JP3203184U - Nozzle for mounting electronic components - Google Patents

Nozzle for mounting electronic components Download PDF

Info

Publication number
JP3203184U
JP3203184U JP2015006689U JP2015006689U JP3203184U JP 3203184 U JP3203184 U JP 3203184U JP 2015006689 U JP2015006689 U JP 2015006689U JP 2015006689 U JP2015006689 U JP 2015006689U JP 3203184 U JP3203184 U JP 3203184U
Authority
JP
Japan
Prior art keywords
nozzle
zirconia
mounting
electronic component
tetragonal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
JP2015006689U
Other languages
Japanese (ja)
Other versions
JP3203184U7 (en
Inventor
直樹 尾崎
直樹 尾崎
眞司 黒田
眞司 黒田
藤井 達也
達也 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nagamine Manufacturing Co Ltd
Original Assignee
Nagamine Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nagamine Manufacturing Co Ltd filed Critical Nagamine Manufacturing Co Ltd
Priority to JP2015006689U priority Critical patent/JP3203184U/en
Publication of JP3203184U publication Critical patent/JP3203184U/en
Application granted granted Critical
Publication of JP3203184U7 publication Critical patent/JP3203184U7/ja
Revoked legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Supply And Installment Of Electrical Components (AREA)

Abstract

【課題】チップ部品の静電破壊や部品の持ち帰りといったノズルの静電気に起因するトラブルを回避すると共に、ジルコニア本来の優れた機械的強度を兼備する、とりわけ微小部品の実装に好適なノズルの提供を課題とする。【解決手段】部分安定化ジルコニアと導電性付与材とからなり、先端に被吸着物を吸着保持するための吸着面を備えた電子部品実装用ノズルにおいて、該ノズルの前記吸着面以外の外周面におけるジルコニア結晶相の90%以上が正方晶ジルコニアで構成されていることを特徴とする電子部品実装用ノズル。【選択図】図1[Problem] To provide a nozzle that avoids troubles caused by static electricity of a nozzle, such as electrostatic breakdown of chip parts and carry-out of parts, and has excellent mechanical strength inherent in zirconia, and is particularly suitable for mounting of micro parts. Let it be an issue. An electronic component mounting nozzle comprising a partially stabilized zirconia and a conductivity imparting material and having an adsorption surface for adsorbing and holding an object to be adsorbed at the tip, an outer peripheral surface other than the adsorption surface of the nozzle A nozzle for mounting an electronic component, wherein 90% or more of the zirconia crystal phase is composed of tetragonal zirconia. [Selection] Figure 1

Description

考案の詳細な説明Detailed description of the invention

本考案は、コンデンサーチップや抵抗器チップなどの電子チップ部品を回路基板に実装するための電子部品装着機等に好適に用いられる部分安定化ジルコニア製の電子部品実装用ノズルに関する。  The present invention relates to an electronic component mounting nozzle made of partially stabilized zirconia that is preferably used in an electronic component mounting machine for mounting electronic chip components such as a capacitor chip and a resistor chip on a circuit board.

近年、回路基板の実装分野では、基板の高集積化と高精度化に伴い、微細なチップ部品を高速且つ高精度に実装できる電子部品装着機の開発が進んでいる。この電子部品装着機は、外気を吸引する真空吸引ヘッドの先端部にチップ部品を吸着保持するノズルが取り付けられており、ヘッド部はフィーダー部と回路基板との間を往復移動する。この時、ノズルによって真空吸着されたチップ部品は、ヘッド部がフィーダー部と回路基板との間を移動する途中において画像解析によりチップ部品の吸着状態や部品装着の位置を判定した後に回路基板に装着されるもので、この画像解析は、ノズルの前方からチップ部品および吸着面の方向に光を照射し、反射光量の差からチップ部品の形状や電極位置などを解析することによって行われている。  In recent years, in the field of circuit board mounting, development of electronic component mounting machines capable of mounting fine chip components at high speed and with high accuracy is progressing along with high integration and high accuracy of substrates. In this electronic component mounting machine, a nozzle that sucks and holds a chip component is attached to the tip of a vacuum suction head that sucks outside air, and the head portion reciprocates between a feeder portion and a circuit board. At this time, the chip component vacuum-sucked by the nozzle is mounted on the circuit board after determining the suction state of the chip part and the position of mounting the component by image analysis while the head unit moves between the feeder unit and the circuit board. Therefore, this image analysis is performed by irradiating light in the direction of the chip component and the suction surface from the front of the nozzle, and analyzing the shape of the chip component, the electrode position, and the like from the difference in the amount of reflected light.

図2は、この電子部品装着機を用いたチップ部品の回路基板への実装工程の一例を示す概略図である。  FIG. 2 is a schematic view showing an example of a mounting process of a chip component on a circuit board using the electronic component mounting machine.

