JP2023051628A - Suction nozzle for mounting - Google Patents

Suction nozzle for mounting Download PDF

Info

Publication number
JP2023051628A
JP2023051628A JP2021176948A JP2021176948A JP2023051628A JP 2023051628 A JP2023051628 A JP 2023051628A JP 2021176948 A JP2021176948 A JP 2021176948A JP 2021176948 A JP2021176948 A JP 2021176948A JP 2023051628 A JP2023051628 A JP 2023051628A
Authority
JP
Japan
Prior art keywords
mounting
nozzle
suction
suction nozzle
rear end
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021176948A
Other languages
Japanese (ja)
Inventor
直樹 尾崎
Naoki Ozaki
眞司 黒田
Shinji Kuroda
達也 藤井
Tatsuya Fujii
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagamine Manufacturing Co Ltd
Original Assignee
Nagamine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamine Manufacturing Co Ltd filed Critical Nagamine Manufacturing Co Ltd
Priority to JP2021176948A priority Critical patent/JP2023051628A/en
Publication of JP2023051628A publication Critical patent/JP2023051628A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

To provide a suction nozzle for mounting which has excellent mechanical strength such as bending strength and fracture toughness inherent in zirconia and is particularly suitable for mounting minute components.SOLUTION: In a suction nozzle for mounting with a brim made of partially stabilized zirconia and, if necessary, a conductive material, which has a tip suction surface that suctions and holds an object to be suctioned, and a rear end shaft that is fitted to a cylindrical flange at the rear stage, the outer peripheral surface of the suction nozzle for mounting other than the suction surface at the tip is a non-polished surface, and a flat portion with two molding marks extending in the axial direction is provided at an opposing position of the cross section of the rear end shaft portion.SELECTED DRAWING: Figure 1

Description

発明の詳細な説明Detailed description of the invention

本発明は、コンデンサーチップや抵抗器チップなどの電子チップ部品を回路基板に実装するための電子部品装着機等に好適に用いられる部分安定化ジルコニア製の実装用吸着ノズルに関する。 The present invention relates to a suction nozzle for mounting made of partially stabilized zirconia, which is suitably used in an electronic component mounting machine for mounting electronic chip components such as capacitor chips and resistor chips on circuit boards.

近年、回路基板の実装分野では、基板の高集積化と高精度化に伴い、微細なチップ部品を高速且つ高精度に実装できる電子部品装着機の開発が進んでいる。この電子部品装着機は、外気を吸引する真空吸引ヘッドの先端部にチップ部品を吸着保持するノズルが取り付けられており、ヘッド部はフィーダー部と回路基板との間を往復移動する。この時、ノズルによって真空吸着されたチップ部品は、ヘッド部がフィーダー部と回路基板との間を移動する途中において画像解析によりチップ部品の吸着状態や部品装着の位置を判定した後に回路基板に装着されるもので、この画像解析は、ノズルの前方からチップ部品および吸着面の方向に光を照射し、反射光量の差からチップ部品の形状や電極位置などを解析することによって行われている。 2. Description of the Related Art In recent years, in the field of circuit board mounting, the development of electronic component mounting machines capable of mounting minute chip components at high speed and with high precision has been progressing along with the high integration and high precision of boards. In this electronic component mounter, a nozzle for sucking and holding chip components is attached to the tip of a vacuum suction head for sucking outside air, and the head portion reciprocates between a feeder portion and a circuit board. At this time, the chip components vacuum-sucked by the nozzle are mounted on the circuit board after the chip component suction state and component mounting position are determined by image analysis while the head section is moving between the feeder section and the circuit board. This image analysis is performed by irradiating light from the front of the nozzle toward the chip component and the suction surface, and analyzing the shape of the chip component and the position of the electrodes from the difference in the amount of reflected light.

図4は、この電子部品装着機を用いたチップ部品の回路基板への実装工程の一例を示す概略図である。 FIG. 4 is a schematic diagram showing an example of a process of mounting chip components onto a circuit board using this electronic component mounting machine.

図4に示す電子部品装着機10は、そのヘッド部先端に装着された部品を吸着・保持するための実装用吸着ノズル1と、チップ部品11を並べたフィーダー部のトレイ12と、当該実装用吸着ノズル1に吸着・保持されたチップ部品11に向けて光を照射するライト13と、チップ部品11からの反射光を受光するためのCCDカメラ14と、CCDカメラ14で受光した反射光を画像処理するための画像解析装置15とで構成されている。ここで実装用吸着ノズル1は、図2に例示するように真空吸引することによって電子部品を吸着・保持するための吸着面2を先端に有し、後端から該吸着面にまで連通する貫通孔4をノズル軸心部に有する構造となっており、該貫通孔4の先端部から後端部の方向に外気の吸引が行われることにより吸着面2にチップ部品11を吸着・保持するものである。 An electronic component mounting machine 10 shown in FIG. A light 13 that emits light toward the chip component 11 that is sucked and held by the suction nozzle 1, a CCD camera 14 that receives the reflected light from the chip component 11, and an image of the reflected light received by the CCD camera 14. and an image analysis device 15 for processing. Here, as shown in FIG. 2, the mounting suction nozzle 1 has a suction surface 2 at its tip for sucking and holding an electronic component by vacuum suction, and a through-hole communicating from the rear end to the suction surface. It has a structure having a hole 4 in the axial center of the nozzle, and the chip component 11 is sucked and held on the suction surface 2 by sucking outside air from the front end to the rear end of the through hole 4. is.

そして、この電子部品装着機10は、実装用吸着ノズル1がトレイ12まで移動し、トレイ12上に並べられたチップ部品11を吸着すると、ライト13がノズル1に吸着されたチップ部品11へ向けて光を照射し、この光がチップ部品11の本体等に当たって反射する反射光をCCDカメラ14で受光し、CCDカメラ14で受光した画像を基に画像解析装置15によってチップ部品11のずれや位置を測定して、そのデータを基に回路基板(図示せず)の所定の位置にチップ部品11を吸着したノズル1を移動させて、回路基板上にチップ部品11を実装する仕組みとなっている。 In this electronic component mounter 10 , when the suction nozzle 1 for mounting moves to the tray 12 and picks up the chip components 11 arranged on the tray 12 , the light 13 is directed toward the chip components 11 picked up by the nozzle 1 . Light is emitted from the body of the chip component 11, and the reflected light reflected by the body of the chip component 11 is received by the CCD camera 14. is measured, and based on the data, the nozzle 1 that has picked up the chip component 11 is moved to a predetermined position on the circuit board (not shown), and the chip component 11 is mounted on the circuit board. .

