JP6484777B2 - Ceramic black nozzle - Google Patents

Ceramic black nozzle Download PDF

Info

Publication number
JP6484777B2
JP6484777B2 JP2014154273A JP2014154273A JP6484777B2 JP 6484777 B2 JP6484777 B2 JP 6484777B2 JP 2014154273 A JP2014154273 A JP 2014154273A JP 2014154273 A JP2014154273 A JP 2014154273A JP 6484777 B2 JP6484777 B2 JP 6484777B2
Authority
JP
Japan
Prior art keywords
nozzle
chip
mounting
zirconia
low
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2014154273A
Other languages
Japanese (ja)
Other versions
JP2016021542A (en
Inventor
村上 薫
薫 村上
直樹 尾崎
直樹 尾崎
峰夫 植野
峰夫 植野
眞司 黒田
眞司 黒田
正輝 山内
正輝 山内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagamine Manufacturing Co Ltd
Original Assignee
Nagamine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamine Manufacturing Co Ltd filed Critical Nagamine Manufacturing Co Ltd
Priority to JP2014154273A priority Critical patent/JP6484777B2/en
Publication of JP2016021542A publication Critical patent/JP2016021542A/en
Application granted granted Critical
Publication of JP6484777B2 publication Critical patent/JP6484777B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Description

発明の詳細な説明Detailed Description of the Invention

本発明は、コンデンサーチップや抵抗器チップなどの電子チップ部品を回路基板に実装するための電子部品装着機等に好適に用いられる部品吸着用のセラミックス製黒色ノズルに関する。  The present invention relates to a ceramic black nozzle for adsorbing components, which is preferably used in an electronic component mounting machine for mounting electronic chip components such as a capacitor chip and a resistor chip on a circuit board.

近年、回路基板の実装分野では、基板の高集積化と高精度化に伴い、微細なチップ部品を高速且つ高精度に実装できる電子部品装着機の開発が進んでいる。この電子部品装着機は、外気を吸引する真空吸引ヘッドの先端部にチップ部品を吸着保持するノズルが取り付けられており、ヘッド部はフィーダー部と回路基板との間を往復移動する。この時、ノズルによって真空吸着されたチップ部品は、ヘッド部がフィーダー部と回路基板との間を移動する途中において画像解析によりチップ部品の吸着状態や部品装着の位置を判定した後に回路基板に装着されるもので、この画像解析は、ノズルの前方からチップ部品および吸着面の方向に光を照射し、反射光量の差からチップ部品の形状や電極位置などを解析することによって行われている。  In recent years, in the field of circuit board mounting, development of electronic component mounting machines capable of mounting fine chip components at high speed and with high accuracy is progressing along with high integration and high accuracy of substrates. In this electronic component mounting machine, a nozzle that sucks and holds a chip component is attached to the tip of a vacuum suction head that sucks outside air, and the head portion reciprocates between a feeder portion and a circuit board. At this time, the chip component vacuum-sucked by the nozzle is mounted on the circuit board after determining the suction state of the chip part and the position of mounting the component by image analysis while the head unit moves between the feeder unit and the circuit board. Therefore, this image analysis is performed by irradiating light in the direction of the chip component and the suction surface from the front of the nozzle, and analyzing the shape of the chip component, the electrode position, and the like from the difference in the amount of reflected light.

図2は、この電子部品装着機を用いたチップ部品の回路基板への実装工程の一例を示す概略図である。  FIG. 2 is a schematic view showing an example of a mounting process of a chip component on a circuit board using the electronic component mounting machine.

図2に示す電子部品装着機10は、そのヘッド部先端に装着された部品吸着用のノズル1と、チップ部品11を並べたフィーダー部のトレイ12と、ノズル1に吸着されたチップ部品11に向けて光を照射するライト13と、チップ部品11からの反射光を受光するためのCCDカメラ14と、CCDカメラ14で受光した反射光を画像処理するための画像解析装置15とで構成されている。ここで部品吸着用のノズル1は、図1に例示するように真空吸引することによって電子部品を吸着して保持するための吸着面2を先端に有し、後端から該吸着面にまで連通する吸引孔3をノズル軸心部に有すると共に、ノズル後端から先端に向けて円筒部4、円筒部4の先端側に逆円錐形の円錐部5からなる部位で構成され、該吸引孔3の先端部から後端部の方向に外気の吸引が行われることにより吸着面2にチップ部品11を吸着・保持するものである。  The electronic component mounting machine 10 shown in FIG. 2 includes a component suction nozzle 1 mounted at the tip of the head portion, a feeder tray 12 in which chip components 11 are arranged, and a chip component 11 sucked by the nozzle 1. A light 13 for irradiating light, a CCD camera 14 for receiving reflected light from the chip component 11, and an image analysis device 15 for processing the reflected light received by the CCD camera 14. Yes. Here, the component suction nozzle 1 has a suction surface 2 for sucking and holding an electronic component by vacuum suction as illustrated in FIG. 1, and communicates from the rear end to the suction surface. The suction hole 3 is formed in a portion including the cylindrical portion 4 from the nozzle rear end toward the tip, and a conical portion 5 having an inverted conical shape on the tip end side of the cylinder portion 4. The chip component 11 is sucked and held on the suction surface 2 by sucking outside air from the front end to the rear end.

そして、この電子部品装着機10は、ノズル1がトレイ12まで移動し、トレイ12上に並べられたチップ部品11を吸着すると、ライト13がノズル1に吸着されたチップ部品11へ向けて光を照射し、この光がチップ部品11の本体等に当たって反射する反射光をCCDカメラ14で受光し、CCDカメラ14で受光した画像を基に画像解析装置15によってチップ部品11のずれや位置を測定して、そのデータを基に回路基板(図示せず)の所定の位置にチップ部品11を吸着したノズル1を移動させて、回路基板上にチップ部品11を実装する仕組みとなっている。  In the electronic component mounting machine 10, when the nozzle 1 moves to the tray 12 and sucks the chip components 11 arranged on the tray 12, the light 13 emits light toward the chip components 11 sucked by the nozzle 1. The reflected light that is irradiated and reflected when the light hits the main body of the chip component 11 is received by the CCD camera 14, and the deviation and position of the chip component 11 are measured by the image analysis device 15 based on the image received by the CCD camera 14. Based on the data, the nozzle 1 that adsorbs the chip component 11 is moved to a predetermined position on a circuit board (not shown), and the chip component 11 is mounted on the circuit board.