図2に示す電子部品装着機10は、そのヘッド部先端に装着された部品を吸着・保持するための実装用ノズル1と、チップ部品11を並べたフィーダー部のトレイ12と、当該実装用ノズル1に吸着・保持されたチップ部品11に向けて光を照射するライト13と、チップ部品11からの反射光を受光するためのCCDカメラ14と、CCDカメラ14で受光した反射光を画像処理するための画像解析装置15とで構成されている。ここで実装用ノズル1は、図1に例示するように真空吸引することによって電子部品を吸着・保持するための吸着面2を先端に有し、後端から該吸着面にまで連通する吸引孔3をノズル軸心部に有すると共に、ノズル後端から先靖に向けて円筒部4、円筒部4の先端側に逆円錐形の円錐部5からなる部位で構成され、該吸引孔3の先端部から後端部の方向に外気の吸引が行われることにより吸着面2にチップ部品11を吸着・保持するものである。  An electronic component mounting machine 10 shown in FIG. 2 includes a mounting nozzle 1 for sucking and holding a component mounted on the tip of the head unit, a feeder tray 12 in which chip components 11 are arranged, and the mounting nozzle. Image processing is performed on the light 13 that irradiates light toward the chip component 11 that is attracted and held by the semiconductor device 1, the CCD camera 14 that receives the reflected light from the chip component 11, and the reflected light received by the CCD camera 14. And an image analysis device 15 for this purpose. Here, the mounting nozzle 1 has a suction surface 2 for sucking and holding electronic components by vacuum suction as illustrated in FIG. 1, and a suction hole communicating from the rear end to the suction surface. 3 at the nozzle shaft center portion, a cylindrical portion 4 from the rear end of the nozzle toward the leading edge, and a portion comprising an inverted conical conical portion 5 on the distal end side of the cylindrical portion 4. The chip component 11 is sucked and held on the suction surface 2 by sucking outside air in the direction from the head to the rear end.

そして、この電子部品装着機10は、実装用ノズル1がトレイ12まで移動し、トレイ12上に並べられたチップ部品11を吸着すると、ライト13がノズル1に吸着されたチップ部品11へ向けて光を照射し、この光がチップ部品11の本体等に当たって反射する反射光をCCDカメラ14で受光し、CCDカメラ14で受光した画像を基に画像解析装置15によってチップ部品11のずれや位置を測定して、そのデータを基に回路基板(図示せず)の所定の位置にチップ部品11を吸着したノズル1を移動させて、回路基板上にチップ部品11を実装する仕組みとなっている。  In the electronic component mounting machine 10, when the mounting nozzle 1 moves to the tray 12 and sucks the chip components 11 arranged on the tray 12, the light 13 is directed toward the chip components 11 sucked by the nozzle 1. The CCD camera 14 receives reflected light that is irradiated and reflected by the light hitting the main body of the chip component 11 and the like, and the image analyzer 15 detects the deviation and position of the chip component 11 based on the image received by the CCD camera 14. Based on the measured data, the nozzle 1 that adsorbs the chip component 11 is moved to a predetermined position on a circuit board (not shown), and the chip component 11 is mounted on the circuit board.

ところで、近年、前述したように回路基板の高集積化と高精度化に伴いチップ部品の微小化が進んでいるが、このチップ部品の微小化は、それを吸着保持するノズルの微小化や材質強化、更には寸法精度の高度化等を余儀なくするばかりか、実装時にチップ部品を静電破壊したり、ノズルに吸着保持されたチップ部品が吸着を解除されても離反しないでそのまま持ち帰えるといったノズルの静電気に起因する新たな課題を生んでいる。その対策として、ノズルを静電除去するために半導電性としたり、ノズルの材質強化や高精度化、更には耐熱性等の観点から、材質をセラミックス、中でも曲げ強度や破壊靱性に優れるジルコニア製のノズルに変更する動きが活発となっているほか、電子部品装着機にノズルを組み付ける際にも、部品に対する衝撃を緩和させる目的で、図3に示すように金属製のフランジ又はスリーブ部品16等と組み立てた形で組み付けられるが、その組み立て精度を上げるために吸着面以外のノズルの側面や、フランジと接触するノズル後端部を研磨(以降、本考案では研磨や研削等の二次加工を、単に「研磨」と称す)して組み立てるのが一般的となっている。  By the way, in recent years, as described above, the miniaturization of chip parts has progressed along with the high integration and high accuracy of circuit boards. The miniaturization of chip parts is due to the miniaturization of nozzles and materials for attracting and holding them. Nozzle not only has to be reinforced and further improved in dimensional accuracy, but also can electrostatically destroy chip parts during mounting, and can be taken home without separation even if the chip parts sucked and held by the nozzle are released. New issues arising from static electricity in the world. As countermeasures, the nozzle is made semiconductive to remove static electricity, and the material is made of ceramics, especially zirconia, which excels in bending strength and fracture toughness, from the viewpoints of reinforcing the nozzle material, improving accuracy, and heat resistance. As shown in FIG. 3, a metal flange or sleeve component 16 or the like is used to reduce the impact on the component when the nozzle is assembled to the electronic component mounting machine. In order to improve the assembly accuracy, the side of the nozzle other than the suction surface and the rear end of the nozzle in contact with the flange are polished (hereinafter, this invention performs secondary processing such as polishing and grinding). It is generally called “polishing”) and assembled.

こうした技術背景に応えるべく、半導電性のセラミックス焼結体の製法事例として、ジルコニアに酸化鉄や酸化クロム等の金属酸化物からなる導電性付与材を添加したもの(特許文献1)、またノズル組み立て体の事例としてノズル後端部等の一部を研磨してフランジと組み立てたもの(特許文献2)、などが報告されている。  In order to respond to such a technical background, as a manufacturing example of a semiconductive ceramic sintered body, a zirconia added with a conductivity imparting material made of a metal oxide such as iron oxide or chromium oxide (Patent Document 1), or a nozzle As an example of an assembly, one in which a part of the nozzle rear end or the like is polished and assembled with a flange (Patent Document 2) has been reported.

特開平10−297968号公報JP-A-10-297968 特開2009−206509号公報JP 2009-206509 A

ところが上記先行の技術事例では、導電性付与材の多量の添加やノズル外周面の必要以上の研磨によって、ジルコニア特有の優れた曲げ強度や破壊靱性等の機械的強度が大きく損なわれ、耐久性の観点からノズルの微小化に応え切れなくなっているのが現状である。  However, in the above prior art examples, mechanical strength such as excellent bending strength and fracture toughness peculiar to zirconia is greatly impaired due to the addition of a large amount of conductivity imparting material and excessive polishing of the outer peripheral surface of the nozzle. The current situation is that it is impossible to meet the miniaturization of nozzles from the viewpoint.