ところで、近年、前述したように回路基板の高集積化と高精度化に伴いチップ部品の微小化が進んでいるが、このチップ部品の微小化は、それを吸着保持するノズルの微小化や材質強化、更には寸法精度の高度化等を余儀なくするばかりか、実装時にチップ部品を静電破壊したり、ノズルに吸着保持されたチップ部品が吸着を解除されても離反しないでそのまま持ち帰えるといったノズルの静電気に起因する新たな課題を生んでいる。その対策として、ノズルを静電除去するために半導電性としたり、ノズルの材質強化や高精度化、更には耐熱性等の観点から、材質をセラミックス、中でも曲げ強度や破壊靱性に優れる部分安定化ジルコニア製のノズルに変更する動きが活発となっているほか、電子部品装着機にノズルを組み付ける際にも、部品に対する衝撃を緩和させる目的で、図2に示すようにノズル後端軸部を金属製の筒状フランジ8に嵌合し、組み立てた形で組み付けられるが、その組み立て精度を上げるために吸着面以外のノズルの側面や、フランジ8と接触するノズル後端軸部を研磨(以降、本発明では研磨や研削等の二次加工を、単に「研磨」と称す)して組み立てている。 By the way, in recent years, as described above, the miniaturization of chip parts has progressed along with the high integration and high precision of circuit boards. In addition to being forced to strengthen and further improve dimensional accuracy, etc., a nozzle that causes electrostatic damage to chip parts during mounting, and that allows chip parts that are adsorbed and held by the nozzle to be taken back without separating even if the adsorption is released. new problems caused by static electricity. As a countermeasure, we made the nozzle semi-conductive to remove static electricity, strengthened the nozzle material and made it more precise, and from the viewpoint of heat resistance, etc., we used ceramics as the material, especially partial stability with excellent bending strength and fracture toughness. In addition to the active movement to change to zirconia-made nozzles, when assembling the nozzles into electronic component mounting machines, the rear end shaft of the nozzle is designed to reduce the impact on the components as shown in Fig. 2. It is fitted to the metal cylindrical flange 8 and assembled in an assembled form, but in order to improve the assembly accuracy, the side surface of the nozzle other than the adsorption surface and the rear end shaft part of the nozzle that comes into contact with the flange 8 are polished (hereinafter referred to as In the present invention, secondary processing such as polishing and grinding is simply referred to as "polishing" for assembly.

ところが、部分安定化ジルコニアは、成形焼成後のノズル外周面の必要以上の研磨や使用雰囲気等での熱履歴によって結晶相が相変態し、曲げ強度や破壊靭性が大幅に低下するという問題を有していた。このため、例えば特許文献1では使用するジルコニアの粒径を特定する方法が報告されているが、前記ジルコニア特有の相変態による強度や破壊靭性の低下を抑えることができず、ノズル微小化の大きな障害となっていた。 However, partially stabilized zirconia has the problem that the crystalline phase undergoes a phase transformation due to excessive polishing of the outer peripheral surface of the nozzle after molding and firing and heat history in the operating atmosphere, resulting in a significant decrease in bending strength and fracture toughness. Was. For this reason, for example, Patent Document 1 reports a method for specifying the grain size of zirconia to be used, but it is not possible to suppress the decrease in strength and fracture toughness due to the phase transformation peculiar to zirconia, and the size of the nozzle is greatly reduced. was an obstacle.

WO2009-91061号公報WO2009-91061

本発明は、上記実情に鑑み、ジルコニア本来の曲げ強度や破壊靭性等の優れた機械的強度を有する、とりわけ微小部品の実装に好適なノズルの提供を目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to provide a nozzle suitable for mounting minute parts, which has excellent mechanical strength such as bending strength and fracture toughness inherent in zirconia.

本発明者等は、上記課題を解決するために、ジルコニアの材料特性、中でもノズル研磨時の熱履歴による機械的強度に及ぼす影響を詳しく調べると共に、研磨回避の最善策について鋭意検討した結果、ノズルの表面研磨がその結晶相のうちの正方晶ジルコニアの割合を大きく低下させ、ジルコニア特有の高い機械的強度を大幅に損なわせているとの知見に基づき、研磨回避のためにはノズル後端軸部に成形痕を残した平坦部を設けた構造とするのが最も効率的で実用性に富む方法であることを知見し、本発明を完成させたものである。 In order to solve the above problems, the present inventors investigated in detail the material properties of zirconia, especially the effect of heat history during nozzle polishing on mechanical strength, and intensively studied the best way to avoid polishing. Based on the knowledge that polishing the surface of the nozzle greatly reduces the ratio of tetragonal zirconia in the crystal phase and greatly impairs the high mechanical strength peculiar to zirconia, in order to avoid polishing, the nozzle rear end shaft The inventors have found that the most efficient and practical method is to provide a structure in which a flat portion with molding traces is left, and have completed the present invention.

