JP2022546776A - Highly corrosion-resistant austenitic stainless steel with excellent impact toughness and hot workability - Google Patents

Highly corrosion-resistant austenitic stainless steel with excellent impact toughness and hot workability Download PDF

Info

Publication number
JP2022546776A
JP2022546776A JP2022514735A JP2022514735A JP2022546776A JP 2022546776 A JP2022546776 A JP 2022546776A JP 2022514735 A JP2022514735 A JP 2022514735A JP 2022514735 A JP2022514735 A JP 2022514735A JP 2022546776 A JP2022546776 A JP 2022546776A
Authority
JP
Japan
Prior art keywords
less
impact toughness
stainless steel
hot workability
austenitic stainless
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2022514735A
Other languages
Japanese (ja)
Other versions
JP7271789B2 (en
Inventor
キム,ジスウ
ジョ,ギュジン
イ,マンジェ
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Posco Holdings Inc
Original Assignee
Posco Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Posco Co Ltd filed Critical Posco Co Ltd
Publication of JP2022546776A publication Critical patent/JP2022546776A/en
Application granted granted Critical
Publication of JP7271789B2 publication Critical patent/JP7271789B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/004Very low carbon steels, i.e. having a carbon content of less than 0,01%
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/26Methods of annealing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D6/00Heat treatment of ferrous alloys
    • C21D6/004Heat treatment of ferrous alloys containing Cr and Ni
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0221Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the working steps
    • C21D8/0226Hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0205Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/02Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips
    • C21D8/0247Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment
    • C21D8/0263Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of plates or strips characterised by the heat treatment following hot rolling
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/46Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for sheet metals

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)

Abstract

【課題】耐食性と衝撃靭性に優れ、熱間加工性にも優れた高耐食オーステナイト系ステンレス鋼を提供する。【解決手段】本発明の衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼は、重量%で、C:0.03%以下(0を除く)、Si:1.0%以下、Mn:1.0%以下、Cr:18~24%、Ni:16~24%、Mo:5.0~7.0%、Cu:0.1~2.0%、W:1.0%以下、N:0.18~0.3%、Al:0.02~0.1%、O:0.01%以下、Ca:0.002~0.01%、S:0.001%未満、残りのFe及び不可避な不純物からなり、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすことを特徴とする。【選択図】図1A highly corrosion-resistant austenitic stainless steel having excellent corrosion resistance, impact toughness, and hot workability is provided. A highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability of the present invention comprises, in weight percent, C: 0.03% or less (excluding 0), Si: 1.0% or less, Mn: 1.0% or less, Cr: 18-24%, Ni: 16-24%, Mo: 5.0-7.0%, Cu: 0.1-2.0%, W: 1.0% Below, N: 0.18 to 0.3%, Al: 0.02 to 0.1%, O: 0.01% or less, Ca: 0.002 to 0.01%, S: less than 0.001% , Fe and unavoidable impurities, and are characterized by satisfying O/Al: 0.01 to 0.12 and S/Ca: 0.01 to 0.4. [Selection drawing] Fig. 1

Description

本発明は、衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼に関する。本発明によるオーステナイト系ステンレス鋼は、脱硫設備、熱交換器、淡水設備、食・飲料設備などの産業設備用素材に適用される。 TECHNICAL FIELD The present invention relates to a highly corrosion-resistant austenitic stainless steel having excellent impact toughness and hot workability. The austenitic stainless steel according to the present invention is applied to materials for industrial equipment such as desulfurization equipment, heat exchangers, freshwater equipment, and food and beverage equipment.

オーステナイト系ステンレス鋼は、耐食性に優れており、加工性及び溶接性に優れているため、広範囲に使用されている。18Cr-8Niの成分に代表されるSTS304系ステンレス鋼にMoを2%添加して耐食性が向上したSTS316系ステンレス鋼がキッチン、家電、産業設備などの多様な分野に適用されている。 Austenitic stainless steel is widely used due to its excellent corrosion resistance, workability and weldability. STS316 stainless steel, which has improved corrosion resistance by adding 2% Mo to STS304 stainless steel represented by 18Cr-8Ni, is being applied to various fields such as kitchens, home appliances, and industrial equipment.

オーステナイト系ステンレス鋼の耐食性は、Cr、Mo、Nなどの元素を添加することにより確保できる。しかし、添加されるCr、Mo、Nなどの元素の含量が高くなると、σ相などの金属間化合物が基地組織内に析出することになり、耐食性及び衝撃靭性を低下させ、熱間加工性も著しく低下させるという問題点がある。 Corrosion resistance of austenitic stainless steel can be ensured by adding elements such as Cr, Mo and N. However, when the content of added elements such as Cr, Mo, and N increases, intermetallic compounds such as the σ phase precipitate in the matrix structure, degrading corrosion resistance and impact toughness, and deteriorating hot workability. However, there is a problem that it significantly lowers.