本考案は、上記実情に鑑み、チップ部品の静電破壊や部品の持ち帰りといったノズルの静電気に起因するトラブルを回避すると共に、ジルコニア本来の曲げ強度や破壊靱性等の優れた機械的強度を兼備する、とりわけ微小部品の実装に好適なノズルの提供を目的とする。  In view of the above circumstances, the present invention avoids troubles caused by static electricity of the nozzle such as electrostatic breakdown of chip parts and take-out of the parts, and also has excellent mechanical strength such as bending strength and fracture toughness inherent to zirconia. In particular, it is an object of the present invention to provide a nozzle that is suitable for mounting minute parts.

本考案者等は、上記課題を解決すべく、ジルコニアの材料特性、中でもノズルの研磨時の熱履歴によるジルコニア結晶相の変化が機械的強度に及ぼす影響について鋭意検討した結果、ノズルの表面研磨が、その結晶相のうちの正方晶ジルコニアの割合を大きく低下させ、ジルコニア特有の高い機械的強度を生み出す根源となっている応力誘起相変態機能を損なわせていることを見出し本考案を完成させるに至ったものである。  In order to solve the above-mentioned problems, the present inventors have intensively studied the influence of the material properties of zirconia on the mechanical strength due to the change in the zirconia crystal phase due to the thermal history during the polishing of the nozzle. In order to complete the present invention, it has been found that the ratio of tetragonal zirconia in the crystal phase is greatly reduced, and the stress-induced phase transformation function, which is the source of high mechanical strength unique to zirconia, is impaired. It has come.

即ち、本考案のうちの第1の考案は、部分安定化ジルコニアと導電性付与材とからなり、先端に被吸着物を吸着保持するための吸着面を備えた電子部品実装用ノズルにおいて、該ノズルの前記吸着面以外の外周面におけるジルコニア結晶相の90%以上が正方晶ジルコニアで構成されていることを特徴とする電子部品実装用ノズルであり、第2の考案は上記第1考案記載のノズルにおいて部分安定化ジルコニアの平均結晶粒子径が0.5〜2.0μmである電子部品実装用ノズルであり、また第3の考案は上記第1考案記載のノズルにおいて導電性付与材が酸素欠損酸化チタンであって、且つノズルの先端と後端との間の電気抵抗値が10〜1010Ωである電子部品実装用ノズルである。That is, the first device of the present invention is an electronic component mounting nozzle comprising a partially stabilized zirconia and a conductivity-imparting material, and having an adsorption surface for adsorbing and holding an object to be adsorbed at the tip. 90% or more of the zirconia crystal phase on the outer peripheral surface other than the suction surface of the nozzle is composed of tetragonal zirconia, and the second device is the one described in the first device. The nozzle is an electronic component mounting nozzle having an average crystal particle diameter of partially stabilized zirconia of 0.5 to 2.0 μm in the nozzle, and the third device is an oxygen vacancy in the nozzle described in the first device. This is an electronic component mounting nozzle that is titanium oxide and has an electrical resistance value between 10 2 and 10 10 Ω between the front end and the rear end of the nozzle.

本考案によれば、部分安定化ジルコニアと導電性付与材とからなり、その先端にチップ部品を吸着保持するための吸着面を備えた電子部品実装用ノズルにおいて、前記吸着面以外の外周面におけるジルコニア結晶相の90%以上が正方晶ジルコニアで構成されているため、実装時に繰り返し負荷される圧縮や曲げ応力に対して、ジルコニア特有の応力誘起相変態機能が働き曲げ強度や破壊靱性等の強度低下が抑えられることから、ノズルの高い耐久性が保たれるという効果を奏するもので、引いてはノズルの微小化を可能とするばかりか、電子部品の実装精度の向上にも貢献するものである。  According to the present invention, in an electronic component mounting nozzle comprising a partially stabilized zirconia and a conductivity-imparting material and having a suction surface for suction-holding a chip component at its tip, the outer peripheral surface other than the suction surface Since 90% or more of the zirconia crystal phase is composed of tetragonal zirconia, the stress-induced phase transformation function peculiar to zirconia acts on the compression and bending stress repeatedly applied during mounting, and the strength such as bending strength and fracture toughness. Since the reduction is suppressed, it has the effect of maintaining the high durability of the nozzle, and in addition to enabling miniaturization of the nozzle, it also contributes to improving the mounting accuracy of electronic components. is there.

また、本考案の電子部品実装用ノズルは、前記部分安定化ジルコニアの平均結晶粒子径を0.5〜2.0μmとすることにより、ジルコニアの熱的経時劣化が抑えられるほか、前記導電性付与材を酸素欠損酸化チタンとすることで、少量の添加で高い導電性を安定して得ることができる。  In addition, the electronic component mounting nozzle according to the present invention can suppress the thermal deterioration of zirconia over time by setting the average crystal particle diameter of the partially stabilized zirconia to 0.5 to 2.0 μm, and also provide the conductivity. By using oxygen-deficient titanium oxide as the material, high conductivity can be stably obtained with a small amount of addition.

