JP2023035989A - デジタルホログラフィ計測システム - Google Patents

デジタルホログラフィ計測システム Download PDF

Info

Publication number
JP2023035989A
JP2023035989A JP2022136033A JP2022136033A JP2023035989A JP 2023035989 A JP2023035989 A JP 2023035989A JP 2022136033 A JP2022136033 A JP 2022136033A JP 2022136033 A JP2022136033 A JP 2022136033A JP 2023035989 A JP2023035989 A JP 2023035989A
Authority
JP
Japan
Prior art keywords
laser beam
frequency
combined
light source
wavelength
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022136033A
Other languages
English (en)
Inventor
ハートマン ニック
Hartmann Nick
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Original Assignee
Mitutoyo Corp
Mitsutoyo Kiko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitutoyo Corp, Mitsutoyo Kiko Co Ltd filed Critical Mitutoyo Corp
Publication of JP2023035989A publication Critical patent/JP2023035989A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/48Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S17/00
    • G01S7/483Details of pulse systems
    • G01S7/486Receivers
    • G01S7/4865Time delay measurement, e.g. time-of-flight measurement, time of arrival measurement or determining the exact position of a peak
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/141Beam splitting or combining systems operating by reflection only using dichroic mirrors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/02001Interferometers characterised by controlling or generating intrinsic radiation properties
    • G01B9/02007Two or more frequencies or sources used for interferometric measurement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B9/00Measuring instruments characterised by the use of optical techniques
    • G01B9/02Interferometers
    • G01B9/021Interferometers using holographic techniques
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/06Processes or apparatus for producing holograms using incoherent light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/87Combinations of systems using electromagnetic waves other than radio waves
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S17/00Systems using the reflection or reradiation of electromagnetic waves other than radio waves, e.g. lidar systems
    • G01S17/88Lidar systems specially adapted for specific applications
    • G01S17/89Lidar systems specially adapted for specific applications for mapping or imaging
    • G01S17/8943D imaging with simultaneous measurement of time-of-flight at a 2D array of receiver pixels, e.g. time-of-flight cameras or flash lidar
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/0005Adaptation of holography to specific applications
    • G03H2001/0033Adaptation of holography to specific applications in hologrammetry for measuring or analysing
    • G03H2001/0038Adaptation of holography to specific applications in hologrammetry for measuring or analysing analogue or digital holobjects
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0447In-line recording arrangement
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0443Digital holography, i.e. recording holograms with digital recording means
    • G03H2001/0463Frequency heterodyne, i.e. one beam is frequency shifted
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/0465Particular recording light; Beam shape or geometry
    • G03H2001/0469Object light being reflected by the object
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/04Processes or apparatus for producing holograms
    • G03H1/08Synthesising holograms, i.e. holograms synthesized from objects or objects from holograms
    • G03H1/0866Digital holographic imaging, i.e. synthesizing holobjects from holograms
    • G03H2001/0875Solving phase ambiguity, e.g. phase unwrapping
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H1/00Holographic processes or apparatus using light, infrared or ultraviolet waves for obtaining holograms or for obtaining an image from them; Details peculiar thereto
    • G03H1/26Processes or apparatus specially adapted to produce multiple sub- holograms or to obtain images from them, e.g. multicolour technique
    • G03H1/2645Multiplexing processes, e.g. aperture, shift, or wavefront multiplexing
    • G03H2001/266Wavelength multiplexing
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2222/00Light sources or light beam properties
    • G03H2222/10Spectral composition
    • G03H2222/13Multi-wavelengths wave with discontinuous wavelength ranges
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/20Birefringent optical element, e.g. wave plate
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03HHOLOGRAPHIC PROCESSES OR APPARATUS
    • G03H2223/00Optical components
    • G03H2223/22Polariser

Abstract

【課題】精密計測に関し、更に具体的には、精密ワークピース表面測定デバイス及びシステムに関する。【解決手段】ヘテロダイン光源と、干渉光学機構と、センサ機構と、を含むデジタルホログラフィ計測システムが提供される。ヘテロダイン光源は、周波数及び波長が異なる合成レーザビームを提供する(例えば各合成ビームは、対応する波長レーザビームと、直交変調されている可能性のある対応する周波数シフトレーザビームと、を含み得る)。干渉光学機構は、ワークピースを撮像するための出力を提供するため合成ビームを使用する。出力は干渉ビームを含む。センサ機構は、干渉ビームを分離して各TOFセンサへ誘導するダイクロイックコンポーネントを含む。TOFセンサからの出力を用いて測定値を決定する(例えば、TOFセンサの出力を用いてワークピースの表面点までの測定距離等を決定することができる)。【選択図】図1