このような問題点を解決するため、特許文献1及び2は、タングステン(W)をMoの代わりに添加してσ相の形成を抑制する技術について開示している。しかし、高合金オーステナイト系ステンレス鋼は、一般に規格範囲内の成分を有するべきであるため、Moの代わりにWを添加することは好ましくない。また、多量のWを含有する場合、カイ(χ)相などのさらに他の金属間化合物を析出させるおそれがある。 In order to solve such problems, Patent Documents 1 and 2 disclose techniques for suppressing the formation of the σ phase by adding tungsten (W) instead of Mo. However, since high alloy austenitic stainless steels should generally have compositions within the specification range, adding W instead of Mo is not preferred. In addition, when a large amount of W is contained, other intermetallic compounds such as the chi (χ) phase may be precipitated.

特許文献3は、下記式で表されるシグマ(σ)当量(SGR)の値が18以下になるように成分を調節してσ相を制御している。しかし、特許文献3は、σ相の制御に影響を与える合金元素としてCr、Mo、N、MnCuのみを制限的に考慮し、σ相などの金属間化合物が依然として基地組織内に析出する問題がある。 Patent document 3 controls the σ phase by adjusting the components so that the value of the sigma (σ) equivalent (SGR) represented by the following formula is 18 or less. However, Patent Document 3 restrictively considers only Cr, Mo, N, and MnCu as alloying elements that affect the control of the σ phase, and there is still the problem that intermetallic compounds such as the σ phase precipitate in the matrix structure. be.

SGR=Cr+2Mo-40N+0.5Mn-2Cu SGR=Cr+2Mo-40N+0.5Mn-2Cu

韓国公開特許第10-2001-0038199号公報(公開日付:2001年04月06日)Korean Patent Publication No. 10-2001-0038199 (Published date: April 06, 2001) 韓国公開特許第10-1999-0005962号公報(公開日付:2000年09月15日)Korean Patent Publication No. 10-1999-0005962 (Published date: September 15, 2000) 米国特許出願公開第2015-0050180号明細書(公開日付:2015年02月19日)US Patent Application Publication No. 2015-0050180 (Published date: February 19, 2015)

上述の問題点を解決するため、本発明の目的は、耐食性と衝撃靭性に優れており、また、熱間加工性に優れた高耐食オーステナイト系ステンレス鋼を提供することにある。 SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, an object of the present invention is to provide a highly corrosion-resistant austenitic stainless steel which is excellent in corrosion resistance, impact toughness, and hot workability.

上述の目的を達成するための手段として、本発明の一例による衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼は、重量%で、C:0.03%以下(0を除く)、Si:1.0%以下、Mn:1.0%以下、Cr:18~24%、Ni:16~24%、Mo:5.0~7.0%、Cu:0.1~2.0%、W:1.0%以下、N:0.18~0.3%、Al:0.02~0.1%、O:0.01%以下、Ca:0.002~0.01%、S:0.001%未満、残りのFe及び不可避な不純物からなり、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすことを特徴とする。 As a means for achieving the above object, a highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability according to an example of the present invention has a C content of 0.03% or less (excluding 0) by weight %. , Si: 1.0% or less, Mn: 1.0% or less, Cr: 18-24%, Ni: 16-24%, Mo: 5.0-7.0%, Cu: 0.1-2. 0%, W: 1.0% or less, N: 0.18-0.3%, Al: 0.02-0.1%, O: 0.01% or less, Ca: 0.002-0.01 %, S: less than 0.001%, the remaining Fe and inevitable impurities, O / Al: 0.01 to 0.12, S / Ca: 0.01 to 0.4. .

本発明の各衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼において、下記式(1)で表される衝撃靭性(CNVTH)値が80以上であってもよい。
(1)CNVTH=336-1432×C-22.1×Si+64.1×Mn+8.5×Cr+0.11×Ni-10.1×Mo-3.3×Cu+22.1×W-392×N-293×(Tσ/T)
前記式(1)において、C、Si、Mn、Cr、Ni、Mo、Cu、W、Nは、各合金元素の重量%を意味し、Tσは、熱力学的にシグマ(σ)相が完全に分解される温度を意味し、Tは、実際の溶体化熱処理温度を意味する。
In the highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability of the present invention, the impact toughness (CNV TH ) value represented by the following formula (1) may be 80 or more.
(1) CNV TH = 336-1432 x C-22.1 x Si + 64.1 x Mn + 8.5 x Cr + 0.11 x Ni-10.1 x Mo-3.3 x Cu + 22.1 x W-392 x N- 293×( /T)
In the above formula (1), C, Si, Mn, Cr, Ni, Mo, Cu, W, and N mean the weight percent of each alloying element, and is the thermodynamic sigma (σ) phase. means the complete decomposition temperature and T means the actual solution heat treatment temperature.