(A)は、本考案の電子部品実装用ノズルの一実施形態を示す斜視図であり、(B)はその側面断面図である。(A) is a perspective view which shows one Embodiment of the nozzle for electronic component mounting of this invention, (B) is the side surface sectional drawing. は、本考案の電子部品実装用ノズルを具備した電子部品装着機を用いてチップ部品を回路基板に実装する電子部品装着装置の構成例を示す概略図である。These are the schematic diagrams which show the structural example of the electronic component mounting apparatus which mounts a chip component on a circuit board using the electronic component mounting machine provided with the nozzle for electronic component mounting of this invention. は、本考案の電子部品実装用ノズルの後端にフランジ又はスリーブ部品を組み付ける際の一例を模式的に示す断面図である。These are sectional drawings which show typically an example at the time of assembling | attaching a flange or a sleeve component to the rear end of the nozzle for electronic component mounting of this invention.

以下、本考案について詳しく説明する。  Hereinafter, the present invention will be described in detail.

本考案の電子部品実装用ノズルは、部分安定化ジルコニアと導電性付与材とからなる混合物に、バインダーや成形助剤等を加えて混練し、スプレードライヤー等の公知の方法で乾燥して粉末又は顆粒状の原料を作製した後、これを射出成形してノズル形状となし、更に脱媒、焼成工程を経て作製された部分安定化ジルコニアを主材とする焼結成形体であって、且つ電子部品装着装置への組み付けに際し、吸着面以外の外周面における結晶相の90%以上が正方晶ジルコニアで構成されているものである。  The nozzle for mounting an electronic component of the present invention is a mixture of a partially stabilized zirconia and a conductivity-imparting material, kneaded with a binder, a molding aid, etc., dried by a known method such as a spray dryer or the like. After producing a granular raw material, this is injection-molded to form a nozzle shape, and further, a sintered molded body mainly made of partially stabilized zirconia, which has been produced through a solvent removal and firing process, and an electronic component When assembled to the mounting device, 90% or more of the crystal phase on the outer peripheral surface other than the adsorption surface is composed of tetragonal zirconia.

本考案において、ジルコニアの部分安定化剤としては、酸化イットリウム、酸化マグネシウム、酸化カルシウム、酸化セリウム等の一種が好ましく、中でも酸化イットリウムが好ましい。酸化イットリウムの添加量は1〜5モル%、好ましくは2〜4モル%であり、1モル%未満では単斜晶ジルコニア量が増加して焼結体内部にクラックが多発し機械的強度が低下する一方、酸化イットリウムの添加量が5モル%を超えると焼結体中に立方晶ジルコニアが多く生成してこの場合も高い機械的強度が期待できなくなるなど、上記1〜5モル%の範囲外ではジルコニア特有の応力誘起相変態機能を生み出す正方晶ジルコニアの生成が少なくなるといった不都合が生じる。  In the present invention, the zirconia partial stabilizer is preferably one of yttrium oxide, magnesium oxide, calcium oxide, cerium oxide and the like, and among them, yttrium oxide is preferable. The amount of yttrium oxide added is 1 to 5 mol%, preferably 2 to 4 mol%. If the amount is less than 1 mol%, the amount of monoclinic zirconia increases, cracks occur frequently in the sintered body, and the mechanical strength decreases. On the other hand, if the amount of yttrium oxide added exceeds 5 mol%, a large amount of cubic zirconia is generated in the sintered body, and in this case, too, high mechanical strength cannot be expected. However, there is a disadvantage that the production of tetragonal zirconia that produces a stress-induced phase transformation function peculiar to zirconia is reduced.

また、本考案で使用する部分安定化ジルコニアの平均結晶粒子径は0.5〜2.0μmのものが好ましく、平均結晶粒子径が0.5μm未満では応力誘起相変態機能が十分発揮されないことから優れた曲げ強度や破壊靱性等の機械的強度が得られないのに対し、平均結晶粒子径が2.0μmより大きいと、100〜300℃程度の比較的低温下での経時劣化が進行しやすくなったり、耐摩耗性や耐衝撃性等が低下する。  In addition, the partially stabilized zirconia used in the present invention preferably has an average crystal particle size of 0.5 to 2.0 μm, and if the average crystal particle size is less than 0.5 μm, the stress-induced phase transformation function is not sufficiently exhibited. While mechanical strength such as excellent bending strength and fracture toughness cannot be obtained, if the average crystal particle size is larger than 2.0 μm, deterioration with time at a relatively low temperature of about 100 to 300 ° C. is likely to proceed. And wear resistance and impact resistance are reduced.

一方、本考案で使用する導電性付与材としては、酸化チタンや酸化鉄、酸化ニッケル、酸化クロム、炭化ケイ素、窒化ケイ素等の金属酸化物や炭化物、窒化物から選ばれる少なくとも一種が使用可能であるが、中でも酸素欠損酸化チタンが少ない添加量で高い導電性を付与できる点で好ましい。これら導電性付与材の添加量は、電子部品実装時の部品の静電破壊や持ち帰り、更には部品の吹き飛び、汚染等のノズルの静電気や帯電に起因するトラブル回避に必要とされるノズルの先端と後端との間の電気抵抗値が10〜1010Ωになるよう導電性付与材の種類に応じて適宜決めればよく、例えば酸化鉄や酸化ニッケル等の金属酸化物の場合は部分安定化ジルコニアに対して20〜40重量%が、また酸素欠損酸化チタンの場合は部分安定化ジルコニアに対し10〜20重量%の添加量が好ましい。On the other hand, as the conductivity imparting material used in the present invention, at least one selected from metal oxides such as titanium oxide, iron oxide, nickel oxide, chromium oxide, silicon carbide, and silicon nitride, carbide, and nitride can be used. However, among them, oxygen deficient titanium oxide is preferable in that high conductivity can be imparted with a small addition amount. The added amount of these conductivity-imparting materials is the tip of the nozzle that is necessary for avoiding troubles caused by electrostatic discharge and charging of the nozzle, such as electrostatic breakdown and takeaway of the component when electronic components are mounted, and blown away and contaminated components. What is necessary is just to determine suitably according to the kind of electroconductivity imparting material so that the electrical resistance value between a back end may be 10 < 2 > -10 < 10 > (omega | ohm), for example, in the case of metal oxides, such as iron oxide and nickel oxide, partial stability The addition amount is preferably 20 to 40% by weight based on zirconia and in the case of oxygen-deficient titanium oxide, the addition amount is 10 to 20% by weight based on partially stabilized zirconia.