Description

本開示は、精密計測に関し、更に具体的には、精密ワークピース表面測定デバイス及びシステムに関する。
特定の表面プロファイル(例えば成形及び/又は機械加工等によって生成される)を含む物体(例えばワークピース)の品質管理は、スループット、測定分解能、及び精度の点で、ますます要求が厳しくなっている。このようなワークピースは、限定ではないが、光学コンポーネント、電気コンポーネント、小型機械コンポーネント等を含み得る。理想的には、このようなワークピースを測定/検査して、適正な寸法や機能などを保証すべきである。しかしながら、いくつかの用途では、所望の特徴を有するワークピース表面を確認するために、サブミクロンレベル又はサブナノメートルレベルの測定公差が必要となり得る。
ワークピース表面の測定及び検査のため、様々な精密計測システムを用いることができる。例えば、いくつかの例では、そのような動作を実行する計測システムは、デジタルホログラフィを利用する(例えば、カメラを用いてホログラムを取得し、これらのホログラムを処理して測定値等を決定することができる)。このようなシステム及び/又は他の同等の測定システムの重要な部分は、測定対象のワークピースを照明するために使用される光源である(例えば、不正確な又は安定しない光源は不正確な測定値等を生じる可能性がある)。また、このようなシステムの信号対雑音比も重要なファクタである(例えば、この比が低いと精度の低い測定値を生じる可能性がある)。このような計測システム(例えば、ワークピースの表面等を測定及び検査するための)を改良するか、又は他の方法で向上させることができる構成が望ましい。
この概要は、以下で「発明を実施するための形態」において更に記載されるいくつかの概念を簡略化した形態で紹介するために提示する。この概要は、特許請求される主題の重要な特徴(features)を識別することを意図しておらず、特許請求される主題の範囲の決定に役立てるため用いることも意図していない。
ヘテロダイン光源と、干渉光学機構と、センサ機構と、を含むデジタルホログラフィ計測システムが提供される。ヘテロダイン光源は、多波長光源及び音響光学変調器を含む。多波長光源(例えば多波長レーザ光源)は、少なくとも、第1の周波数の第1波長レーザビーム及び第1の周波数とは異なる第2の周波数の第2波長レーザビームを提供する。音響光学変調器は、第1波長レーザビームを受け取るように、更に、この第1波長レーザビームに対応する第1周波数シフトレーザビームを生成し、この第1周波数シフトレーザビームと第1波長レーザビームとを合成して第1の合成ビームを生成するように構成されている。また、音響光学変調器は、第2波長レーザビームを受け取るように、更に、この第2波長レーザビームに対応する第2周波数シフトレーザビームを生成し、この第2周波数シフトレーザビームと第2波長レーザビームとを合成して第2の合成ビームを生成するように構成されている(例えば、第2の合成ビーム及び第1の合成ビームはヘテロダイン光源からの全合成ビームの一部とすることができる)。
干渉光学機構は、ヘテロダイン光源から合成ビームを受け取り、ワークピースを撮像するための出力を提供するため合成ビームを使用する。様々な実施例において、干渉光学機構の出力は、少なくとも、ヘテロダイン光源からの第1の合成ビームに基づいて生成される第1の干渉ビームと、ヘテロダイン光源からの第2の合成ビームに基づいて生成される第2の干渉ビームと、を含む。センサ機構は、干渉光学機構から出力を受け取り、少なくとも第1及び第2のTOF(Time Of Flight)センサと第1のダイクロイックコンポーネントとを含む。第1のダイクロイックコンポーネント(ダイクロイックフィルタ)は、第1の干渉ビームを第2の干渉ビームから分離するように構成されている。第1の干渉ビームは第1のTOFセンサによって受け取られるように向けられ、第2の干渉ビームは第2のTOFセンサによって受け取られるように向けられる。様々な実施例において、デジタルホログラフィ計測システムは更に処理部を含む。この処理部は、第1及び第2のTOFセンサから出力を受信し、これらの出力を使用して、ワークピース上の少なくとも1つの表面点までの少なくとも1つの測定距離を決定する。
様々な実施例において、多波長光源は更に、第1及び第2の周波数とは異なる第3の周波数の第3波長レーザビームを提供する。このような実施例において、音響光学変調器は更に、第3波長レーザビームを受け取るように、また、この第3波長レーザビームと合成した対応する第3周波数シフトレーザビームを第3の合成ビームとして生成するように構成され得る。干渉光学機構の出力は、ヘテロダイン光源からの第3の合成ビームに基づいて生成される対応する第3の干渉ビームを更に含み得る。センサ機構は、第3のTOFセンサ及び第2のダイクロイックコンポーネントを更に含み得る。第2のダイクロイックコンポーネントは、第2の干渉ビームを第3の干渉ビームから分離するように構成されている。第2の干渉ビームは第2のTOFセンサによって受け取られるように向けられ、第3の干渉ビームは第3のTOFセンサによって受け取られるように向けられる。
様々な実施例において、干渉光学機構は、ビームスプリッタと、参照面と、撮像レンズを含む撮像レンズ部と、を含む。ビームスプリッタは、ヘテロダイン光源から合成ビームを受け取り、これらの合成ビームを、ワークピース表面へ向けられる第1の部分と参照面へ向けられる第2の部分とに分割する。反射された第1の部分及び反射された第2の部分はビームスプリッタによって受け取られ、干渉ビームとして合成され、撮像レンズを介してセンサ機構の方へ向けられる。
様々な実施例において、デジタルホログラフィ計測システムは更にタイマを含む。タイマは、音響光学変調器を動作させるための信号(例えばクロック信号等のタイミング信号)をヘテロダイン光源に提供すると共に、TOFセンサに信号を提供する。様々な実施例において、タイマは、TOFセンサのうち1つの一部として含めることができる。
様々な実施例において、デジタルホログラフィ計測システムは、デジタルホログラフィモード及び振幅変調連続波(「AMCW」:amplitude modulated continuous wave)モードで動作するように構成されている。デジタルホログラフィモードでは、第1及び第2の合成ビームを生成する音響光学変調器を動作させるためにタイマが結合され、処理部は第1及び第2のTOFセンサから出力を受信し、これらの出力を用いて(例えばワークピース上の第1の表面点までの)第1のデジタルホログラフィモード測定距離を決定する。AMCWモードでは、音響光学変調器は第1及び第2の合成ビームを生成せず、TOFセンサのうち少なくとも1つの出力を処理部が用いて、ホモダイン検出によって、(例えばワークピース上の第1の表面点までの)第1のAMCWモード測定距離を決定する。様々な実施例では、第1のAMCWモード測定距離の少なくとも一部及び第1のデジタルホログラフィモード測定距離を合成して、(例えばワークピース上の第1の表面点までの)合成測定距離を決定する。
様々な実施例において、デジタルホログラフィモードのデジタルホログラフィ非曖昧範囲(non-ambiguity range)(例えば絶対測定範囲)はAMCWモードの潜在的な距離誤差よりも大きく、第1のAMCWモード測定距離はデジタルホログラフィ非曖昧範囲の整数の倍数を与える。この整数の倍数を第1のデジタルホログラフィモード測定距離と組み合わせて、ワークピース上の第1の表面点までの合成測定距離を決定する。様々な実施例において、AMCWモードの非曖昧範囲は、デジタルホログラフィモードの非曖昧範囲よりも少なくとも50倍大きい。様々な実施例において、AMCWモードは500ミリメートルよりも大きい非曖昧範囲を有し、デジタルホログラフィモード(例えば光源からの第1、第2、及び第3の波長レーザビームを用いる場合)は5ミリメートルよりも大きい非曖昧範囲を有する。
様々な実施例において、第1波長レーザビームの第1の波長と第2波長レーザビームの第2の波長との差は、第1の波長の2パーセントよりも大きい。様々な実施例において、第1波長レーザビームの第1の波長と第2波長レーザビームの第2の波長との差は、10ナノメートルよりも大きい。
デジタルホログラフィ計測システムを動作させるための方法が提供される。この方法は、デジタルホログラフィ計測システムのヘテロダイン光源を動作させること及びセンサ機構を動作させることを含む。ヘテロダイン光源を動作させることは、多波長光源を動作させること及び音響光学変調器を動作させることを含む。多波長光源は、少なくとも、第1の周波数の第1波長レーザビーム及び第1の周波数とは異なる第2の周波数の第2波長レーザビームを提供するように動作させる。音響光学変調器は、第1波長レーザビームを受け取るように、更に、この第1波長レーザビームに対応する第1周波数シフトレーザビームを生成し、この第1周波数シフトレーザビームと第1波長レーザビームとを合成して第1の合成ビームを生成するように動作させる。また、音響光学変調器は、第2波長レーザビームを受け取るように、更に、この第2波長レーザビームに対応する第2周波数シフトレーザビームを生成し、この第2周波数シフトレーザビームと第2波長レーザビームとを合成して第2の合成ビームを生成するように動作させる。干渉光学機構は、ヘテロダイン光源から合成ビームを受け取り、ワークピースを撮像するための出力を提供するため合成ビームを使用する。干渉光学機構の出力は、少なくとも、ヘテロダイン光源からの第1の合成ビームに基づいて生成される第1の干渉ビームと、ヘテロダイン光源からの第2の合成ビームに基づいて生成される第2の干渉ビームと、を含む。センサ機構は、干渉光学機構から出力を受け取るように動作させる。センサ機構は、少なくとも第1及び第2のTOFセンサと第1のダイクロイックコンポーネントとを含む。第1のダイクロイックコンポーネントは、第1の干渉ビームを第2の干渉ビームから分離するように構成されている。第1の干渉ビームは第1のTOFセンサによって受け取られるように向けられ、第2の干渉ビームは第2のTOFセンサによって受け取られるように向けられる。様々な実施例において、方法は更に、第1及び第2のTOFセンサから出力を受信することと、これらの出力を使用して、ワークピース上の少なくとも1つの表面点までの少なくとも1つの測定距離を決定することと、を含む。
様々な実施例において、方法は更に、第1及び第2の周波数とは異なる第3の周波数の第3波長レーザビームも提供するよう多波長光源を動作させることを含む。このような実施例において、音響光学変調器は、第3波長レーザビームも受け取るように、また、この第3波長レーザビームに対応する第3周波数シフトレーザビームを生成し、この第3周波数シフトレーザビームと第3波長レーザビームとを合成して第3の合成ビームを生成するように動作させることができる。干渉光学機構の出力は、ヘテロダイン光源からの第3の合成ビームに基づいて生成される第3の干渉ビームを更に含み得る。センサ機構は、第3のTOFセンサ及び第2のダイクロイックコンポーネントを更に含み得る。第2のダイクロイックコンポーネントは、第2の干渉ビームを第3の干渉ビームから分離するように構成され得る。第2の干渉ビームは第2のTOFセンサによって受け取られるように向けられ、第3の干渉ビームは第3のTOFセンサによって受け取られるように向けられる。
様々な実施例において、方法は更に、タイマを動作させて、音響光学変調器を動作させるための信号(例えばクロック信号等のタイミング信号)をヘテロダイン光源に提供し、また、信号をTOFセンサに提供することを含み得る。様々な実施例において、方法は更に、デジタルホログラフィモード及び振幅変調連続波(「AMCW」)モードでシステムを動作させることを含み得る。デジタルホログラフィモードでは、第1及び第2の合成ビームを生成する音響光学変調器を動作させるためにタイマが結合され、処理部は第1及び第2のTOFセンサから出力を受信し、これらの出力を用いて、ワークピース上の第1の表面点までの第1のデジタルホログラフィモード測定距離を決定する。AMCWモードでは、音響光学変調器は第1及び第2の合成ビームを生成せず、TOFセンサのうち少なくとも1つの出力を処理部が用いて、ホモダイン検出によって、ワークピース上の第1の表面点までの第1のAMCWモード測定距離を決定する。様々な実施例では、第1のAMCWモード測定距離の少なくとも一部及び第1のデジタルホログラフィモード測定距離を合成して、ワークピース上の第1の表面点までの合成測定距離を決定する。様々な実施例において、デジタルホログラフィモードのデジタルホログラフィ非曖昧範囲はAMCWモードの潜在的な距離誤差よりも大きく、第1のAMCWモード測定距離はデジタルホログラフィ非曖昧範囲の整数の倍数を与える。この整数の倍数を第1のデジタルホログラフィモード測定距離と組み合わせて、ワークピース上の第1の表面点までの合成測定距離を決定する。
様々な実施例では、デジタルホログラフィ計測システムにおいて用いるためセンサ機構が提供される。センサ機構は、少なくとも、第1のTOFセンサと、第2のTOFセンサと、第1のダイクロイックコンポーネントと、を含む。センサ機構は、干渉光学機構から出力を受け取ることができる。第1のダイクロイックコンポーネントは、第1の干渉ビームを第2の干渉ビームから分離するように構成されている。第1の干渉ビームは第1のTOFセンサによって受け取られるように向けられ、第2の干渉ビームは第2のTOFセンサによって受け取られるように向けられる。様々な実施例において、センサ機構は、第3のTOFセンサ及び第2のダイクロイックコンポーネントを更に含み得る。第2のダイクロイックコンポーネントは、第2の干渉ビームを第3の干渉ビームから分離するように構成されている。第2の干渉ビームは第2のTOFセンサによって受け取られるように向けられ、第3の干渉ビームは第3のTOFセンサによって受け取られるように向けられる。
ヘテロダイン光源を含む計測システムの様々なコンポーネントを示すブロック図である。 図1と同様のヘテロダイン光源を含むデジタルホログラフィ計測システムのブロック図である。 図2のようなデジタルホログラフィ計測システムのいくつかの動作原理を示す図である。 図2のようなデジタルホログラフィ計測システムのいくつかの動作原理を示す図である。 図2のようなデジタルホログラフィ計測システムのいくつかの動作原理を示す図である。 デジタルホログラフィ計測システムの動作の一部としての位相アンラッピング(phase unwrapping)に使用されるルックアップテーブルの図である。 図4のルックアップテーブルからのいくつかの値をグラフで示す図である。 デジタルホログラフィ計測システムの異なる動作モードを示す図である。 デジタルホログラフィ計測システムの異なる動作モードを示す図である。 単一の撮像レンズ及びウォラストンプリズム(Wollaston prism)プリズムを有する撮像システムを含むヘテロダイン光源の図である。 2つの撮像レンズ及びウォラストンプリズムを有する撮像システムを含むヘテロダイン光源の図である。 受光レンズ及び複屈折ビーム変位器(displacer)を含むヘテロダイン光源の図である。 受光プリズム及び複屈折ビーム変位器を含むヘテロダイン光源の図である。 空間フィルタリング構成及びコリメーションレンズを含むヘテロダイン光源の図である。 ヘテロダイン光源を動作させるためのルーチンの例示的な実施例を示すフロー図である。 ヘテロダイン光源を含むデジタルホログラフィ計測システムを動作させるためのルーチンの例示的な実施例を示すフロー図である。
図1は、計測システム100の実施例の様々なコンポーネントを示すブロック図である。図1で示されているように、計測システム100は、ヘテロダイン光源110、光学機構120、センサ機構130、タイマ140、及び処理部150を含む。様々な実施例において、ヘテロダイン光源110は、(例えば図7から図11の例を参照して以下で詳述されるように)光源、音響光学変調器、及び光源光学機構を含み得る。簡潔に述べると、音響光学変調器は、光源から1つ以上の入力波長レーザビームを受け取るように、更に、1つ以上の対応する周波数シフトレーザビーム(例えば直交偏光されている可能性がある)を生成するように構成され得る。光源光学機構は、音響光学変調器から直交偏光レーザビームを受け取ってこれらを合成し、対応する合成レーザビームを出力する。
光学機構120(例えば測定光学機構とすることができる)は、ヘテロダイン光源110から合成出力ビームを受け取る。光学機構120は、合成ビームを測定プロセスの一部として使用する(例えば誘導する)(例えば、ワークピース表面192上の少なくとも1つの表面点までの少なくとも1つの測定距離を測定/決定するプロセスの一部として、1つ以上のビームをワークピース190の表面192の方へ誘導することができる)。一例として、いくつかの実施例(例えば図2を参照して以下で詳述される)では、測定光学機構120は、ヘテロダイン光源110から合成ビームを受け取り、測定プロセスの一部として(例えば画像面に対して)ワークピース表面192を撮像するための出力を提供するため合成ビームを使用する干渉光学機構とすればよい。
センサ機構130は、測定光学機構120から出力を受け取り、これらの出力を検知すると共に対応する出力信号を提供するための1つ以上のセンサを含む。タイマ140は、ヘテロダイン光源110の音響光学変調器とセンサ機構130のセンサの双方のタイミング等を制御するために使用されるタイミング信号(例えばクロック信号)を提供する。処理部150(例えば1つ以上のプロセッサ152を含む)は、センサ機構130から出力を受信し、これらの出力を使用する(例えば、ワークピース190の表面192上の表面点までの測定距離を決定するため)。
処理部150(例えばコンピューティングシステムを含むかもしくはコンピューティングシステムで実施される)及び/又は、本明細書に記載される要素及び方法と共に記載されるかもしくは使用可能である他の処理システムもしくは制御システムは、一般的に、分散型又はネットワーク型コンピューティング環境等を含む任意の適切なコンピューティングシステム又はデバイスを用いて実施できることは、当業者には認められよう。そのようなシステム又はデバイスは、本明細書に記載される機能を実現するためにソフトウェアを実行する1つ以上の汎用プロセッサ又は特殊用途プロセッサ(例えば非カスタム又はカスタムデバイス)を含み得る。ソフトウェアは、ランダムアクセスメモリ(RAM)、リードオンリメモリ(ROM)、フラッシュメモリ等のメモリ、又はそのようなコンポーネントの組み合わせに記憶することができる。また、ソフトウェアは、光学ベースのディスク、フラッシュメモリデバイス、又はデータを記憶するための他の任意のタイプの不揮発性記憶媒体のような1つ以上の記憶デバイスに記憶することができる。ソフトウェアは、特定のタスクを実行するか又は特定の抽象データ型を実施するルーチン、プログラム、オブジェクト、コンポーネント、データ構造等を含む1つ以上のプログラムモジュールを含み得る。分散型コンピューティング環境では、プログラムモジュールの機能性は、有線又は無線のいずれかの構成において、複数のコンピューティングシステム又はデバイスにまたがるように組み合わせるか又は分散させ、サービスコールを介してアクセスすることができる。
