JP2023040748A - 真空除電装置 - Google Patents

真空除電装置 Download PDF

Info

Publication number
JP2023040748A
JP2023040748A JP2021147895A JP2021147895A JP2023040748A JP 2023040748 A JP2023040748 A JP 2023040748A JP 2021147895 A JP2021147895 A JP 2021147895A JP 2021147895 A JP2021147895 A JP 2021147895A JP 2023040748 A JP2023040748 A JP 2023040748A
Authority
JP
Japan
Prior art keywords
filament
mesh electrode
vacuum
electrode
ground electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021147895A
Other languages
English (en)
Inventor
智史 最上
Tomofumi Mogami
和樹 峯村
Kazuki Minemura
隆 池畑
Takashi Ikehata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kasuga Denki Inc
Original Assignee
Kasuga Denki Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kasuga Denki Inc filed Critical Kasuga Denki Inc
Priority to JP2021147895A priority Critical patent/JP2023040748A/ja
Publication of JP2023040748A publication Critical patent/JP2023040748A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Elimination Of Static Electricity (AREA)
  • Physical Vapour Deposition (AREA)
  • Manufacturing Of Magnetic Record Carriers (AREA)

Abstract

【課題】 高真空エリアにおいて、外部からガスを供給せずに除電ができる真空除電装置を提供すること。【解決手段】 真空チャンバー1内に、プラス電圧が印加されるメッシュ電極6と、このメッシュ電極6との間で電界を形成する接地電極2と、上記メッシュ電極6の近傍に設けられ、熱電子を放射するフィラメント10とを備え、上記フィラメント10から放射され、メッシュ電極6が形成する電界から力を受ける熱電子の運動によって上記真空チャンバー1内の残留ガス分子を電離させる構成にした。【選択図】 図1

