JP2007095765A (ja) 多値記録スピン注入磁化反転素子およびこれを用いた装置
US11309006B2 (en) Magnetic memory devices including magnetic structure with magnetic domains
JP2023055588A (ja) 磁壁移動素子の初期化方法および磁気装置
JP6886888B2 (ja) 磁壁移動素子および磁気メモリ
KR20040017836A (ko) 외부 자기장 없이 자화 방향을 반전하기 위한 제어 장치
JP2022083931A (ja) 磁壁移動素子、磁気記憶素子、空間光変調器および磁気メモリ
CN113451355B (zh) 基于自旋轨道矩的磁性存储器件
TW202333387A (zh) 磁阻元件及磁性記憶體
JP2020134754A (ja) 磁気光学型光変調素子および空間光変調器
JP2020120001A (ja) 磁気メモリ素子