図2は、様々な実施例において図1の計測システムと同様のいくつかの機能を実行し得る、ヘテロダイン光源210を含むデジタルホログラフィ計測システム200のブロック図である。以下で特別に記載されている場合を除いて、図2のいくつかの番号を付けたコンポーネント2XXは、図1の同様の番号を付けた対応するコンポーネント1XXに相当する及び/又はそれらと同様の動作を有し、類推によって理解され得ることは認められよう。同様の設計及び/又は機能を有する要素を示す(すなわち、特別に例示及び/又は記載されている場合を除いて)ためのこの番号付けスキームは、本明細書の他の図にも適用される。図2で示されているように、デジタルホログラフィ計測システム200は、ヘテロダイン光源210、干渉光学機構220、センサ機構230、タイマ240、及び処理部250を含む。様々な実施例において、デジタルホログラフィ計測システム200はヘテロダイン撮像干渉計として動作することができる。
様々な実施例において、ヘテロダイン光源210は、音響光学変調器に結合された多波長光源(例えば、異なる波長のレーザビームを提供するための多波長レーザ光源)を含む(例えば、以下で図7から図11を参照していくつかの例を詳述する)。1つの実施例において、多波長レーザ光源は、第1の周波数v1の第1波長レーザビームを提供することができる。音響光学変調器は、第1波長レーザビームを受け取り、当該第1波長レーザビームに対応する周波数v1+Δvを示す第1周波数シフトレーザビームを生成し、当該第1周波数シフトレーザビームと前記第1波長レーザビームとを合成して第1の合成ビームを生成する。同様に、多波長レーザ光源は、第1の周波数とは異なる第2の周波数v2の第2波長レーザビームを提供することができる(すなわち、対応する第2の波長は第1の波長とは異なる)。音響光学変調器は、第2波長レーザビームを受け取り、当該第2波長レーザビームに対応する周波数v2+Δvを示す第2周波数シフトレーザビームを生成し、当該第2周波数シフトレーザビームと前記第2波長レーザビームとを合成して第2の合成ビームを生成する。同様に、多波長レーザ光源は、第1及び第2の周波数とは異なる第3の周波数v3の第3波長レーザビームを提供することができる(すなわち、対応する第3の波長は第1及び第2の波長とは異なる)。音響光学変調器は、第3波長レーザビームを受け取り、当該第3波長レーザビームに対応する周波数v2+Δvを示す第3周波数シフトレーザビームを生成し、当該第3周波数シフトレーザビームと前記第3波長レーザビームとを合成して第3の合成ビームを生成する。様々な実施例において、多波長レーザ光源が追加の波長レーザビームを提供し、音響光学変調器が対応する追加の周波数シフトレーザビームを生成することも可能である。様々な実施例では、レーザビームの周波数を表現するため/レーザビームの周波数に対応するため、異なる符号を交換可能に使用してもよい(例えば、v、f、ω等)。
タイマ240は、(例えば音響光学変調器に対するヘテロダイン光源のドライバを介して)ヘテロダイン光源210に結合されて、基準クロック信号を提供する。この基準クロック信号に基づいて変調周波数Δvが生成される。様々な実施例において、クロック信号は、変調周波数Δv(例えば、特定の実施例では40MHz~100MHzの範囲内)で提供される。様々な実施例において、分散クロック信号は、音響光学変調器の音響波の周波数と同等であると共に光ビームの周波数シフトΔvと同等であり得る(例えば光子周波数に1音響フォノンを加える)。種々の代替的な実施例において、分散クロック信号は、追加の電子コンポーネントによって所望のターゲット周波数に乗算/除算される他の任意の周波数とすることができる。
干渉光学機構220(例えば、測定光学機構とも称することがある)は、ビームスプリッタ221、4分の1波長板223及び226、参照ミラー224(例えば、本明細書では参照面224とも称することがある)、撮像レンズ部227(例えば、カメラレンズ等の撮像レンズを含む)、及び偏光子228を含む。様々な実施例において、干渉光学機構220は、二重経路干渉計を形成する及び/又は二重経路干渉計として動作する。撮像レンズ部227(例えば、いくつかの実施例では複数のレンズを含み、テレセントリック構成であり得る)は、画像面に対してワークピース190(例えば測定及び/又は他の検査等の対象である)の表面192を撮像するように提供されている。様々な実施例において、画像面は、センサ機構230のセンサ(例えばセンサTOF-1、センサTOF-2等)の前方、これらのセンサ上、又はこれらのセンサの後方にあり得る(例えば様々な実施例では、これらのセンサは、撮像レンズ部227から各センサまでの光路長がほぼ同じになるように空間的に配置され得る)。以下で詳述されるように、様々な実施例において、各センサTOFは異なる周波数Δvの光学ビート信号(beat signal)を検出し、画素ごとに復調することができる。様々な実施例において、1つの深さフレーム(depth frame)は4つの位相測定から構成され得る。記録されたホログラムは画像面へ数値的に伝搬する(numerically propagated)ことができ、画像面において、高さマップ(例えば、ワークピース190の拡大ワークピース表面192上の表面点の測定値を示す)が抽出される(例えば位相アンラッピングの後に)。
ビームスプリッタ221は、軸222に沿って参照ミラー224と光学的に位置合わせされている。また、ビームスプリッタ221は、軸222と実質的に直交する軸225に沿ってワークピース表面192と光学的に位置合わせされている。4分の1波長板226はビームスプリッタ221とワークピース表面192との間に設けられ、4分の1波長板223はビームスプリッタ221と参照ミラー224との間に設けられ、撮像レンズ部227及び偏光子228は軸225に沿ってビームスプリッタ221とセンサ機構230との間に設けられている。撮像レンズ部227及び偏光子228は、ビームスプリッタ221とセンサ機構230との間で光学的に位置合わせされている。
検査/測定対象のワークピース190は、ワークピース表面192が撮像レンズ部227によって撮像されるように、デジタルホログラフィ計測システム200に対して位置決めされている。特定の実施例において、ワークピース表面192はセンサ機構230のセンサ(例えばセンサTOF-1、センサTOF-2等)上に撮像され得るが、これがデジタルホログラフィ計測システムの必要条件ではないことは認められよう(例えば様々な実施例では、各表面点を含むワークピース表面192は、センサ機構230のセンサTOFの前方又は後方にある画像面上に撮像され得る)。
本明細書に開示されているようなデジタルホログラフィ計測システムでは、画像面に対してセンサTOFが位置付けられている場合はいつでも、センサTOFによるレーザビームの測定を数値的に画像面へ伝搬させて、画像面で発生するであろう値を決定し、本明細書で記載されるような測定プロセスに利用することができる。このような数値的伝搬の一例として、測定面(例えばセンサTOF)でレーザビームの振幅及び位相が測定/決定された場合、レーザビームの振幅及び位相が時間及び距離と共にどのように変動するか分かっているので、画像面で発生するであろう対応する値を数値的に伝搬する(例えば計算する)ことができる(例えば、撮像レンズの特性等に従って画像面の相対位置/距離を知ることができる)。このような特徴は、特定のワークピース/ワークピース要素を測定するためには特に有用であり得る(例えば、いくつかのシステムでは、ワークピース表面の高さ変動が大きいのでワークピース表面全体がシステムの単一測定範囲内に収まらない可能性があるが、本明細書に開示されているようなデジタルホログラフィ計測システムは、代替的に、画像面に数値的な伝搬を行って、測定に必要な値等を取得/決定することができる)。
図2の例では、各周波数シフトレーザビームは、対応する波長レーザビームの音響光学変調によって(すなわちヘテロダイン光源210において)取得される。しかしながら、他の実施例では他の技法を用いて各周波数シフトレーザビームを取得できることは認められよう。例えば、波長/周波数シフトレーザビームの各対について、レーザは、異なる波長/周波数を有する2つのレーザビームを生成するため、強い軸方向磁場内にレーザ媒質を有するゼーマンレーザとすることができる。本明細書で用いられる用語によれば、異なる波長/周波数を有するレーザビームは、同じビーム経路を共有する場合であっても、個別のレーザビームと呼ぶことがある。いくつかの例では、レーザビームがビーム経路を共有する及び/又は共伝搬する(co-propagate)等の場合、このようなレーザビームの組み合わせを合成ビームと呼ぶことがある。
動作中、タイマ240は、センサ機構230及びヘテロダイン光源210のドライバにクロック又は基準信号を提供する。ヘテロダイン光源210の音響光学変調器は、ドライバによって変調周波数Δvで駆動される。上述のように、ヘテロダイン光源210の多波長レーザ光源は、異なる周波数のレーザビームを生成する。例えば、上記のように、多波長レーザ光源は第1の周波数v1の第1波長レーザビームを提供することができる。音響光学変調器は、入力された第1波長レーザビームを受け取り、第1波長レーザビームに沿って伝搬する周波数v1+Δvの対応する第1周波数シフトレーザビームを生成/発生する。このため、第1波長レーザビームに関して、ヘテロダイン光源210の出力は第1の合成ビームである。以下で詳述されるように、第1の合成ビームはセンサ機構230によって検出することができ、エンベロープは異なる周波数Δvで変調されている。
同様に、ヘテロダイン光源210の多波長レーザ光源は、第2の周波数v2の第2波長レーザビームを提供することができる。音響光学変調器は、入力された第2波長レーザビームを受け取り、第2波長レーザビームに沿って伝搬する周波数v2+Δvの対応する第2周波数シフトレーザビームを生成/発生する。ヘテロダイン光源210の対応する出力は、第2の合成ビームである。同様に、多波長レーザ光源は、第3の周波数v3の第3波長レーザビームを提供することができる。音響光学変調器は、入力された第3波長レーザビームを受け取り、第3波長レーザビームに沿って伝搬する周波数v3+Δvの対応する第3周波数シフトレーザビームを生成/発生する。ヘテロダイン光源210の対応する出力は、第3の合成ビームである。従って、ヘテロダイン光源210の全出力は全合成ビーム(例えば第1、第2、及び第3の合成ビーム等を含み得る)を含み得ることは認められよう。様々な実施例では、ヘテロダイン光源210の多波長レーザ光源が追加の波長レーザビームを提供し、音響光学変調器が対応する追加の合成ビームを形成するため対応する追加の周波数シフトレーザビームを生成し、この追加の合成ビームをヘテロダイン光源210からの出力として全合成ビームに含めることも可能である。
様々な実施例において、ヘテロダイン光源210の多波長レーザ光源は、いくつかの例では、異なる波長のレーザビームを提供するため個別のレーザ光源を含み得る。様々な実施例において、このような個別のレーザ光源(例えばレーザダイオード)は温度感受性が低いことが望ましい場合がある。個別のレーザ光源(すなわち、それぞれの波長を有するレーザ光源)を用いる様々な実施例では、各レーザ光源の波長が温度変化等に起因して同一方向にドリフトし、波長間の比は比較的安定した状態を維持し得るので、システムにおいて比較的安定した測定精度が得られる可能性がある。様々な実施例において、個別の各レーザ光源の温度感受性は対応する波長に合わせるよう構成することができ、温度に起因した波長比のドリフトは低減又は排除され得る。本明細書で開示されているようにヘテロダイン光源210を構成する場合、様々な実施例では、個別のレーザ光源(例えば製造公差等に起因して異なる値を有し得る)を試験し、波長間の所望の比を与えるレーザ光源の組み合わせを選択/使用することができる。
従って、様々な実施例では、波長比の所望の組み合わせを提供する異なるレーザ光源を含めることができる(例えば、1つの具体的な実施例では、633nm、687nm、及び767nm等の波長を提供する)。一実施例において、多波長レーザ光源に含まれる第1のレーザ光源は第1波長レーザビームを提供することができる(例えば、1つの具体的な実施例では名目波長が633nmである)。これに応じて、ヘテロダイン光源210は上述のように、垂直偏光の第1の波長λS1(例えば633nm)を有する第1波長レーザビームと水平偏光の波長λFS1を有する第1周波数シフトレーザビーム(それぞれ直線偏光である)とを含む第1の合成ビームを生成することができる。タイマ240は、ヘテロダイン光源210の音響光学変調器の駆動周波数を設定するクロック信号(例えば40MHz)を生成する。この結果、第1の合成ビームによって、(例えば40MHzの)ビート信号が検出される。
同様に、ヘテロダイン光源210の多波長レーザ光源に含まれる第2のレーザ光源は、第2波長レーザビームを提供することができる(例えば、1つの具体的な実施例では名目波長が687nmである)。これに応じて、ヘテロダイン光源210は上述のように、垂直偏光の第1の波長λS2(例えば687nm)を有する第2波長レーザビームと水平偏光の波長λFS2を有する第2周波数シフトレーザビームとを含む第2の合成ビームを生成することができる。同様に、多波長レーザ光源に含まれる第3のレーザ光源は、第3波長レーザビームを提供することができる(例えば、1つの具体的な実施例では名目波長が767nmである)。これに応じて、ヘテロダイン光源210は上述のように、垂直偏光の第3の波長λS3(例えば767nm)を有する第3波長レーザビームと水平偏光の波長λFS3を有する第3周波数シフトレーザビームとを含む第3の合成ビームを生成することができる。上記のように、タイマ240は、ヘテロダイン光源210の音響光学変調器の駆動周波数を設定するクロック信号(例えば40MHz)を生成し得る。この結果、第2及び第3の合成ビームの各々によって、(例えば40MHzの)変調周波数で検出されるビート信号が生成される。
上記のように、デジタルホログラフィ計測システム200の動作中、ヘテロダイン光源210は、合成ビームを含む全合成ビームを干渉光学機構220に出力する。以下で詳述されるように、干渉光学機構220は、(例えば画像面に対して)ワークピース190の表面192を撮像するための出力を提供するため合成ビームを使用する。例えば以下で詳述されるように、3つの波長が用いられる1つの実施例では、干渉光学機構220の出力は第1、第2、及び第3の干渉ビームを含み得る。様々な実施例において、第1の干渉ビームはヘテロダイン光源からの第1の合成ビームに基づいて生成され、第2の干渉ビームはヘテロダイン光源からの第2の合成ビームに基づいて生成され、第3の干渉ビームはヘテロダイン光源からの第3の合成ビームに基づいて生成される。
更に上記の例に関して、干渉光学機構220のビームスプリッタ221(例えば偏光ビームスプリッタ)に第1の合成ビームが入射すると、周波数v1及び垂直偏光を有する第1の参照ビームが軸222に沿って参照ミラー224の方へ伝搬し、周波数v1+Δv及び水平偏光を有する第1の信号ビームが軸225に沿って伝搬してワークピース表面192の一部を照明する。次いで、第1の反射参照ビーム(すなわち参照ミラー224からの)及び第1の反射信号ビーム(すなわちワークピース表面192からの)がビームスプリッタ221によって合成され、軸225に沿って撮像レンズ部227を介してセンサ機構230の方へ伝搬する第1の反射合成ビームを形成する。4分の1波長板226を用いて、周波数v1+Δvの第1の入射ビームを水平偏光から円偏光に変換すると共に、第1の反射信号ビームを円偏光から垂直偏光に変換する。同様に、4分の1波長板223を用いて、周波数v1の第1の入射ビームを垂直偏光から円偏光に変換すると共に、第1の反射参照ビームを円偏光から水平偏光に変換する。この結果、第1及び第2の4分の1波長板をそれぞれ通った後の第1の反射信号ビーム及び第1の反射参照ビームの偏光は直交し、これにより干渉を防止する。
以下で詳述されるように、ワークピース表面192は、撮像レンズ部227を介して画像面に撮像される。偏光子228を用いて、第1の2つの反射ビームの偏光を制御し、それらが第1の干渉ビームを形成することを可能とする。第1のダイクロイックコンポーネント231-1(例えば、個々の波長を分離するために用いられるダイクロイックフィルタ)は、第1の干渉ビームIB-1を、センサ機構230のセンサTOF-1(例えばTOFセンサであり、様々な実施例ではTOFカメラ等とすることができる)の方へ反射するように動作する。以下で詳述されるように、第1のダイクロイックコンポーネント231-1は、異なる波長の他の干渉ビームを伝送/通過させて軸225に沿って進ませ続けるように動作し、これらの干渉ビームは、他のダイクロイックコンポーネントによってセンサ機構230の他のセンサの方へ反射される。様々な実施例において、本明細書で規定されるダイクロイックコンポーネントの各々は、光ビームを波長が異なる2つのビームに分割することができる1又は複数の光学コンポーネントを含み得る。上記のように、ワークピース表面192は、撮像レンズ部227を介して画像面に撮像される(例えば、画像面はセンサTOF-1の前方、センサTOF-1上、又はセンサTOF-1の後方にあり得る)。
ビームスプリッタ221に第2の合成ビームが入射すると、周波数v2及び垂直偏光を有する第2の参照ビームが軸222に沿って参照ミラー224の方へ伝搬し、周波数v2+Δv及び水平偏光を有する第2の信号ビームが軸225に沿って伝搬してワークピース表面192の一部を照明する。次いで、第2の反射参照ビーム及び第2の反射信号ビームがビームスプリッタ221によって合成され、軸225に沿って撮像レンズ部227を介してセンサ機構230の方へ伝搬する第2の反射合成ビームを形成する。4分の1波長板226を用いて、周波数v2+Δvの第2の入射ビームを水平偏光から円偏光に変換すると共に、第2の反射信号ビームを円偏光から垂直偏光に変換する。同様に、4分の1波長板223を用いて、周波数v2の第2の入射ビームを垂直偏光から円偏光に変換すると共に、第2の反射参照ビームを円偏光から水平偏光に変換する。この結果、第1及び第2の4分の1波長板をそれぞれ通った後の第2の反射信号ビーム及び第2の反射参照ビームの偏光は直交し、これにより干渉を防止する。