Description

この発明は、真空エリア内の帯電物体を除電するための真空除電装置に関する。
従来から、樹脂製のフィルム表面に蒸着によって薄膜を形成することが行なわれている。
蒸着が施される樹脂製のフィルムは、絶縁性のため、静電気帯電しやすい性質を持っている。また、蒸着プロセスの雰囲気は高真空なので、電気的に絶縁性である。
高真空下で上記フィルムなどの表面が一旦帯電するとその電荷は逃げにくい。そのため、帯電状態が維持されてしまう。
帯電すると、フィルム同士は付着しやすく、搬送不良を起こしたり、しわや傷の原因になったりする。
また、蒸着処理の前にフィルム表面が帯電していると、蒸着が不均一になってしまうこともある。
また、LSI(Large Scale Integration)などのデバイスの製造プロセスでは、高真空下での処理が必要である。そして、LSIなどは、静電気帯電とこれに起因する放電によって損傷してしまうような静電気敏感デバイスである。
このように、高真空エリアでは除電の用途がある。
しかし、高真空エリアでは、コロナ放電によって生成されるイオンでフィルムの表面電荷を中和する一般的な除電装置をそのまま用いることはできない。
なぜなら、真空製膜プロセスや静電気敏感デバイスの製造が実行される高真空下では、コロナ放電によってイオンを生成できないからである。
このような高真空下の帯電物体を除電できる装置として、特許文献1に示す装置が知られていた。
この従来の装置では、高真空を維持したチャンバー内に電圧を印加するメッシュ電極と接地電極とを設け、メッシュ電極に高電圧を印加して電界を形成し、この電界内にパルス的にガスを供給し、瞬間的、局所的に真空度を下げて放電を発生させるようにしていた。この放電によってプラズマが生成され、このプラズマを介して帯電物体の表面電荷が接地側へ流れて除電されるというものである。
なお、上記ガスの供給はパルス的、すなわち瞬間的に行なわれるので、真空度はすぐに回復し、高真空度を保つことができる。
特開2020-030936号公報 特開2018-056115号公報
上記従来の除電装置で、メッシュ電極で形成される電界中にガスをパルス的に供給するのは、チャンバー全体の真空度を必要以上に低下させないためである。例えば、ガス供給源の圧力を所定の圧力に保ちながら、バルブの開時間を約100[μs]という短時間に制御している。
バルブの開時間が長くなれば、ガスの供給量が多くなってチャンバー内の真空度が下がってしまう。一方、バルブの開時間が短すぎてガスの供給量が少なければ、生成されるプラズマが足りずに、除電不足になってしまう。
このように、上記した従来の真空除電装置では、真空チャンバー内へのガス供給量の正確な制御が必要である。そのため、バルブの開閉制御が難しいうえ、高精度な制御が可能な高価なバルブが必要であるという問題があった。
この発明の目的は、高精度なガス供給量の制御を必要とせず、真空度を低下させずに、安定して除電ができる真空除電装置を提供することである。
第1の発明は、真空エリア内に、プラス電圧が印加されるメッシュ電極と、このメッシュ電極との間で電界を形成する接地電極と、上記メッシュ電極の近傍に設けられ、熱電子を放射するフィラメントとを備え、上記フィラメントから放射されて上記メッシュ電極によって形成された電界から力を受ける熱電子の運動によって上記真空エリア内の残留ガス分子を電離させる構成にしている。
第2の発明は、上記接地電極と上記メッシュ電極との間に上記フィラメントを設けて熱電子放射エリアとし、上記メッシュ電極を境にして、上記熱電子放射エリアと反対側に、除電対象の保持手段が設けられている。
第3の発明は、上記フィラメントを保持する電気的絶縁体からなるフィラメント保持部材を備え、上記フィラメント保持部材は、上記フィラメントの突出側において、当該フィラメント保持部材と上記接地電極との間にスリットを維持して上記接地電極に取り付けられている。
この発明によれば、フィラメントから放射された熱電子がプラス電位のメッシュ電極で形成された電界によって運動し、チャンバー内の残留ガス分子に衝突して残留ガス分子を電離させることができる。ガス分子の電離によって生成されたイオンや電子が、除電対象の表面電荷を中和して除電することができる。
熱電子が、残留ガス分子を電離させるため、外部からガスを供給する必要がない。したがって、真空度の低下を考慮したバルブの開閉制御が必要なく、高価なバルブも必要ない。
第2の発明によれば、熱電子放射エリア内に、除電対象の保持手段を設けないため、メッシュ電極と接地電極との距離を小さくして、メッシュ電極と接地電極とで形成される強い電界中に熱電子を放射でき、熱電子の運動エネルギーを大きくできる。また、メッシュ電極の近くに除電対象を保持できるのでメッシュ電極を通過した勢いのある熱電子との電離衝突によって生成されたイオンや電子を、有効に除電に寄与させることができる。
第3の発明によれば、フィラメントの蒸気によって、フィラメントと接地電極とが導通することを防止でき、熱電子放射を安定して維持できる。
この発明の実施形態の真空除電装置における熱電子放射エリア付近の概念図である。 実施形態のフィラメント保持部材であるリング部材の平面図である。 実施形態のフィラメントに通電したときのフィラメント電流Iに対する熱電子電流Iの関係を示したグラフである。 実施形態の装置を用いた除電確認実験の結果を示した表である。
[実施形態]
図1~4を用いて、この発明の一実施形態を説明する。
図1は、実施形態の真空除電装置における熱電子放射エリア付近の概念図である。図2は、実施形態のフィラメント保持部材であるリング部材の平面図である。図3は、実施形態のフィラメントに通電したときのフィラメント電流Iに対する熱電子電流Iの関係を示したグラフである。図4は、実施形態の真空除電装置を用いた除電実験の結果を示した表である。
この実施形態の真空除電装置は、図1に示すように接地電位を保ち、真空エリアを構成する真空チャンバー1が図示しない真空ポンプによって高真空に保たれるようにしている。この実施形態における高真空とは、10×10―1[Pa]以下の圧力のことである。
上記真空チャンバー1は円形の開口1aを有し、その開口1aを大気側から覆うように接地電極2が設けられている。この接地電極2は真空チャンバー1の外周面との間に図示しないシール部材を介在させ、複数のボルト3によって真空チャンバー1に固定されている。
そして、上記真空チャンバー1及び接地電極2は導体である金属で形成され、接地電極2及び真空チャンバー1は同じ接地電位を保っている。
上記のように、真空チャンバー1の開口1aは接地電極2によって大気側から塞がれるので、真空チャンバー1内の真空度が上がれば上がるほど、大きな差圧が接地電極2に作用し、開口1aを塞ぐ方向の力が発揮される。そのため、真空チャンバー1はほぼ完全な気密性が保たれる。
