JP2023001041A - Refining method - Google Patents

Refining method Download PDF

Info

Publication number
JP2023001041A
JP2023001041A JP2022081746A JP2022081746A JP2023001041A JP 2023001041 A JP2023001041 A JP 2023001041A JP 2022081746 A JP2022081746 A JP 2022081746A JP 2022081746 A JP2022081746 A JP 2022081746A JP 2023001041 A JP2023001041 A JP 2023001041A
Authority
JP
Japan
Prior art keywords
converter
slag
hot metal
furnace
refining furnace
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022081746A
Other languages
Japanese (ja)
Other versions
JP7508022B2 (en
Inventor
吉紀 鶴田
Yoshinori Tsuruta
岳彦 ▲高▼橋
Takehiko Takahashi
大和 三代
Yamato Mishiro
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Publication of JP2023001041A publication Critical patent/JP2023001041A/en
Application granted granted Critical
Publication of JP7508022B2 publication Critical patent/JP7508022B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

To provide a refining method for preventing the lowering of a yield of hot metal in a refining process including intermediate slag discharging in a converter-type refining furnace.SOLUTION: A refining method for desiliconizing and dephosphorizing hot metal 2 in a converter-type refining furnace 1, includes a charging process for charging at least hot metal 2 into the converter-type refining furnace 1, a desiliconizing process for desiliconizing the hot metal by feeding oxygen to the hot metal, a slag discharging process for tilting the converter-type refining furnace 1 to discharge slag 4 after the desiliconizing process, and a dephosphorizing process for dephosphorizing the hot metal 2 by feeding oxygen to the hot metal after the slag discharging process. In the charging process, when an internal volume of the converter-type refining furnace 1 is V(m3), an amount of raw pig iron M(t) charged into the converter-type refining furnace 1 satisfies formula (1). V/M≥0.55...(1)SELECTED DRAWING: Figure 1

Description

本発明は、精錬方法に関する。 The present invention relates to a refining method.

転炉型精錬炉(「転炉」ともいう。)を用いた精錬処理においては、溶銑に対して、脱珪処理→脱リン処理→脱炭処理のように精錬反応を進行させて、溶鋼が生成される。このような精錬処理(製鋼処理)では、従来、脱リン処理までが行われる溶銑予備処理を行う転炉と、溶銑予備処理された溶銑を脱炭する転炉とを分けて使用する製鋼処理(2つの転炉を用いる製鋼処理)と、脱珪処理から脱炭処理までを一つの転炉で処理する製鋼処理(1つの転炉を用いる製鋼処理)の、2種類の精錬方法が実施されている。 In the refining process using a converter-type refining furnace (also called a "converter"), the molten iron undergoes refining reactions such as desiliconization → dephosphorization → decarburization, and molten steel is generated. In such a refining process (steelmaking process), conventionally, a steelmaking process ( Two types of refining methods have been implemented: a steelmaking process using two converters) and a steelmaking process in which desiliconization to decarburization are performed in a single converter (steelmaking using a single converter). there is

このうち、2つの転炉を用いる製鋼処理では、溶鋼の溶製までに2回以上の転炉装入が必要となり、熱ロスが大きくなるものの、脱リン反応を高効率化出来るため、精錬用フラックス使用量を低減することができる。一方、1つの転炉を用いる製鋼処理では、溶鋼の溶製までに必要な転炉装入回数は1回のみであるため、熱ロスが少なく、さらに稼働する転炉数を減らせるというメリットがある。これらの精錬処理は、双方に利点と欠点とがあり、前後工程の生産能力や製鉄所レイアウトなどの環境により、適切となる方法が選択され、実施されている。 Of these, in the steelmaking process using two converters, it is necessary to charge the converters two or more times until the molten steel is made, which increases the heat loss. Flux usage can be reduced. On the other hand, in the steelmaking process using a single converter, only one charge is required until the molten steel is produced. be. Both of these refining processes have advantages and disadvantages, and appropriate methods are selected and implemented depending on the environment such as the production capacity of the pre- and post-processes and the layout of the ironworks.

また、近年は上述の両方の製鋼処理において、脱珪処理の終了後に吹錬を中断し、スラグを中間排滓し、その後の脱リン反応効率を高める精錬方法が提案されている(例えば、特許文献1)。特許文献1に開示されている方法では、中間排滓にてフォーミング(膨張)したスラグを転炉の炉口より、溶銑が流出し始めるまで排滓する。このとき、排滓率(%)(=排滓したスラグ量(t)/排滓前のスラグ量(t)×100)が高いほど、次処理の脱リン処理における、スラグ中のCaO濃度/SiO濃度の比(「塩基度」ともいう。)を高くするために必要なフラックス使用量を少なくすることができる。 In addition, in recent years, in both steelmaking processes described above, a refining method has been proposed in which blowing is interrupted after the desiliconization process is completed, slag is intermediately discharged, and the subsequent dephosphorization reaction efficiency is increased (for example, patent Reference 1). In the method disclosed in Patent Document 1, the slag formed (expanded) in the intermediate waste is discharged from the throat of the converter until the hot metal begins to flow out. At this time, the higher the slag discharge rate (%) (=discharged slag amount (t) / slag amount (t) before slag discharge × 100), the higher the CaO concentration in the slag / The amount of flux required to increase the SiO 2 concentration ratio (also referred to as “basicity”) can be reduced.