以下で詳述されるように、ワークピース表面192は、撮像レンズ部227を介して画像面に撮像される。偏光子228を用いて、第2の2つの反射ビームの偏光を制御し、それらが第2の干渉ビームを形成することを可能とする。第2のダイクロイックコンポーネント231-2は、第2の干渉ビームIB-2をセンサ機構230のセンサTOF-2の方へ反射するように動作する。また、第2のダイクロイックコンポーネント231-2は、異なる波長の他の干渉ビームを伝送/通過させて軸225に沿って進ませ続けるように動作し、これらの干渉ビームは、1又は複数の他のダイクロイックコンポーネントによってセンサ機構230の1又は複数の他のセンサの方へ反射される。これは、第1のダイクロイックコンポーネント231-1が第1の干渉ビームIB-1を反射すると同時に第2の干渉ビームIB-2を伝送/通過させるやり方と同様である。上記のように、ワークピース表面192は、撮像レンズ部227を介して画像面に撮像される(例えば、画像面はセンサTOF-2の前方、センサTOF-2上、又はセンサTOF-2の後方にあり得る)。
システムの追加の合成ビームに対しても同様のプロセスが実行され得ることは認められよう。例えば、上述のプロセスと同様、最終合成ビーム(例えばN番目の合成ビームと番号が付けられる)が存在し、これに対応して、周波数vN及び垂直偏光を有する最終参照ビームと、周波数vN+Δv及び水平偏光を有する最終信号ビームとが存在し得る。対応する最終反射参照ビーム及び最終反射信号ビームが最終反射合成ビームを形成し、このビームから最終干渉ビームを形成することができる。以下で詳述されるように、ワークピース表面192は、撮像レンズ部227を介して画像面に撮像され得る。最終ダイクロイックコンポーネント231-Nは、最終干渉ビームIB-NをセンサTOF-Nの方へ反射するように動作する。上記のように、ワークピース表面192は、撮像レンズ部227を介して画像面に撮像される(例えば、画像面はセンサTOF-Nの前方、センサTOF-N上、又はセンサTOF-Nの後方にあり得る)。
N=3である実施例では、最終合成ビームは第3の合成ビームであり、又はNが3よりも大きい実施例でも、システムの第3の合成ビームが存在し得ることは認められよう。いずれの場合でも、それに対応して、周波数v3及び垂直偏光を有する第3の参照ビームと、周波数v3+Δv及び水平偏光を有する第3の信号ビームとが存在し得る。対応する第3の反射参照ビーム及び第3の反射信号ビームが第3の反射合成ビームを形成し、このビームから第3の干渉ビームを形成することができる。第3のダイクロイックコンポーネント231-3は、第3の干渉ビームIB-3を、センサTOF-3(すなわち、N=3の場合のセンサTOF-N)の方へ反射するように動作し得る。ダイクロイックコンポーネントを用いることで、ヘテロダイン光源210において複数波長レーザビームの使用が可能となることは認められよう。これらのビームは共通のビーム経路で合成され、次いでダイクロイックコンポーネントにより分割されて、センサTOFによって受け取られる(例えば関連する測定機能の一部等として)。
更に具体的には、上記のように、第1のダイクロイックコンポーネント231-1は、第1の干渉ビームIB-1を第2及び第3の干渉ビームIB-2及びIB-3から分離するように構成されている。第1の干渉ビームIB-1は、(例えば第1のダイクロイックコンポーネント231-1によって)向けられ、第1のセンサTOF-1(例えばTOFセンサ)で受け取られる。第2のダイクロイックコンポーネント231-2は、第2の干渉ビームIB-2を第3の干渉ビームIB-3から分離するように構成されている。第2の干渉ビームIB-2は、(例えば第2のダイクロイックコンポーネント231-2によって)向けられ、第2のセンサTOF-2(例えばTOFセンサ)で受け取られる。第3の干渉ビームIB-3は、(例えば第3のダイクロイックコンポーネント231-3によって)向けられ、第3のセンサTOF-3(例えばTOFセンサ)で受け取られる。
上記のように、ヘテロダイン光源210の全出力は全合成ビームとすることができる(例えば、N=3である上記の例のように、第1、第2、及び第3の合成ビームを含み得る)。上述した動作によれば、ヘテロダイン光源210からの全合成ビームがビームスプリッタ221に入射すると、各周波数v1、v2、及びv3、並びに垂直偏光を有する第1、第2、及び第3の参照ビームを含む合成参照ビームが、軸222に沿って参照ミラー224の方へ伝搬する(例えば、参照ミラー224におけるビーム合成はΣviと表すことができ、この例では、合成参照ビームが周波数v1、v2、及びv3を有する参照ビームを含むことを示す)。また、上述した動作によれば、ヘテロダイン光源210からの全合成ビームがビームスプリッタ221に入射すると、各周波数v1+Δv、v2+Δv、及びv3+Δv、並びに水平偏光を有する第1、第2、及び第3の信号ビームを含む合成信号ビームが、軸225に沿って伝搬して、ワークピース表面192の一部を照明する(例えば、ワークピース表面192におけるビーム合成はΣvi+Δvと表すことができ、この例では、合成信号ビームが周波数v1+Δv、v2+Δv、及びv3+Δvを有する信号ビームを含むことを示す)。
様々な実施例において、軸225はデジタルホログラフィ計測システム200の測定軸に対応する/測定軸として規定することができる。測定距離は、デジタルホログラフィ計測システム200から(例えば、4分の1波長板226もしくはその近く、又は干渉光学機構220を収容するケースの端部もしくはその付近等、デジタルホログラフィ計測システム200の指定されたコンポーネント又は参照点から)ワークピース表面192上の表面点までの距離に相当し得る。様々な実施例において、追加的に又は代替的に、軸225はデジタルホログラフィ計測システム200のz軸に対応する/z軸として規定することができる。測定距離は、z距離として又はz高さに従って規定することができる。様々な実施例において、(例えば全表面プロファイルの一部又は他のものとしての)ワークピース表面192上の表面点の様々なz高さは、参照点に関連付ける、及び/又は相対z高さに従って相互に関連付けることができ、例えば、z=0のz高さを有すると指定され得るワークピース表面上の参照点を基準とすることができる。様々な実施例において、各表面点のz高さは、デジタルホログラフィ計測システム200からその表面点までの各測定距離/z距離に対応する/そのような距離に従って決定することができる。
本明細書に開示されているようにダイクロイックコンポーネントを使用する構成において、様々な実施例では、波長選択性によってビームを効果的に分離できるように、ビーム間で波長を充分に分離することが望ましい場合がある。これに対して、いくつかの従来のシステムは、極めて近い波長を有するビームを用いている(例えば、長い絶対測定範囲等を達成するため、組み合わせ合成波長を達成するように、分離が1nm未満である)。あるいは、本明細書に開示されている構成では、波長に基づいて分離を行う波長選択性によってビームを効果的に分離できるように、比較的大きく分離された波長の組み合わせを用いることが有利であり得る(例えば、最短波長の値の少なくとも2%もしくは5%の分離、又は少なくとも10nmもしくは20nmの分離)。このような要件を満たす波長の組み合わせの1つの具体例は、λ1=633nm、λ2=687nm、及びλ3=767nmである(例えば、最短波長の2%は13nm未満、5%は32nm未満であり、これらは各々、最短波長と最長波長との間、又はこの例のいずれの波長間の分離よりも小さく、10nm又は20nmの分離についても同様である)。
センサ機構230の各センサTOF(例えばTOF-1、TOF-2...TOF-N)について、センサTOFは、様々な実施例において、各画素で受信された変調信号と干渉ビームとの間の位相関係を決定するように構成されたTOFセンサとすることができる。センサTOFが出力する信号は、各画素に位置する光信号の変調強度の位相と、タイマ240からの信号から導出された変調周波数の電気参照信号(例えば共通クロック源として機能し得る)とを比較する。様々な実施例において、センサTOFは直交信号(IQ)を出力し、この信号から位相を計算することができる。様々な実施例において、このような計算は、センサ自体で(例えばセンサTOF上のチップ/プロセッサで)実行され得るか、又は関連するプロセッサ/チップ(例えば処理部250のセンサ電子機器255又はホストコンピュータ258等に設けられている)で実行され得る。一般に、処理部250は、センサ機構230のセンサTOF(例えばTOF-1、TOF-2...TOF-N)から出力を受信し、この出力を利用する(例えば、ワークピース190の表面192上の表面点までの測定距離を決定するため)。
様々な実施例において、タイマ240は、センサTOFのうち少なくとも1つ(例えばセンサTOF-1)の一部であるか、又はそれからタイミング信号を受信することができる。このような実施例では、ヘテロダイン光源210の音響光学変調器の位相及び周波数は、実質的にセンサTOFによって(すなわちセンサTOFのタイマによって)制御され得る。様々な実施例において、各センサTOFは、振幅及び位相を測定するため、1つの深さフレーム内で90度ずれた4つの位相測定を実行し得る。各センサTOF上の各画素は、検出と復調を組み合わせるフォトニックミキサデバイスとすることができる。様々な実施例において、センサTOFは、測定信号及び参照アーム(すなわち参照ミラー224を含む)からの差周波数に対してのみ感受性を有し得る。和周波数の項は、相関二重サンプリングによって平均され、直流(DC)項と共に除去され得る。
様々な実施例において、デジタルホログラフィ計測システム200は、(例えば各反射信号ビームと反射参照ビームから)ワークピース波と参照波との間の位相差を画素ごとに測定する位相シフトホログラフィシステムとして動作する。いくつかの従来のシステムは、少なくとも3つのインターフェログラムからホログラムを計算する計算ステップを必要とするのに対し、本明細書で開示されている原理によれば、計算は少なくともほぼリアルタイムで(例えばセンサTOFで又は処理部等で)実行され得る。様々な実施例において、測定されたホログラムは画像面へ数値的に伝搬される。画像面では、全ての波長からの位相情報が位相アンラッピングルーチンを用いて合成されて、比較的長い非曖昧範囲(例えば絶対測定範囲)にわたって表面プロファイルを再構築する。
センサTOFに関して、様々な実施例におけるTOFカメラ等のTOFセンサは極めて良好な位相分解能を有し、これを用いて、システムの測定のための(例えばワークピース上の表面点までの絶対測定距離等を決定するための)大きい非曖昧範囲(NAR)を達成できることは認められよう。一般に、センサTOFの分解能が良好になればなるほど、長い非曖昧範囲を達成することができる(例えば復号可能な経路として)。本明細書で規定されているように、TOFセンサは、レーザビームの振幅及び位相を示す値を検知するように構成された任意のセンサ又は構成である。達成可能な非曖昧範囲に関して、もう1つの重要なファクタは、使用する波長の比である。従って、様々な実施例では、所与のシステムにおいて、大きい非曖昧範囲の達成を可能とするようにアンラッピング/復号することができる信号が得られる波長比を決定/使用することが望ましい。
図3Aから図3Cは、図2のデジタルホログラフィ計測システム200と同様のデジタルホログラフィ計測システム300のいくつかの動作原理を示す図である。関連する動作原理の説明について簡略化するため、図3Aから図3Cにはデジタルホログラフィ計測システム300の特定の部分のみを示す。以下で特別に記載されている場合を除いて、図3Aから図3Cのいくつかの番号を付けたコンポーネント3XXは、図1又は図2の同様の番号を付けた対応するコンポーネント1XX又は2XXに相当する及び/又はそれらと同様の動作を有し、類推によって理解され得ることは認められよう。図3Aで示されているように、ヘテロダイン光源310の出力は干渉光学機構320によって受け取られる。これに対応して、干渉光学機構320の出力はセンサ機構330によって受け取られる。
図2に関連付けて上述した動作と同様、ヘテロダイン光源310は、ある1つの偏光状態の複数の基本周波数と直交偏光状態の全ての周波数シフト成分とを有するコリメートビームから成る出力を提供することができる(例えば、第1の合成ビーム、第2の合成ビーム、第3の合成ビーム等を含む全合成コリメートビームとして提供される)。第1の合成ビームが干渉光学機構320のビームスプリッタ321(例えば偏光ビームスプリッタ)に入射すると、周波数f1を有する第1の信号ビームが伝搬してワークピース表面192の一部を照明すると共に、直交偏光及び周波数f1+Δfを有する第1の参照ビームが参照面324(例えば参照ミラー)の方へ伝搬する。この例で信号ビーム及び参照ビームに使用されるビームは、図2に関連付けて上述した例で使用したビームとは入れ替わっているが、いずれの構成も様々な実施例で使用され得ることは認められよう。次いで、第1の反射信号ビーム及び第1の反射参照ビームをビームスプリッタ321によって合成し、これにより、センサ機構330の方へ伝搬する第1の反射合成ビームを形成する。
第2の合成ビームがビームスプリッタ321に入射すると、周波数f2を有する第2の信号ビームが伝搬してワークピース表面192の一部を照明すると共に、直交偏光及び周波数f2+Δfを有する第2の参照ビームが参照面324の方へ伝搬する。次いで、第2の反射信号ビーム及び第2の反射参照ビームをビームスプリッタ321によって合成し、これにより、センサ機構330の方へ伝搬する第2の反射合成ビームを形成する。第3の合成ビームがビームスプリッタ321に入射した場合等も、同様のプロセスが実行される。様々な実施例では、ワークピース表面192上の参照点RP(例えばz=0又は他のz高さとして指定され得る)を測定するため、次いでワークピース表面上の他の表面点SPを測定するために、このタイプのプロセスを実行することができる。これについては以下で図3Bに関連付けて詳述する。
上述のプロセスと同様、ヘテロダイン光源310の全出力は全合成ビームとすることができる(例えば、N=3の例では、第1、第2、及び第3の合成ビームを含み得る)。上述した動作によれば、ヘテロダイン光源310からの全合成ビームがビームスプリッタ321に入射すると、各周波数f1、f2、及びf3並びに垂直偏光を有する第1、第2、及び第3の信号ビームを含む合成信号ビームが、軸に沿って伝搬して、ワークピース表面192の一部を照明する(例えば、ワークピース表面192におけるビーム合成はΣfiと表すことができ、この例では、合成信号ビームが周波数f1、f2、及びf3を有する信号ビームを含むことを示す)。また、上述した動作によれば、ヘテロダイン光源310からの全合成ビームがビームスプリッタ321に入射すると、各周波数f1+Δf、f2+Δf、及びf3+Δf、並びに水平偏光を有する第1、第2、及び第3の参照ビームを含む合成参照ビームが、軸に沿って参照面324の方へ伝搬する(例えば、参照面324におけるビーム合成はΣfi+Δfと表すことができ、この例では、合成参照ビームが周波数f1+Δf、f2+Δf、及びf3+Δfを有する参照ビームを含むことを示す)。
図3Bは、第1の例示信号セット380-1及び第2の例示信号セット380-2を含む、上述のプロセスに関連した様々な例示信号を示す。第1の例示信号セット380-1は、第1の参照ビーム信号RB1(例えば周波数f1+Δfを有する)、第1の信号ビーム信号SB1(例えば周波数f1を有する)、第1の合成ビーム信号CB1(例えばビート周波数Δfで変調されている)、及び第1の合成ビーム位相シフト信号CBPS1(例えばビート周波数Δで変調され、経路長差2Δzの結果として追加の位相シフトを有する)を含む。様々な実施例において、第1の合成ビーム信号CB1は、ワークピース表面上の参照点(例えば図3Aの参照点RP)の測定から得ることができる。第1の合成ビーム位相シフト信号CBPS1は、その後のワークピース表面上の異なる表面点(例えば図3Aの表面点SP)の測定から得ることができる。図3Bで示されているように、信号CB1とCBPS1との差は第1の位相シフトΦ1=(f1)(2Δz)/cに対応する。ここで、cは光の速度に相当する。
第2の例示信号セット380-2は、第2の参照ビーム信号RB2(例えば周波数f2+Δfを有する)、第2の信号ビーム信号SB2(例えば周波数f2を有する)、第2の合成ビーム信号CB2(例えばビート周波数Δfで変調されている)、及び第2の合成ビーム位相シフト信号CBPS2(例えばビート周波数Δで変調され、経路長差2Δzの結果として追加の位相シフトを有する)を含む。様々な実施例において、第2の合成ビーム信号CB2は、ワークピース表面上の参照点(例えば図3Aの参照点RP)の測定から得ることができる。第2の合成ビーム位相シフト信号CBPS2は、その後のワークピース表面上の表面点(例えば図3Aの表面点SP)の測定から得ることができる。図3Bで示されているように、信号CB2とCBPS2との差は第2の位相シフトΦ2=(f2)(2Δz)/cに対応する。ここで、cは光の速度に相当する。第3の位相シフトΦ3を決定するための第3の合成ビーム等を用いて、同様のプロセスが実行され得ることは認められよう。
図3Cは、図3Bに示されている位相シフトの処理に関連するデジタルホログラフィ計測システム300のいくつかのコンポーネントを示す。図3Cで示されているように、センサ機構330はセンサTOF-1、TOF-2、及びTOF-3を含み、これらはそれぞれ画素アレイ335-1、335-2、及び335-3を含む。画素アレイの各々において、ワークピース表面192上の特定の表面点(例えば図3Aに示されている表面点SP)を測定するため使用されるものとして、各画素336-1、336-2、及び336-3が示されている。様々な実施例において、処理部350は、位相シフトΦ1、Φ2、Φ3等に関するデータ(例えば上述したもの等)を(例えばセンサ電子機器355で)受信することができる。次いで、処理部350(例えばコンピュータ358を利用する)は、位相アンラッピングを実行することができる(例えば、位相シフトΦ1、Φ2、Φ3等に基づいてΔzの値を決定するため)。様々な実施例において、Δzの値を決定することは、ワークピース190の表面192上の表面点(例えば表面点SP)までの測定距離を決定することに相当する。以下で図4及び図5に関連付けて、ルックアップテーブルを用いて(例えばΔzを決定するため)位相アンラッピングを実行するための単純化した例を詳述する。