ところで、近年、回路基板の高集積化と高精度化に伴いチップ部品の微小化が進んでいるが、この実装現場ではチップ部品が小さく軽量化しているため、静電気によりチップ部品が吹き飛ばされたり、チップ部品が吸着を解除されても離反しないでそのまま持ち帰えったり、また画像解析で誤作動するといったトラブルが多発している。その対策として、ノズルを静電除去するために半導電性とし、且つノズルからの反射光を極力除くために、ノズルの黒色度を高めたり、ノズル吸着面の表面粗さを特定して輝度(反射率)を抑える等の方法が講じられている。  By the way, in recent years, the miniaturization of chip parts has progressed with the high integration and high precision of circuit boards, but chip parts are blown away by static electricity because the chip parts are small and lightweight at this mounting site, Even if the chip part is released from suction, there are many troubles that it can be taken home without separation or malfunctions in image analysis. As countermeasures, the nozzle is made semiconductive to remove static electricity and the reflected light from the nozzle is removed as much as possible to increase the blackness of the nozzle or specify the surface roughness of the nozzle suction surface to obtain brightness ( A method of reducing the reflectance is taken.

例えば、半導電性のセラミックス製黒色ノズルとして、ジルコニアやアルミナに酸化鉄や酸化クロム等の導電性付与材を添加したもの(特許文献1)、またノズル先端の吸着面の表面粗さを特定して輝度(反射率)を抑えたもの(特許文献2〜5)、などが提案されている。  For example, as a semiconductive ceramic black nozzle, zirconia or alumina added with a conductivity-imparting material such as iron oxide or chromium oxide (Patent Document 1), and the surface roughness of the adsorption surface of the nozzle tip are specified. In addition, a device with reduced brightness (reflectance) (Patent Documents 2 to 5) has been proposed.

特許第3261065号公報Japanese Patent No. 3261665 特開2011−151306号公報JP 2011-151306 A 特開2011−49551号公報JP 2011-49551 A 特開平11−99426号公報Japanese Patent Laid-Open No. 11-99426 特開平10−117099号公報JP-A-10-117099

このうち、黒色系の導電性付与材として酸化鉄を用いた場合は、磁性を帯びやすいといった酸化鉄の本質的な問題に加え、150℃程度の低温で酸化鉄の一部が二三酸化鉄に酸化して赤味を帯びるという熱安定性の問題や、黒色度が低いために所望の黒色度を得るためには多量の添加が必要で、成形体の強度低下を余儀なくされるといった数多くの問題を有している。また、酸化クロムに至っては、暗緑色系で真黒色とはほど遠く、しかも酸化クロム(三価)の一部が焼成過程で極めて有害な六価の酸化クロムに変化し、工程汚染を引き起こす恐れがあるなど安全衛生上の致命的な問題を抱えているのが現状である。  Among these, when iron oxide is used as the black conductivity imparting material, in addition to the essential problem of iron oxide that it is easily magnetized, a part of iron oxide at a low temperature of about 150 ° C. There are many problems such as thermal stability problem of oxidation to redness, and a large amount of addition required to obtain the desired blackness due to low blackness, resulting in reduced strength of the molded product Have a problem. In addition, chromium oxide is dark green and far from true black, and part of chromium oxide (trivalent) may change to extremely harmful hexavalent chromium oxide in the firing process, which may cause process contamination. At present, there are fatal problems in health and safety.

一方、ノズル先端の吸着面を研磨仕上げ加工等の方法で平均表面粗さ(Ra)を特定する方法では、平均表面粗さ(Ra)が対象物表面の凹凸を三次元的に数値化したものであるため、平均表面粗さ(Ra)が同じであっても色や材質によって反射光束が異なることから、画像解析の良否を表面粗さで判断するのは必ずしも実用的でない。また、輝度(反射率)についても、ノズルにある特定の方向から光を照射した場合、反射光束はノズル表面が標準白色板のような完全拡散反射では、受光する方向によらず輝度(反射率)は一定であるが、黒色ノズルでは受光する角度によって輝度(反射率)が異なることから、実装現場では輝度(反射率)による管理は事実上困難である。  On the other hand, in the method of specifying the average surface roughness (Ra) by a method such as polishing finishing on the suction surface at the tip of the nozzle, the average surface roughness (Ra) is a three-dimensional numerical representation of the irregularities on the surface of the object. Therefore, even if the average surface roughness (Ra) is the same, the reflected light flux varies depending on the color and material. Therefore, it is not always practical to judge the quality of image analysis based on the surface roughness. Also, with respect to luminance (reflectance), when light is irradiated from a specific direction on the nozzle, the reflected light flux is reflected by the luminance (reflectance) regardless of the light receiving direction in the case of perfect diffuse reflection where the nozzle surface is a standard white plate. ) Is constant, but since the luminance (reflectance) differs depending on the angle of light received by the black nozzle, management by luminance (reflectance) is practically difficult at the mounting site.

本発明は、これら実情に鑑み、チップ部品の吹き飛びや持ち帰り、画像解析時のトラブル等の発生の少ない、しかも装着精度が高く、有害物による工程汚染のおそれのない、電子部品装着機等に好適に用いられる部品吸着用のセラミックス製黒色ノズルの提供を課題とする。  In view of these circumstances, the present invention is suitable for an electronic component mounting machine that is less likely to cause troubles at the time of image analysis, such as blow-off and take-out of chip components, high mounting accuracy, and no risk of process contamination due to harmful substances. An object is to provide a ceramic black nozzle for adsorbing components used in manufacturing.

本発明者等は、上記課題を解決すべく、画像解析方式によるチップ部品の吸着ノズルについて鋭意検討した結果、部分安定化ジルコニアに二酸化チタンを添加したノズル成形体を、その焼成工程で還元焼成すれば、二酸化チタン中の構造酸素が酸素欠損を起こして白色から灰色、青黒色を経て真黒色に変化すると共に絶縁性から導電性に変化することに着目し、この低次酸化チタンと部分安定化ジルコニアの結晶粒子径や酸素欠損度等を制御すると、特定の導電性と光沢の少ない深い真黒色度等を兼備した成形体となすことができ、この成形体が実装用ノズルとして極めて好適に使用できることを見出し、本発明を完成させるに至ったものである。  In order to solve the above-mentioned problems, the present inventors have intensively studied an adsorption nozzle for chip parts by an image analysis method. As a result, a nozzle molded body obtained by adding titanium dioxide to partially stabilized zirconia is reduced and fired in the firing process. For example, the structural oxygen in titanium dioxide causes oxygen deficiency and changes from white to gray and blue-black to true black, and from insulating to conductive. By controlling the crystal grain size, oxygen deficiency, etc. of zirconia, it can be formed into a molded product that combines specific conductivity and deep blackness with less gloss, and this molded product can be used very favorably as a mounting nozzle. The present inventors have found out what can be done and have completed the present invention.