また、上記接地電極2には、真空チャンバー1側の面に上記開口1aと一致する円形の凹部2aが形成され、この凹部2a内には、電気的絶縁体からなるフィラメント保持部材であるリング部材4が設置されており、リング部材4は複数のボルト5で接地電極2に固定されている。
さらに、リング部材4にはその開口部分を覆うようにメッシュ電極6が複数のボルト7で固定されている。このメッシュ電極6には直流電源8が接続され、プラスの電圧が印加される。
さらに、上記リング部材4には、開口1a内に突出するように一対のホルダ9,9が設けられ(図2参照)、これらホルダ9,9が、U字状に曲げたタングステンのフィラメント10の両端を支持している。言い換えると、上記ホルダ9,9とフィラメント10とは、それらが相まって全体としてほぼU字状に形成されるとともに、フィラメント10の折り曲げ部分を凹部2aの中央に臨ませている。このようにしたフィラメント10は上記ホルダ9,9を介して可変直流電源11に接続され、通電によって熱電子を放射するようにしている。上記のように対向する接地電極2とメッシュ電極6とリング部材4とで囲まれた空間が熱電子放射エリア12である。なお、図2は、上記接地電極2に固定される面側から見た平面図であるが、この図2ではボルト5,7の挿入孔を省略している。
なお、上記リング部材4に取り付けられたフィラメント10の位置は、メッシュ電極6の近傍である。
上記メッシュ電極6の近傍とは、フィラメント10から放射された熱電子が、メッシュ電極6で形成される電界の影響を受ける位置のことである。このように、メッシュ電極6の近傍に、フィラメント10が位置していれば、熱電子が十分に運動し、残留ガス分子との電離衝突の確率を高くできる。
フィラメント10の位置がメッシュ電極6に近ければ近いほど、熱電子の移動速度が大きくなって、残留ガス分子への電離衝突の確率が上がり、ガス分子を電離させる機能が高まると考えられる。ただし、残留ガス分子への電離衝突の確率は、メッシュ電極6とフィラメント10との間の距離だけでなく、フィラメント10に供給するフィラメント電流Iや、メッシュ電極6の印加電圧、上記距離との相対的な関係で決まる。
なお、フィラメント10の位置は、メッシュ電極6を境にして接地電極2と同じ側であっても、反対側であっても良い。
また、リング部材4において接地電極2に接触する側の底面には、開口1aの同心円に沿ったリング状の凹部4aが形成されている。凹部4aは、接地電極2に接触する底面からの深さを3~4[mm]程度とし、熱電子放射エリア12側すなわちフィラメント10の突出側において、リング部材4と接地電極2との間にスリットが形成される。
また、真空チャンバー1内には、除電対象を保持する保持手段13が設けられている。この保持手段13は、除電対象を載置するテーブルや、帯状のフィルムを搬送する搬送ローラなど、処理対象の形態に応じた構成を備えている。そして、この実施形態では、保持手段13は、メッシュ電極6を境にして、フィラメント10が設けられた熱電子放射エリア12と反対側に設けられている。
[作用・効果等]
以下に、この実施形態の除電装置の機能について説明する。
まず、図示していない真空ポンプを作動させて真空チャンバー1内を約1×10-4[Pa]に維持しながら、上記フィラメント10に通電してフィラメント10から熱電子を放射させる。
真空チャンバー1内の1×10-4[Pa]は、いわゆる高真空である。この程度の真空度では、真空チャンバー1の内周面に吸着しているガスやチャンバー材料に溶け込んでいるガスなど、様々な種類のガスが残留している。
なお、フィラメント10から放射される熱電子量はフィラメント10を流れるフィラメント電流Iに依存する。そこで、熱電子の放射に必要なフィラメント電流Iを確認するため、図2に示す可変直流電源11によってフィラメント電流Iを変化させ、メッシュ電極6に流れる電流を熱電子電流Iとして測定した。
このとき、メッシュ電極6には+500[V]の電圧を印加して、メッシュ電極6が熱電子を捕獲するようにした。その測定結果を図3に示す。
図3からは、フィラメント10へ供給するフィラメント電流Iが1.4[A]以上になると熱電子電流Iが急増し、フィラメント電流Iが1.7[A]を超えるとその増加量が小さくなることが分かった。
上記熱電子電流Iはフィラメント10から放射された熱電子がメッシュ電極6を流れた量を示すものである。したがって、この実施形態においてフィラメント10から熱電子を放射させるためには、フィラメント10に1.4[A]以上のフィラメント電流Iを供給しなければならないことが分かった。
上記フィラメント10にフィラメント電流Iを供給したら、メッシュ電極6にプラスの電圧を印加する。
メッシュ電極6にプラス電圧が印加されると、上記フィラメント10から放射された熱電子は、メッシュ電極6のプラス電位によって形成された電界から力を受けて運動する。具体的には、熱電子がプラスのメッシュ電極6に引き付けられるように移動するが、熱電子がすぐにメッシュ電極6に吸収されるのではなく、上記熱電子はメッシュ電極6を一旦通過して反対側へ移動する。
メッシュ電極6を通過した熱電子には、それまでとは反対方向の、メッシュ電極6へ向かう力が作用するので、熱電子の移動方向は切り替わり、再度メッシュ電極6を通過し、反対方向の力を受ける。このように、熱電子はメッシュ電極6を境にして往復運動をすることになる。
上記のように往復運動をしている熱電子は、真空チャンバー1内の残留ガス分子に衝突してガス分子を電離させる。この電離によって、イオンと電子が生成される。
なお、電離によって生成された電子も、上記熱電子と同様の往復運動をしながらガス分子の電離衝突に寄与してイオンや電子が生成される。生成されたイオンまたは電子が、保持手段13に保持されている除電対象の表面電荷を中和して、除電が行なわれる。例えば、プラスに帯電した除電対象には電子やマイナスのイオンが引き付けられ、マイナスに帯電した除電対象には、プラスのイオンが引き付けられ、除電対象の表面電荷を中和する。
次に、上記除電装置を用いた除電実験について説明する。
除電対象として、上記保持手段13に保持させた金属製のプレートPLを帯電させて用いた。このプレートPLには真空チャンバー1外でチャージプレートモニター(ヒューゲルエレクトロニクス700A型)を接続している。このチャージプレートモニターは、上記プレートPLを帯電させたり、その表面電位の変化を測定したりする機能を備えている。除電実験では、チャージプレートモニターによって、プレートPLを、+1000[V]または-1000[V]に帯電させて用いる。なお、実験に用いるプレートPLは一辺が45[mm]の正方形である。