ここで酸素欠損酸化チタンとは、部分安定化ジルコニアに二酸化チタン等を添加した成形体を、1300〜1500℃の条件下でアルゴンや窒素等の雰囲気中で還元焼成することで二酸化チタン中の酸素の一部を欠損させたもので、化学式TiOx(1.50≦X≦1.95)で表される、平均結晶粒子径0.03〜0.30μm程度のものが好ましい。即ち、二酸化チタンは、常温では白色で絶縁体であるが、高温で還元焼成すると酸素欠損が起こって色味が灰色、青黒色を経て真黒色に着色すると共に、電気伝導性が高くなるもので、上記酸素欠損酸化チタンの化学式TiOxにおいてX値が1.50未満の場合は、その結晶がNaCl型構造に変化しやすく、体積収縮を起こして強度が低下する一方、X値が1.95を超えると黒色度や導電性が不足して目的とする実装用ノズルが得られない。  Here, the oxygen-deficient titanium oxide refers to oxygen in titanium dioxide by reducing and firing a molded body obtained by adding titanium dioxide or the like to partially stabilized zirconia in an atmosphere of 1300 to 1500 ° C. in an atmosphere such as argon or nitrogen. And having an average crystal grain size of about 0.03 to 0.30 μm represented by the chemical formula TiOx (1.50 ≦ X ≦ 1.95) is preferable. In other words, titanium dioxide is white and an insulator at room temperature, but when reduced and fired at high temperature, oxygen deficiency occurs, and the color becomes gray, blue-black, and true black, and the electrical conductivity increases. When the X value of the chemical formula TiOx of the oxygen-deficient titanium oxide is less than 1.50, the crystal tends to change to a NaCl type structure, causing volume shrinkage and decreasing the strength, while the X value is 1.95. When it exceeds, blackness and electroconductivity are insufficient and the target mounting nozzle cannot be obtained.

尚、本考案において、酸素欠損酸化チタン中の酸素量、すなわちTiOxのX値は、通常、酸素欠損酸化チタンは大気中500〜600℃の温度で酸化されて二酸化チタンになり、黒色から白色に変化することから、還元焼成後の実装用ノズルを、大気中で昇温速度20℃/分とし、常温〜1000℃で熱分析(TG−DTA)し、その間の重量増加分を酸化に伴う酸素の増加量としてX値を求めることで算出できる。  In the present invention, the oxygen amount in oxygen-deficient titanium oxide, that is, the X value of TiOx, is usually changed from black to white by oxidizing oxygen-deficient titanium oxide into titanium dioxide at a temperature of 500 to 600 ° C. in the atmosphere. Because of the change, the mounting nozzle after reduction firing is set to a temperature rising rate of 20 ° C./min in the atmosphere, and is subjected to thermal analysis (TG-DTA) at room temperature to 1000 ° C., and the weight increase during that time is oxygen accompanying oxidation It can be calculated by obtaining the X value as the amount of increase.

また、本考案の酸素欠損酸化チタンは、例えばTi、Ti、Ti、Ti等の低次酸化チタンを含むものであって、酸化チタン全体をこれら酸素欠損酸化チタンで構成したもの、あるいは酸素欠損酸化チタンと二酸化チタンが混在したもの、粒子内部と、粒子表面又はその近傍で酸素欠損度が異なるよう低次化したもの、などが使用可能であるが、それらの成分組成を一般式TiOxで表した時、X値が1.50〜1.95であることが重要である。The oxygen-deficient titanium oxide of the present invention includes low-order titanium oxides such as Ti 2 O 3 , Ti 3 O 5 , Ti 4 O 7 , Ti 5 O 9, etc. Those composed of deficient titanium oxide, those in which oxygen deficient titanium oxide and titanium dioxide are mixed, those reduced in order that the degree of oxygen deficiency is different between the inside of the particle and the particle surface, or the like can be used. When the component composition is represented by the general formula TiOx, it is important that the X value is 1.50 to 1.95.

本考案の実装用ノズルはまた、電子部品装着装置への組み付けに際し、吸着面以外の外周面における全ジルコニア結晶相の90%以上が正方晶ジルコニアで構成されてなるものである。  The mounting nozzle of the present invention is also configured such that 90% or more of the total zirconia crystal phase on the outer peripheral surface other than the adsorption surface is composed of tetragonal zirconia when assembled to the electronic component mounting apparatus.

即ち、実装用ノズル製造におけるこれまでの一般的な考え方は、電子部品を吸着する吸着面はもとより、その他の外周面も、部品を確実に吸着保持して回路基板の所定の位置まで正確に搬送し装着しなければならない関係上、フランジやスリーブ部品等の他の部品との組み付け精度を上げるべく、高い寸法精度や表面精度に仕上げるための研磨加工を不可欠とするのが慣例であった。  In other words, the conventional concept in manufacturing nozzles for mounting is that the suction surface that picks up electronic components as well as other outer peripheral surfaces can be picked up and held securely and accurately transported to a predetermined position on the circuit board. In order to improve the assembly accuracy with other parts such as flanges and sleeve parts, it has been customary to make a polishing process in order to achieve high dimensional precision and surface precision.