本発明の各衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼において、下記式(2)で表されるPREW-Mn値が40以上50以下であってもよい。
(2)PREW-Mn=Cr+3.3×(Mo+0.5×W)+16×N-0.5×Mn
前記式(2)において、Cr、Mo、W、N、Mnは、各合金元素の重量%を意味する。
In each highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability of the present invention, the PREW-Mn value represented by the following formula (2) may be 40 or more and 50 or less.
(2) PREW−Mn=Cr+3.3×(Mo+0.5×W)+16×N−0.5×Mn
In the above formula (2), Cr, Mo, W, N, and Mn mean weight percent of each alloying element.

本発明の各衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼において、表面から厚さ1/4~3/4深さまでの領域で50倍の倍率で26mmの面積で測定されるσ相の面積率が1.0%以下であってもよい。 In the highly corrosion-resistant austenitic stainless steel of the present invention, which is excellent in impact toughness and hot workability, the area from the surface to the depth of 1/4 to 3/4 of the thickness is measured at a magnification of 50 times with an area of 26 mm 2 . The area ratio of the σ phase may be 1.0% or less.

本発明の各衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼において、臨界孔食温度が80℃以上であってもよい。 In the highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability of the present invention, the critical pitting corrosion temperature may be 80° C. or higher.

本発明によれば、脱硫設備、熱交換器、淡水設備、食・飲料設備などの産業設備用素材に適用可能な耐食性と衝撃靭性に優れており、また、熱間加工性に優れた高耐食オーステナイト系ステンレス鋼を提供できる。 According to the present invention, it has excellent corrosion resistance and impact toughness that can be applied to materials for industrial equipment such as desulfurization equipment, heat exchangers, freshwater equipment, food and beverage equipment, and high corrosion resistance with excellent hot workability. Austenitic stainless steel can be provided.

本発明が限定する合金成分内でPREW-Mn値が40以上50以下になるように制御し、金属間化合物の形成を抑制して高耐食性を確保し、衝撃靭性(CNVTH)値が80以上になるように合金成分及び熱処理条件を制御して優れた衝撃靭性を確保し、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすように微量元素を制御して優れた熱間加工性を確保できる。 The PREW-Mn value is controlled to be 40 or more and 50 or less within the alloy composition defined by the present invention, the formation of intermetallic compounds is suppressed to ensure high corrosion resistance, and the impact toughness (CNV TH ) value is 80 or more. Ensure excellent impact toughness by controlling the alloy components and heat treatment conditions so that O / Al: 0.01 to 0.12, S / Ca: trace elements to satisfy 0.01 to 0.4 can be controlled to ensure excellent hot workability.

各実施例のPREW-Mnの変化による臨界孔食温度(CPT)を示すグラフである。4 is a graph showing critical pitting temperature (CPT) according to changes in PREW-Mn in each example. 各実施例のS/Ca、O/Al値を示すグラフである。It is a graph which shows S/Ca and O/Al value of each Example.

本発明の一例による衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼は、重量%で、C:0.03%以下(0を除く)、Si:1.0%以下、Mn:1.0%以下、Cr:18~24%、Ni:16~24%、Mo:5.0~7.0%、Cu:0.1~2.0%、W:1.0%以下、N:0.18~0.3%、Al:0.02~0.1%、O:0.01%以下、Ca:0.002~0.01%、S:0.001%未満、残りのFe及び不可避な不純物からなり、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たす。 The high corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability according to an example of the present invention has, in weight percent, C: 0.03% or less (excluding 0), Si: 1.0% or less, Mn: 1.0% or less, Cr: 18-24%, Ni: 16-24%, Mo: 5.0-7.0%, Cu: 0.1-2.0%, W: 1.0% or less, N: 0.18-0.3%, Al: 0.02-0.1%, O: 0.01% or less, Ca: 0.002-0.01%, S: less than 0.001%, rest of Fe and inevitable impurities, satisfying O/Al: 0.01 to 0.12 and S/Ca: 0.01 to 0.4.