実験条件は以下の通りである。
真空チャンバー1は、縦、横、高さが、それぞれ750[mm]、750[mm]、1250[mm]の外観四角柱であり、上底面が上記接地電極2を構成している。
上記プレートPLを、保持手段13によって、メッシュ電極6から約1000[mm]の位置に保持する。
また、真空チャンバー1内は、図示しない真空ポンプによって5×10-4[Pa]に維持し、真空ポンプは、常時作動させておく。
プレートPLを、チャージプレートモニターによって+1000[V]または-1000[V]に帯電させたプレートPLのそれぞれについて次の実験を行なう。プレートPLを、+1000[V]または-1000[V]に帯電させた後、メッシュ電極6に+500[V]の電圧を印加するとともにフィラメント電流Iを1.7[A]を供給し、プレートPLの表面電位の変化をチャージプレートモニターによって測定する。
除電実験の結果を図4に示す。
図4は、横軸に時間、縦軸にプレートPLの表面電位を示したグラフである。実線のグラフ(1)は、+1000[V]に帯電させたプレートPLの表面電位の変化を示したもので、点線のグラフ(2)は-1000[V]に帯電させたプレートPLの表面電位の変化を示したものである。いずれも、横軸の0時点には、メッシュ電極6に+500[V]の電圧を印加するとともにフィラメント10にフィラメント電流Iを1.7[A]供給している。
図4に示すように、+1000[V]に帯電したプレートPLは、メッシュ電極6への電圧印加とフィラメント10への電流供給によって、瞬時に除電されることが分かった。
具体的には、フィラメント10にフィラメント電流Iを1.7[A]供給後、0.1[sec]ほどで、表面電位が数十[V]まで低下した。
このように、プラスの表面電位が瞬時に低下したのは、残留ガス分子が電離して生成された電子と熱電子とが、プレートPLのプラスの表面電荷を効率的に中和したからである。
なお、メッシュ電極6への電圧印加を行なわずに、フィラメント電流Iを1.7[A]供給するだけでも、図4とほぼ同じ結果が得られることも確認済みである。このことから、上記の条件では、フィラメント10から、+1000[V]に帯電した45[mm]角のプレートPLの表面電荷を中和するのに十分な量の熱電子が放射されることが分かった。
一方、-1000[V]に帯電したプレートPLは、点線のグラフ(2)に示すように、メッシュ電極6に電圧を印加するとともに、フィラメント10にフィラメント電流Iを供給してから、約10[sec]で表面電位が数十[V]に低下した。
フィラメント10から放射された熱電子が残留ガス分子と電離衝突して、生成されたプラスイオンがプレートPLのマイナス電荷を中和したからである。
上記のように、この実施形態では、フィラメント電流I及びメッシュ電極6への印加電圧を適切に設定すれば、フィラメント10から放射される熱電子を往復運動させて、残留ガス分子に電離衝突させることができる。熱電子が残留ガスに電離衝突するため、外部から真空チャンバー1内にガスを供給しなくても、除電に必要な電子やイオンを生成することができる。したがって、この実施形態では外部からプラズマ生成用のガスを供給する従来の真空除電装置のように、ガスの供給量を高精度に制御する必要がない。
そのため、実施形態の真空除電装置では、ガスの供給量に応じて除電効果が不安定になったり、ガスの供給量が多すぎて真空チャンバー1内の真空度を低下させてしまったりする心配がない。また、ガスの供給源や、高精度のバルブ、バルブ制御手段などの設備も不要になり、装置構成をシンプルにできるとともに、設備コストも抑えられる。
さらに、この実施形態では、フィラメント10を保持する絶縁体からなるリング部材4に凹部4aを形成している。このように凹部4aによって、リング部材4と接地電極2との間にスリットを設けて、フィラメント10と接地電極2との間の距離をかせぐことで、フィラメント10を構成するタングステンが、ホルダ9やリング部材4の表面に蒸着してフィラメント10と接地電極2とが導通してしまうことを防止できる。
フィラメント10に通電することで熱電子が放射される過程では、タングステンの蒸気も放出される。このタングステン蒸気でホルダ9、リング部材4、及び接地電極2のそれぞれの表面が連続して蒸着されると、フィラメント10が接地電極2と導通して接地され、熱電子を放射できなくなってしまう。しかし、この実施形態では、上記凹部4aを形成し、この凹部4aが形成するスリットによって、リング部材4と接地電極2のそれぞれの表面が連続して蒸着されないようにして、フィラメント10と接地電極2との遮断状態を維持するようにしている。そのため、フィラメント10が接地電極2と導通することを防止して、すなわち、フィラメント10が接地されることを防止して、熱電子放射を持続させることができる。ただし、上記スリット内にタングステンが侵入してしまえば、導通してしまうこともあるので、適度な清掃やリング部材4の交換などは必要である。
また、適切なタイミングでタングステンの蒸着面を清掃するようにすれば、上記凹部4aがなくても、熱電子の放射を維持することができる。
なお、この実施形態では、フィラメント10が設置された熱電子放射エリア12と除電対象の保持手段13とをメッシュ電極6を境に反対側に設けている。熱電子放射エリア12と保持手段13とを反対側に設けることで、メッシュ電極6と接地電極2との距離を小さくして、メッシュ電極6と接地電極2とで形成される強い電界中に熱電子を放射でき、熱電子の運動エネルギーを大きくできる。その結果、熱電子のガス分子への電離衝突の確率が高くなる。
また、除電対象の保持手段13は、メッシュ電極6を境にフィラメント10と反対側に設けることによって、メッシュ電極6の近くに設置することができる。したがって、メッシュ電極6を通過した高速の熱電子との電離衝突によって生成されたイオンや電子を、より有効に除電に寄与させることができる。
ただし、上記フィラメント10、メッシュ電極6及び接地電極2の相対位置は、上記実施形態に限定されない。
また、フィラメント10の材質は、熱電子を放出するような高温に耐えるものであれば、タングステンに限らない。また、フィラメントの形状や取り付け方も、上記実施形態に限定されない。
高真空度を維持したエリア内での帯電物体の除電処理に有用である。
1 真空チャンバー
2 接地電極
4 (フィラメント保持部材)リング部材
4a (スリットを形成する)凹部
6 メッシュ電極
8 (プラス)直流電源
10 フィラメント
11 (フィラメントの)可変直流電源
12 熱電子放射エリア
13 (除電対象の)保持手段