特開2013-167015号公報JP 2013-167015 A

ところで、特許文献1に記載の処理方法では、中間排滓後の脱リン処理において、スラグの塩基度を高くすることが求められるが、脱珪処理で生じるスラグの塩基度は低いため、脱リン処理で追加する石灰系フラックスの量を削減するために中間排滓量を増やそうとすると、溶銑の流出量が増えてしまい、溶銑の歩留が低下する、という問題があった。 By the way, in the treatment method described in Patent Document 1, it is required to increase the basicity of the slag in the dephosphorization treatment after the intermediate waste. If an attempt is made to increase the amount of intermediate waste in order to reduce the amount of lime-based flux to be added in the treatment, the amount of hot metal flowing out increases, resulting in a problem of reduced hot metal yield.

本発明は、転炉型精錬炉において中間排滓を伴う精錬処理において、溶銑の歩留の低下を防ぐことができる、精錬方法を提供することを目的としている。 SUMMARY OF THE INVENTION An object of the present invention is to provide a refining method capable of preventing a decrease in the yield of hot metal in a refining process involving intermediate slag in a converter type refining furnace.

本発明の一態様によれば、転炉型精錬炉にて、溶銑に脱珪処理及び脱リン処理を行う精錬方法において、上記転炉型精錬炉に少なくとも上記溶銑を装入する装入工程と、上記溶銑へ送酸することで脱珪処理を行う脱珪工程と、上記脱珪工程の後、上記転炉型精錬炉を傾動させてスラグを排出する排滓工程と、上記排滓工程の後、上記溶銑へ送酸することで脱リン処理を行う脱リン工程と、を備え、上記装入工程では、上記転炉型精錬炉の転炉内容積をV(m)としたときに、上記転炉型精錬炉1への原料銑鉄装入量M(t)を、(1)式を満足する量とする、精錬方法が提供される。
V/M≧0.55・・・(1)
According to one aspect of the present invention, in a refining method in which hot metal is subjected to desiliconization treatment and dephosphorization treatment in a converter type refining furnace, a charging step of charging at least the molten iron into the converter type refining furnace; , a desiliconization step of performing desiliconization treatment by sending oxygen to the hot metal, a slag removal step of discharging slag by tilting the converter-type refining furnace after the desiliconization step, and the slag removal step. and a dephosphorization step in which dephosphorization is performed by supplying oxygen to the molten pig iron. , a refining method is provided in which the raw pig iron charging amount M(t) into the converter type refining furnace 1 is an amount that satisfies the formula (1).
V/M≧0.55 (1)

本発明の一態様によれば、転炉型精錬炉において中間排滓を伴う精錬処理において、溶銑の歩留の低下を防ぐことができる、精錬方法が提供される。 According to one aspect of the present invention, there is provided a refining method capable of preventing a decrease in the yield of hot metal in a refining process involving intermediate slag in a converter-type refining furnace.

本実施形態における脱珪工程又は脱リン工程における転炉型精錬炉を示す模式図である。It is a mimetic diagram showing a converter type refining furnace in a desiliconization process or a dephosphorization process in this embodiment. 排滓工程における転炉型精錬炉を示す模式図である。It is a schematic diagram which shows a converter type refining furnace in a tailings process. 実施例の結果を示すグラフである。It is a graph which shows the result of an Example.

以下の詳細な説明では、図面を参照して、本発明の実施形態を説明する。図面の記載において、同一又は類似の部分には同一又は類似の符号を付し、重複する説明を省略する。各図面は模式的なものであり、現実のものとは異なる場合が含まれる。また、以下に示す実施形態は、本発明の技術的思想を具体化するための装置や方法を例示するものであって、本発明の技術的思想は、構成部品の材質、構造、配置等を下記のものに特定するものでない。本発明の技術的思想は、特許請求の範囲に記載された請求項が規定する技術的範囲内において種々の変更を加えることができる。 The following detailed description describes embodiments of the invention with reference to the drawings. In the description of the drawings, the same or similar parts are denoted by the same or similar reference numerals, and overlapping descriptions are omitted. Each drawing is schematic and may differ from the actual one. Further, the embodiments shown below are examples of apparatuses and methods for embodying the technical idea of the present invention, and the technical idea of the present invention is based on the material, structure, arrangement, etc. of the component parts. It is not specific to the following. The technical idea of the present invention can be modified in various ways within the technical scope defined by the claims.