図4は、デジタルホログラフィ計測システムの動作の一部としての位相アンラッピングに用いられるルックアップテーブル400の図である。図4の例において、第1の列は、第1の波長λ1(例えばλ1=500nm)を有する第1波長レーザビームに対応する信号を受信する第1のセンサTOF-1に対応する。第1の列は、考えられる様々な位相Φ1に対応する値を含む(例えば、図4の位相Φ1、Φ2、Φ3は図3Aから図3Cに関連付けて上述した位相シフトに対応し得る)。図4において、第2の列は、第2の波長λ2(例えばλ2=800nm)を有する第2波長レーザビームに対応する信号を受信する第2のセンサTOF-2に対応する。第2の列は、考えられる様々な位相Φ2に対応する値を含む。第3の列は、第3の波長λ3(例えばλ3=1000nm)を有する第3波長レーザビームに対応する信号を受信する第3のセンサTOF-3に対応する。第3の列は、考えられる様々な位相Φ3に対応する値を含む。ルックアップテーブル400を用いる具体例として、位相Φ1、Φ2、Φ3がそれぞれ216度、90度、及び288度に対応する値を有する場合、このような値は、(例えば、図3Aに示されているワークピース表面上の参照点RPの高さに対する)測定表面点SPの表面高さΔzが、Δz=0.9ミクロンに対応すると考えることができる。テーブル400の第4の列の値は、表面高さΔz=0からΔz=2.0ミクロンまでの範囲(2.0ミクロンの全非曖昧範囲)にわたって0.1ミクロン刻みで示されている。このような関係は、以下で詳述される図5に更に示されている。
図5は、図4のルックアップテーブルからのいくつかの値をグラフで示す図である。図5は3つのグラフ500A、500B、及び500Cを含み、各グラフのY軸上に位相値のサイクルが示され、グラフ500Aの上部でX軸に沿って含まれる表面高さスケールに対して値がプロットされている(また、各グラフの下部のX軸上に、0.1ミクロン刻みで示された各表面高さに対応する位相値も示されている)。図5で示されているように、グラフ500Aは、第1の波長λ1(すなわちλ1=500nm)を有するレーザビームに対応する第1の位相Φ1の値を示し、これらの値は8周期のサイクルが示されている。グラフ500Bは、第2の波長λ2(すなわちλ2=800nm)を有するレーザビームに対応する第2の位相Φ2の値を示し、これらの値は5周期のサイクルが示されている。グラフ500Cは、第3の波長λ3(すなわちλ3=1000nm)を有するレーザビームに対応する第3の位相Φ3の値を示し、これらの値は4周期のサイクルが示されている。
図5で示されているように、表面高さΔzの値は、各位相値に依存するだけでなく、各位相値がどの周期に含まれるかにも依存する。一例として、上記のように表面高さΔz=0.9ミクロンでは、位相Φ1=216度であり、対応する波形の第4の周期に含まれ、位相Φ2=90度であり、対応する波形の第3の周期に含まれ、位相Φ3=288度であり、対応する波形の第2の周期に含まれる。従って、位相アンラッピングプロセスは、これらの位相値の一意の組み合わせ(すなわち、図5のグラフ図によれば、これらの位相値の各々が含まれる周期を示す)に対応する一意の表面高さΔzを決定する。
図4及び図5の例では、上述のように動作原理の説明を簡略化するため、波長λ1=500nm、波長λ2=800nm、波長λ3=1000nmが選択され、この例では結果として非曖昧範囲は2.0ミクロンである。本明細書に開示されている原理に従って、他の波長の組み合わせを選択及び使用してもよい(例えば、これによって非曖昧範囲がより長くなり得る)。例えば、いくつかの市販のレーザ光源を用いて達成され得る波長λ1=633nm、波長λ2=687nm、波長λ3=767nmの組み合わせは、いくつかの実施例において、約8.82mmの非曖昧範囲となり得る。様々な実施例において、対応するΔz刻みの大きさは、位相測定がどのくらい精密であり得るか(例えば信号対雑音比等に関して)に基づいて選択/使用すればよい。
様々な実施例において、様々なタイプの位相アンラッピングルーチンを使用することができる(例えば、位相値の一意の組み合わせに基づいて表面高さΔz値を決定するため)。例えば、図4及び図5に関連付けて上述したようなルックアップテーブルの代わりに又はルックアップテーブルに加えて、位相アンラッピングのために機械学習プロセスを利用してもよい。機械学習を利用したそのような位相アンラッピングの一例として、機械学習のデータに対してK最近傍リグレッサ(KNN(K-nearest neighbor)regressor)を訓練することができる。このようなプロセスは、雑音のないクリーンなデータに対してKNNリグレッサを訓練し、次いでこれを用いて比較的雑音の多いデータに対して行われる位相アンラッピングを実演することによって、有効性が決定される。このような試験によって、これらのプロセス(KNNモデル等、位相アンラッピングに機械学習を利用することを含む)が測定値の決定において高い精度を与えることが確認されている。
本明細書で開示されているようなデジタルホログラフィ計測システム(例えば、センサ等のTOFカメラを用いたヘテロダイン検出を使用する)は、いくつかの従来の計測システムに比べて様々な利点を有し得ることは認められよう。利用されるヘテロダイン検出によって、ホログラフィにおける高い信号対雑音比が可能となり、これを利用して非曖昧範囲(NAR)を拡大すると共に実行される測定の精度を向上させる。また、長い非曖昧範囲(例えば絶対測定範囲)を可能とするために合成波長に頼らない位相アンラッピングルーチンが用いられる。波長多重化が実行される(例えば、比較的低コストで入手され得るダイクロイックコンポーネント(dichroics)の利用によって可能となり、これを用いて別個の波長を有する信号ビームを分離することができる)。波長多重化の利用によって、複数のTOFカメラを用いて1つの深さフレーム内で比較的同時に全ての波長の全ての位相をキャプチャし、環境ロバスト性の増大を図ることができる。
このように迅速な測定データ取得は、測定データをキャプチャしている時にワークピースとシステムとの間の移動が最小限であるか又は皆無であることを保証するのに役立つ(例えば、これに対して従来のシステムでは、画像及び/又はデータが個別に又は順番にキャプチャされるので、より長い時間がかかり、例えばワークピースの振動、偶発的な移動、コンベヤに沿った正常な前進等に起因して、ワークピースがシステムに対して移動する可能性がある)。位相を直接測定することによって、位相検索ルーチンが不要となり、従来のシステムに比べて計算作業負荷が軽減する。本明細書で開示されている構成は、いくつかの実施例において、6つの異なる波長を用いる既存の多波長システムと同様の性能を3つの異なる波長を用いて達成できるので、同様の性能に対するコストが低くなり得る。様々な実施例において、本明細書で開示されているような構成は、高スループットインライン計測サンプリング/測定等の用途に利用することができる。
図6A及び図6Bは、本明細書で開示されているようなデジタルホログラフィ計測システム600の異なる動作モードを示す図である。以下で特別に記載されている場合を除いて、デジタルホログラフィ計測システム600は、図2及び図3Aから図3Cのデジタルホログラフィ計測システム200及び300と同様である。異なる動作モードの関連する動作原理の説明について簡略化するため、図6A及び図6Bにはデジタルホログラフィ計測システム600の特定の部分のみを示す。図6A及び図6Bで示されているように、デジタルホログラフィ計測システム600は、ヘテロダイン光源610、干渉光学機構620、センサ機構630、タイマ640、及び処理部650を含む。ヘテロダイン光源610は、多波長レーザ光源611及び音響光学変調器(AOM:acousto-optic modulator)612を含む(例えば、図2のヘテロダイン光源210に含まれるものとして同様のコンポーネントが記載されている)。図2のデジタルホログラフィ計測システム200との1つの相違点は、以下で詳述するように、デジタルホログラフィ計測システム600が異なる動作モード間の切り替えのためのスイッチ619(例えばヘテロダイン光源610又は他のものに含まれる)を含むことである。
図6Aは、振幅変調連続波(AMCW)モード601Aで動作しているデジタルホログラフィ計測システム600を示し、図6Bは、デジタルホログラフィモード601Bで動作しているデジタルホログラフィ計測システム600を示す(例えば、これらのモード間の切り替えの一部としてスイッチ619を用いる)。以下で詳述するように、AMCWモード601Aは、比較的粗いスケールの測定を与えるものとして特徴付けることができ(例えば、センサTOFのうち1つ以上を用いて特定のTOF測定動作を実行する)、デジタルホログラフィモード601B(例えば、図2及び図3Aから図3Cに関連付けて上述したように動作し得る)は、比較的細かいスケールの測定を与えるものとして特徴付けることができる。これら2つのモードの測定を組み合わせて、比較的大きい非曖昧範囲にわたって高精度の測定を与えることができる。
図6Aで示されているように、AMCWモード601Aでは、スイッチ619はタイマ640(例えばクロック信号を提供する)を多波長レーザ光源611に結合して(例えば多波長レーザ光源611の電流源に結合される)、光の強度を変調する。音響光学変調器612はタイマ640からクロック信号を受信せず、様々な実施例ではオフのままである。従って、多波長レーザ光源611からの光は音響光学変調器612を(例えばゼロ次の光として)通過する。この例の動作によれば、ビームスプリッタ621によって参照ミラー624の方へ向けられる参照ビームは存在しないことは認められよう。音響光学変調器612を通過したゼロ次の光はビームスプリッタ621を通過し、ワークピース190の表面192を照明し、これは反射光に従って光学機構620により撮像される(例えば、ビームスプリッタ621によってセンサ機構630の方へ向けられる)。センサ機構630のセンサTOF(例えば図2を参照のこと)のうち1つ以上は、ホモダイン検出によって、ワークピース表面192上の表面点の距離/表面高さを測定する。センサTOFのうち1つ以上のこのような動作に従って、比較的粗い測定範囲を達成することができる(例えば、1つの具体的な実施例では約1.5メートルの非曖昧範囲を含み、このような距離における潜在的な距離誤差は約0.5%であり、約7.5mmに相当する)。
従って、AMCWモード601Aのこのような動作は粗いスケールの測定を効果的に与える。図6Bのデジタルホログラフィモード601Bは、潜在的な距離誤差よりも大きい非曖昧範囲(例えば、この例では7.5mmよりも大きい非曖昧範囲)等、図6Aの粗いスケールの測定の潜在的な距離誤差を解決することができる細かいスケールの測定を与えるために利用され得る。デジタルホログラフィモード601Bでは、スイッチ619がタイマ640を音響光学変調器612に結合してこれがオンになる。デジタルホログラフィ計測システム600は、図2及び図3Aから図3Cに関連付けて上述したように動作する。様々な実施例において、デジタルホログラフィ計測システム600は、所望の測定を達成するため、フレームごとにモード601Aとモード601Bとを交互に繰り返すことができる。
上記のように、図2の構成の1つの具体的な実施例(すなわち、図6Bの構成が同様に動作する)では、いくつかの市販のレーザ光源を用いて達成され得る波長λ1=633nm、波長λ2=687nm、波長λ3=767nmの組み合わせを利用して、いくつかの実施例で約8.82mmの非曖昧範囲を得ることができる。これは、AMCWモード601Aについて上述した例における粗いスケールの測定の7.5mmの潜在的な誤差よりも大きいことが分かる。従って、これらの例における2つのモードの測定を組み合わせて、約1.5メートルの全非曖昧範囲をサブミクロン精度で達成することができる。2つのモード601A及び601Bを用いると、追加のレーザ光源を加える必要なく、全非曖昧範囲を(例えば1.5メートルに)拡大できることは認められよう。1つの具体例では、モード601B等のデジタルホログラフィモードのみを用いて非曖昧範囲を同様に拡大するために、追加のレーザ光源が必要となり得る(例えば、波長λ1、λ2、λ3、λ4、λ5、及びλ6の合計6つのレーザ光源のため、3つの追加のレーザ光源を加える)。このような代替的な構成に比べて、図6A及び図6Bに示されているように2つのモード601A及び601Bを用いると、あまり複雑でなく低コストのシステムを得ることができる(例えば、6つ等でなく、3つだけのレーザ光源/波長λ1、λ2、λ3を使用し、これらから測定を実施する)。
様々な実施例において、AMCWモード601A及びデジタルホログラフィモード601Bの測定を組み合わせるために異なる技法を用いることができる。上記のように、様々な実施例において、AMCWモード601Aは粗いスケールの表面高さデータを提供し、場合によっては、主として、オリジナルのホログラフィ範囲を超えたアンラッピングの曖昧さを解決するために使用され得る。1つの具体的な実施例において、α=デジタルホログラフィモード601Bにおける測定の非曖昧範囲であり、z_AMCW=AMCWモード601Aの表面高さ測定値であり、z_Holo=デジタルホログラフィモード601Bのホログラフィz高さ測定値である。項l=下限(floor)(z_AMCW/α)は、デジタルホログラフィモード601Bのデジタルホログラフィ非曖昧範囲の整数の倍数を与える(例えば、測定高さがAMCWモード601Aの非曖昧範囲内に収まることが望ましい)。上記のように、1つの具体的な実施例では、100MHzの変調周波数は1.5メートルのAMCW非曖昧範囲に相当し得る。デジタルホログラフィ非曖昧範囲は、潜在的な距離誤差よりも大きい可能性がある(例えば、この例では非曖昧範囲は7.5mmよりも大きい)。最終z高さは、Δz=I・α+z_Holoによって決定することができる。この式に従って、ワークピース上の第1の表面点までの合成測定距離を決定するための1つの例では、第1のAMCWモード測定距離は、デジタルホログラフィ非曖昧範囲の整数の倍数を与える。この整数の倍数を第1のデジタルホログラフィモード測定距離と組み合わせて、ワークピース上の第1の表面点までの合成測定距離を決定する。
図7から図11は、ヘテロダイン光源の様々な実施例(例えば、図1のヘテロダイン光源110及び/又は図2のヘテロダイン光源210として使用され得る)を示す。様々な実施例において、図7から図10の構成の各々は、(ヘテロダイン干渉法のため音響光学変調器等からの)共伝搬すると共に交差偏光したビームのためのインライン光学機構として特徴付けることができる。更に具体的には、これらの実施例の各々は、(例えば音響光学変調器からの)直交偏光出力ビームを、ヘテロダイン光源の出力として使用される単一のビームに合成することを目的とするインライン光学機構として特徴付けられる。本明細書に開示されているインライン光学機構では、直交偏光ビームはそれぞれ光源光学機構の同じコンポーネントセットを通って進むことが示され、複屈折光学要素部(すなわち複屈折光学要素を含む)は直交偏光出力ビームを単一の合成ビームの一部として単一のビームに合成する。
以下に記載されている実施例は、いくつかの代替的な実施例に比べて利点を有し得ることは認められよう。例えば、1つの代替的な実施例では、ファイバ結合を用いることができる(例えば、音響光学変調器の出力をレンズによって偏光維持光ファイバ等の光ファイバ内に集束できる場合)。しかしながら、このような構成は、クリッピングを引き起こす焦点面内のビームオフセット、ビームサイズ/モードフィールド直径の不一致、及び/又は限定的なファイバ入力開口数(NA)が組み合わされることに起因して、高い結合損失を有し得る。別の代替的な実施例では、2つの偏光ビームスプリッタ及び反射器が使用され得る。音響光学変調器からの第1のビームは第1のビームスプリッタによって上方へ向けられ、第1の反射器によって第2の反射器へと反射され、第2の反射器は第1のビームを第2のビームスプリッタへと反射し、第2のビームスプリッタは第1のビームを前方へ誘導する。音響光学変調器からの第2のビームは第1及び第2のビームスプリッタを通って真っすぐ進み、第1のビームと共伝搬して構成から出る。しかしながら、このような構成は、経路長(すなわち第1及び第2のビームの)が同一でないことと、共通のビーム経路を持たない(すなわち異なる光学コンポーネントを介して進む)ことに起因して、一致しないビームパラメータを有し得る。この結果、ロバスト性が不足する可能性がある。以下で図7から図11に関連付けて記載される実施例は、これらの構成に比べていくつかの利点を有することは認められよう。
図7は、レーザ光源711と、音響光学変調器712と、ドライバ713と、光源光学機構718(すなわち受信光学要素部714p及び複屈折光学要素部715pを含む)と、を含むヘテロダイン光源710の図である。受信光学要素部714pは、単一の撮像レンズ714を有する撮像システムを含む。複屈折光学要素部715pは、ウォラストンプリズム715を含む。
動作中、タイマ(例えばタイマ140、タイマ240等)は、タイミング信号(例えばクロック/参照信号)をドライバ713に提供することができる。次いで、音響光学変調器712はドライバ713によって変調周波数Δωで駆動される。レーザ光源711は、第1の周波数ω1(すなわち対応する第1の波長を有する)の第1波長レーザビームを提供することができる。音響光学変調器712(例えばせん断波AOM)は、入力された第1波長レーザビームを受け取り、この入力された第1波長レーザビームに対して直交偏光した周波数ω1+Δωの対応する第1周波数シフトレーザビームを生成/発生する。音響光学変調器712内の対物面は、音響光学変調器712の分離角αとウォラストンプリズム715の分離角βの双方に合わせた倍率Mで、撮像レンズ714によってウォラストンプリズム715内に撮像される。ここで、M=tan(α)/tan(β)である。ウォラストンプリズム715の動作特性に従って、第1の周波数ω1の合成第1波長レーザビームと周波数ω1+Δωの直交偏光第1周波数シフトレーザビームとを含む第1の合成ビームが出力となる。
従って、ヘテロダイン光源710のコンポーネント(例えば撮像レンズ714及びウォラストンプリズム715を含む)は、共伝搬すると共に交差偏光したビームのためのインライン光学機構として特徴付けることができる。更に具体的には、これらのコンポーネントは、直交偏光出力ビームをヘテロダイン光源から出力される単一のビームに合成することを目的とするインライン光学機構として特徴付けられる。図7で示されているように、ヘテロダイン光源710の出力は、例えば測定動作に使用するため(例えば、第1の合成ビームを利用する測定プロセスに基づいてワークピース上の少なくとも1つの表面点までの少なくとも1つの測定距離を決定するため)、測定光学機構MOA(例えば測定光学機構120、220等)に提供する/測定光学機構MOAによって受信することができる。
図8は、レーザ光源811と、音響光学変調器812と、ドライバ813と、光源光学機構818(すなわち受信光学要素部814p及び複屈折光学要素部815pを含む)と、を含むヘテロダイン光源810の図である。受信光学要素部814pは、2つの撮像レンズ814A及び814Bを有する撮像システムを含む。複屈折光学要素部815pは、ウォラストンプリズム815を含む。以下で特別に記載されている場合を除いて、ヘテロダイン光源810、並びに図9、図10、及び図11のヘテロダイン光源910、1010、及び1110は、図7のヘテロダイン光源710と同様に動作するように理解される。単一の撮像レンズ714を備えた撮像システムを有する図7のヘテロダイン光源710に対して、図8のヘテロダイン光源810の主な相違点は、複数のレンズ814A及び814Bを備えた撮像システムを含むことである。これによって、以下で詳述するように、いくつかの適用例に望ましい特定の動作特性を与えることができる。