Claims (3)

  1. 真空エリア内に、
    プラス電圧が印加されるメッシュ電極と、
    このメッシュ電極との間で電界を形成する接地電極と、
    上記メッシュ電極の近傍に設けられ、熱電子を放射するフィラメントと
    を備え、
    上記フィラメントから放射されて上記メッシュ電極によって形成された電界から力を受ける熱電子の運動によって上記真空エリア内の残留ガス分子を電離させる真空除電装置。
  2. 上記接地電極と上記メッシュ電極との間に上記フィラメントを設けて熱電子放射エリアとし、
    上記メッシュ電極を境にして、上記熱電子放射エリアと反対側に、除電対象の保持手段が設けられた請求項1に記載の真空除電装置。
  3. 上記フィラメントを保持する電気的絶縁体からなるフィラメント保持部材を備え、
    上記フィラメント保持部材は、
    上記フィラメントの突出側において、当該フィラメント保持部材と上記接地電極との間にスリットを維持して上記接地電極に取り付けられた
    請求項1または2に記載の真空除電装置。
JP2021147895A 2021-09-10 2021-09-10 真空除電装置 Pending JP2023040748A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021147895A JP2023040748A (ja) 2021-09-10 2021-09-10 真空除電装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021147895A JP2023040748A (ja) 2021-09-10 2021-09-10 真空除電装置