本発明の一実施形態に係る精錬方法では、図1及び図2に示すような転炉型精錬炉1において、転炉型精錬炉1に収容された溶銑2へ送酸を行うことで、脱珪処理及び脱リン処理が行われる。溶銑2への送酸は、図1に示すように、転炉型精錬炉1の炉口10が上方を向いた直立させた状態で、上吹きランス3から酸素ガスが転炉型精錬炉1内の溶銑2に供給することで行われる。また、転炉型精錬炉1にて行われる脱珪処理及び脱リン処理を総称して予備処理ともいう。 In the refining method according to one embodiment of the present invention, in a converter-type refining furnace 1 as shown in FIGS. Siliconization and dephosphorization are performed. As shown in FIG. 1, oxygen is supplied to the molten iron 2 by blowing oxygen gas into the converter smelting furnace 1 from a top blowing lance 3 while the throat 10 of the converter smelting furnace 1 is set upright. It is performed by supplying to hot metal 2 inside. Further, the desiliconization treatment and the dephosphorization treatment performed in the converter type refining furnace 1 are also collectively referred to as preliminary treatment.

本実施形態では、まず、転炉型精錬炉1に溶銑2を装入する(装入工程)。装入工程では、転炉型精錬炉1内に前回の溶銑2の予備処理において生成した脱燐処理終了後のスラグ(「脱燐処理後スラグ」ともいう。)を残留させたまま、装入鍋より新たな溶銑2を装入してもよく、その溶銑装入前に鉄スクラップなどの冷鉄源を装入した後に溶銑2を装入してもよい。予め装入する冷鉄源としては、日本鉄源協会の「鉄スクラップ検収統一規格」に規定されている鉄スクラップの他、直接還元鉄、冷銑などの鉄を主成分とするものでもよい。なお、転炉型精錬炉1を用いた鉄鋼精錬工程においては、冷鉄源は炉内への装入後まもなく溶解して溶銑2となるため、装入した溶銑の重量(「溶銑重量」ともいう。l)と冷鉄源の重量(「冷鉄源量」ともいう。)との和が、原料銑鉄装入量として表される。なお、転炉型精錬炉1に装入される溶銑と冷鉄源とをまとめて、原料銑鉄ともいう。 In this embodiment, first, the molten iron 2 is charged into the converter type refining furnace 1 (charging step). In the charging step, the slag after the dephosphorization treatment (also referred to as "post-dephosphorization treatment slag") generated in the previous preliminary treatment of the hot metal 2 remains in the converter-type refining furnace 1, and is charged. New hot metal 2 may be charged from the ladle, or hot metal 2 may be charged after a cold iron source such as iron scrap is charged before the hot metal is charged. The cold iron source to be charged in advance may be iron scrap specified in the "Iron Scrap Acceptance Inspection Standards" of the Japan Iron Source Association, direct reduced iron, cold iron, or other iron-based material. In the iron and steel refining process using the converter type refining furnace 1, the cold iron source melts soon after being charged into the furnace and becomes the hot metal 2, so the weight of the charged hot metal (also called "hot metal weight" The sum of l) and the weight of the cold iron source (also referred to as the "cold iron source amount") is expressed as the raw pig iron charging amount. The molten pig iron charged into the converter type refining furnace 1 and the cold iron source are collectively referred to as raw pig iron.

また、装入工程では、転炉型精錬炉1の内容積をV(m)としたときに、原料銑鉄装入量M(t)を、(1)式を満足する量とする。
V/M≧0.55 ・・・(1)
Further, in the charging step, the raw pig iron charging amount M(t) is set to an amount that satisfies the formula (1), where V(m 3 ) is the internal volume of the converter type refining furnace 1 .
V/M≧0.55 (1)

装入工程の後、転炉型精錬炉1に装入された溶銑2へ送酸することで、溶銑2に含有される珪素を酸化除去する脱珪処理を行う(脱珪工程)。脱珪工程では、上吹きランス3を介して溶銑2に酸素ガスを供給することで脱珪処理が行われる。この際、転炉型精錬炉1に、珪素源や石灰系フラックスなどの副原料が添加されてもよい。また、脱珪工程において脱珪処理が終了した転炉型精錬炉1の炉内には、脱珪工程にて発生したスラグ4が収容される。このスラグ4は、予め装入されている脱燐処理後スラグや、投入される副原料、脱珪処理により生じるSiO等が含まれる。 After the charging step, oxygen is supplied to the hot metal 2 charged into the converter type refining furnace 1 to perform a desiliconization treatment to oxidize and remove silicon contained in the hot metal 2 (desiliconization step). In the desiliconization step, desiliconization is performed by supplying oxygen gas to the hot metal 2 through the top-blowing lance 3 . At this time, auxiliary raw materials such as a silicon source and a lime-based flux may be added to the converter-type refining furnace 1 . In addition, slag 4 generated in the desiliconization process is accommodated in the furnace of the converter-type refining furnace 1 where the desiliconization treatment has been completed in the desiliconization process. The slag 4 includes post-dephosphorization slag charged in advance, auxiliary raw materials charged, SiO 2 generated by desiliconization, and the like.