レーザ光源811が多波長レーザ光源であり得る実施例において、音響光学変調器812の回折角αは波長依存である可能性がある。従って、図8のような構成において、いくつかの実施例では異なる波長のビームが共伝搬しないことがある(例えば、これは構成の後段でビームクリッピングを生じ得る)。このような問題に対応するため、撮像システム(すなわちレンズ814A及び図814Bを含む)をクロマティック撮像システム(chromatic imaging system)であるように構成し、倍率を波長依存として、音響光学変調器812の回折角αに合わせる(すなわち各波長で)ことができる(例えば、異なる波長のレーザビームが共伝搬するように及び/又は他の方法によって構成の後段でビームクリッピングを生じないように)。より具体的には、この構成に従って、音響光学変調器812内の対物面は、クロマティック撮像システム(すなわち撮像レンズ814A及び図814Bを含む)によってウォラストンプリズム815内に倍率Mで撮像される。倍率Mは各波長ごとに変動し、各波長で音響光学変調器812の分離角α(ω)とウォラストンプリズム815の分離角β(ω)の双方に合っている。ここで、M=tan(α(ω))/tan(β(ω))である。
図9は、レーザ光源911と、音響光学変調器912と、ドライバ913と、光源光学機構918(すなわち、受信光学要素部914p及び複屈折光学要素部915pを含む)と、を含むヘテロダイン光源910の図である。受信光学要素部914pは受信レンズ914を含む。複屈折光学要素部915pは複屈折ビーム変位器915を含む。
図7に関連付けて上述した動作と同様、音響光学変調器912(例えばせん断波AOM)は、入力された第1波長レーザビームを受け取り、この入力された第1波長レーザビームに対して直交偏光した対応する第1周波数シフトレーザビームを生成/発生する。入力レンズ914は、(例えば焦点距離fで)音響光学変調器912内に焦点が合っており、無限遠に結像する(すなわち、個々のビームがコリメートされる)。複屈折ビーム変位器915の動作特性に従って、第1波長レーザビームは通過するが、第1周波数シフトレーザビーム(すなわち直交偏光している)は実質的にシフトされて第1波長レーザビームと共に出力する。従って、複屈折ビーム変位器915の出力は、合成第1波長レーザビームと直交偏光第1周波数シフトレーザビームとを含む第1の合成ビームである。
従って、ヘテロダイン光源910のコンポーネント(例えば撮像レンズ914及び複屈折ビーム変位器915を含む)は、共伝搬すると共に交差偏光したビームのためのインライン光学機構として特徴付けることができる。更に具体的には、これらのコンポーネントは、直交偏光出力ビームをヘテロダイン光源から出力される単一のビームに合成することを目的とするインライン光学機構として特徴付けられる。図9で示されているように、ヘテロダイン光源910の出力は、例えば測定動作に使用するため(例えば、第1の合成ビームを利用する測定プロセスに基づいてワークピース上の少なくとも1つの表面点までの少なくとも1つの測定距離を決定するため)、測定光学機構MOA(例えば測定光学機構120、220等)に提供する/測定光学機構MOAによって受信することができる。
図10は、レーザ光源1011と、音響光学変調器1012と、ドライバ1013と、光源光学機構1018(すなわち、受信光学要素部1014p及び複屈折光学要素部1015pを含む)と、を含むヘテロダイン光源1010の図である。受信光学要素部1014pは受信プリズム1014を含む。複屈折光学要素部1015pは複屈折ビーム変位器1015を含む。以下で特別に記載されている場合を除いて、ヘテロダイン光源1010は図9のヘテロダイン光源910と同様に動作するように理解される。受信レンズ914を有する図9のヘテロダイン光源910に対して、図10のヘテロダイン光源1010の主な相違点は、受信プリズム1014を代替的に含むことであり、これによってビームは結像されることなく合成され得る。様々な実施例において、受信プリズム1014では、プリズム頂角(例えば、いくつかの実施例では頂点の数)は、音響光学変調器1012の分離角及び1又は複数の入力波長レーザビームに合わせることができる。
上述のように、図7から図10の実施例はいくつかの同様の動作特徴を有する。各構成において、光源光学機構(例えば光源光学機構718、818、918、又は1018)は、少なくとも、音響光学変調器からの第1波長レーザビーム及び第1周波数シフトレーザビームを受け取ってこれらを合成し、対応する第1の合成ビームを出力する。各構成において、光源光学機構は、受信光学要素部(例えば、各レンズ714、814A及び814B、914、並びにプリズム1014等、少なくとも1つの受信光学要素を含む)と、複屈折光学要素部(例えば、各ウォラストンプリズム715及び815並びに各複屈折ビーム変位器915及び1015等、少なくとも1つの複屈折光学要素を含む)と、を含む。他の実施例では、代替的な複屈折光学要素(例えばロション(Rochon)プリズム)が使用され得ることは認められよう。各構成において、受信光学要素部は、第1波長レーザビーム及び第1周波数シフトレーザビームを受け取り、これらのビームを光路に沿って複屈折光学要素部の方へ誘導するように構成されている。複屈折光学要素部は、第1波長レーザビーム及び第1周波数シフトレーザビームを受け取り、これらのビームを合成して対応する第1の合成ビームを出力するように構成されている。
図7から図10の各構成の複屈折光学要素(例えば、各ウォラストンプリズム715及び815並びに各複屈折ビーム変位器915及び1015含む)の各々は、様々な実施例において、このようなコンポーネントのいくつかの他の使用法に対して逆の/反対の向きで利用されるものとして特徴付けられることは認められよう。より具体的には、このような複屈折光学要素は、一方側で光路に沿ってビーム及び/又は共伝搬ビームを受け取り、次いでこれらのビームを分割して出力として提供するように用いられるのが典型的である。このような従来の使用法とは異なり、図7から図10の構成によれば、各複屈折光学要素を用いて様々なビームを受け取り、次いでこれらのビームを合成して、単一の合成ビーム(例えば共伝搬するビームを含む)の一部として出力する。このため上記のように、図7から図10の実施例の各々は、直交偏光出力ビームをヘテロダイン光源から出力される単一のビームに合成することを目的とするインライン光学機構として構成されている。図7から図10で示されているように、各ヘテロダイン光源の出力は、例えば測定動作に使用するため(例えば、合成ビームを利用する測定プロセスに基づいてワークピース上の少なくとも1つの表面点までの少なくとも1つの測定距離を決定するため)、測定光学機構MOA(例えば測定光学機構120、220等)に提供する/測定光学機構MOAによって受信することができる。
図11は、レーザ光源1111と、音響光学変調器1112と、ドライバ1113と、光源光学機構1118(すなわち、空間フィルタリング構成1116及びコリメーションレンズ1117を含む)と、を含むヘテロダイン光源1110の図である。様々な実施例において、レーザ光源1111は多波長レーザ光源(例えば第1、第2、第3等の波長のレーザビームを提供する)とすることができ、音響光学変調器1112はこれに応じて本明細書で記載されているように合成ビームを生成することができる。様々な実施例において、音響光学変調器1112からの合成ビーム(例えば第1、第2、第3等の合成ビームを含む)は、測定光学機構MOAまでの経路上で空間フィルタリング構成1116及びコリメーションレンズ1117を通過する。運動量保存の法則に従って、異なる波長は音響光学変調器1112の動作によって異なる角度に回折され得る。一実施例において、空間フィルタリング構成1116は顕微鏡対物レンズ1116A及びピンホールフィルタ要素1116Bを含み得る。音響光学変調器1112からの合成ビームは、対物レンズ1116Aによってピンホールフィルタ要素1116B(例えば10μmのピンホールを含む)上に結像されて、異なる波長の回折ビーム及び非回折ビームが重複するようになっており、ピンホールフィルタ要素1116Bから出射する光は、実質的に、コリメーションレンズ1117にビームを与えるための点光源となる(例えば、図11で示されているような使用可能重複エリアUAがある)。合成ビーム(例えば第1、第2、第3等の合成ビームを含む)が空間フィルタリング構成1116を通過した後、コリメーションレンズ1117はこれらの合成ビームをコリメートするように動作する。
一般に、図7から図11の実施例の様々な構成では多波長レーザ光源が使用され得る(例えば、特に図8及び図11に関連付けて上述したが、他の構成でも同様に使用され得る)。以下の多波長レーザ光源の動作の記載は図11の多波長レーザ光源1111に関連付けて行われるが、この記載は、多波長レーザ光源を用いる場合、図7から図10の構成のいずれにも適用され得ることは認められよう。1つの実施例では、多波長レーザ光源1111は第1の周波数ω1(すなわち対応する第1の波長を有する)の第1波長レーザビームを提供することができる。音響光学変調器1112は第1波長レーザビームを受け取り、周波数ω1+Δωの対応する第1周波数シフトレーザビームを生成する。同様に、多波長レーザ光源1111は第2の周波数ω2(すなわち対応する第2の波長を有する)の第2波長レーザビームを提供することができる。音響光学変調器1112は第2波長レーザビームを受け取り、周波数ω2+Δωの対応する第2周波数シフトレーザビームを生成する。同様に、多波長レーザ光源1111は第3の周波数ω3(すなわち対応する第3の波長を有する)の第3波長レーザビームを提供することができる。音響光学変調器1112は第3波長レーザビームを受け取り、周波数ω3+Δωの対応する第3周波数シフトレーザビームを生成する。様々な実施例において、多波長レーザ光源1111は、追加の又はより少ない波長レーザビームを提供してもよい(例えば、これに応じて音響光学変調器1112が追加の又はより少ない周波数シフトレーザビームを生成する)。一般に、音響光学変調器1112の動作において、音響波の位相シフトΔωは、波長とは無関係に全てのビームで同じ量Δωの光位相シフトを生成することは認められよう。このような動作では、様々な実施例において、ドライバ1113が位相固定無線周波数(RF)ドライバであることが望ましい場合がある。
上記のように、音響光学変調器1112のドライバ1113にタイマが結合されて、ドライバ1113で変調周波数Δωを生成するためのベースとなる参照クロック信号を提供する。一実施例において、クロック信号は、変調周波数Δω(例えば40MHz~100MHzの範囲内)で提供される。分散クロック信号は、音響光学変調器1112の音響波の周波数と同等であると共に光ビームの周波数シフトΔωと同等であり得る(例えば光子周波数に1音響フォノンを加える)。種々の代替的な実施例において、分散クロック信号は、他の任意の周波数とし、追加の電子コンポーネントによって所望のターゲット周波数に乗算/除算することができる。
この例において、各周波数シフトレーザビームは、対応する波長レーザビームの音響光学変調によって取得される。この構成のいくつかの利点には、全てが同一の周波数シフトを有すると共に位相固定され得る複数の波長を提供できること、また、全体的な構成が(例えばいくつかの従来の構成に比べて)比較的複雑でなく、低コストとなり得ることが含まれる。種々の代替的な構成では、他の手法を用いて各周波数シフトレーザビームを取得することができる。例えば、光源/周波数シフトレーザビームの各対について、レーザは、異なる周波数を有する2つのビームを生成するため、強い軸方向磁場内にレーザ媒質を有するゼーマンレーザとすることができる。様々な他の代替的な実施例では、音響光学変調器の代わりに電気光学変調器を使用するか、又は、複数の2波長光源(例えば、同時に2つの波長で動作するレーザ)の組み合わせを使用することも可能である。
様々な実施例において、多波長レーザ光源1111は、いくつかの構成では、異なる波長のレーザビームを提供するための個別のレーザ光源を含み得る。例えば、波長比の所望の組み合わせを提供する異なるレーザ光源を含めることができる(例えば、1つの具体的な実施例では、633nm、687nm、及び767nm等の波長を提供する)。例えば、一実施例において、多波長レーザ光源1111に含まれる第1のレーザ光源は第1波長レーザビームを提供することができる(例えば、1つの具体的な実施例では名目波長が633nmである)。これに応じて、ヘテロダイン光源1110は上述のように、垂直偏光の第1の波長λS1(例えば633nm)を有する第1波長レーザビームと水平偏光の波長λFS1を有する第1周波数シフトレーザビーム(それぞれ直線偏光である)とを含む第1の合成ビームを生成することができる。タイマは、音響光学変調器1112の(例えばドライバ1113の)駆動周波数を設定するクロック信号(例えば40MHz)を生成する。この結果、第1の合成ビームによって、(例えば40MHzの)ビート信号が検出される。
同様に、多波長レーザ光源1111に含まれる第2のレーザ光源は、第2波長レーザビームを提供することができる(例えば、1つの具体的な実施例では名目波長が687nmである)。これに応じて、ヘテロダイン光源1110は上述のように、垂直偏光の第1の波長λS2(例えば687nm)を有する第2波長レーザビームと水平偏光の波長λFS2を有する第2周波数シフトレーザビーム(それぞれ直線偏光である)とを含む第2の合成ビームを生成することができる。同様に、多波長レーザ光源1111に含まれる第3のレーザ光源は、第3波長レーザビームを提供することができる(例えば、1つの具体的な実施例では名目波長が767nmである)。これに応じて、ヘテロダイン光源1110は上述のように、垂直偏光の第3の波長λS3(例えば767nm)を有する第3波長レーザビームと水平偏光の波長λFS3を有する第3周波数シフトレーザビーム(それぞれ直線偏光である)とを含む第3の合成ビームを生成することができる。上記のように、タイマは、音響光学変調器1112の(例えばドライバ1113の)駆動周波数を設定するクロック信号(例えば40MHz)を生成し得る。この結果、第2及び第3の合成ビームの各々によって、(例えば40MHzの)変調周波数の検出されるビート信号が生成される。様々な実施例において、使用される個別のレーザ光源は、(例えば長いコヒーレンス帳を有するため)狭線幅を有することが望ましい場合がある。
図12は、ヘテロダイン光源を動作させるためのルーチン1200の例示的な実施例を示すフロー図である。ブロック1210では、少なくとも第1波長レーザビームを提供するようにヘテロダイン光源の第1の光源を動作させる。ブロック1220では、第1波長レーザビームを受け取り、対応する第1周波数シフトレーザビーム(例えば第1波長レーザビームの偏光に直交する偏光を有する)を生成するように、ヘテロダイン光源の音響光学変調器を動作させる。様々な実施例において、光源光学機構は、音響光学変調器から第1波長レーザビーム及び第1周波数シフトレーザビームを受け取ると共に合成し、対応する第1の合成ビームを出力する。光源光学機構は、受信光学要素部及び複屈折光学要素部を含む。受信光学要素部は、第1波長レーザビーム及び第1周波数シフトレーザビームを受け取り、これらのビームを光路に沿って複屈折光学要素部の方へ向けるように構成されている。複屈折光学要素部は、第1波長レーザビーム及び第1周波数シフトレーザビームを受け取り、これらのビームを合成して、対応する第1の合成ビームを(例えば測定光学機構に)出力するように構成されている。ブロック1230では、第1の合成ビームを使用する測定プロセスに基づいて、ワークピース上の少なくとも1つの表面点までの少なくとも1つの測定距離を決定する。
図13は、ヘテロダイン光源を含むデジタルホログラフィ計測システムを動作させるためのルーチン1300の例示的な実施例を示すフロー図である。ブロック1310では、少なくとも第1波長レーザビーム及び第2波長レーザビームを提供するように、ヘテロダイン光源の多波長光源(例えば多波長レーザ光源)を動作させる。ブロック1320では、第1波長レーザビームを受け取り、この第1波長レーザビームに対応する第1周波数シフトレーザビームを生成し、この第1周波数シフトレーザビームと第1波長レーザビームとを合成して第1の合成ビームを生成するように、更に、第2波長レーザビームを受け取り、この第2波長レーザビームに対応する第2周波数シフトレーザビームを生成し、この第2周波数シフトレーザビームと第2波長レーザビームとを合成して第2の合成ビームを生成するように、ヘテロダイン光源の音響光学変調器を動作させる。干渉光学機構は、ヘテロダイン光源から合成ビームを受け取り、ワークピースを撮像するための出力を提供するため合成ビームを使用する。この出力は、少なくとも、ヘテロダイン光源からの第1の合成ビームに基づいて生成される第1の干渉ビームと、ヘテロダイン光源からの第2の合成ビームに基づいて生成される第2の干渉ビームとを含む。
ブロック1330では、干渉光学機構から出力を受け取るようにセンサ機構を動作させる。センサ機構は、少なくとも第1及び第2のTOFセンサと第1のダイクロイックコンポーネントとを含む。第1のダイクロイックコンポーネントは、第1の干渉ビームを第2の干渉ビームから分離するように構成されている。第1の干渉ビームは第1のTOFセンサによって受け取られるように向けられ、第2の干渉ビームは第2のTOFセンサによって受け取られるように向けられる。ブロック1340では、第1及び第2のTOFセンサから出力を受信し、これらの出力を使用して、ワークピース上の少なくとも1つの表面点までの少なくとも1つの測定距離を決定する。
本開示の好適な実施例について図示及び記載したが、本開示に基づいて、図示及び記載した要素の構成及び動作のシーケンスにおける多数の変形が当業者には明らかであろう。種々の代替的な形態を用いて本明細書に開示された原理を実施することができる。更に、上述の様々な実施例を組み合わせて別の実施例を提供することも可能である。本明細書において言及した米国特許及び米国特許出願は全て、援用によりその全体が本願に含まれるものとする。これらの様々な特許及び出願の概念を用いて更に別の実施例を提供するために必要な場合は、上述の実施例の態様は変更可能である。
前述の記載に照らして、実施例にこれら及び他の変更を行うことができる。一般に、以下の特許請求の範囲において、使用される用語は本明細書及び特許請求の範囲に開示される特定の実施例に特許請求の範囲を限定するものとして解釈されず、そのような特許請求の範囲の権利が与えられる(entitled)均等物の全範囲に加えて全ての可能な実施例を包含するものとして解釈されるべきである。