即ち、本発明は、先端に被吸着物を吸着保持する吸着面を備えたセラミックス製黒色ノズルにおいて、該セラミックス製黒色ノズルが部分安定化された平均結晶粒子径0.5〜2.0μmのジルコニア中に、導電性付与材としてTiOx(1.50≦X≦1.95)で示される平均結晶粒子径0.03〜0.15μmの低次酸化チタンを5〜30wt%含有すると共に、該ノズルの先端と後端との間の電気抵抗値が10〜1010Ωであって、かつJIS Z 8729に基づく分光測色計で求められるL*値が50以下であることを特徴とするセラミックス製黒色ノズルに関する。That is, the present invention relates to a ceramic black nozzle having an adsorption surface for adsorbing and holding an object to be adsorbed at the tip, and the zirconia having an average crystal particle diameter of 0.5 to 2.0 μm, wherein the ceramic black nozzle is partially stabilized. It contains 5 to 30 wt% of low-order titanium oxide having an average crystal particle size of 0.03 to 0.15 μm represented by TiOx (1.50 ≦ X ≦ 1.95) as a conductivity imparting material, and the nozzle A ceramic having a resistance value between 10 3 and 10 10 Ω between the front end and the rear end of the glass and an L * value determined by a spectrocolorimeter based on JIS Z 8729 is 50 or less It relates to a black nozzle.

本発明のセラミックス製黒色ノズルによれば、部分安定化ジルコニア中に特定の低次酸化チタンを生成せしめたことで、磁性を持たず、優れた強度と耐久性、並びに低光沢の深い黒色度と導電性を兼備せしめたものであるため、チップ部品の実装用ノズルとして使用した場合、チップ部品の吹き飛びや持ち帰り、画像解析時のトラブル等の発生が少なく、しかも装着精度が高く、有害物による工程汚染の恐れがないといった数々の優れた効果を奏するものである。  According to the ceramic black nozzle of the present invention, a specific low-order titanium oxide is produced in partially stabilized zirconia, so that it has no magnetism, excellent strength and durability, and low gloss and deep blackness. Because it combines conductivity, when used as a chip component mounting nozzle, there are few problems such as blowout and take-out of chip components, troubles during image analysis, etc., high mounting accuracy, and processes due to harmful substances It has many excellent effects such as no fear of contamination.

(A)は、本発明のセラミックス製黒色ノズルの一実施形態を示す斜視図であり、(B)はその側面断面図である。(A) is a perspective view which shows one Embodiment of the ceramic black nozzles of this invention, (B) is the side surface sectional drawing. は、本発明のセラミックス製黒色ノズルを具備した電子部品装着機を用いてチップ部品を回路基板に実装する電子部品装着装置の構成例を示す概略図である。These are the schematic diagrams which show the structural example of the electronic component mounting apparatus which mounts a chip component on a circuit board using the electronic component mounting machine provided with the ceramic black nozzles of this invention.

以下、本発明について詳しく説明する。  The present invention will be described in detail below.

本発明のセラミックス製黒色ノズルは、部分安定化された平均結晶粒子径0.5〜2.0μmのジルコニアに、導電性付与材としてTiO(二酸化チタン)を5〜30wt%加え、これにバインダーや成形助剤等を加えて混練し、スプレードライヤー等の公知の方法で乾燥して粉末又は顆粒状の原料を作製した後、これを射出成形してノズル形状となし、脱媒、還元焼成することで、成形体中のTiO を低次化し、平均結晶粒子径0.03〜0.15μmのTiOx(1.50≦X≦1.95)を生成せしめた、ノズル先端と後端との間の電気抵抗値が10〜1010Ωであって、かつJIS Z 8729に基づく分光測色計で求められるL*が50以下のセラミックス製黒色ノズルである。In the ceramic black nozzle of the present invention, 5-30 wt% of TiO 2 (titanium dioxide) is added as a conductivity-imparting material to zirconia having a partially stabilized average crystal particle diameter of 0.5 to 2.0 μm, and a binder is added thereto. And kneading by adding a molding aid and the like, and drying by a known method such as a spray dryer to produce a powder or granular raw material, which is then injection-molded to form a nozzle shape, removing the solvent, and reducing and firing. Thus, the TiO 2 in the molded body was reduced in order, and TiOx (1.50 ≦ X ≦ 1.95) having an average crystal particle diameter of 0.03 to 0.15 μm was generated. A ceramic black nozzle having an electric resistance value between 10 3 and 10 10 Ω and an L * value determined by a spectrocolorimeter based on JIS Z 8729 of 50 or less.

本発明において、ジルコニアの部分安定化剤としては、酸化イットリウム(Y)、酸化マグネシウム(MgO)、酸化カルシウム(CaO)、酸化セリウム(CeO)等の一種が好ましく、中でも酸化イットリウムが好ましい。酸化イットリウムの添加量は1〜5モル%が好ましく、1モル%未満では単斜晶ジルコニア量が増加して焼結体内部にクラックが多発して機械的強度が低下する一方、酸化イットリウムの添加量が5モル%を超えると正方晶ジルコニア量が低下してこの場合も優れた機械的強度が得られない。In the present invention, the zirconia partial stabilizer is preferably one of yttrium oxide (Y 2 O 3 ), magnesium oxide (MgO), calcium oxide (CaO), cerium oxide (CeO 2 ), etc., among which yttrium oxide is preferable. preferable. The amount of yttrium oxide added is preferably 1 to 5 mol%. If the amount is less than 1 mol%, the amount of monoclinic zirconia increases, cracks occur frequently inside the sintered body, and the mechanical strength decreases. On the other hand, the addition of yttrium oxide If the amount exceeds 5 mol%, the amount of tetragonal zirconia will decrease, and in this case as well, excellent mechanical strength cannot be obtained.

また、本発明のセラミックス製黒色ノズルの主成分である部分安定化ジルコニアの結晶状態は、X線回折から求められる全ジルコニア量に対する単斜晶以外のジルコニア量が80%以上のものが好ましく、単斜晶以外のジルコニア量が80%未満の場合は、ジルコニア特有の応力誘起相変態機能が期待できず、優れた曲げ強度や破壊靱性が得られない。  The crystal state of the partially stabilized zirconia, which is the main component of the ceramic black nozzle of the present invention, is preferably such that the amount of zirconia other than monoclinic crystals is 80% or more with respect to the total amount of zirconia obtained from X-ray diffraction. When the amount of zirconia other than oblique crystals is less than 80%, a stress-induced phase transformation function peculiar to zirconia cannot be expected, and excellent bending strength and fracture toughness cannot be obtained.