即ち、本発明のうちの第1の発明は、部分安定化ジルコニアからなり、被吸着物を吸着保持する先端吸着面と、後段の筒状フランジに嵌合される後端軸部とを備えた鍔付き実装用吸着ノズルにおいて、該実装用吸着ノズルの先端吸着面以外の外周面が非研磨面であり、且つ前記後端軸部断面の相対する位置に、軸方向に延びる二カ所の成形痕を残した平坦部を設けたことを特徴とする実装用吸着ノズルであり、第2の発明は上記第1発明のノズル後端軸部において、前記平坦部同士を結ぶ軸径Aと平坦部以外の軸径Bの比A/Bが0.85~0.98である実装用吸着ノズルであり、第3の発明は上記第1発明のノズルにおいて、先端吸着面以外のノズル外周面におけるジルコニア結晶相の90%以上が正方晶で構成されてなる実装用吸着ノズルであり、また第4の発明は上記第1発明のノズルにおいて、該ノズルが導電性付与材を含み、且つ前記先端吸着面と前記後端軸部との間の抵抗値が10~1010Ωである実装用吸着ノズルであり、更に第5の発明は上記第1発明のノズルにおいて、導電性付与材が酸化チタン、酸化鉄、酸化クロム、酸化コバルト、酸化ニッケル、炭化ケイ素、窒化ケイ素から選ばれる少なくとも一種である実装用吸着ノズルである。That is, the first aspect of the present invention is made of partially stabilized zirconia, and is provided with a front end attracting surface that attracts and holds an object to be attracted, and a rear end shaft portion that is fitted to a rear cylindrical flange. In a mounting suction nozzle with a flange, the outer peripheral surface of the mounting suction nozzle other than the tip suction surface is a non-polished surface, and two molding marks extending in the axial direction are formed at opposing positions in the cross section of the rear end shaft portion. A second aspect of the present invention is a suction nozzle for mounting, characterized in that a flat portion is provided, and a second aspect of the present invention is directed to the rear end shaft portion of the nozzle of the first aspect, except for the shaft diameter A connecting the flat portions and the flat portion. A suction nozzle for mounting, wherein the ratio A/B of the shaft diameter B is 0.85 to 0.98. A mounting suction nozzle in which 90% or more of the phase is composed of tetragonal crystals, and a fourth invention is the nozzle of the first invention, wherein the nozzle includes a conductivity imparting material, and the tip suction surface and the The suction nozzle for mounting has a resistance value of 10 2 to 10 10 Ω with the rear end shaft portion. The suction nozzle for mounting is made of at least one selected from iron, chromium oxide, cobalt oxide, nickel oxide, silicon carbide, and silicon nitride.

本発明によれば、部分安定化ジルコニアからなり、その先端にチップ部品を吸着保持するための吸着面を備えた鍔付き実装用吸着ノズルにおいて、該ノズルの後端軸部に成形痕を残した平坦部を設けることで、前記吸着面以外の外周を非研磨面として使用することができ、研磨によるジルコニア結晶相の変化に起因する曲げ強度や破壊靭性等の強度低下が抑えられるほか、後段の筒状フランジとの接合強度も格段に向上するなど、ノズルの実用耐久性が飛躍的に高くなるという効果を奏するもので、引いてはノズルの微小化を可能とするばかりか、電子部品の実装精度の向上にも貢献するものである。 According to the present invention, there is provided a suction nozzle for mounting with a flange, which is made of partially stabilized zirconia and has a suction surface for suctioning and holding a chip component at its tip, in which a molding trace is left on the rear end shaft portion of the nozzle. By providing a flat portion, the outer periphery other than the adsorption surface can be used as a non-polished surface, suppressing deterioration in strength such as bending strength and fracture toughness due to changes in the zirconia crystal phase due to polishing. The joint strength with the cylindrical flange is greatly improved, and the practical durability of the nozzle is dramatically improved. It also contributes to the improvement of accuracy.

また、本発明の実装用吸着ノズルは、前記部分安定化ジルコニアに更に導電性付与材を含有させれば、実装時にチップ部品を静電破壊したり、ノズルに吸着保持されたチップ部品が吸着を解除されても離反しないでそのまま持ち帰るといったノズルの静電気に起因する新たな課題をも解決することができる。 Further, if the partially stabilized zirconia further contains a conductivity-imparting material, the suction nozzle for mounting of the present invention can cause electrostatic breakdown of the chip components during mounting, and the chip components sucked and held by the nozzle can be prevented from being sucked. It is also possible to solve a new problem caused by the static electricity of the nozzle, such as not separating from the nozzle even after the nozzle is released.

〔図1〕は、本発明の実装用吸着ノズルの一例示す斜視図である。FIG. 1 is a perspective view showing an example of a suction nozzle for mounting according to the present invention. 〔図2〕は、本発明の実装用吸着ノズルと後段の筒状フランジとの組付け例を模式的に示す側面断面図である。[FIG. 2] is a side cross-sectional view schematically showing an example of assembly of the mounting suction nozzle of the present invention and a subsequent cylindrical flange. 〔図3〕(イ)は、本発明の実装用吸着ノズルの後端軸部側から見た背面図の一例であり、同図(ロ)は、(イ)中の破線円で示した後端軸部に設けた平坦部の一例を示す部分拡大断面図である。[Fig. 3] (a) is an example of a back view of the suction nozzle for mounting of the present invention as seen from the rear end shaft side, and (b) in the same figure is the rear view indicated by the dashed circle in (a). FIG. 4 is a partially enlarged cross-sectional view showing an example of a flat portion provided on the end shaft portion; 〔図4〕は、本発明の実装用吸着ノズルを具備した電子部品装着機を用いてチップ部品を回路基板に実装する電子部品装着装置の構成例を示す概略図である。FIG. 4 is a schematic diagram showing a configuration example of an electronic component mounting apparatus that mounts chip components on a circuit board using an electronic component mounting machine equipped with the mounting suction nozzle of the present invention.

以下、本発明について詳しく説明する。 The present invention will be described in detail below.

図1は、本発明の実装用吸着ノズルの一例を示す斜視図であり、図2はこの実装用吸着ノズルを後段の筒状フランジに組付けた時の構成の一例を示す断面図である。 FIG. 1 is a perspective view showing an example of a mounting suction nozzle of the present invention, and FIG. 2 is a cross-sectional view showing an example of the configuration when this mounting suction nozzle is assembled to a rear cylindrical flange.

図1及び図2に示す実装用吸着ノズル1は、被吸着物を吸着保持する先端吸着面2と、後段の筒状フランジ8に嵌合される後端軸部3とを備え、前記吸着面2から後端軸部3に向かう貫通孔4を有する鍔5付き実装用吸着ノズルであって、該実装用吸着ノズル1の先端吸着面2以外の外周面が非研磨面であり、且つ前記後端軸部断面の相対する位置に、軸方向に延びる二カ所の成形痕7(後述する図3(ロ)参照)を残した平坦部6を設けたものである。 A suction nozzle 1 for mounting shown in FIGS. 1 and 2 includes a front end suction surface 2 for sucking and holding an object to be suctioned, and a rear end shaft portion 3 fitted to a cylindrical flange 8 at a rear stage. A suction nozzle for mounting with a collar 5 having a through-hole 4 extending from the rear end shaft portion 3 from the mounting suction nozzle 1, wherein the outer peripheral surface of the mounting suction nozzle 1 other than the tip suction surface 2 is a non-polished surface, and A flat portion 6 having two molding marks 7 extending in the axial direction (see FIG. 3(b) to be described later) is provided at opposing positions of the cross section of the end shaft portion.