ところが、ジルコニアの場合は、その結晶相の状態、すなわちX線回折から求められる全ジルコニア結晶相のうちの正方晶ジルコニアの割合によって曲げ強度や破壊靱性等の機械的強度が大きく影響されるという特有の応力誘起相変態機能を有するため、焼結後のノズルに研磨加工を施すと、研磨時の摩擦熱等によって結晶相の一部が正方晶から単斜晶に相変態してしまい、応力誘起相変態機能が働かなくなって高い機械的強度が得られず、ノズル微小化の大きな障害となっていたのである。  However, in the case of zirconia, the mechanical strength such as bending strength and fracture toughness is greatly influenced by the state of the crystal phase, that is, the ratio of tetragonal zirconia in the total zirconia crystal phase obtained from X-ray diffraction. Therefore, when the sintered nozzle is polished, a part of the crystal phase is transformed from tetragonal to monoclinic due to frictional heat during polishing. The phase transformation function stopped working and high mechanical strength was not obtained, which was a major obstacle to miniaturization of the nozzle.

本考案の実装用ノズルにおいて、吸着面以外の外周面におけるジルコニア結晶相の90%以上を正方晶ジルコニアで構成する理由は、ノズルの微小化に耐え得る高い機械的強度を保持させるには吸着面以外の外周面のジルコニア結晶相の多くを応力誘起相変態機能が有効に働く正方晶の形で留めておくのが最善との結論に基づくもので、吸着面以外の外周面におけるジルコニア結晶相中の正方晶ジルコニアの割合が90%未満になると、応力誘起相変態による高い機械的強度が得られず、ノズルの微小化に耐えられなくなるものである。  In the mounting nozzle of the present invention, the reason why 90% or more of the zirconia crystal phase on the outer peripheral surface other than the adsorption surface is composed of tetragonal zirconia is that the adsorption surface is required to maintain high mechanical strength that can withstand the miniaturization of the nozzle. It is based on the conclusion that it is best to keep most of the zirconia crystal phases on the outer peripheral surface in the form of tetragonal crystals in which the stress-induced phase transformation function is effective, and in the zirconia crystal phase on the outer peripheral surface other than the adsorption surface When the ratio of tetragonal zirconia is less than 90%, high mechanical strength due to stress-induced phase transformation cannot be obtained, and the nozzle cannot be made minute.

ここで部分安定化ジルコニアの応力誘起相変態機能とは、ジルコニア焼結体の結晶状態には立方晶、正方晶、単斜晶の3種類の状態があるが、このうちの正方晶ジルコニアが外部応力によって応力誘起相変態し、単斜晶ジルコニアに相変態する性質を言うもので、この時の正方晶から単斜晶への相変態に伴う体積膨張によってジルコニアの周囲に微小なマイクロクラックが発生し、外部応力の進行が阻止されるため、ジルコニアの曲げ強度や破壊靭性が高くなるのである。  Here, the stress-induced phase transformation function of partially stabilized zirconia means that the zirconia sintered body has three types of crystal states, cubic, tetragonal and monoclinic. Of these, tetragonal zirconia is external. Stress-induced phase transformation caused by stress and the property of phase transformation to monoclinic zirconia. At this time, micro-cracks around zirconia are generated by volume expansion accompanying the phase transformation from tetragonal to monoclinic crystal. However, since the progress of external stress is prevented, the bending strength and fracture toughness of zirconia are increased.

本考案の実装用ノズルにおいて、吸着面以外の外周面の結晶相の90%以上を正方晶ジルコニアで構成させるには、吸着面以外を非研磨、所謂加工レスとするのが確実に高い割合で正方晶の形で残すことができ、しかも加工コストが不要となる点で好ましいが、吸着面以外の外周面を軽微な研磨に留めるか、あるいは冷却下での研磨によって正方晶ジルコニアの割合を90%以上としたものでも差支えないことは言うまでもない。  In the mounting nozzle of the present invention, in order to make 90% or more of the crystal phase of the outer peripheral surface other than the adsorption surface composed of tetragonal zirconia, the non-abrasion, so-called processing-less, is surely made at a high rate other than the adsorption surface. Although it is preferable in that it can be left in the form of tetragonal crystal and the processing cost is not required, the outer peripheral surface other than the adsorption surface is limited to slight polishing, or the proportion of tetragonal zirconia is reduced by polishing under cooling. It goes without saying that even more than% can be used.

尚、本考案において、吸着面以外の外周面の正方晶ジルコニアの算出は、特開2010−254493号公報に記載の方法に従い、X線回折によって単斜晶ジルコニア(回折角27〜34度の範囲で測定)と立方晶ジルコニア(回折角70〜77度の範囲で測定)の含有量(容積%)をそれぞれ求めた後、下記式にて正方晶ジルコニアの含有量を求めた。  In the present invention, the calculation of tetragonal zirconia on the outer peripheral surface other than the adsorption surface is performed by X-ray diffraction according to the method described in JP2010-254493A, and monoclinic zirconia (with a diffraction angle in the range of 27 to 34 degrees). And the content (volume%) of cubic zirconia (measured in the diffraction angle range of 70 to 77 degrees), respectively, and then the tetragonal zirconia content was determined by the following formula.