ここで、部分安定化ジルコニアの応力誘起相変態とは、ジルコニアの結晶状態のうちの正方晶ジルコニアが外部応力によって応力誘起変態を受けて単斜晶ジルコニアに相変態する性質を言うもので、この正方晶から単斜晶に相変態する時に生じる体積膨張によってジルコニアの周囲に微小なマイクロクラックが発生し、外部応力の進行が阻止されるため、ジルコニア焼結体の曲げ強度や破壊靭性が高くなるのである。  Here, the stress-induced phase transformation of partially stabilized zirconia refers to the property that tetragonal zirconia in the crystalline state of zirconia undergoes stress-induced transformation due to external stress and undergoes phase transformation to monoclinic zirconia. Due to the volume expansion that occurs during the phase transformation from tetragonal to monoclinic crystals, minute microcracks are generated around the zirconia and the progress of external stress is prevented, so the bending strength and fracture toughness of the zirconia sintered body increase. It is.

また、本発明で使用するジルコニアは、平均結晶粒子径が0.5〜2.0μm、好ましくは0.5〜1.5μmのものである。平均結晶粒子径が0.5μm未満では、前記した応力誘起相変態機能が十分発揮されないことから優れた強度や破壊靱性が得られず、また後述する低次酸化チタン粒子との表面凹凸相互作用による優れた部品吸着力や低光沢度が得られないのに対し、平均結晶粒子径が2.0μmより大きいと、耐摩耗性や耐衝撃性、曲げ強度等の機械的特性が低下する。  The zirconia used in the present invention has an average crystal particle size of 0.5 to 2.0 μm, preferably 0.5 to 1.5 μm. When the average crystal particle size is less than 0.5 μm, the above-described stress-induced phase transformation function is not sufficiently exhibited, so that excellent strength and fracture toughness cannot be obtained, and due to surface unevenness interaction with lower-order titanium oxide particles described later. Whereas excellent component adsorbing power and low gloss cannot be obtained, if the average crystal particle size is larger than 2.0 μm, mechanical properties such as wear resistance, impact resistance and bending strength are deteriorated.

尚、本発明において、ジルコニアと低次酸化チタンの平均結晶粒子径の測定は、焼結体を鏡面仕上げした後、熱エッチングを施し、走査電子顕微鏡にて観察し、インターセプト法により10点平均から求める。算出式としては、D=1.5×L/n〔D:平均結晶粒径(μm)、L:測定長さ(μm)、n:長さL当たりの結晶数〕を用いた。  In the present invention, the average crystal particle diameter of zirconia and low-order titanium oxide is measured by mirror-finishing the sintered body, performing thermal etching, observing with a scanning electron microscope, and measuring from the average of 10 points by the intercept method. Ask. As a calculation formula, D = 1.5 × L / n [D: average crystal grain size (μm), L: measurement length (μm), n: number of crystals per length L] was used.

本発明のセラミックス製黒色ノズルは、上記部分安定化ジルコニアに、導電性付与材として二酸化チタンを低次化したTiOx(1.50≦X≦1.95)で示される低次酸化チタンを5〜30wt%含有させたものである。本発明で使用する二酸化チタンは、ルチル型、アナターゼ型、ブルッカイト型のいずれの結晶型でもよく、これらは安価で磁性がなく、安全性や分散性に優れることから着色顔料として多用されているもので、その平均粒子径は焼成後の低次酸化チタンの平均結晶粒子径が0.03〜0.15μmになるよう適宜調整されたものが使用可能である。In the ceramic black nozzle of the present invention, low-order titanium oxide represented by TiOx (1.50 ≦ X ≦ 1.95) in which titanium dioxide is reduced as a conductivity-imparting material is added to the partially stabilized zirconia. 30 wt% is contained. The titanium dioxide used in the present invention may be in any of the rutile type, anatase type, or brookite type. These are inexpensive, non-magnetic, and are widely used as color pigments because they are excellent in safety and dispersibility. The average particle size of the low-order titanium oxide after firing can be appropriately adjusted so that the average crystal particle size is 0.03 to 0.15 μm.

この二酸化チタンは、常温では白色で絶縁体であるが、高温で還元焼成すると酸素欠損が起こって色味が灰色、青黒色を経て真黒色に着色すると共に、電気伝導性が高くなるという性質がある。  This titanium dioxide is white and insulating at room temperature, but when it is reduced and fired at high temperature, oxygen deficiency occurs, and the color becomes gray, blue-black, and true black, and the electrical conductivity increases. is there.

焼成時の還元ガスとしては、水素、窒素、アルゴン、ヘリウム等の1種、あるいはこれらの混合ガスが好適で、中でも窒素やアルゴン等の不活性ガスと、2〜10vol%程度の水素との混合ガス中で還元するのが、二酸化チタンの低次化が効率よく進む点で好ましい。また、炭素や炭化水素等の還元剤を共存する還元ガス中で焼成してもよい。焼成条件は1200〜1500℃で1〜5時間とするのが好ましく、焼成温度1200℃未満では酸化チタンの還元効率が悪く、黒色化や導電性への構造変化が進みにくくなるほか、主成分であるジルコニアの焼結が不十分となって強度不足となる。一方、焼成温度が1500℃を超えるとジルコニアの粒成長が大きくなり、この場合も強度低下を余儀なくされる。  As a reducing gas at the time of firing, one kind of hydrogen, nitrogen, argon, helium, or a mixed gas thereof is suitable, and in particular, a mixture of an inert gas such as nitrogen or argon and hydrogen of about 2 to 10 vol%. Reduction in gas is preferable in that the lowering of titanium dioxide proceeds efficiently. Moreover, you may bake in the reducing gas which coexists reducing agents, such as carbon and a hydrocarbon. The firing conditions are preferably 1200 to 1500 ° C. for 1 to 5 hours. If the firing temperature is less than 1200 ° C., the reduction efficiency of titanium oxide is poor, and the structural change to blackening or conductivity is difficult to proceed. A certain zirconia is insufficiently sintered, resulting in insufficient strength. On the other hand, when the firing temperature exceeds 1500 ° C., the grain growth of zirconia increases, and in this case as well, the strength must be reduced.

本発明のセラミックス製黒色ノズルにおいて、部分安定化ジルコニア中に含有される低次酸化チタンは、TiOxで表されるX値が1.50〜1.95のものである。即ち、低次酸化チタンは、黒色度ではX値0.2〜1.95のものが、また導電性の点ではX値1.75のものが最大となることが一般的に知られているが、本発明ではこのX値を1.50〜1.95とするもので、X値が1.50未満の場合は、その結晶がNaCl型構造に変化しやすく、体積収縮を起こして強度低下の原因となる。一方、X値が1.95を超えると黒色度や導電性が不足して目的とする黒色半導電性のノズルが得られない。  In the ceramic black nozzle of the present invention, the low-order titanium oxide contained in the partially stabilized zirconia has an X value represented by TiOx of 1.50 to 1.95. That is, it is generally known that low-order titanium oxide has a maximum blackness with an X value of 0.2 to 1.95 and a conductivity with an X value of 1.75. However, in the present invention, the X value is 1.50 to 1.95, and when the X value is less than 1.50, the crystal is likely to change to a NaCl type structure, causing volume shrinkage and decreasing strength. Cause. On the other hand, if the X value exceeds 1.95, the blackness and conductivity are insufficient, and the target black semiconductive nozzle cannot be obtained.