本発明の実装用吸着ノズル1は、部分安定化ジルコニアと必要に応じて導電性付与材とからなる混合物に、バインダーや成形助剤等を加えて混練し、スプレードライヤー等の公知の方法で乾燥して粉末又は顆粒状の原料を作製した後、これを射出成形して鍔付きノズル形状となし、更に脱媒、焼成工程を経て作製された部分安定化ジルコニアを主材とする焼結成形体である。 The mounting suction nozzle 1 of the present invention is prepared by kneading a mixture of partially stabilized zirconia and, if necessary, a conductivity-imparting material with a binder, a molding aid, etc., and drying the mixture by a known method such as a spray dryer. After preparing a powder or granular raw material, this is injection molded into a nozzle shape with a flange, and a sintered molded body mainly made of partially stabilized zirconia is produced through the process of removing solvent and firing. be.

本発明において、ジルコニアの部分安定化剤としては、酸化イットリウム、酸化マグネシウム、酸化カルシウム、酸化セリウム等の一種が好ましく、中でも酸化イットリウムが好ましい。酸化イットリウムの添加量は1~5モル%、好ましくは2~4モル%であり、1モル%未満では単斜晶ジルコニア量が増加して焼結体内部にクラックが多発し機械的強度が低下する一方、酸化イットリウムの添加量が5モル%を超えると焼結体中に立方晶ジルコニアが多く生成してこの場合も高い機械的強度が期待できなくなるなど、上記1~5モル%の範囲外ではジルコニア特有の応力誘起相変態機能を生み出す正方晶ジルコニアの生成が少なくなるといった不都合が生じる。 In the present invention, the zirconia partial stabilizer is preferably one of yttrium oxide, magnesium oxide, calcium oxide, cerium oxide, etc. Among them, yttrium oxide is preferable. The amount of yttrium oxide to be added is 1 to 5 mol%, preferably 2 to 4 mol%. If it is less than 1 mol%, the amount of monoclinic zirconia increases and many cracks occur inside the sintered body, resulting in a decrease in mechanical strength. On the other hand, if the amount of yttrium oxide added exceeds 5 mol%, a large amount of cubic zirconia is formed in the sintered body, and in this case also high mechanical strength cannot be expected. In this case, there arises a problem that the formation of tetragonal zirconia, which produces the stress-induced phase transformation function peculiar to zirconia, is reduced.

また、本発明で使用する部分安定化ジルコニアの平均結晶粒子径は0.2~3.0μmのものが好ましく、平均結晶粒子径が0.2μm未満では応力誘起相変態機能が十分発揮されないことから優れた曲げ強度や破壊靱性等の機械的強度が得られないのに対し、平均結晶粒子径が3.0μmより大きいと、100~300℃程度の比較的低温下での経時劣化が進行しやすくなったり、耐摩耗性や耐衝撃性等が低下する。 In addition, the average crystal grain size of the partially stabilized zirconia used in the present invention is preferably 0.2 to 3.0 μm. If the average crystal grain size is less than 0.2 μm, the stress-induced phase transformation function is not sufficiently exhibited. While excellent mechanical strength such as bending strength and fracture toughness cannot be obtained, if the average crystal grain size is larger than 3.0 μm, deterioration over time at a relatively low temperature of about 100 to 300° C. tends to progress. Otherwise, abrasion resistance, impact resistance, etc. will decrease.

一方、本発明で必要に応じて使用される導電性付与材としては、導電性を付与できる材料であれば特に限定するものでないが、中でも酸素欠損酸化チタンや酸化鉄、酸化クロム、酸化コバルト、酸化ニッケル、酸化マンガン、炭化ケイ素、窒化ケイ素等の金属酸化物や炭化物、窒化物から選ばれる少なくとも一種が比較的少量の添加で導電性が付与できる点で好ましい。これら導電性付与材の添加量は、電子部品実装時の部品の静電破壊や持ち帰り、更には部品の吹き飛び、汚染等のノズルの静電気や帯電に起因するトラブル回避に必要とされるノズルの先端と後端との間の電気抵抗値が10~1010Ωになるよう導電性付与材の種類に応じて適宜決めればよく、例えば酸化鉄や酸化クロム等の金属酸化物の場合は部分安定化ジルコニアに対して20~40重量%が、また酸素欠損酸化チタンの場合は部分安定化ジルコニアに対し10~20重量%の添加量が好ましい。On the other hand, the conductivity-imparting material used as necessary in the present invention is not particularly limited as long as it is a material that can impart conductivity. Among them, oxygen deficient titanium oxide, iron oxide, chromium oxide, cobalt oxide, At least one selected from metal oxides, carbides, and nitrides such as nickel oxide, manganese oxide, silicon carbide, and silicon nitride is preferable because it can impart electrical conductivity with a relatively small amount of addition. The amount of these conductivity imparting materials added is the tip of the nozzle required to avoid troubles caused by static electricity and electrification of the nozzle, such as electrostatic breakdown and take-away of parts when mounting electronic parts, blowing off parts, contamination, etc. and the rear end may be appropriately determined according to the type of the conductivity imparting material so that the electrical resistance value between the and the rear end is 10 2 to 10 10 Ω. It is preferably added in an amount of 20 to 40% by weight with respect to zirconia, and in the case of oxygen-deficient titanium oxide, it is preferably added in an amount of 10 to 20% by weight with respect to partially stabilized zirconia.

ここで酸素欠損酸化チタンとは、部分安定化ジルコニアに二酸化チタン等を添加した成形体を、1300~1500℃の条件下でアルゴンや窒素等の雰囲気中で還元焼成することで二酸化チタン中の酸素の一部を欠損させたもので、化学式TiOx(1.50≦X≦1.95)で表される、平均結晶粒子径0.03~0.30μm程度のものが好ましい。即ち、二酸化チタンは、常温では白色で絶縁体であるが、高温で還元焼成すると酸素欠損が起こって色味が灰色、青黒色を経て真黒色に着色すると共に、電気伝導性が高くなるもので、上記酸素欠損酸化チタンの化学式TiOxにおいてX値が1.50未満の場合は、その結晶がNaCl型構造に変化しやすく、体積収縮を起こして強度が低下する一方、X値が1.95を超えると黒色度や導電性が不足して目的とする実装用ノズルが得られない。 Here, oxygen-deficient titanium oxide is obtained by reducing and firing a compact obtained by adding titanium dioxide or the like to partially stabilized zirconia under conditions of 1300 to 1500°C in an atmosphere of argon, nitrogen, or the like, thereby It is preferable to have an average crystal grain size of about 0.03 to 0.30 μm, represented by the chemical formula TiOx (1.50≦X≦1.95). That is, titanium dioxide is white at room temperature and is an insulator, but when it is reduced and fired at a high temperature, oxygen deficiency occurs and the color changes from gray to bluish-black to deep black, and electrical conductivity increases. When the X value in the chemical formula TiOx of the oxygen-deficient titanium oxide is less than 1.50, the crystal tends to change to a NaCl type structure, causing volume shrinkage and strength reduction, while the X value is less than 1.95. If it exceeds, the desired mounting nozzle cannot be obtained due to insufficient blackness and conductivity.