Claims (20)

  1. 少なくとも、第1の周波数の第1波長レーザビーム及び前記第1の周波数とは異なる第2の周波数の第2波長レーザビームを提供するための多波長光源と、
    前記第1波長レーザビームを受け取り、当該第1波長レーザビームに対応する第1周波数シフトレーザビームを生成し、当該第1周波数シフトレーザビームと前記第1波長レーザビームとを合成して第1の合成ビームを生成し、
    前記第2波長レーザビームを受け取り、当該第2波長レーザビームに対応する第2周波数シフトレーザビームを生成し、当該第2周波数シフトレーザビームと前記第2波長レーザビームとを合成して第2の合成ビームを生成することが可能な音響光学変調器と、
    を含むヘテロダイン光源と、
    前記ヘテロダイン光源から前記第1の合成ビーム及び前記第2の合成ビームを受け取り、前記第1の合成ビーム及び前記第2の合成ビームを使用して、ワークピースを撮像するための出力を提供する干渉光学機構であって、
    当該出力は、前記ヘテロダイン光源からの前記第1の合成ビームに基づいて生成される第1の干渉ビームと、前記ヘテロダイン光源からの前記第2の合成ビームに基づいて生成される第2の干渉ビームと、を少なくとも含む干渉光学機構と、
    前記干渉光学機構から前記出力を受け取り、少なくとも、第1のTOFセンサと、第2のTOFセンサと、第1のダイクロイックコンポーネントと、を含むセンサ機構であって、前記第1のダイクロイックコンポーネントは、前記第1の干渉ビームを前記第2の干渉ビームから分離するように構成され、前記第1の干渉ビームは、前記第1のTOFセンサによって受け取られるように向けられ、前記第2の干渉ビームは、第2のTOFセンサによって受け取られるように向けられる、センサ機構と、
    を備えるデジタルホログラフィ計測システム。
  2. 前記第1のTOFセンサ及び前記第2のTOFセンサから出力を受信し、当該出力を使用して、前記ワークピースの少なくとも1つの表面点までの少なくとも1つの測定距離を決定する処理部を更に備える、請求項1に記載のデジタルホログラフィ計測システム。
  3. 前記多波長光源は更に、前記第1の周波数及び前記第2の周波数とは異なる第3の周波数の第3波長レーザビームを提供し、
    前記音響光学変調器は更に、前記第3波長レーザビームを受け取り、当該第3波長レーザビームに対応する第3周波数シフトレーザビームを生成し、当該第3周波数シフトレーザビームと前記第3波長レーザビームとを合成して第3の合成ビームを生成することが可能であり、
    前記干渉光学機構の前記出力は更に、前記ヘテロダイン光源からの前記第3の合成ビームに基づいて生成される第3の干渉ビームを含み、
    前記センサ機構は更に、第3のTOFセンサ及び第2のダイクロイックコンポーネントを含み、前記第2のダイクロイックコンポーネントは、前記第2の干渉ビームを前記第3の干渉ビームから分離するように構成され、前記第2の干渉ビームは、前記第2のTOFセンサによって受け取られるように向けられ、前記第3の干渉ビームは、前記第3のTOFセンサによって受け取られるように向けられる、
    請求項1に記載のデジタルホログラフィ計測システム。
  4. 前記干渉光学機構は、ビームスプリッタと、参照面と、撮像レンズを含む撮像レンズ部と、を含み、
    前記ビームスプリッタは、前記ヘテロダイン光源から前記第1の合成ビーム及び前記第2の合成ビームを受け取り、
    前記第1の合成ビーム及び前記第2の合成ビームを、前記ワークピースの表面へ向けられる第1の部分と、前記参照面へ向けられる第2の部分と、に分割し、
    反射された第1の部分及び反射された第2の部分を受け取って、前記第1の干渉ビーム及び前記第2の干渉ビームとして合成し、当該第1の干渉ビーム及び第2の干渉ビームを前記撮像レンズを介して前記センサ機構の方へ向ける、請求項1に記載のデジタルホログラフィ計測システム。
  5. タイマを更に備え、
    前記タイマは、前記音響光学変調器を動作させるために信号を前記ヘテロダイン光源に提供すると共に、前記第1のTOFセンサ及び前記第2のTOFセンサに信号を提供する、請求項1に記載のデジタルホログラフィ計測システム。
  6. 前記タイマは、前記第1のTOFセンサ及び前記第2のTOFセンサのうち1つの一部として含まれる、請求項5に記載のデジタルホログラフィ計測システム。
  7. デジタルホログラフィモードで動作する間、前記第1の合成ビーム及び前記第2の合成ビームを生成する前記音響光学変調器を動作させるために前記タイマが結合され、処理部は前記第1のTOFセンサ及び前記第2のTOFセンサから出力を受信し、当該出力を用いて前記ワークピースの第1の表面点までの第1のデジタルホログラフィモード測定距離を決定し、
    振幅変調連続波(「AMCW」)モードで動作する間、前記音響光学変調器は前記第1の合成ビーム及び前記第2の合成ビームを生成せず、前記第1のTOFセンサ及び前記第2のTOFセンサのうち少なくとも1つの前記出力を前記処理部が用いて、ホモダイン検出によって、前記ワークピースの前記第1の表面点までの第1のAMCWモード測定距離を決定し、前記第1のAMCWモード測定距離の少なくとも一部及び前記第1のデジタルホログラフィモード測定距離を合成して前記ワークピースの前記第1の表面点までの合成測定距離を決定する、
    ことが可能である、請求項5に記載のデジタルホログラフィ計測システム。
  8. 前記デジタルホログラフィモードのデジタルホログラフィ非曖昧範囲は前記AMCWモードの潜在的な距離誤差よりも大きく、前記第1のAMCWモード測定距離は前記デジタルホログラフィ非曖昧範囲の整数の倍数を与え、前記整数の倍数を前記第1のデジタルホログラフィモード測定距離と組み合わせて前記ワークピースの前記第1の表面点までの前記合成測定距離を決定する、請求項7に記載のデジタルホログラフィ計測システム。
  9. 前記AMCWモードの非曖昧範囲は、前記デジタルホログラフィモードの非曖昧範囲よりも少なくとも50倍大きい、請求項7に記載のデジタルホログラフィ計測システム。
  10. 前記AMCWモードは、500ミリメートルよりも大きい非曖昧範囲を有し、前記デジタルホログラフィモードは、前記ヘテロダイン光源からの前記第1波長レーザビーム及び第2波長レーザビームと、前記第1の周波数及び前記第2の周波数とは異なる第3の周波数の第3の波長レーザビームと、を用いる場合、5ミリメートルよりも大きい非曖昧範囲を有する、請求項7に記載のデジタルホログラフィ計測システム。
  11. 前記第1波長レーザビームの第1の波長と前記第2波長レーザビームの第2の波長との差は前記第1の波長の2パーセントよりも大きい、請求項1に記載のデジタルホログラフィ計測システム。
  12. 前記第1波長レーザビームの第1の波長と前記第2波長レーザビームの第2の波長との差は10ナノメートルよりも大きい、請求項1に記載のデジタルホログラフィ計測システム。
  13. デジタルホログラフィ計測システムを動作させるための方法であって、
    少なくとも、第1の周波数の第1波長レーザビーム及び前記第1の周波数とは異なる第2の周波数の第2波長レーザビームを提供するように、多波長光源を動作させることと、
    前記第1波長レーザビームを受け取り、当該第1波長レーザビームに対応する第1周波数シフトレーザビームを生成し、当該第1周波数シフトレーザビームと前記第1波長レーザビームとを合成して第1の合成ビームを生成し、
    前記第2波長レーザビームを受け取り、当該第2波長レーザビームに対応する第2周波数シフトレーザビームを生成し、当該第2周波数シフトレーザビームと前記第2波長レーザビームとを合成して第2の合成ビームを生成するように、音響光学変調器を動作させることと、
    を含む、ヘテロダイン光源を動作させることを含み、
    干渉光学機構は、前記ヘテロダイン光源から前記第1の合成ビーム及び前記第2の合成ビームを受け取り、前記第1の合成ビーム及び前記第2の合成ビームを使用して、ワークピースを撮像するための出力を提供し、
    当該出力は、
    前記ヘテロダイン光源からの前記第1の合成ビームに基づいて生成される第1の干渉ビームと、
    前記ヘテロダイン光源からの前記第2の合成ビームに基づいて生成される第2の干渉ビームと、を少なくとも含み、
    前記方法は更に、前記干渉光学機構から前記出力を受け取るようにセンサ機構を動作させることを含み、前記センサ機構は、少なくとも、第1のTOFセンサと、第2のTOFセンサと、第1のダイクロイックコンポーネントと、を含み、前記第1のダイクロイックコンポーネントは、前記第1の干渉ビームを前記第2の干渉ビームから分離するように構成され、前記第1の干渉ビームは、前記第1のTOFセンサによって受け取られるように向けられ、前記第2の干渉ビームは、前記第2のTOFセンサによって受け取られるように向けられる、方法。
  14. 前記第1のTOFセンサ及び第2のTOFセンサから出力を受信し、当該出力を使用して、前記ワークピースの少なくとも1つの表面点までの少なくとも1つの測定距離を決定することを更に含む、請求項13に記載の方法。
  15. 前記第1の周波数及び前記第2の周波数とは異なる第3の周波数の第3波長レーザビームを更に提供するように前記多波長光源を動作させることと、
    前記第3波長レーザビームを受け取り、当該第3波長レーザビームに対応する第3周波数シフトレーザビームを生成し、当該第3周波数シフトレーザビームと前記第3波長レーザビームとを合成して第3の合成ビームを生成するように前記音響光学変調器を動作させることと、を更に含み、
    前記干渉光学機構の前記出力は更に、前記ヘテロダイン光源からの前記第3の合成ビームに基づいて生成される第3の干渉ビームを含み、
    前記センサ機構は更に、第3のTOFセンサ及び第2のダイクロイックコンポーネントを含み、前記第2のダイクロイックコンポーネントは、前記第2の干渉ビームを前記第3の干渉ビームから分離するように構成され、前記第2の干渉ビームは、前記第2のTOFセンサによって受け取られるように向けられ、前記第3の干渉ビームは、前記第3のTOFセンサによって受け取られるように向けられる、請求項13に記載の方法。
  16. 前記音響光学変調器を動作させるための信号を前記ヘテロダイン光源に提供し、
    前記第1のTOFセンサ及び前記第2のTOFセンサに信号を提供する、
    ようにタイマを動作させることを更に含む、請求項13に記載の方法。
  17. デジタルホログラフィモードで動作させる間、前記第1の合成ビーム及び前記第2の合成ビームを生成する前記音響光学変調器を動作させるために前記タイマが結合され、処理部は前記第1のTOFセンサ及び前記第2のTOFセンサから出力を受信し、当該出力を用いて前記ワークピースの第1の表面点までの第1のデジタルホログラフィモード測定距離を決定することと、
    振幅変調連続波(「AMCW」)モードで動作させる間、前記音響光学変調器は前記第1及び第2の合成ビームを生成せず、前記第1のTOFセンサ及び前記第2のTOFセンサのうち少なくとも1つの前記出力を前記処理部が用いて、ホモダイン検出によって、前記ワークピースの前記第1の表面点までの第1のAMCWモード測定距離を決定し、前記第1のAMCWモード測定距離の少なくとも一部及び前記第1のデジタルホログラフィモード測定距離を合成して前記ワークピースの前記第1の表面点までの合成測定距離を決定することと、
    を更に含む、請求項16に記載の方法。
  18. 前記デジタルホログラフィモードのデジタルホログラフィ非曖昧範囲は前記AMCWモードの潜在的な距離誤差よりも大きく、前記第1のAMCWモード測定距離は前記デジタルホログラフィ非曖昧範囲の整数の倍数を与え、前記整数の倍数を前記第1のデジタルホログラフィモード測定距離と組み合わせて前記ワークピースの前記第1の表面点までの前記合成測定距離を決定する、請求項17に記載の方法。
  19. デジタルホログラフィ計測システムにおいて用いるためのセンサ機構であって、前記デジタルホログラフィ計測システムは、
    少なくとも、第1の周波数の第1波長レーザビーム及び前記第1の周波数とは異なる第2の周波数の第2波長レーザビームを提供するための多波長光源と、
    前記第1波長レーザビームを受け取り、当該第1波長レーザビームに対応する第1周波数シフトレーザビームを生成し、当該第1周波数シフトレーザビームと前記第1波長レーザビームとを合成して第1の合成ビームを生成し、
    前記第2波長レーザビームを受け取り、当該第2波長レーザビームに対応する第2周波数シフトレーザビームを生成し、当該第2周波数シフトレーザビームと前記第2波長レーザビームとを合成して第2の合成ビームを生成することが可能な音響光学変調器と、
    を含むヘテロダイン光源と、
    前記ヘテロダイン光源から前記第1の合成ビーム及び前記第2の合成ビームを受け取り、前記第1の合成ビーム及び前記第2の合成ビームを使用して、ワークピースを撮像するための出力を提供する干渉光学機構であって、
    当該出力は、前記ヘテロダイン光源からの前記第1の合成ビームに基づいて生成される第1の干渉ビームと、前記ヘテロダイン光源からの前記第2の合成ビームに基づいて生成される第2の干渉ビームと、を少なくとも含む干渉光学機構と、を備え、
    前記センサ機構は、
    第1のTOFセンサと、第2のTOFセンサと、第1のダイクロイックコンポーネントと、を含み、
    前記干渉光学機構から前記出力を受け取り、前記第1のダイクロイックコンポーネントは、前記第1の干渉ビームを前記第2の干渉ビームから分離するように構成され、前記第1の干渉ビームは、前記第1のTOFセンサによって受け取られるように向けられ、前記第2の干渉ビームは、第2のTOFセンサによって受け取られるように向けられる、
    センサ機構。
  20. 前記多波長光源は更に、前記第1の周波数及び前記第2の周波数とは異なる第3の周波数の第3波長レーザビームを提供し、
    前記音響光学変調器は更に、前記第3波長レーザビームを受け取るように、また、前記第3波長レーザビームと合成した対応する第3の周波数シフトレーザビームを第3の合成ビームとして生成することが可能であり、
    前記干渉光学機構の前記出力は更に、前記ヘテロダイン光源からの前記第3の合成ビームに基づいて生成される第3の干渉ビームを含み、
    前記センサ機構は更に、
    第3のTOFセンサと、
    第2のダイクロイックコンポーネントと、を備え、
    前記第2のダイクロイックコンポーネントは前記第2の干渉ビームを前記第3の干渉ビームから分離するように構成され、前記第2の干渉ビームは前記第2のTOFセンサによって受け取られるように向けられ、前記第3の干渉ビームは前記第3のTOFセンサによって受け取られるように向けられる、請求項19に記載のセンサ機構。
JP2022136033A 2021-08-30 2022-08-29 デジタルホログラフィ計測システム Pending JP2023035989A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US17/461,027 US20230069087A1 (en) 2021-08-30 2021-08-30 Digital holography metrology system
US17/461,027 2021-08-30