式1Formula 1

正方晶ジルコニア含有量(容積%)=100−単斜晶ジルコニア含有量−立方晶ジルコニア含有量Tetragonal zirconia content (volume%) = 100-monoclinic zirconia content-cubic zirconia content

また、本考案では、実装用ノズルの強度や硬度を上げたり、表面粗度を均一化するために、周知の方法でブラスト処理やケイ酸皮膜処理、HIP処理等を施してもよく、更にノズルの性能を損なわない範囲でアルミナや窒化チタン、炭化ケイ素などの添加材を共存させても良い。  Further, in the present invention, in order to increase the strength and hardness of the mounting nozzle and to make the surface roughness uniform, blasting, silicic acid film processing, HIP processing, etc. may be applied by a well-known method. Additives such as alumina, titanium nitride, and silicon carbide may coexist within a range that does not impair the performance.

以下、本考案を理解しやすくするために実施例に基づき説明するが、本考案はこれら実施例に限定されるものではない。  Hereinafter, in order to make this invention easy to understand, it demonstrates based on an Example, However, This invention is not limited to these Examples.

(実施例1〜3、比較例1〜3)
酸化イットリウムを3モル%含有する平均結晶粒子径1.0μmの部分安定化ジルコニアに、平均粒子径0.07μmの二酸化チタンを15重量%加え、これにアクリル系やエチレン酢酸ビニル系のバインダーとワックス類などを加えて混練乾燥することによりコンパウンド原料を作製した。そしてこのコンパウンド原料を金型温度40℃、押出温度150℃の条件で射出成形し、成形品を得た。この成形品を、大気中450〜900℃の条件で脱媒した後、窒素を主成分とする不活性ガス中で温度1100℃〜1600℃で1時間焼成して、断面寸法3mm×4mm、長さ40mmの試験片を作製した。得られた試験片について、非研磨面とするか、あるいは更に研磨加工を施して、表面ジルコニア結晶相中の正方晶ジルコニアの含有量のそれぞれ異なるサンプルを得た。
(Examples 1-3, Comparative Examples 1-3)
15% by weight of titanium dioxide with an average particle size of 0.07 μm is added to partially stabilized zirconia with an average crystal particle size of 1.0 μm containing 3 mol% of yttrium oxide, and an acrylic or ethylene vinyl acetate binder and wax are added thereto. Compound raw materials were prepared by adding the ingredients and kneading and drying. This compound material was injection molded under the conditions of a mold temperature of 40 ° C. and an extrusion temperature of 150 ° C. to obtain a molded product. The molded product was desorbed in the atmosphere at 450 to 900 ° C., and then fired in an inert gas containing nitrogen as a main component at a temperature of 1100 ° C. to 1600 ° C. for 1 hour. A test piece having a thickness of 40 mm was prepared. The obtained test piece was made into a non-polished surface or further subjected to a polishing process to obtain samples having different tetragonal zirconia contents in the surface zirconia crystal phase.

得られたサンプルについて、X線回折法による結晶相、曲げ強度、電気抵抗値を評価し、表1にまとめた。尚、得られたサンプルの表面結晶相は、単斜晶ジルコニアと正方晶ジルコニアのみで構成されており、立方晶ジルコニアの存在は認められなかった。  The obtained sample was evaluated for crystal phase, bending strength, and electrical resistance value by X-ray diffraction method, and summarized in Table 1. The surface crystal phase of the obtained sample was composed only of monoclinic zirconia and tetragonal zirconia, and the presence of cubic zirconia was not recognized.

本実施例及び比較例において、曲げ強度と電気抵抗値はそれぞれ次の方法で評価した。  In the examples and comparative examples, the bending strength and the electrical resistance value were evaluated by the following methods, respectively.

曲げ強度は、それぞれのサンプルについてJISR1601(2008)に準ずる4点曲げ強度の方法で測定した。  The bending strength of each sample was measured by a four-point bending strength method according to JIS R1601 (2008).

電気抵抗値は、それぞれのサンプルと同一の組成と製造条件で作製した図1に例示のノズルについて、先端の吸着面と後端面にそれぞれ電極を接触させ、これら電極間に表面抵抗測定器を接続して電圧を加え、ノズル先端と後端との間の抵抗値(Ω)を測定した。  As for the electrical resistance value, with respect to the nozzle illustrated in FIG. 1 manufactured with the same composition and manufacturing conditions as the respective samples, electrodes are brought into contact with the suction surface and the rear end surface of the tip, and a surface resistance measuring instrument is connected between these electrodes. Then, a voltage was applied, and a resistance value (Ω) between the nozzle front end and the rear end was measured.

Figure 0003203184
Figure 0003203184

表1の結果から、研磨加工を施した面は正方晶ジルコニアの割合が少なくなっており、曲げ強度が低く、また導電性も悪くなっている。一方、非研磨面で正方晶ジルコニア含有量が90%以上のサンプルでは曲げ強度や導電性に優れることが確認され電子部品装着機の部品吸着用ノズルとして好適であることが分かる。尚、表1において、研磨加工を施すことで導電性が悪化しているが、これは導電性付与材としての酸素欠損酸化チタンが大気中での研磨加工によって一部が酸化したことによるものである。  From the results shown in Table 1, the polished surface has a small proportion of tetragonal zirconia, low bending strength, and poor conductivity. On the other hand, a sample having a tetragonal zirconia content of 90% or more on the non-polished surface is confirmed to be excellent in bending strength and conductivity, and is found to be suitable as a component adsorption nozzle for an electronic component mounting machine. In Table 1, the conductivity deteriorates due to the polishing process. This is because the oxygen-deficient titanium oxide as the conductivity imparting material is partially oxidized by the polishing process in the atmosphere. is there.