尚、本発明において、酸素欠損酸化チタン中の酸素量、すなわちTiOxのX値は、通常、酸素欠損酸化チタンは大気中500~600℃の温度で酸化されて二酸化チタンになり、黒色から白色に変化することから、還元焼成後の実装用ノズルを、大気中で昇温速度20℃/分とし、常温~1000℃で熱分析(TG-DTA)し、その間の重量増加分を酸化に伴う酸素の増加量としてX値を求めることで算出できる。 In the present invention, the amount of oxygen in the oxygen-deficient titanium oxide, that is, the X value of TiOx is usually determined by oxidizing the oxygen-deficient titanium oxide at a temperature of 500 to 600° C. in the atmosphere to form titanium dioxide, turning black into white. Therefore, the mounting nozzle after reduction firing was subjected to thermal analysis (TG-DTA) at a temperature increase rate of 20°C/min in the atmosphere at room temperature to 1000°C, and the weight increase during that time was measured by oxygen due to oxidation. can be calculated by obtaining the X value as the amount of increase in .

本発明の実装用吸着ノズル1は、上記部分安定化ジルコニアからなるものであって、該ノズルの先端吸着面2以外の外周面が非研磨面であり、且つ該ノズルの後端軸部断面の相対する位置に、軸方向に延びる二カ所の成形痕7を残した平坦部6を設けたものである。 The suction nozzle 1 for mounting of the present invention is made of the above partially stabilized zirconia, the outer peripheral surface of the nozzle other than the suction surface 2 at the tip end of the nozzle is a non-polished surface, and the cross section of the rear end shaft portion of the nozzle is A flat portion 6 having two molding marks 7 extending in the axial direction is provided at opposing positions.

即ち、従来の実装用吸着ノズルでは、電子部品を吸着する吸着面はもとより、その他の外周面も、部品を確実に吸着保持して回路基板の所定の位置まで正確に搬送し装着しなければならない関係上、該ノズルを固定する後段のフランジやスリーブ部品等の他の部品との組付け精度を上げるべく、高い寸法精度や表面精度に仕上げるための研磨加工が不可欠であった。 That is, in the conventional suction nozzle for mounting, not only the suction surface for sucking the electronic component, but also the other outer peripheral surface must surely suck and hold the component, convey it to a predetermined position on the circuit board, and mount it. For this reason, in order to increase the accuracy of assembly with other parts such as flanges and sleeve parts in the subsequent stage for fixing the nozzle, it was essential to perform polishing for finishing with high dimensional accuracy and surface accuracy.

ところが、ジルコニアの場合は、前述の如く、その結晶相の状態、すなわちX線回折から求められる全ジルコニア結晶相のうちの正方晶ジルコニアの割合によって曲げ強度や破壊靱性等の機械的強度が大きく影響されるという特有の応力誘起相変態機能を有するため、焼結後のノズルに研磨加工を施すと、研磨時の摩擦熱等の熱履歴によって結晶相の一部が正方晶から単斜晶に相変態してしまい、応力誘起相変態機能が働かなくなって高い機械的強度が得られず、ノズル微小化の大きな障害となっていたのである。 However, in the case of zirconia, as described above, mechanical strength such as bending strength and fracture toughness is greatly affected by the state of the crystal phase, that is, the proportion of tetragonal zirconia in the total zirconia crystal phase determined by X-ray diffraction. When the sintered nozzle is polished, part of the crystal phase changes from tetragonal to monoclinic due to thermal history such as frictional heat during polishing. As a result, the stress-induced phase transformation function does not work and high mechanical strength cannot be obtained, which has been a major obstacle to miniaturization of nozzles.

本発明の実装用吸着ノズル1は、上記観点から、先端吸着面2以外のノズル外周面を非研磨面としたもので、具体的にノズル外周面におけるジルコニア結晶相の90%以上を正方晶とするのが好ましく、正方晶の割合が90%未満になると前記応力誘起相変態による高い機械的強度が得られず、ノズルの微小化が困難になる。 From the above point of view, the suction nozzle 1 for mounting of the present invention has a non-polished outer peripheral surface of the nozzle other than the tip suction surface 2. Specifically, 90% or more of the zirconia crystal phase on the outer peripheral surface of the nozzle is tetragonal. If the proportion of tetragonal crystals is less than 90%, high mechanical strength due to the stress-induced phase transformation cannot be obtained, and miniaturization of nozzles becomes difficult.

ここで部分安定化ジルコニアの応力誘起相変態機能とは、ジルコニア焼結体の結晶状態には立方晶、正方晶、単斜晶の3種類の状態があるが、このうちの正方晶ジルコニアが外部応力によって応力誘起相変態し、単斜晶ジルコニアに相変態する性質を言うもので、この時の正方晶から単斜晶への相変態に伴う体積膨張によってジルコニアの周囲に微小なマイクロクラックが発生し、外部応力の進行が阻止されるため、ジルコニアの曲げ強度や破壊靭性が高くなるのである。 Here, the stress-induced phase transformation function of partially stabilized zirconia means that the crystalline state of the zirconia sintered body has three states: cubic, tetragonal, and monoclinic. It refers to the property of undergoing stress-induced phase transformation due to stress and undergoing phase transformation to monoclinic zirconia. At this time, the volume expansion associated with the phase transformation from tetragonal to monoclinic causes minute microcracks to occur around zirconia. However, since the progression of external stress is prevented, the flexural strength and fracture toughness of zirconia are increased.