尚、本発明において、低次酸化チタン中の酸素量、すなわちTiOxのX値は、通常、低次酸化チタンは500〜600℃の温度で酸化されて二酸化チタンになり、黒色から白色に変化することから、還元焼成後のセラミックス製黒色ノズルを、大気中で、昇温速度20℃/分とし、常温〜1000℃で熱分析(TG−DTA)し、その間の重量増加分を酸化に伴う酸素の増加量としてX値を算出した。  In the present invention, the amount of oxygen in the low-order titanium oxide, that is, the X value of TiOx is usually oxidized at a temperature of 500 to 600 ° C. to form titanium dioxide, and changes from black to white. Therefore, the black nozzle made of ceramic after reduction firing was subjected to thermal analysis (TG-DTA) at room temperature to 1000 ° C. in the atmosphere at a temperature rising rate of 20 ° C./min, and the weight increase during that time was oxygen accompanying oxidation The X value was calculated as the amount of increase.

本発明のセラミックス製黒色ノズルはまた、前記部分安定化ジルコニアの平均結晶粒子径を0.5〜2.0μmとするのに対し、低次酸化チタンは、その原料混練や成形、焼成工程での二次凝集や粒子成長等を考慮して、0.03〜0.15μmの平均結晶粒子径とする必要がある。低次酸化チタンの平均結晶粒子径が0.15μmより大きいと、部分安定化ジルコニアの結晶粒子との粒径差が小さく、表面平滑性が高くなって、吸着したチップ部品の離反性が悪化し部品の持ち帰り頻度が高くなるという不都合が生じるほか、入射光の乱反射が起こりにくくなるため、ノズル表面の光沢度が高くなってチップ部品装着時の画像解析で誤動作しやすくなる。一方、低次酸化チタンの平均結晶粒子径が0.03μm未満では、部分安定化ジルコニアの結晶粒子との粒径差が大きくなって、真空吸引の際に空気が漏れて吸着力が低下し、チップ部品の位置ずれや落下が多発して装着精度が悪化するという問題が生じる。The ceramic black nozzle of the present invention also has an average crystal particle size of the partially stabilized zirconia of 0.5 to 2.0 μm, whereas low-order titanium oxide is used in the raw material kneading, forming and firing steps. In consideration of secondary aggregation, particle growth, etc., it is necessary to set the average crystal particle size of 0.03 to 0.15 μm. If the average crystal particle size of the low-order titanium oxide is larger than 0.15 μm , the particle size difference from the partially stabilized zirconia crystal particles is small, the surface smoothness is high, and the separation property of the adsorbed chip parts deteriorates. In addition to the inconvenience that the frequency of taking home parts increases, it becomes difficult to cause irregular reflection of incident light, so that the glossiness of the nozzle surface is increased, and malfunction is easily caused in image analysis when chip parts are mounted. On the other hand, if the average crystal particle size of the low-order titanium oxide is less than 0.03 μm, the particle size difference from the crystal particles of the partially stabilized zirconia becomes large, air leaks during vacuum suction, and the adsorptive power decreases. There arises a problem that the mounting accuracy deteriorates due to frequent displacement and dropping of the chip parts.

また、本発明の低次酸化チタンは、例えばTi、Ti、TiTi 等の低次酸化チタンを含むものであって、酸化チタン全体をこれら低次酸化チタンで構成したもの、あるいは低次酸化チタンと二酸化チタンが混在したもの、粒子内部と、粒子表面又はその近傍で酸素欠損度が異なるよう低次化したもの、などが使用可能であるが、それらの成分組成を一般式TiOxで表した時、X値が1.50〜1.95であることが重要である。The low-order titanium oxide of the present invention includes low-order titanium oxides such as Ti 2 O 3 , Ti 3 O 5 , Ti 4 O 7 , Ti 5 O 9, etc. Those composed of sub-titanium oxide, those in which low-order titanium oxide and titanium dioxide are mixed, or those in which the degree of oxygen deficiency is different between the inside of the particle and the surface of the particle or in the vicinity thereof can be used. When the component composition is represented by the general formula TiOx, it is important that the X value is 1.50 to 1.95.

本発明において、部分安定化ジルコニアに対する前記低次酸化チタンの含有量は、5〜30wt%、好ましくは8〜25wt%であり、低次酸化チタンの含有量が5wt%未満では黒色度と導電性が不十分となる一方、低次酸化チタンの含有量が30wt%を超えるとノズルの曲げ強度や破壊靭性、耐摩耗性等が悪化する。  In the present invention, the content of the low-order titanium oxide with respect to the partially stabilized zirconia is 5 to 30 wt%, preferably 8 to 25 wt%. When the content of the low-order titanium oxide is less than 5 wt%, the blackness and conductivity are low. On the other hand, when the content of low-order titanium oxide exceeds 30 wt%, the bending strength, fracture toughness, wear resistance, etc. of the nozzle deteriorate.

本発明のセラミックス製黒色ノズルは、前記低次酸化チタンを特定量含有させることで、ノズルの先端と後端との間の電気抵抗値を10〜1010Ω、好ましくは10〜10Ωとし、かつJIS Z 8729に基づく分光測色計で求められるL*値を50以下、好ましくは45以下としたものである。The ceramic black nozzle of the present invention contains a specific amount of the low-order titanium oxide, so that the electrical resistance value between the tip and the rear end of the nozzle is 10 3 to 10 10 Ω, preferably 10 4 to 10 8. The L * value obtained with a spectrocolorimeter based on JIS Z 8729 is 50 or less, preferably 45 or less.

ノズルの先端と後端との間の電気抵抗値が10〜1010Ωであると、ノズルに静電気が帯電しても、この静電気は導通するノズル保持部品や電子部品装着機等を通して適度な速度で除電できるため、ノズルの帯電によるチップ部品の吹き飛びや、放電破壊等のトラブルが防止できる。即ち、ノズルの先端と後端との間の電気抵抗値が10Ω未満になると、導電性が高すぎて静電気を一気に除去してしまうため、チップ部品や周囲の部品を静電破壊する恐れがあるのに対し、電気抵抗値が1010Ωを超えると、ノズルに発生した静電気が帯電するため、塵埃等が付着して電子部品が汚染したり、ノズルがチップ部品に近づくと静電気の反発力によってチップ部品が吹き飛ぶという問題が生じるようになる。If the electrical resistance value between the front and rear ends of the nozzle is 10 3 to 10 10 Ω, even if static electricity is charged on the nozzle, this static electricity can be moderated through a nozzle holding component or electronic component mounting machine that conducts. Since the charge can be removed at a high speed, troubles such as blowout of chip parts due to charging of the nozzle and discharge breakdown can be prevented. That is, if the electrical resistance value between the tip and the rear end of the nozzle is less than 10 3 Ω, the electrical conductivity is too high and the static electricity is removed at once. On the other hand, if the electrical resistance exceeds 10 10 Ω, the static electricity generated in the nozzle will be charged, so that dust or the like will adhere to the electronic components, or if the nozzle approaches the chip components, The problem arises that the chip parts are blown away by the force.