本考案の実装用ノズルは、チップ部品の小型化と実装速度の高速化が進む中にあって、曲げ強度や破壊靱性等の機械的強度に優れると共に、半導電性であるため部品の静電破壊や吹き飛び等のトラブルの発生が極めて少ないといった数々の利点から、電子部品の実装用、とりわけ微小部品の実装分野で極めて好適に利用できるものである。  The mounting nozzle of the present invention is excellent in mechanical strength such as bending strength and fracture toughness as chip components are miniaturized and mounting speed is increased. Because of the numerous advantages such as the occurrence of troubles such as destruction and blow-off, it can be used very favorably for mounting electronic components, particularly in the field of mounting micro components.

1;電子部品実装用ノズル
2;吸着面
3;吸引口
4;円筒部
5;円錐部
10;電子部品装着装置
11;チップ部品
12;トレイ
13;ライト
14;CCDカメラ
15;画像解析装置
16;フランジ又はスリーブ部品
DESCRIPTION OF SYMBOLS 1; Electronic component mounting nozzle 2; Suction surface 3; Suction port 4; Cylindrical part 5; Conical part 10; Electronic component mounting apparatus 11; Chip part 12; Tray 13; Flange or sleeve parts

Claims (3)

部分安定化ジルコニアと導電性付与材とからなり、先端に被吸着物を吸着保持するための吸着面を備えた電子部品実装用ノズルにおいて、該ノズルの前記吸着面以外の外周面におけるジルコニア結晶相の90%以上が正方晶ジルコニアで構成されていることを特徴とする電子部品実装用ノズル。  An electronic component mounting nozzle comprising a partially stabilized zirconia and a conductivity-imparting material and having an adsorption surface for adsorbing and holding an object to be adsorbed at the tip, the zirconia crystal phase on the outer peripheral surface other than the adsorption surface of the nozzle A nozzle for mounting electronic parts, characterized in that 90% or more thereof is composed of tetragonal zirconia. 部分安定化ジルコニアの平均結晶粒子径が0.5〜2.0μmである請求項1記載の電子部品実装用ノズル。  The nozzle for mounting electronic parts according to claim 1, wherein the partially stabilized zirconia has an average crystal particle diameter of 0.5 to 2.0 μm. 導電性付与材が酸素欠損酸化チタンであって、且つノズルの先端と後端との間の電気抵抗値が10〜1010Ωである請求項1記載の電子部品実装用ノズル。The nozzle for mounting an electronic component according to claim 1, wherein the conductivity imparting material is oxygen-deficient titanium oxide, and an electric resistance value between the front end and the rear end of the nozzle is 10 2 to 10 10 Ω.
JP2015006689U 2015-12-25 2015-12-25 Nozzle for mounting electronic components Revoked JP3203184U (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2015006689U JP3203184U (en) 2015-12-25 2015-12-25 Nozzle for mounting electronic components

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2015006689U JP3203184U (en) 2015-12-25 2015-12-25 Nozzle for mounting electronic components

Publications (2)

Publication Number Publication Date
JP3203184U true JP3203184U (en) 2016-03-17
JP3203184U7 JP3203184U7 (en) 2018-10-11

Family

ID=55523858

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2015006689U Revoked JP3203184U (en) 2015-12-25 2015-12-25 Nozzle for mounting electronic components

Country Status (1)

Country Link
JP (1) JP3203184U (en)

Similar Documents

Publication Publication Date Title
JP5235909B2 (en) Zirconia sintered body and method for producing the same
JP6659493B2 (en) Mounting member
JP4852645B2 (en) Vacuum suction nozzle
US20130285336A1 (en) Alumina sintered body, member including the same, and semiconductor manufacturing apparatus
JP5409917B2 (en) Electrostatic chuck
JP5593529B2 (en) Black zirconia reinforced alumina ceramic and method for producing the same
JP2019176026A (en) Multilayer electronic component
JPH10236866A (en) Aluminium bearing sintered compact
JP3203184U (en) Nozzle for mounting electronic components
JP6484777B2 (en) Ceramic black nozzle
JP2010177415A (en) Holding tool and suction device including the same
JP2003261376A (en) Zirconia sintered compact and method of producing the same
KR20180116281A (en) Oxide-sintered body and oxide-transparent conductive film
JP2009302518A (en) Electrostatic chuck
JP5763561B2 (en) Manufacturing method of oxide powder and sputtering target
JP2023051628A (en) Suction nozzle for mounting
JP6489467B2 (en) Components of composite oxide ceramics and semiconductor manufacturing equipment
JP4969488B2 (en) Alumina sintered body, semiconductor manufacturing apparatus member, and liquid crystal panel manufacturing apparatus member
WO2013100071A1 (en) Tin-oxide refractory
JP4889155B2 (en) High-strength alumina sintered body having free machinability and corrosion-resistant member using the same
JP3214792U (en) Suction nozzle for mounting
US20240055266A1 (en) Plasma etching apparatus component for manufacturing semiconductor comprising composite sintered body and manufacturing method therefor
JP2001203256A (en) Wafer holding tool
JP2006056731A (en) Aluminum nitride sintered compact and electrostatic chuck using the same
WO2022092023A1 (en) Structure for relieving charging

Legal Events

Date Code Title Description
R150 Certificate of patent or registration of utility model

Ref document number: 3203184

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R231 Written correction (descriptions, etc.)

Free format text: JAPANESE INTERMEDIATE CODE: R231

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R157 Certificate of patent or utility model (correction)

Free format text: JAPANESE INTERMEDIATE CODE: R157

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

A623 Registrability report

Free format text: JAPANESE INTERMEDIATE CODE: A623

Effective date: 20201201

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20210128

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

AA91 Notification that invitation to amend document was cancelled

Free format text: JAPANESE INTERMEDIATE CODE: A971091

Effective date: 20210615

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250