以下、本発明の好ましい実施形態を説明する。しかし、本発明の実施形態は、様々な他の形態に変形されてもよく、本発明の技術思想が以下に説明する実施形態に限定されるものではない。また、本発明の実施形態は、当技術分野において平均的な知識を有する者に本発明をより完全に説明するために提供されるものである。 Preferred embodiments of the present invention are described below. However, the embodiments of the present invention may be modified into various other forms, and the technical concept of the present invention is not limited to the embodiments described below. Moreover, the embodiments of the present invention are provided so that the invention will be more fully understood by those of average skill in the art.

本出願で使用される用語は、単に特定の例示を説明するために使用されるものである。したがって、例えば、単数の表現は、文脈上明らかに単数でなければならないものではない限り、複数の表現を含む。さらに、本出願で使用される「含む」または「備える」などの用語は、明細書上に記載された特徴、段階、機能、構成要素、またはそれらを組み合わせたものが存在することを明確に指すために使用されるものであり、他の特徴や段階、機能、構成要素またはこれらを組み合わせたものの存在を予備的に排除するために使用されるものではないことに留意しなければならない。 The terminology used in this application is merely used to describe specific examples. Thus, for example, singular references include plural references unless the context clearly dictates otherwise. Furthermore, terms such as "including" or "comprising" as used in this application expressly refer to the presence of the features, steps, functions, components, or combinations thereof described in the specification. and does not preclude the presence of other features, steps, functions, components or combinations thereof.

一方、特段の定義がない限り、本明細書で使用されるすべての用語は、本発明が属する技術分野で通常の知識を有する者によって一般に理解されるものと同じ意味を有するものとみなすべきである。したがって、本明細書において明確に定義しない限り、特定の用語が過度に理想的かつ形式的な意味に解釈されるべきではない。例えば、本明細書における単数の表現は、文脈上、明らかに例外がない限り、複数の表現を含む。 On the other hand, unless defined otherwise, all terms used herein should be assumed to have the same meaning as commonly understood by one of ordinary skill in the art to which this invention belongs. be. Accordingly, unless explicitly defined herein, certain terms should not be construed in an overly idealistic and formal sense. For example, the singular references herein include plural references unless the context clearly dictates otherwise.

また、本明細書において「約」、「実質的に」などは、言及した意味に固有の製造及び物質の許容誤差が提示されるとき、その数値、またはその数値に近い意味で使用され、本発明の理解を助けるために、正確かつ絶対的な数値が言及された開示内容を不当に利用することを防止するために使用される。 Also, as used herein, "about," "substantially," and the like are used at or near the numerical value when manufacturing and material tolerances inherent in the referenced meaning are presented. To aid understanding of the invention, precise and absolute numerical values are used to prevent unauthorized use of the disclosed material referred to.

本発明の一例による衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼は、重量%で、C:0.03%以下、Si:1.0%以下、Mn:1.0%以下、Cr:18~24%、Ni:16~24%、Mo:5~7%、Cu:0.1~ 2.0%、W:1.0%以下、N:0.18~0.3%、Al:0.02~0.1%、O:0.01%以下、Ca:0.002~0.01%、S:0.001%未満、残りのFe及び不可避な不純物を含んでもよい。 The highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability according to an example of the present invention has C: 0.03% or less, Si: 1.0% or less, and Mn: 1.0% or less by weight. , Cr: 18-24%, Ni: 16-24%, Mo: 5-7%, Cu: 0.1-2.0%, W: 1.0% or less, N: 0.18-0.3 %, Al: 0.02 to 0.1%, O: 0.01% or less, Ca: 0.002 to 0.01%, S: less than 0.001%, the remaining Fe and unavoidable impurities good.

以下、前記合金組成に対して限定した理由について具体的に説明する。下記の成分組成は、特に記載のない限り、全て重量%を意味する。 Hereinafter, the reasons for limiting the alloy composition will be specifically described. Unless otherwise specified, all of the component compositions below are expressed in weight percent.

炭素(C):0.03重量%以下(0を除く)
Cは、強力なオーステナイト相安定化元素であり、固溶強化で強度を増加させる。しかし、C含量が高すぎると、オーステナイト相境界で耐食性に有効なCrなどの炭化物形成元素と容易に結合して炭化物を形成し、形成された炭化物は、結晶粒界の周囲のCr含量を下げて耐食性を低下させる。これによって、C含量の上限を0.03重量%以下に制限することが好ましい。
Carbon (C): 0.03% by weight or less (excluding 0)
C is a strong austenite phase stabilizing element and increases strength through solid solution strengthening. However, if the C content is too high, it easily combines with carbide-forming elements such as Cr, which are effective for corrosion resistance, at the austenite phase boundaries to form carbides, and the formed carbides reduce the Cr content around the grain boundaries. reduce corrosion resistance. Accordingly, it is preferable to limit the upper limit of the C content to 0.03% by weight or less.