尚、本発明において、吸着面以外の外周面の正方晶ジルコニアの算出は、特開2010-254493号公報に記載の方法に従い、X線回折によって単斜晶ジルコニア(回折角27~34度の範囲で測定)と立方晶ジルコニア(回折角70~77度の範囲で測定)の含有量(容積%)をそれぞれ求めた後、下記式にて正方晶ジルコニアの含有量を求めた。 In the present invention, the tetragonal zirconia of the outer peripheral surface other than the adsorption surface is calculated by X-ray diffraction according to the method described in JP-A-2010-254493. After determining the content (% by volume) of cubic zirconia (measured at a diffraction angle of 70 to 77 degrees), the content of tetragonal zirconia was determined by the following formula.

式1formula 1

正方晶ジルコニア含有量(容積%)=100-単斜晶ジルコニア含有量-立方晶ジルコニア含有量Tetragonal zirconia content (% by volume) = 100 - monoclinic zirconia content - cubic zirconia content

また、本発明ではノズルの性能を損なわない範囲で、実装用吸着ノズルの硬度を上げたり、表面粗度を均一化するために、周知の方法でブラスト処理やケイ酸皮膜処理、HIP処理等を施してもよく、更にアルミナやモリブデン等の他のセラミックス材を添加したものでも良い。 Further, in the present invention, in order to increase the hardness of the suction nozzle for mounting and to make the surface roughness uniform within the range that does not impair the performance of the nozzle, blasting treatment, silicic acid film treatment, HIP treatment, etc. are performed by well-known methods. It may be applied, or may be one to which other ceramic materials such as alumina or molybdenum are added.

本発明の実装用吸着ノズル1は、先端吸着面2以外の外周面を非研磨面とするために、図2及び図3に例示するような後段の筒状フランジ8に嵌合される後端軸部3断面の相対する位置に、軸方向に延びる二カ所の成形痕7を残した平坦部6を設けたものである。 The suction nozzle 1 for mounting according to the present invention has a rear end that is fitted to a rear cylindrical flange 8 as shown in FIGS. A flat portion 6 having two molding marks 7 extending in the axial direction is provided at opposing positions in the cross section of the shaft portion 3 .

即ち、実装用吸着ノズルは、通常、量産性を考慮して射出成型機で製造されるが、本発明のような鍔付きノズルを射出成形するには、成形金型を、先端吸着面から鍔後端部に至る部分を成形する金型(以下、「金型▲1▼」と記す)と、鍔後端から軸部後端に至る部分を成形する金型(以下、「金型▲2▼」と記す)をノズル軸方向に並べた形で使用し、連通する金型▲1▼と金型▲2▼の中にノズル原料を射出成形し、成形体を冷却した後、それぞれの金型を開放して成形体を取り出す方法が採られる。その際、金型▲1▼は成形体が先端吸着面に向かって先細りとなっているため一体型の金型が使用できるが、鍔後端から軸部後端に至る部分を成形する金型▲2▼は、成形体をスムーズに取り出すために二方向に分かれる一対の分割金型を使用しなければならない。ところが、この一対の分割金型では、射出成型時の押圧によって金型の継ぎ目にバリや欠け等の成形痕が残るため、後段の筒状フランジとの組付けに際しては、前記成形痕を研磨して除去する必要があった。 That is, mounting suction nozzles are usually manufactured by an injection molding machine in consideration of mass productivity. A mold for molding the part that reaches the rear end (hereinafter referred to as "mold (1)") and a mold that molds the part from the rear end of the collar to the rear end of the shaft (hereinafter referred to as "mold (2) ▼”) are arranged in the direction of the nozzle axis, and the raw material for the nozzle is injection molded into the communicating mold (1) and mold (2), and after cooling the molded body, each metal A method is adopted in which the mold is opened and the compact is taken out. At that time, the mold (1) can use an integrated mold because the molded body tapers toward the tip adsorption surface, but a mold that molds the part from the rear end of the collar to the rear end of the shank. (2) requires the use of a pair of split molds separated in two directions in order to take out the compact smoothly. However, with this pair of split molds, molding marks such as burrs and chips remain at the joints of the molds due to pressure during injection molding. had to be removed.

本発明の実装用吸着ノズル1は、かかる成形痕の除去を不要とするために、ノズル後端軸部断面の相対する位置に、軸方向に延びる二カ所の成形痕7が残る平坦部6を設けたものである。この軸方向に延びる二カ所の平坦部6は、図3に例示するように分割金型の継ぎ目に残る成形痕7が略中央部に配置するもので、かかる平坦部6を設けることで、フランジ内周と後端軸部外周との間にクリアランスを作ることができ、比較的大きな成形痕でもクリアランス内に収めることができるため、非研磨状態での使用が可能となるものである。 In order to eliminate the need to remove such molding marks, the mounting suction nozzle 1 of the present invention has a flat portion 6 in which two molding marks 7 extending in the axial direction remain at opposing positions on the cross section of the rear end shaft portion of the nozzle. It was established. As shown in FIG. 3, the two flat portions 6 extending in the axial direction are arranged substantially in the center of the molding marks 7 left at the joints of the split molds. A clearance can be created between the inner circumference and the outer circumference of the rear end shaft portion, and even a relatively large molding mark can be accommodated within the clearance, so that it can be used in an unpolished state.

本発明の実装用吸着ノズルは、上記の如く、後端軸部に平坦部6を設けることで、これまで不可欠とされてきた成形痕の削除を含むノズル外周面の研磨加工が不要となるため、ノズル加工工程の短縮化やコスト低減に特段の効果を生むほか、前述した研磨加工による部分安定化ジルコニアの強度低下が抑えられると共に、後段の筒状フランジとの組付けに際してもフランジ内周と後端軸部とのクリアランスが大きくなるため接着剤による固定がより強固となったり、ノズルの回転が抑えられるといった数々の優れた特徴を有するもので、引いてはノズルの小型化にも大きく貢献するものである。 Since the suction nozzle for mounting of the present invention has the flat portion 6 on the rear end shaft portion as described above, it is not necessary to polish the outer peripheral surface of the nozzle, including the removal of molding traces, which has been indispensable until now. In addition to shortening the nozzle processing process and reducing costs, the reduction in strength of the partially stabilized zirconia due to the polishing process described above is suppressed, and when assembling with the cylindrical flange at the later stage, the flange inner circumference and It has a number of excellent features, such as a stronger adhesive fixation due to a larger clearance with the rear end shaft, and suppression of nozzle rotation. It is something to do.