また、本発明のセラミックス製黒色ノズルは、その黒色度の指標として、JIS Z 8729に基づく分光測色計で測定したL*値が50以下のものである。  Further, the ceramic black nozzle of the present invention has an L * value of 50 or less measured by a spectrocolorimeter based on JIS Z 8729 as an index of blackness.

電子部品装着機において黒色系ノズルを用いる理由は、ノズルで吸着したチップ部品にライトを照射してCCDカメラで撮影する際、ノズルが黒色系であると背景が暗い状態となってチップ部品の輪郭が明瞭になることから、ノズルに吸着されたチップ部品の形状が正確に認識でき、回路基板にチップ部品を実装する際の位置精度が高くなるという利点があるためである。従って、本発明において、セラミックス製黒色ノズルのL*値が50を超えると、ノズルの明度が高くなって反射光によるノズルとチップ部品の区別が付きにくくなり、認識エラーや誤動作の原因となる。またこの問題は、チップが微小化されたり、装着速度の高速化に伴い顕著となる傾向がある。  The reason why the black nozzle is used in the electronic component mounting machine is that when the chip component adsorbed by the nozzle is irradiated with light and photographed with a CCD camera, the background of the chip component becomes dark when the nozzle is black. This is because the shape of the chip component adsorbed by the nozzle can be accurately recognized, and the positional accuracy when the chip component is mounted on the circuit board is increased. Therefore, in the present invention, when the L * value of the ceramic black nozzle exceeds 50, the brightness of the nozzle becomes high, and it becomes difficult to distinguish the nozzle from the chip component due to the reflected light, causing a recognition error or malfunction. In addition, this problem tends to become conspicuous as the chip is miniaturized or the mounting speed is increased.

本発明のセラミックス製黒色ノズルは、前述の如く、部分安定化ジルコニアと低次酸化チタンの結晶粒子径を特定し、ノズル表面に微細な凹凸を形成することで、適度なチップ部品の吸着力や表面光沢性を保持せしめたものであるが、部品の実装工程では実装回数が何十万回、何百万回と増えるに従い、ノズル吸着面が摩耗したり、吸着面にチップ部品の樹脂成分が付着して部品吸着力の低下を招くほか、表面光沢度が高くなって実装効率が低下するなど、これらのトラブル頻度を少なくすべく、必要に応じて予めノズルの少なくとも吸着面を周知の方法で研磨したり、ブラスト処理、DLC処理、ケイ酸皮膜コーティング等の前処理を施してもよいことは言うまでもない。  As described above, the ceramic black nozzle of the present invention specifies the crystal particle diameters of partially stabilized zirconia and low-order titanium oxide, and forms fine irregularities on the nozzle surface, so that the adsorbing power of an appropriate chip component can be increased. The surface glossiness is maintained, but as the number of times of mounting in the component mounting process increases to hundreds of thousands and millions of times, the nozzle suction surface wears out, and the resin component of the chip component is deposited on the suction surface. In order to reduce the frequency of these troubles, such as adhesion, resulting in a decrease in the component adsorption force and a reduction in mounting efficiency due to an increase in surface glossiness, at least the adsorption surface of the nozzle is preliminarily used by a well-known method as necessary. Needless to say, polishing or pretreatment such as blast treatment, DLC treatment, or silicate coating may be performed.

尚、本発明のセラミックス製黒色ノズルは、前記部分安定化ジルコニアと低次酸化チタン以外に、ノズル性能を損なわない範囲でアルミナや窒化チタン、炭化ケイ素などの周知の添加剤を共存させたり、HIP処理を施しても良い。  In addition, the ceramic black nozzle of the present invention may contain known additives such as alumina, titanium nitride, and silicon carbide in addition to the partially stabilized zirconia and low-order titanium oxide, as long as the nozzle performance is not impaired. Processing may be performed.

以下、本発明を理解しやすくするために実施例に基づき説明するが、本発明はこれら実施例に限定されるものではない。  Hereinafter, in order to make the present invention easier to understand, description will be made based on examples, but the present invention is not limited to these examples.

(実施例1〜9、比較例1〜4)
酸化イットリウムを3モル%含有する平均結晶粒子径1.0μmの部分安定化ジルコニアに、平均粒子径0.07μmの二酸化チタンを種々の割合で加え、これにアクリル系やエチレン酢酸ビニル系のバインダーとワックス類などを加えて混練乾燥することによりコンパウンド原料を作製した。そしてこのコンパウンド原料を金型温度40℃、押出温度150℃の条件で射出成形し、図1に示すノズル形状の成形品を得た。この成形品を、大気中450〜900℃の条件で脱媒した後、アルゴンを主成分とする不活性ガス中で温度1100℃〜1600℃で1時間焼成して、低次酸化チタンの含有量とX値が異なる種々ノズルサンプルを作製した。
(Examples 1-9, Comparative Examples 1-4)
Titanium dioxide with an average particle size of 0.07 μm was added in various proportions to partially stabilized zirconia with an average crystal particle size of 1.0 μm containing 3 mol% of yttrium oxide, and an acrylic or ethylene vinyl acetate binder and A compound material was prepared by adding waxes and kneading and drying. The compound material was injection molded under the conditions of a mold temperature of 40 ° C. and an extrusion temperature of 150 ° C. to obtain a nozzle-shaped molded product shown in FIG. The molded product is desorbed in the atmosphere at 450 to 900 ° C., and then fired in an inert gas containing argon as a main component at a temperature of 1100 ° C. to 1600 ° C. for 1 hour. Nozzle samples with different X values were prepared.

得られたノズルサンプルについて、曲げ強度、導電性、黒色度、装着不良率、静電破壊率、吹き飛び率などを評価し、総合評価と共に表1にまとめた。  About the obtained nozzle sample, bending strength, electroconductivity, blackness, a mounting defect rate, an electrostatic breakdown rate, a blow-off rate, etc. were evaluated and it put together in Table 1 with comprehensive evaluation.

尚、本実施例において、TiOxのX値、曲げ強度、導電性、黒色度、装着不良率、静電破壊率、吹き飛び率、総合評価はそれぞれ次の方法で評価した。  In this example, the X value, bending strength, conductivity, blackness, mounting failure rate, electrostatic breakdown rate, blow-off rate, and overall evaluation of TiOx were evaluated by the following methods.