シリコン(Si):1.0重量%以下
Siは、フェライト相安定化元素であり、耐食性を向上させ、脱酸剤としての役割を果たす元素である。しかし、Si含量が高すぎると、σ相などの金属間化合物析出を助長して衝撃靭性に関連した機械的特性及び耐食性を低下させ、熱間圧延時にクラックを誘発させうる。これによって、Si含量の上限を1.0重量%以下に制限することが好ましい。
Silicon (Si): 1.0% by Weight or Less Si is an element that stabilizes the ferrite phase, improves corrosion resistance, and acts as a deoxidizing agent. However, if the Si content is too high, it may promote the precipitation of intermetallic compounds such as the σ phase, degrading mechanical properties related to impact toughness and corrosion resistance, and may induce cracks during hot rolling. Accordingly, it is preferable to limit the upper limit of the Si content to 1.0% by weight or less.

マンガン(Mn):1.0重量%以下
Mnは、オーステナイト相安定化元素であり、N固溶度を向上させる。しかし、Mn含量が高すぎると、MnSなどの介在物を形成して耐食性を低下させうる。これによって、Mn含量の上限を1.0重量%以下に制限することが好ましい。
Manganese (Mn): 1.0% by Weight or Less Mn is an austenite phase stabilizing element and improves N solid solubility. However, if the Mn content is too high, inclusions such as MnS may be formed to reduce corrosion resistance. Accordingly, it is preferable to limit the upper limit of the Mn content to 1.0% by weight or less.

クロム(Cr):18~24重量%
Crは、代表的なステンレス鋼の耐食性向上元素であり、本発明では、PREW-Mn値が40以上になる高耐食性を確保するためには、Crは、18重量%以上添加されてもよい。しかし、Crは、フェライト相安定化元素として、Cr含量が高すぎると、フェライト分率が増加して熱間加工性を低下させ、σ相の形成が助長されて機械的物性及び耐食性を低下させうる。これを考慮して、Cr含量の上限を24重量%以下に制限することが好ましい。
Chromium (Cr): 18-24% by weight
Cr is a typical element for improving corrosion resistance of stainless steel, and in the present invention, Cr may be added in an amount of 18% by weight or more in order to ensure high corrosion resistance with a PREW-Mn value of 40 or more. However, Cr is a ferrite phase stabilizing element. If the Cr content is too high, the ferrite fraction increases, deteriorating hot workability, and promoting the formation of σ phase, degrading mechanical properties and corrosion resistance. sell. Considering this, it is preferable to limit the upper limit of the Cr content to 24% by weight or less.

ニッケル(Ni):16~24重量%
Niは、最も強力なオーステナイト相安定化元素であり、オーステナイト相を維持するため、Niは、16重量%以上添加されてもよい。しかし、Ni含量が増加すると、原料価格が上昇するため、Ni含量の上限を24重量%以下に制限することが好ましい。
Nickel (Ni): 16-24% by weight
Ni is the strongest austenite phase stabilizing element, and to maintain the austenite phase, Ni may be added in an amount of 16% by weight or more. However, if the Ni content increases, the cost of raw materials rises, so it is preferable to limit the upper limit of the Ni content to 24% by weight or less.

モリブデン(Mo):5.0~7.0重量%
Moは、フェライト相安定化元素であり、耐食性を向上させる。本発明においてPREW-Mnの値が40以上になる高耐食性を確保するため、Moは、5.0重量%以上添加されてもよい。Moは、焼鈍状態では機械的性質及び耐食性の側面で有用な元素であるが、時効熱処理、熱間圧延又は溶接などの工程中にσ相を生成させる代表的な元素である。これによって、Mo含量が高すぎると、σ相の形成が助長されて機械的物性及び耐食性を低下させうるため、Mo含量の上限を7.0重量%以下に制限することが好ましい。
Molybdenum (Mo): 5.0 to 7.0% by weight
Mo is a ferrite phase stabilizing element and improves corrosion resistance. In order to ensure high corrosion resistance with a PREW-Mn value of 40 or more in the present invention, Mo may be added in an amount of 5.0% by weight or more. Mo is a useful element in terms of mechanical properties and corrosion resistance in an annealed state, and is a representative element that generates a σ phase during processes such as aging heat treatment, hot rolling, and welding. Therefore, if the Mo content is too high, the formation of the σ phase may be promoted and the mechanical properties and corrosion resistance may be degraded.