かかる本発明のノズルにおいて、平坦部6の大きさは、図3(イ)に示す平坦部同士を結ぶ軸径Aと平坦部以外の軸径Bの比A/Bが0.85~0.98、好ましくは0.90~0.95となるような範囲で設けるのが好ましい。その理由は、軸径比が0.85未満になると後端軸部の強度が弱くなって耐久性に問題が生じる一方、軸径比が0.98より大きくなると成形痕が前記クリアランスの中に収まりきれず、研磨が必要となるためである。尚、本発明では、成形痕の高さが小さいほど上記軸径比を大きくとることができることから、射出成型時の圧力や成形温度等を最適化する必要があることは言うまでもない。 In the nozzle of the present invention, the size of the flat portion 6 is such that the ratio A/B of the shaft diameter A connecting the flat portions shown in FIG. 98, preferably 0.90 to 0.95. The reason for this is that if the shaft diameter ratio is less than 0.85, the strength of the rear end shaft portion is weakened, resulting in durability problems, while if the shaft diameter ratio is greater than 0.98, molding marks are left in the clearance. This is because it cannot be accommodated and requires polishing. In the present invention, since the shaft diameter ratio can be increased as the height of the molding mark is smaller, it is needless to say that the pressure, molding temperature, etc. during injection molding must be optimized.

尚、本発明において、平坦部6とは必ずしも平らな面でなくてもよく、分割金型から成形体を取り出すことができれば多少の曲面や凹凸があっても差し支えない。 In the present invention, the flat portion 6 does not necessarily have to be a flat surface, and may have a slightly curved surface or irregularities as long as the molded product can be taken out from the split mold.

以下、本発明を理解しやすくするために、部分安定化ジルコニア成形体について研磨加工の有無による機械的強度の変化を調べた実験例を述べるが、本発明はこれらに限定されるものではない。 Hereinafter, in order to facilitate understanding of the present invention, experimental examples in which changes in mechanical strength of a partially stabilized zirconia molded article were examined depending on whether or not polishing was performed will be described, but the present invention is not limited to these examples.

(実験例1~3、対照例1~3)
酸化イットリウムを3モル%含有する平均結晶粒子径1.0μmの部分安定化ジルコニアに、平均粒子径0.07μmの二酸化チタンを15重量%加え、これにアクリル系やエチレン酢酸ビニル系のバインダーとワックス類などを加えて混練乾燥することによりコンパウンド原料を作製した。そしてこのコンパウンド原料を金型温度40℃、押出温度150℃の条件で射出成形し、成形品を得た。この成形品を、大気中450~900℃の条件で脱媒した後、窒素を主成分とする不活性ガス中で温度1100℃~1600℃で1時間焼成して、断面寸法3mm×4mm、長さ40mmの試験片を作製した。得られた試験片について、非研磨とするか、あるいは研磨加工を施して、表面ジルコニア結晶相中の正方晶ジルコニアの含有量のそれぞれ異なるサンプルを得た。
(Experimental Examples 1-3, Control Examples 1-3)
15% by weight of titanium dioxide having an average particle size of 0.07 μm is added to partially stabilized zirconia having an average crystal particle size of 1.0 μm containing 3 mol % of yttrium oxide, followed by an acrylic or ethylene vinyl acetate binder and wax. A raw material for a compound was prepared by adding ingredients, etc., kneading and drying. Then, this compound raw material was injection molded under conditions of a mold temperature of 40° C. and an extrusion temperature of 150° C. to obtain a molded product. After removing the solvent in the atmosphere at 450 to 900° C., the molded product was fired in an inert gas containing nitrogen as the main component at a temperature of 1100 to 1600° C. for 1 hour. A test piece with a thickness of 40 mm was produced. The obtained test pieces were either unpolished or polished to obtain samples with different contents of tetragonal zirconia in the surface zirconia crystal phase.

得られたサンプルについて、X線回折法による結晶相、曲げ強度、電気抵抗値を評価し、表1にまとめた。尚、得られたサンプルの表面結晶相は、単斜晶ジルコニアと正方晶ジルコニアのみで構成されており、立方晶ジルコニアの存在は認められなかった。 The crystal phase, bending strength, and electrical resistance of the obtained samples were evaluated by X-ray diffractometry, and the results are summarized in Table 1. The surface crystal phase of the obtained sample consisted only of monoclinic zirconia and tetragonal zirconia, and the presence of cubic zirconia was not recognized.

本実験例及び対照例において、曲げ強度と電気抵抗値はそれぞれ次の方法で評価した。 In this experimental example and the control example, bending strength and electrical resistance were evaluated by the following methods.

曲げ強度は、それぞれのサンプルについてJISR1601(2008)に準ずる4点曲げ強度の方法で測定した。 The bending strength was measured for each sample by the method of four-point bending strength according to JISR1601 (2008).

電気抵抗値は、それぞれのサンプルと同一の組成と製造条件で作製した図1に例示のノズルについて、先端の吸着面と後端面にそれぞれ電極を接触させ、これら電極間に表面抵抗測定器を接続して電圧を加え、ノズル先端と後端との間の抵抗値(Ω)を測定した。 The electrical resistance value was obtained by connecting electrodes to the adsorption surface and the rear end surface of the nozzle illustrated in FIG. voltage was applied, and the resistance value (Ω) between the tip and the rear end of the nozzle was measured.

Figure 2023051628000002
Figure 2023051628000002

表1の結果から、研磨加工を施したサンプルの表面結晶相は正方晶ジルコニアの割合が少なくなっており、曲げ強度が低く、また導電性も悪くなっている。一方、研磨加工を施さなかったサンプルでは、正方晶ジルコニア含有量が高く曲げ強度や導電性に優れることが確認され電子部品装着機の部品吸着用ノズルとして好適であることが分かる。尚、表1において、研磨加工を施すことで導電性が悪化しているが、これは導電性付与材としての酸素欠損酸化チタンが大気中での研磨加工によって一部が酸化したことによるものと推察される。 As can be seen from the results in Table 1, the tetragonal zirconia surface crystal phase of the polished sample is low, resulting in low flexural strength and poor electrical conductivity. On the other hand, it was confirmed that the non-polished sample had a high tetragonal zirconia content and was excellent in bending strength and electrical conductivity. In Table 1, the conductivity is deteriorated by polishing, but this is because the oxygen-deficient titanium oxide used as the conductivity-imparting material was partially oxidized by the polishing in the atmosphere. guessed.