低次酸化チタンTiOxのX値は、前述のように還元焼成後のノズルを、大気中で、昇温速度20℃/分とし、常温〜1000℃で熱分析(TG−DTA)し、その間の重量増加分を酸化に伴う酸素の増加量としてX値を算出した。  As described above, the X value of the low-order titanium oxide TiOx was determined by performing thermal analysis (TG-DTA) at normal temperature to 1000 ° C. with the nozzle after reduction firing in the atmosphere at a heating rate of 20 ° C./min. The X value was calculated with the increase in weight as the amount of oxygen increase accompanying oxidation.

曲げ強度は、それぞれ各試料と同一の組成と製造条件で作製した焼結体を、3mm×4mm×40mmの寸法になるよう研削して試験片とし、JISR1601(2008)に準ずる4点曲げ強度の方法で測定した。  The bending strength is a four-point bending strength in accordance with JIS R1601 (2008) by grinding a sintered body produced with the same composition and manufacturing conditions as each sample to a test piece of 3 mm × 4 mm × 40 mm. Measured by the method.

導電性は、ノズル先端の吸着面と後端面にそれぞれ電極を接触させ、これら電極間に表面抵抗測定器を接続して電圧を加え、ノズル先端と後端との間の抵抗値を測定した。  For conductivity, an electrode was brought into contact with the suction surface and the rear end surface of the nozzle tip, a voltage was applied by connecting a surface resistance measuring device between these electrodes, and the resistance value between the nozzle tip and the rear end was measured.

黒色度は、JIS Z 8729に基づく分光測色計でノズル表面のL*値を測定し、その数値をもって黒色度の良否判定とした。尚、このL*値は色の明度を表すもので、数値が低いほど黒色度が高くなる。  For the blackness, the L * value of the nozzle surface was measured with a spectrocolorimeter based on JIS Z 8729, and the numerical value was used to determine the blackness. This L * value represents the brightness of the color, and the lower the value, the higher the blackness.

装着不良率は、各ノズルサンプルを電子部品装着機に取り付けて、寸法0.6mm×0.3mm(0603タイプ)のチップ部品を実装テストに供した。1万個の装着を行った時点での吸着不良による位置ずれや部品の落下、画像解析不良による位置誤認などの個数をカウントし、これらの総不良個数を1万個で除した装着不良率が0.05%未満であったものを(○)、0.05〜0.5%であったものを(△)、0.5%より高かったものを(×)とした。  For the mounting failure rate, each nozzle sample was attached to an electronic component mounting machine, and a chip component having a size of 0.6 mm × 0.3 mm (0603 type) was subjected to a mounting test. Counting the number of misalignment due to suction failure, part dropping, mispositioning due to image analysis failure, etc. at the time of 10,000 mounting, and the total mounting failure rate divided by 10,000 What was less than 0.05% was (◯), what was 0.05 to 0.5% was (Δ), and what was higher than 0.5% was (x).

また静電破壊率は、上記と同様の方法で10万個のチップ部品を基板上に実装し、導通試験機による評価で静電破壊した個数をカウントした。その結果、静電破壊していたチップ部品が3個未満のものを(○)、3〜10個のものを(△)、10個より多く静電破壊したものを(×)とした。  In addition, the electrostatic breakdown rate was obtained by mounting 100,000 chip parts on a substrate by the same method as described above and counting the number of electrostatic breakdowns by evaluation using a continuity tester. As a result, less than three chip parts that were electrostatically destroyed were indicated by (◯), 3-10 pieces were (Δ), and more than 10 pieces were electrostatically broken (×).

吹き飛び率は、上記同様10万個のチップ部品を基板上に実装した時、チップ部品の吹き飛び個数が3個未満のものを(○)、3〜10個のものを(△)、10個より多く静電破壊したものを(×)とした。  The blow-off rate is similar to the above, when 100,000 chip parts are mounted on the substrate, the number of blown-out chip parts is less than 3 (◯), 3 to 10 (△), 10 A large number of electrostatic breakdowns were taken as (x).

総合評価は、曲げ強度、装着不良率、静電破壊率、吹き飛び率等を総合的に判断して電子部品装着機の部品吸着用ノズルとして極めて好適なものを(○)、好適なものを(△)、不適なものを(×)とした。  Comprehensive evaluation is based on a comprehensive judgment of bending strength, mounting failure rate, electrostatic breakdown rate, blow-off rate, etc. (○), which is extremely suitable as a component suction nozzle for electronic component mounting machines ( (△) and the unsuitable thing was set as (x).

Figure 0006484777
Figure 0006484777

表1の結果から、低次酸化チタンTiOxの含有量とそのX値が本発明の範囲にあり、且つ導電性と黒色度(L*値)が特定の条件を満たす本発明のセラミックス製黒色ノズルは、機械的強度に優れると共に、装着精度が高く、部品の静電破壊率や吹き飛び率が極めて低いといった特徴を有するなど、電子部品装着機の部品吸着用ノズルとして好適であることが分かる。  From the results of Table 1, the ceramic black nozzle of the present invention in which the content of low-order titanium oxide TiOx and its X value are within the scope of the present invention, and the conductivity and blackness (L * value) satisfy specific conditions. It is found that this is suitable as a component suction nozzle for an electronic component mounting machine because it has excellent mechanical strength, high mounting accuracy, and extremely low electrostatic breakdown rate and blow-off rate of components.

(実施例10〜16、比較例5〜8)
部分安定化ジルコニアの平均結晶粒子径を0.3〜2.5μmとし、低次酸化チタンの平均結晶粒子径を0.02〜0.35μmの範囲で変えた以外は実施例5と同様の方法でノズルサンプルを作製した。これらノズルサンプル中の低次酸化チタンのX値は1.85〜1.90、導電性はそれぞれ10Ω、黒色度(L*値)はそれぞれ30〜35であった。
(Examples 10-16, Comparative Examples 5-8)
The same method as in Example 5 except that the average crystal particle size of partially stabilized zirconia was changed to 0.3 to 2.5 μm and the average crystal particle size of low-order titanium oxide was changed in the range of 0.02 to 0.35 μm. A nozzle sample was prepared. The low-order titanium oxide in these nozzle samples had an X value of 1.85 to 1.90, an electrical conductivity of 10 5 Ω, and a blackness (L * value) of 30 to 35, respectively.

得られたノズルサンプルについて、曲げ強度、装着不良率、持ち帰り率などを評価し、総合評価と共に表2にまとめた。  The obtained nozzle samples were evaluated for bending strength, mounting failure rate, take-out rate, etc., and are summarized in Table 2 together with comprehensive evaluation.