脱珪工程の後、転炉型精錬炉1の炉内に収容されたスラグ4を炉外に排出する、中間排滓が行われる(排滓工程)。排滓工程では、図2に示すように、転炉型精錬炉1を傾動することにより、転炉型精錬炉1の炉口10からスラグ4を流出させる。また、排滓工程は、溶銑2の流出が起こる直前で終了することが好ましい。スラグ4は、溶銑2よりも比重が小さく溶銑2の上に浮遊しているため、転炉型精錬炉1の傾動によって、溶銑2よりも先に炉口10から流出する。しかし、スラグ4の厚みが小さくなると、図2に示すように、スラグ-溶銑界面にて発生するスラグ流からのずり応力により溶銑2がスラグ4中へ巻き込まれ、溶銑2の流出が起こる。また、スラグ4が流出する炉口10のレベルと、スラグ-溶銑界面とが近づくほどずり応力は大きくなるため、炉内に残されたスラグ4の厚さ(「炉内残スラグ厚さ」ともいう。)がある程度の厚みにまで低下すると溶銑が流出する。このため、排滓工程において、溶銑2を流出させずに、スラグ4のみを全量流出させることはできない。 After the desiliconization step, intermediate waste is performed to discharge the slag 4 stored in the furnace of the converter type refining furnace 1 to the outside of the furnace (slag discharge step). In the slag removal process, as shown in FIG. 2, the slag 4 is discharged from the furnace throat 10 of the converter smelting furnace 1 by tilting the converter smelting furnace 1 . Moreover, it is preferable that the slag removal process be finished just before the outflow of the hot metal 2 occurs. Since the slag 4 has a lower specific gravity than the molten iron 2 and floats on the molten iron 2 , it flows out of the furnace throat 10 earlier than the molten iron 2 due to the tilting of the converter-type refining furnace 1 . However, when the thickness of the slag 4 becomes smaller, as shown in FIG. 2, the molten iron 2 is caught in the slag 4 by the shear stress from the slag flow generated at the slag-hot metal interface, causing the molten iron 2 to flow out. In addition, the closer the level of the throat 10 where the slag 4 flows out to the slag-hot metal interface, the greater the shear stress. ) is reduced to a certain thickness, hot metal flows out. Therefore, in the slag discharging process, it is not possible to flow out the entire amount of the slag 4 without flowing out the hot metal 2 .

ここで、ずり応力により溶銑2の流出が発生するときの炉内残スラグ厚さは、数mm単位でばらつくものの、ほぼチャージ(処理単位)毎で一定となる。したがって、スラグ4の比重を小さくすることで、溶銑2が流出し始める時点における炉内のスラグ量を少なくすることができる。このため、一般的には、排滓処理開始前のスラグ4を意図的にフォーミングさせてスラグ4の比重を小さくする方法が行われる。スラグ4のフォーミングの調整は、フォーミングを律するCOガス発生速度を、送酸速度(Nm/h)及び送酸量(Nm)を変化させることで調整し行われる。 Here, the thickness of the residual slag in the furnace when outflow of the hot metal 2 occurs due to shear stress is almost constant for each charge (processing unit), although it varies in units of several millimeters. Therefore, by reducing the specific gravity of the slag 4, the amount of slag in the furnace at the time when the hot metal 2 begins to flow out can be reduced. For this reason, a method of intentionally forming the slag 4 before starting the slag treatment to reduce the specific gravity of the slag 4 is generally performed. The forming of the slag 4 is adjusted by adjusting the CO gas generation rate, which controls the forming, by changing the oxygen supply rate (Nm 3 /h) and the oxygen supply amount (Nm 3 ).

しかし、スラグ4をフォーミングさせて転炉内容積Vの内の、溶銑2の占める体積以外の領域全体にまでスラグ4が充満してしまうと、それ以上フォーミングさせた場合に転炉型精錬炉1の炉口10からスラグ4が溢れ出てしまい、周辺機器の損傷といった問題が生じる。したがって、スラグ4の比重はある程度以下には下げることができない。 However, if the slag 4 is formed to fill the entire region of the converter internal volume V other than the volume occupied by the hot metal 2, the converter smelting furnace 1 will not be able to form further if the slag 4 is formed. The slag 4 overflows from the furnace throat 10 of the furnace, causing a problem of damage to peripheral equipment. Therefore, the specific gravity of the slag 4 cannot be lowered below a certain level.