銅(Cu):0.1~2.0重量%
Cuは、オーステナイト相安定化元素であり、冷間変形時にマルテンサイト相への相変態を抑制させ、硫酸雰囲気における耐食性を向上させる。このため、Cuは、0.1重量%以上添加されてもよい。しかし、Cu含量が高すぎると、塩素雰囲気で孔食抵抗性を減少させ、熱間加工性を低下させる。これによって、Cu含量の上限を2.0重量%以下に制限することが好ましい。
Copper (Cu): 0.1 to 2.0% by weight
Cu is an austenite phase stabilizing element, suppresses phase transformation to martensite phase during cold deformation, and improves corrosion resistance in a sulfuric acid atmosphere. Therefore, Cu may be added in an amount of 0.1% by weight or more. However, if the Cu content is too high, it reduces the pitting corrosion resistance in a chlorine atmosphere and degrades the hot workability. Accordingly, it is preferable to limit the upper limit of the Cu content to 2.0% by weight or less.

タングステン(W):1.0重量%以下
Wは、フェライト相安定化元素であり、耐食性を向上させる。また、Wは、原子半径が大きいため、高温でCr及びMoの拡散を妨げ、σ相の形成を抑制するのに効果的な元素として知られている。しかし、高合金オーステナイト系ステンレス鋼は、規格範囲内の成分を有することが好ましく、Wは、多量添加時にカイ(χ)相などの金属間化合物の析出を助長して耐食性及び衝撃靭性を低下させ、熱間加工性を阻害するおそれがある。これによって、W含量の上限を1.0重量%以下に制限することが好ましい。
Tungsten (W): 1.0% by weight or less W is a ferrite phase stabilizing element and improves corrosion resistance. Moreover, W is known as an element effective in suppressing the formation of the σ phase by preventing the diffusion of Cr and Mo at high temperatures because of its large atomic radius. However, high-alloy austenitic stainless steel preferably has a composition within the standard range, and when W is added in a large amount, it promotes the precipitation of intermetallic compounds such as the chi (χ) phase and lowers corrosion resistance and impact toughness. , there is a risk of impairing the hot workability. Accordingly, it is preferable to limit the upper limit of the W content to 1.0% by weight or less.

窒素(N):0.18~0.3重量%
Nは、オーステナイト相安定化元素であり、塩素雰囲気における耐食性を向上させる。したがって、耐食性向上の目的でNは、0.18重量%以上添加されてもよい。しかし、N含量が高すぎると、熱間加工性を低下させるため、N含量の上限を0.3重量%以下に制限することが好ましい。
Nitrogen (N): 0.18 to 0.3% by weight
N is an austenite phase stabilizing element and improves corrosion resistance in a chlorine atmosphere. Therefore, 0.18% by weight or more of N may be added for the purpose of improving corrosion resistance. However, if the N content is too high, the hot workability is deteriorated, so it is preferable to limit the upper limit of the N content to 0.3% by weight or less.

アルミニウム(Al):0.02~0.1重量%
Alは、強力な脱酸剤として作用する元素であり、酸素と結合してスラグを形成することにより溶鋼中の酸素を除去して鋼の熱間加工性を向上させることができる。これを考慮して、Alは、0.02重量%以上添加されてもよい。しかし、Al含量が高すぎると、非金属介在物を形成して鋼の清浄度(cleanliness)を低下させ、AlNの形成による衝撃靭性の低下のような材質の劣化を誘発する。そのため、Al含量の上限を0.1重量%以下に制限することが好ましい。
Aluminum (Al): 0.02 to 0.1% by weight
Al is an element that acts as a strong deoxidizing agent, and by combining with oxygen to form slag, Al can remove oxygen in molten steel and improve the hot workability of steel. Considering this, Al may be added in an amount of 0.02 wt% or more. However, if the Al content is too high, non-metallic inclusions are formed to deteriorate the cleanliness of the steel, and the formation of AlN causes deterioration of the material such as reduction in impact toughness. Therefore, it is preferable to limit the upper limit of the Al content to 0.1% by weight or less.