本発明の実装用吸着ノズルは、チップ部品の小型化と実装速度の高速化が進む中にあって、曲げ強度や破壊靱性等の機械的強度に優れると共に、導電性付与材を添加した場合は部品の静電破壊や吹き飛び等のトラブルの発生が極めて少ないといった数々の利点から、電子部品の実装用、とりわけ微小部品の実装分野で極めて好適に利用できるものである。 The suction nozzle for mounting of the present invention is excellent in mechanical strength such as bending strength and fracture toughness in the midst of miniaturization of chip parts and increase in mounting speed. Due to the numerous advantages that troubles such as electrostatic breakdown and blow-off of parts occur very little, it can be very suitably used for mounting electronic parts, especially in the field of mounting minute parts.

1;実装用吸着ノズル
2;先端吸着面
3;後端軸部
4;貫通孔
5;鍔
6;平坦部
7;成形痕
8;筒状フランジ
10;電子部品装着装置
11;チップ部品
12;トレイ
13;ライト
14;CCDカメラ
15;画像解析装置
1; suction nozzle for mounting 2; front end suction surface 3; rear end shaft portion 4; through hole 5; 13; light 14; CCD camera 15; image analysis device

Claims (5)

部分安定化ジルコニアからなり、被吸着物を吸着保持する先端吸着面と、後段の筒状フランジに嵌合される後端軸部とを備えた鍔付き実装用吸着ノズルにおいて、該実装用吸着ノズルの先端吸着面以外の外周面が非研磨面であり、且つ前記後端軸部断面の相対する位置に、軸方向に延びる二カ所の成形痕を残した平坦部を設けたことを特徴とする実装用吸着ノズル。 A suction nozzle for mounting with a flange, which is made of partially stabilized zirconia and has a front end suction surface for suctioning and holding an object to be suctioned and a rear end shaft portion that is fitted to a cylindrical flange at a subsequent stage, the suction nozzle for mounting. is a non-polished outer peripheral surface other than the tip attracting surface, and two flat portions with forming traces extending in the axial direction are provided at opposing positions of the cross section of the rear end shaft portion. Suction nozzle for mounting. 前記後端軸部の断面形状が、前記平坦部同士を結ぶ軸径Aと平坦部以外の軸径Bの比A/Bが0.85~0.98である請求項1記載の実装用吸着ノズル。 2. The suction for mounting according to claim 1, wherein the cross-sectional shape of the rear end shaft portion has a ratio A/B of a shaft diameter A connecting the flat portions to a shaft diameter B other than the flat portions, which is 0.85 to 0.98. nozzle. 前記先端吸着面以外のノズル外周面におけるジルコニア結晶相の90%以上が正方晶で構成されてなる請求項1~2項記載の実装用吸着ノズル。 3. The suction nozzle for mounting according to claim 1, wherein 90% or more of the zirconia crystal phase on the outer peripheral surface of the nozzle other than the tip suction surface is composed of tetragonal crystals. 前記実装用吸着ノズルが、導電性付与材を含み、且つ前記先端吸着面と前記後端軸部との間の抵抗値が10~1010Ωである請求項1~3記載の実装用吸着ノズル。4. The suction for mounting according to any one of claims 1 to 3, wherein said suction nozzle for mounting contains a conductive material, and a resistance value between said front end suction surface and said rear end shaft portion is 10 2 to 10 10 Ω. nozzle. 前記導電性付与材が、酸化チタン、酸化鉄、酸化クロム、酸化コバルト、酸化ニッケル、炭化ケイ素、窒化ケイ素から選ばれる少なくとも一種である請求項1~4記載の実装用吸着ノズル。 5. The suction nozzle for mounting according to claim 1, wherein said conductivity imparting material is at least one selected from titanium oxide, iron oxide, chromium oxide, cobalt oxide, nickel oxide, silicon carbide and silicon nitride.
JP2021176948A 2021-09-30 2021-09-30 Suction nozzle for mounting Pending JP2023051628A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021176948A JP2023051628A (en) 2021-09-30 2021-09-30 Suction nozzle for mounting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021176948A JP2023051628A (en) 2021-09-30 2021-09-30 Suction nozzle for mounting

Publications (1)

Publication Number Publication Date
JP2023051628A true JP2023051628A (en) 2023-04-11

Family

ID=85806171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021176948A Pending JP2023051628A (en) 2021-09-30 2021-09-30 Suction nozzle for mounting

Country Status (1)

Country Link
JP (1) JP2023051628A (en)

Similar Documents

Publication Publication Date Title
JP5235909B2 (en) Zirconia sintered body and method for producing the same
JP4852645B2 (en) Vacuum suction nozzle
JP5111404B2 (en) Vacuum suction nozzle assembly
JP2023051628A (en) Suction nozzle for mounting
JP3203184U (en) Nozzle for mounting electronic components
JP2003261376A (en) Zirconia sintered compact and method of producing the same
JP3261065B2 (en) Semiconductive zirconia sintered body
JP6484777B2 (en) Ceramic black nozzle
JP2008198709A (en) Cleaning device and holding table
JP2011049551A (en) Vacuum suction nozzle
JP3722606B2 (en) Abrasion-resistant alumina sintered body
JP5111351B2 (en) Vacuum suction nozzle
JP5595052B2 (en) Vacuum suction nozzle
KR100420930B1 (en) Aqueous ceramic slurry using pvp and gelatin as a binding agent and method for producing a ceramic tape using them
JP2003133237A (en) Shower plate
JP2003212652A (en) Zirconia sintered compact manufacturing method and zirconia sintered compact
JP2003012368A (en) Semiconductive zirconia sintered compact
JP2542782Y2 (en) Parts guide rotor
WO2016121873A1 (en) Wedge bonding component
JP2002255634A (en) Free cutting high strength alumina sintered compact and corrosion resistant member using the sintered compact
JP2001203256A (en) Wafer holding tool
JPH07186051A (en) Rotary vane for centrifugal type blast devise
JPH0826860A (en) Jig for baking
JP2003212651A (en) Zirconia sintered compact, sintered compact-based wear- resistant member, bearing ball and member for optical connector
JPH0825797B2 (en) Warp correction method for sintered zirconia sheet