また、後述する脱リン工程では、スラグ中のCaO濃度/SiO濃度の比である塩基度を高くすることが求められる。しかし、脱珪工程で生じるスラグ4の塩基度は低いため、脱リン工程で追加する石灰系フラックスの量を削減するために中間排滓量を増やそうとすると、ずり応力による溶銑2の流出量が増えてしまい、溶銑2の歩留が低下するという問題が生じてしまう。 In addition, in the dephosphorization step, which will be described later, it is required to increase the basicity, which is the ratio of CaO concentration/SiO 2 concentration in the slag. However, since the basicity of the slag 4 generated in the desiliconization process is low, if an attempt is made to increase the amount of intermediate slag in order to reduce the amount of lime-based flux added in the dephosphorization process, the outflow amount of the hot metal 2 due to shear stress will increase. The problem arises that the yield of the hot metal 2 is lowered.

しかし、本実施形態では、装入工程において、(1)式を満たすように、溶銑2を装入することで、溶銑2の流出を抑えながらも、大量のスラグ4を排出することができる。(1)式のV/Mの値が小さい場合、転炉内容積Vに対して原料銑鉄装入量Mが比較的多いことになるため、スラグ4のフォーミングを促進してスラグ体積を大きくしたときに、転炉型精錬炉1内における原料銑鉄以外の空間が小さくなる。このため、炉口10からスラグ4やメタル(溶銑2)が吹き上げられて炉外へ流出する現象である、スロッピングが生じ易くなる。このスロッピングを抑制するためには、スラグ4のフォーミングを抑える必要があり、その結果スラグ4の比重を十分小さくすることができない。そのため、スラグ4を排出する際に、ずり応力により溶銑2の流出がないぎりぎりの角度まで転炉型精錬炉1を傾動したときに、炉内に残っているスラグ4の質量は大きくなってしまう。 However, in this embodiment, in the charging step, by charging the molten iron 2 so as to satisfy the formula (1), a large amount of slag 4 can be discharged while suppressing the outflow of the molten iron 2 . When the value of V/M in equation (1) is small, the raw pig iron charging amount M is relatively large with respect to the internal volume V of the converter. Sometimes, the space in the converter-type refining furnace 1 other than the raw pig iron becomes smaller. Therefore, slopping, which is a phenomenon in which the slag 4 and the metal (hot metal 2) are blown up from the furnace throat 10 and flow out of the furnace, is likely to occur. In order to suppress this slopping, it is necessary to suppress the forming of the slag 4, and as a result the specific gravity of the slag 4 cannot be sufficiently reduced. Therefore, when the slag 4 is discharged, the mass of the slag 4 remaining in the furnace becomes large when the converter-type refining furnace 1 is tilted to the limit angle where the hot metal 2 does not flow out due to shear stress. .

一方、(1)式のV/Mの値が大きい場合、上述のスロッピングが生じるぎりぎりまでフォーミングをさせたときに、転炉型精錬炉1内における原料銑鉄以外の空間が大きくなるため、スラグ4の比重をより小さくすることができる。つまり、転炉型精錬炉1内に残っているスラグ4の質量を小さくすることができ、その後の脱リン処理における脱リン特性を向上させることができる。その結果、脱炭処理において必要な精錬用フラックス量及び生成スラグ量が低減する為、溶銑2のスラグロスが低減する。従って、転炉工程における溶銑の歩留が向上する。また、中間排滓にて排出されるスラグ4(「脱珪スラグ」ともいう。)中に巻き込まれる溶銑2の量を低減することができるため、脱珪スラグを再利用する際の鉄分の分離等の手間を省略することが可能となり、製鋼工程全体での省力化及び省コスト化が可能となる。 On the other hand, when the value of V/M in the formula (1) is large, the space other than the raw pig iron in the converter-type refining furnace 1 becomes large when the forming is performed to the very limit of slopping. The specific gravity of 4 can be made smaller. That is, the mass of the slag 4 remaining in the converter-type refining furnace 1 can be reduced, and the dephosphorization characteristics in the subsequent dephosphorization treatment can be improved. As a result, the amount of refining flux and the amount of slag that are required in the decarburization process are reduced, so that the slag loss of the hot metal 2 is reduced. Therefore, the yield of hot metal in the converter process is improved. In addition, since the amount of hot metal 2 caught in the slag 4 (also referred to as “siliconization slag”) discharged as intermediate slag can be reduced, the iron content can be separated when reusing the siliconization slag. It is possible to omit labor such as the above, and it is possible to save labor and cost in the entire steelmaking process.