酸素(O):0.01重量%以下
Oは、結晶粒界に偏析して鋼の熱間加工性を低下させる元素である。これによって、O含量は、できるだけ下げることが好ましく、O含量の上限を0.01重量%以下に制御する。より優れた熱間加工性を確保するため、O含量は、さらに好ましくは、0.0035重量%以下に制御されてもよい。
Oxygen (O): 0.01% by weight or less O is an element that segregates at grain boundaries and reduces the hot workability of steel. Accordingly, it is preferable to reduce the O content as much as possible, and the upper limit of the O content is controlled to 0.01% by weight or less. In order to ensure better hot workability, the O content may be more preferably controlled to 0.0035% by weight or less.

カルシウム(Ca):0.002~0.01重量%
Caは、脱酸剤として作用する元素であり、溶鋼中にSと結合して安定したCaS化合物を形成することにより結晶粒系にSが偏析する傾向を抑制して鋼の熱間加工性を向上させることができる。これを考慮して、Caは、0.002重量%以上添加されてもよい。しかし、Ca含量が高すぎると、非金属介在物を形成して鋼の清浄度を低下させるおそれがある。これによって、Ca含量の上限を0.01重量%以下に制限することが好ましい。鋼の清浄度を高めるため、より好ましくは、Ca含量の上限を0.0045重量%以下に制限してもよい。
Calcium (Ca): 0.002 to 0.01% by weight
Ca is an element that acts as a deoxidizing agent. Ca combines with S in molten steel to form a stable CaS compound, thereby suppressing the tendency of S to segregate in the grain system and improving the hot workability of the steel. can be improved. Taking this into account, Ca may be added in an amount of 0.002% by weight or more. However, if the Ca content is too high, it may form non-metallic inclusions and degrade the cleanliness of the steel. Accordingly, it is preferable to limit the upper limit of the Ca content to 0.01% by weight or less. More preferably, the upper limit of the Ca content may be limited to 0.0045% by weight or less in order to improve the cleanliness of the steel.

黄(S):0.001重量%未満
Sは、結晶粒界に偏析して鋼の熱間加工性を低下させる元素である。これによって、S含量の上限を0.001重量%未満に制御することが好ましい。
Yellow (S): less than 0.001% by weight S is an element that segregates at grain boundaries and reduces the hot workability of steel. Accordingly, it is preferable to control the upper limit of the S content to less than 0.001% by weight.

本発明の残りの成分は、鉄(Fe)である。ただし、通常の製造過程では、原料または周囲環境から意図しない不純物が不可避的に混入することがあるので、これを排除することはできない。前記不純物は、通常の製造過程の技術者であれば誰でも知ることができるため、その全ての内容を特に本明細書で言及していない。 The remaining component of the present invention is iron (Fe). However, unintended impurities from raw materials or the surrounding environment may inevitably be mixed in during normal manufacturing processes, and this cannot be excluded. The full content of the impurities is not specifically mentioned herein because any person skilled in the normal manufacturing process can know the impurities.

本発明によるオーステナイト系ステンレス鋼は、耐食性に優れており、脱硫設備、熱交換器、淡水設備、食・飲料設備などの産業設備用素材として適用可能である。以下、本発明において鋼の耐食性を確保するための技術的手段を詳細に説明する。 The austenitic stainless steel according to the present invention has excellent corrosion resistance and can be applied as a material for industrial equipment such as desulfurization equipment, heat exchangers, freshwater equipment, and food and beverage equipment. Hereinafter, technical means for ensuring the corrosion resistance of steel in the present invention will be described in detail.

一般にオーステナイト系ステンレス鋼の耐食性は、耐孔食指数(Pitting Resistance Equivalent Number、PREN)によって間接的に表現される。耐孔食指数(PREN)は、耐食性に影響を与える元素であるCr、Mo、N成分の含量を用いて下記式のように表される。下記式において、各合金元素は、当該元素の重量%を意味する。 Corrosion resistance of austenitic stainless steel is generally indirectly expressed by a Pitting Resistance Equivalent Number (PREN). The pitting resistance index (PREN) is expressed by the following formula using the contents of Cr, Mo, and N components, which are elements that affect corrosion resistance. In the following formula, each alloying element means weight percent of the element.

PREN=Cr+3.3×Mo+16×N PREN = Cr + 3.3 x Mo + 16 x N

しかし、Wもオーステナイト系ステンレス鋼の耐食性を向上させる元素であり、Mnは、水溶性介在物を形成して耐食性に悪影響を及ぼす元素であるため、前記PREN式で耐食性を表現するには限界が存在する。これによって、本発明では、前記W及びMnの影響をすべて考慮して、前記PREN式を下記式で表されるPREW-Mnのように修正する。下記式において、各合金元素は、当該元素の重量%を意味する。 However, W is also an element that improves the corrosion resistance of austenitic stainless steel, and Mn is an element that forms water-soluble inclusions and adversely affects corrosion resistance. exist. Accordingly, the present invention modifies the PREN formula to PREW-Mn, which is expressed by the following formula, considering all the effects of W and Mn. In the following formula, each alloying element means weight percent of the element.