表2において、持ち帰り率は、前記装着不良率の評価と同様の方法で実装テストを行い、1万個の装着を行った時点でのチップ部品の持ち帰り個数をカウントし、その個数を1万個で除した持ち帰り率が0.05%未満であったものを(○)、0.05〜0.5%であったものを(△)、0.5%より高かったものを(×)とした。  In Table 2, the take-out rate is the same as in the evaluation of the mounting failure rate, the mounting test is performed, the number of chip parts taken at the time of 10,000 mounting is counted, and the number is 10,000 (○) indicates that the take-out rate divided by 0.05 was less than 0.05%, (△) indicates that it was 0.05-0.5%, and (×) indicates that it was higher than 0.5%. did.

尚、表2中の曲げ強度、装着不良率、総合評価は、前記表1と同様の方法で評価した。  The bending strength, mounting failure rate, and comprehensive evaluation in Table 2 were evaluated in the same manner as in Table 1.

Figure 0006484777
Figure 0006484777

上記表2の結果から、部分安定化ジルコニアと低次酸化チタンの平均結晶粒子径が本発明の範囲にあるものは、機械的強度、装着精度、持ち帰り率共に良好で、電子部品装着機の部品吸着用ノズルとして好適であることが分かる。  From the results of Table 2 above, those in which the average crystal particle sizes of partially stabilized zirconia and low-order titanium oxide are within the scope of the present invention are good in mechanical strength, mounting accuracy, and take-out rate, and are components of an electronic component mounting machine. It turns out that it is suitable as a nozzle for adsorption.

本発明のセラミックス製黒色ノズルは、チップ部品の小型化と実装速度の高速化が進む中にあって、機械的強度に優れると共に、装着精度が高く、部品の静電破壊や吹き飛び、持ち帰りなどの実装トラブルが極めて少ないといった利点から、電子チップ部品を吸着保持して基板に実装するチップ部品実装の分野に利用可能である。  The ceramic black nozzle of the present invention has excellent mechanical strength and high mounting accuracy, while chip components are being downsized and mounting speeds are increasing. Because of the advantage that mounting trouble is extremely small, it can be used in the field of chip component mounting where electronic chip components are sucked and held and mounted on a substrate.

1;セラミックス製黒色ノズル
2;吸着面
3;吸引口
4;円筒部
5;円錐部
10;電子部品装着装置
11;チップ部品
12;トレイ
13;ライト
14;CCDカメラ
15;画像解析装置
DESCRIPTION OF SYMBOLS 1; Ceramics black nozzle 2; Suction surface 3; Suction port 4; Cylindrical part 5; Conical part 10; Electronic component mounting apparatus 11; Chip component 12; Tray 13;

Claims (1)

先端に被吸着物を吸着保持する吸着面を備えたセラミックス製黒色ノズルにおいて、該セラミックス製黒色ノズルが部分安定化された平均結晶粒子径0.5〜2.0μmのジルコニア中に、導電性付与材としてTiOx(1.50≦X≦1.95)で示される平均結晶粒子径0.03〜0.15μmの低次酸化チタンを5〜30wt%含有すると共に、該ノズルの先端と後端との間の電気抵抗値が10〜1010Ωであって、かつJIS Z 8729に基づく分光測色計で求められるL*値が50以下であることを特徴とするセラミックス製黒色ノズル。In a ceramic black nozzle having an adsorption surface for adsorbing and holding an object to be adsorbed at the tip, conductivity is imparted to zirconia having an average crystal particle diameter of 0.5 to 2.0 μm, in which the ceramic black nozzle is partially stabilized. The material contains 5 to 30 wt% of low-order titanium oxide having an average crystal particle size of 0.03 to 0.15 μm represented by TiOx (1.50 ≦ X ≦ 1.95), and the tip and rear ends of the nozzle A ceramic black nozzle characterized by having an electrical resistance value between 10 3 and 10 10 Ω and an L * value determined by a spectrocolorimeter based on JIS Z 8729 of 50 or less.
JP2014154273A 2014-07-11 2014-07-11 Ceramic black nozzle Active JP6484777B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014154273A JP6484777B2 (en) 2014-07-11 2014-07-11 Ceramic black nozzle

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2014154273A JP6484777B2 (en) 2014-07-11 2014-07-11 Ceramic black nozzle

Publications (2)

Publication Number Publication Date
JP2016021542A JP2016021542A (en) 2016-02-04
JP6484777B2 true JP6484777B2 (en) 2019-03-20

Family

ID=55266190

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014154273A Active JP6484777B2 (en) 2014-07-11 2014-07-11 Ceramic black nozzle

Country Status (1)

Country Link
JP (1) JP6484777B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6681083B2 (en) * 2018-08-08 2020-04-15 株式会社ナントー Suction nozzle, component mounter

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003261376A (en) * 2002-03-06 2003-09-16 Toto Ltd Zirconia sintered compact and method of producing the same
EP2154941A4 (en) * 2007-04-25 2017-03-15 Kyocera Corporation Vacuum suction nozzle
JP5593529B2 (en) * 2011-09-09 2014-09-24 株式会社長峰製作所 Black zirconia reinforced alumina ceramic and method for producing the same

Also Published As

Publication number Publication date
JP2016021542A (en) 2016-02-04

Similar Documents

Publication Publication Date Title
JP5235909B2 (en) Zirconia sintered body and method for producing the same
JP4852645B2 (en) Vacuum suction nozzle
US7094719B2 (en) Light-colored ESD safe ceramics
JP5404889B2 (en) Vacuum suction nozzle assembly
US20130120896A1 (en) Electrostatic chuck
CN105229762B (en) Laminated ceramic capacitor
EP2242348A1 (en) Vacuum holding nozzle
JP5279887B2 (en) Vacuum suction nozzle
JP6484777B2 (en) Ceramic black nozzle
US20240308918A1 (en) Yttria-zirconia sintered ceramics for plasma resistant materials
JP2010150616A (en) Powder for thermal spraying, method of forming sprayed coating, and sprayed coating
JP3203184U (en) Nozzle for mounting electronic components
JP2003261376A (en) Zirconia sintered compact and method of producing the same
JP5501887B2 (en) Vacuum suction nozzle
JP2010235394A (en) Porous ceramic
JP2023051628A (en) Suction nozzle for mounting
JP5595052B2 (en) Vacuum suction nozzle
JP5111351B2 (en) Vacuum suction nozzle
JP5094009B2 (en) Zirconium oxide sintered body
WO2022092023A1 (en) Structure for relieving charging
JP3214792U (en) Suction nozzle for mounting
JP2014181136A (en) Member for heat treatment containing zirconia sintered body
JP2008263175A (en) Vacuum adsorption nozzle
JP2009004752A (en) Electrostatic chuck
JP2003286092A (en) Semiconducting ceramic member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20170524

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20180424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20180615

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20181120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20181214

R150 Certificate of patent or registration of utility model

Ref document number: 6484777

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250