なお、溶銑2の歩留が向上するため、(1)式のV/Mの値は大きいほど好適である。しかし、V/Mの値が大きいことは、転炉型精錬炉1内で処理される溶銑2の量が少ないことになるため、生産性が低下する可能性がある。現実的には、V/Mは0.9以下程度、より好ましくは0.8以下程度で操業することが好ましい。さらに、Mが減少するほど炉内へ付着する地金の割合が増加し、かつスラグ中へロスする鉄分の割合が増加するため、V/Mはより好ましくは0.75未満であり、さらに好ましくは0.60未満である。 Incidentally, since the yield of the hot metal 2 is improved, the larger the value of V/M in the formula (1), the better. However, when the value of V/M is large, the amount of hot metal 2 to be processed in the converter-type refining furnace 1 is small, so there is a possibility that the productivity will be lowered. Practically, it is preferable to operate with a V/M of about 0.9 or less, more preferably about 0.8 or less. Furthermore, as M decreases, the proportion of bare metal that adheres to the inside of the furnace increases, and the proportion of iron that is lost in the slag increases. Therefore, V / M is more preferably less than 0.75, and more preferably. is less than 0.60.

排滓工程の後、転炉型精錬炉1に装入された溶銑2へ送酸することで、溶銑2に含有されるリン(燐)を酸化除去する脱リン処理を行う(脱リン工程)。脱リン工程では、上吹きランス3を介して溶銑2に酸素ガスを供給することで脱リン処理が行われる。この際、転炉型精錬炉1には、石灰系フラックスが添加される。また、脱リン工程では、添加される石灰系フラックスや炉内に残っていた脱珪スラグによってスラグ4が生成される。脱リン工程で発生するスラグ4は、脱リンスラグともいう。 After the slag removal step, oxygen is fed to the hot metal 2 charged into the converter-type refining furnace 1 to perform a dephosphorization treatment to oxidize and remove phosphorus contained in the hot metal 2 (dephosphorization step). . In the dephosphorization process, dephosphorization is performed by supplying oxygen gas to the hot metal 2 through the top-blowing lance 3 . At this time, a lime-based flux is added to the converter type refining furnace 1 . Moreover, in the dephosphorization step, slag 4 is produced by the added lime-based flux and the desiliconization slag remaining in the furnace. The slag 4 generated in the dephosphorization step is also called dephosphorization slag.

以上の工程を経ることで、溶銑2の予備処理である脱珪処理及び脱リン処理が行われる。転炉型精錬炉1による予備処理の後は、予備処理が施された溶銑2に脱炭処理を施すことで、溶鋼が製造される。この際、予備処理を行った転炉型精錬炉1から溶銑2を排出させた後、他の転炉型精錬炉で脱炭処理が行われてもよく、予備処理を行った転炉型精錬炉1で引き続き脱炭処理が行われてもよい。 By going through the above steps, desiliconization and dephosphorization, which are preliminary treatments of the hot metal 2, are performed. After the pretreatment by the converter-type refining furnace 1, molten steel is manufactured by decarburizing the molten iron 2 that has undergone the pretreatment. At this time, after the hot metal 2 is discharged from the pretreated converter refining furnace 1, the decarburization treatment may be performed in another converter refining furnace. A decarburization process may subsequently take place in the furnace 1 .

以上で、特定の実施形態を参照して本発明を説明したが、これら説明によって発明を限定することを意図するものではない。本発明の説明を参照することにより、当業者には、開示された実施形態とともに種々の変形例を含む本発明の別の実施形態も明らかである。従って、特許請求の範囲に記載された発明の実施形態には、本明細書に記載したこれらの変形例を単独または組み合わせて含む実施形態も網羅すると解すべきである。 Although the invention has been described with reference to particular embodiments, it is not intended that the invention be limited by these descriptions. Along with the disclosed embodiments, other embodiments of the invention, including various modifications, will be apparent to persons skilled in the relevant art(s) upon reference to the description of the invention. Therefore, the embodiments of the invention set forth in the claims should be construed to cover the embodiments that include these variations described herein singly or in combination.

例えば、上記実施形態では、脱珪処理及び脱リン処理では上吹きランス3から酸素ガスを供給することで送酸を行うとしたが、本発明はかかる例に限定されない。例えば、上吹きランス3に加えて、転炉型精錬炉1の底部に設けられた底吹き羽口から酸素ガスの供給が行われてもよい。 For example, in the above-described embodiment, in the desiliconization treatment and the dephosphorization treatment, oxygen gas is supplied from the top-blowing lance 3 to supply oxygen gas, but the present invention is not limited to such an example. For example, in addition to the top-blowing lance 3 , oxygen gas may be supplied from a bottom-blowing tuyere provided at the bottom of the converter-type refining furnace 1 .