Publications (1)

Publication Number Publication Date
JP2023035989A true JP2023035989A (ja) 2023-03-13

Family

ID=85174788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022136033A Pending JP2023035989A (ja) 2021-08-30 2022-08-29 デジタルホログラフィ計測システム

Country Status (4)

Country Link
US (1) US20230069087A1 (ja)
JP (1) JP2023035989A (ja)
CN (1) CN115727778A (ja)
DE (1) DE102022121586A1 (ja)

Also Published As

Publication number Publication date
US20230069087A1 (en) 2023-03-02
CN115727778A (zh) 2023-03-03
DE102022121586A1 (de) 2023-03-02

Similar Documents

Publication Publication Date Title
KR100322938B1 (ko) 전자적인 주파수 체배수단을 사용하여 공기의 굴절률을 보상하는 방법 및 수퍼헤테로다인 간섭계 장치
KR100328007B1 (ko) 다중패스 간섭법을 사용하여 공기의 굴절률을 측정하는 슈퍼헤테 로다인 방법 및 장치
CN100552376C (zh) 光学干涉测量中分光、成像及同步移相的方法和装置
US5159408A (en) Optical thickness profiler using synthetic wavelengths
EP1724550A1 (en) Interferometer and shape measuring method
US7675628B2 (en) Synchronous frequency-shift mechanism in Fizeau interferometer
JPH05113316A (ja) 3波長光学測定装置及び方法
US8345258B2 (en) Synchronous frequency-shift mechanism in fizeau interferometer
CN109539975A (zh) 单频激光干涉仪非线性误差修正方法与装置
JP2007285898A (ja) レーザ振動計
JP4286460B2 (ja) レーザ測長器及びレーザ測長方法
JP2023036027A (ja) 計測システムで用いるためのヘテロダイン光源
North-Morris et al. Phase-shifting multiwavelength dynamic interferometer
JPH11183116A (ja) 光波干渉測定方法および装置
US20230069087A1 (en) Digital holography metrology system
CN114046733A (zh) 一种激光同时测量三自由度线性几何误差系统与方法
JPS63128211A (ja) スペ−シング測定方法
JP4536873B2 (ja) 三次元形状計測方法及び装置
JP3626907B2 (ja) 干渉測定方法および装置
CN110823088B (zh) 一种激光动态干涉仪
Usuda et al. Development of laser interferometer for a sine-approximation method
US20230236125A1 (en) Dynamic phase-shift interferometer utilizing a synchronous optical frequency-shift
JP4835908B2 (ja) 光学特性測定装置
JP2942002B2 (ja) 面形状測定装置
JP2004077223A (ja) 光ヘテロダイン干渉計