Publications (1)

Publication Number Publication Date
JP2023040748A true JP2023040748A (ja) 2023-03-23

Family

ID=85632116

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021147895A Pending JP2023040748A (ja) 2021-09-10 2021-09-10 真空除電装置

Country Status (1)

Country Link
JP (1) JP2023040748A (ja)

Similar Documents

Publication Publication Date Title
US7670433B2 (en) Vacuum deposition apparatus of the winding type
JP4013083B2 (ja) 自浄式イオンビーム中和装置及びその内部表面に付着した汚染物質を清浄する方法
KR0158235B1 (ko) 이온 주입 시스템
US9209032B2 (en) Electric pressure systems for control of plasma properties and uniformity
US7800083B2 (en) Plasma electron flood for ion beam implanter
TWI638379B (zh) 離子植入系統和減少粒子污染的方法
KR100466702B1 (ko) 진공펌프용이중벽배기어셈블리,이온주입시스템및이중벽배기어셈블리를재구성하는방법
KR0152449B1 (ko) 확산이차 방출전자샤워
US20060121704A1 (en) Plasma ion implantation system with axial electrostatic confinement
US20150357151A1 (en) Ion implantation source with textured interior surfaces
CN108140523B (zh) 用于离子注入系统的具有唇缘的离子源内衬
JP2019519064A (ja) 電荷が中和されたイオンビームのための無線周波数抽出システム
JP5105729B2 (ja) ガスクラスターイオンビームによる加工方法
KR102089130B1 (ko) 플랫 패널 디스플레이 제조 장치
JP2023040748A (ja) 真空除電装置
KR102652202B1 (ko) 대전 입자 소스 및 후방산란을 이용한 대전 입자 소스를 세정하는 방법
US10217600B1 (en) Indirectly heated cathode ion source assembly
JP6865417B2 (ja) 除電装置
WO2019155540A1 (ja) クリーニング装置
JP2019119921A (ja) 帯電物体の位置決め方法と除電装置
KR102156989B1 (ko) 진공 아크 성막 장치 및 성막 방법
KR102365700B1 (ko) 이온원과 이온 주입 장치 및 이온원의 운전 방법
JP7440021B2 (ja) 真空除電装置
JPH09167593A (ja) イオン注入装置
US20170178860A1 (en) Ion implanter