本発明者らが行った実施例について説明する。実施例では、設計処理能力350t/チャージの転炉型精錬炉1について、炉内の耐火物の補修を行った状態(使用開始時)からの中間排滓を行なう溶銑2の予備処理を繰り返し行った。転炉型精錬炉1の転炉内容積Vは精錬処理を繰り返すにつれて耐火物の損耗により大きくなっていくため、10チャージ毎に炉内レンガのプロフィールを測定し、転炉内容積Vの変化を把握した。また、転炉型精錬炉1は、上記実施形態の予備処理のみを行うものとし、脱炭処理については他の転炉型精錬炉にて行った。 An example conducted by the present inventors will be described. In the example, in a converter type refining furnace 1 with a design processing capacity of 350 t/charge, pretreatment of hot metal 2 performing intermediate slag was repeatedly performed from a state in which refractories in the furnace were repaired (at the start of use). rice field. Since the converter internal volume V of the converter type refining furnace 1 increases due to the wear of the refractory as the refining process is repeated, the profile of the bricks in the furnace is measured every 10 charges, and the change in the converter internal volume V is measured. I got it. Further, the converter smelting furnace 1 was used to perform only the preliminary treatment of the above embodiment, and the decarburization treatment was performed in another converter smelting furnace.

各チャージでの排滓工程においては、転炉型精錬炉1を傾転させて炉口10からスラグを排滓し、溶銑2が流出し始めるぎりぎりまで排滓を行った。ただし、次工程の脱リン工程で要求される最終リン濃度が低い鋼種の場合は、脱リン工程で生成されるスラグ4の塩基度を高くするために、添加する石灰系フラックスの量を低減することを目的としてできるだけ排滓量が増えるように操作した。 In the slag removal process in each charge, the converter type refining furnace 1 was tilted to remove the slag from the furnace throat 10, and the slag was removed just before the hot metal 2 began to flow out. However, in the case of a steel type with a low final phosphorus concentration required in the next dephosphorization step, the amount of lime-based flux to be added is reduced in order to increase the basicity of the slag 4 generated in the dephosphorization step. For this purpose, operations were performed to increase the amount of slag as much as possible.

これらの操業結果を、図3に示す。図3の横軸は「転炉内容積V(m)/原料銑鉄装入量M(t)」である。原料銑鉄装入量は、上記実施形態と同様に、装入工程において転炉へ装入された冷鉄源量(t)と溶銑重量(t)との和である。図3の縦軸は、出湯歩留指標を表している。出湯歩留指数とは「脱炭精錬後の溶鋼量S(t)/原料銑鉄装入量M(t)」で求める数値であり、数値が大きい方ほど歩留が高いことを示している。 Results of these operations are shown in FIG. The horizontal axis of FIG. 3 is "converter internal volume V (m 3 )/raw material pig iron charging amount M (t)". The raw pig iron charging amount is the sum of the cold iron source amount (t) charged into the converter in the charging process and the molten pig iron weight (t), as in the above embodiment. The vertical axis in FIG. 3 represents the hot water yield index. The tapping yield index is a numerical value obtained by "amount of molten steel after decarburization refining S(t)/amount of raw pig iron charge M(t)", and the larger the numerical value, the higher the yield.

実施例では、10チャージ毎に行われる測定から求められたプロフィールの変化から、1チャージ毎に求められる転炉内容積Vの値を用いた。また、原料銑鉄装入量は、各チャージでの実績装入量から計算した。したがって、これらの計算には、転炉型精錬炉1にて通常取り除かれる不純物の焼べり分が含まれているが、チャージごとのばらつきは少ないため、内数とすることを許容している。 In the examples, the value of the internal volume V of the converter obtained for each charge was used from the change in the profile obtained from the measurement performed for every 10 charges. The raw pig iron charging amount was calculated from the actual charging amount in each charge. Therefore, these calculations include the burnt residue of impurities that are normally removed in the converter smelting furnace 1, but since there is little variation between charges, they are allowed to be included in the numbers.

図3に示すように、転炉内容積V(m)/原料銑鉄装入量M(t)が0.55を下まわると歩留が急激に低下していくことが分かる。この結果から、転炉型精錬炉1への原料銑鉄装入量Mについて、(1)式を満足する量とすることで鉄歩留を高く維持できることが確認できた。 As shown in FIG. 3, when the converter internal volume V (m 3 )/raw pig iron charging amount M (t) falls below 0.55, the yield rapidly decreases. From this result, it was confirmed that a high iron yield can be maintained by setting the raw pig iron charging amount M to the converter type refining furnace 1 to an amount that satisfies the formula (1).

1 転炉型精錬炉
10 炉口
2 溶銑
3 上吹きランス
4 スラグ
1 converter type refining furnace 10 throat 2 hot metal 3 top blowing lance 4 slag

Claims (2)

転炉型精錬炉にて、溶銑に脱珪処理及び脱リン処理を行う精錬方法において、
前記転炉型精錬炉に少なくとも前記溶銑を装入する装入工程と、
前記溶銑へ送酸することで脱珪処理を行う脱珪工程と、
前記脱珪工程の後、前記転炉型精錬炉を傾動させてスラグを排出する排滓工程と、
前記排滓工程の後、前記溶銑へ送酸することで脱リン処理を行う脱リン工程と、
を備え、
前記装入工程では、前記転炉型精錬炉の転炉内容積をV(m)としたときに、前記転炉型精錬炉1への原料銑鉄装入量M(t)を、(1)式を満足する量とする、精錬方法。
V/M≧0.55・・・(1)
In a refining method in which hot metal is desiliconized and dephosphorized in a converter type refining furnace,
a charging step of charging at least the molten iron into the converter-type smelting furnace;
a desiliconization step of desiliconizing by sending oxygen to the hot metal;
After the desiliconization step, a slag discharge step of tilting the converter-type refining furnace to discharge slag;
After the slag removal step, a dephosphorization step of dephosphorizing by sending acid to the hot metal;
with
In the charging step, when the internal volume of the converter-type refining furnace is V (m 3 ), the raw pig iron charging amount M(t) into the converter-type refining furnace 1 is given by (1 ) is a refining method that satisfies the formula.
V/M≧0.55 (1)
前記装入工程では、前記溶銑に加えて冷鉄源が添加され、
前記原料銑鉄装入量Mは、装入された溶銑重量と冷鉄源量との和である、請求項1に記載の精錬方法。
In the charging step, a cold iron source is added in addition to the hot metal,
2. The refining method according to claim 1, wherein said raw pig iron charge amount M is the sum of the charged molten pig iron weight and the cold iron source amount.
JP2022081746A 2021-06-18 2022-05-18 Refining Method Active JP7508022B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021101548 2021-06-18
JP2021101548 2021-06-18

Publications (2)

Publication Number Publication Date
JP2023001041A true JP2023001041A (en) 2023-01-04
JP7508022B2 JP7508022B2 (en) 2024-07-01

Family

ID=84687720

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022081746A Active JP7508022B2 (en) 2021-06-18 2022-05-18 Refining Method

Country Status (1)

Country Link
JP (1) JP7508022B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5489790B2 (en) 2010-03-09 2014-05-14 株式会社神戸製鋼所 Hot metal desiliconization method
JP5467898B2 (en) 2010-03-09 2014-04-09 株式会社神戸製鋼所 Hot metal desiliconization method
CN110168114A (en) 2017-02-20 2019-08-23 日本制铁株式会社 Slag forms calm material, slag molding sedation methods and bessemerizes method

Also Published As

Publication number Publication date
JP7508022B2 (en) 2024-07-01

Similar Documents

Publication Publication Date Title
JP5954551B2 (en) Converter steelmaking
CN116904863B (en) High-cleanliness high-carbon steel and low-carbon-emission production method thereof
JP4736466B2 (en) Method for producing high chromium molten steel
JP2018178260A (en) Converter steelmaking process
JP6665884B2 (en) Converter steelmaking method
JP2007077483A (en) Steelmaking method in converter
JP4937828B2 (en) Blowing method of molten steel
JP5063966B2 (en) Manufacturing method of molten steel
JP3885499B2 (en) Converter steelmaking method
JP2023001041A (en) Refining method
JP3486889B2 (en) Steelmaking method using two or more converters
JP3772918B2 (en) Dephosphorization method of hot metal in converter type refining vessel
JP4461495B2 (en) Dephosphorization method of hot metal
JP2000109924A (en) Method for melting extra-low sulfur steel
JPH08311519A (en) Steelmaking method using converter
JP4411934B2 (en) Method for producing low phosphorus hot metal
JP5874578B2 (en) High-speed blowing method for converters
JP7248195B2 (en) Converter steelmaking method
JP7211557B2 (en) Molten iron smelting method
JP7136390B1 (en) Molten iron smelting method
JP2002069518A (en) Method for dephosphorizing molten iron developing little slag quantity
JPH1150122A (en) Dephosphorize-refining of molten iron in converter type refining vessel
JP2009249666A (en) Dephosphorization refining method for molten iron
JPH0718318A (en) Converter refining method
JP2005206899A (en) Hot metal refining method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240105

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240227

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240514

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240527

R150 Certificate of patent or registration of utility model

Ref document number: 7508022

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150