PREW-Mn=Cr+3.3×(Mo+0.5×W)+16×N-0.5×Mn PREW−Mn=Cr+3.3×(Mo+0.5×W)+16×N−0.5×Mn

海水のような多量の塩分が含まれる環境または酸性物質が含まれる極度の腐食環境で鋼の十分な耐食性を確保するためには、前記PREW-Mnの値は、40以上50以下であってもよい。PREW-Mn値が40未満の場合、十分な耐食性を確保できないため、腐食環境で長時間耐えられず、50を超える場合、多量のCr、Mo、W含量による金属間化合物であるσ相などが基地組織内に析出され、むしろ耐食性が低下するおそれがある。PREW-Mn値を40以上50以下に制御した結果、本発明の一例によるオーステナイト系ステンレス鋼の臨界孔食温度は、80℃以上であってもよい。 In order to ensure sufficient corrosion resistance of steel in an environment containing a large amount of salt such as seawater or an extremely corrosive environment containing acidic substances, the value of PREW-Mn is 40 or more and 50 or less. good. If the PREW-Mn value is less than 40, sufficient corrosion resistance cannot be ensured, so it cannot withstand a corrosive environment for a long time. It may be precipitated in the matrix structure and rather deteriorate the corrosion resistance. As a result of controlling the PREW-Mn value to 40 or more and 50 or less, the critical pitting corrosion temperature of the austenitic stainless steel according to an example of the present invention may be 80° C. or more.

また、本発明によるオーステナイト系ステンレス鋼は、衝撃靭性に優れている。以下、本発明において鋼の衝撃靭性を確保するための技術的手段について、詳細に説明する。 Also, the austenitic stainless steel according to the present invention is excellent in impact toughness. Hereinafter, technical means for ensuring the impact toughness of steel in the present invention will be described in detail.

鋼の衝撃靭性は、金属間化合物によって決定されてもよい。金属間化合物は、主にCr、Moなどを含むσ相であり、σ相は、基地組織内に析出することになり、耐食性、衝撃靭性及び熱間加工性を低下させる。Cr、Moなどの合金成分含量が高いほどσ相の形成が助長されることになるので、σ相の形成を抑制できるように適切な合金成分の制御が必要である。 The impact toughness of steel may be determined by intermetallic compounds. The intermetallic compound is a σ phase containing mainly Cr, Mo, etc., and the σ phase precipitates in the matrix structure, deteriorating corrosion resistance, impact toughness and hot workability. Since the formation of the σ phase is promoted as the content of alloying components such as Cr and Mo increases, it is necessary to appropriately control the alloying components so as to suppress the formation of the σ phase.

また、鋼は、高温で溶体化熱処理する場合、σ相のCr、Moなどの元素が基地組織に拡散しながら、σ相が分解する。通常、316系Mo添加高耐食オーステナイト系ステンレス鋼の溶体化熱処理温度は、1,100℃以上であるため、これを考慮してσ相を分解するために本発明における溶体化熱処理温度は、1,100℃以上であってもよい。しかし、過度の高温、長時間の溶体化熱処理は、熱処理設備に影響を与えるため、溶体化熱処理温度は、1,200℃以下に制限される。 When steel is subjected to solution heat treatment at a high temperature, the σ phase is decomposed while elements such as Cr and Mo in the σ phase diffuse into the matrix structure. Normally, the solution heat treatment temperature of 316 series Mo-added highly corrosion-resistant austenitic stainless steel is 1,100° C. or higher. , 100° C. or higher. However, solution heat treatment at an excessively high temperature for a long time affects the heat treatment equipment, so the solution heat treatment temperature is limited to 1,200° C. or less.

σ相の形成及び分解は、合金成分及び溶体化熱処理温度の影響を受けるので、衝撃靭性を低下させるσ相を抑制するためには、溶体化熱処理条件及び合金成分の制御が適切に伴わなければならない。本発明では、合金成分及び溶体化熱処理温度の関数である下記式で表される衝撃靭性(CNVTH)の値を80以上になるようにして衝撃靭性を確保する。CNVTH値は、本発明による衝撃靭性の理論値に該当する。下記CNVTHにおいて、Tσは、熱力学的にシグマ(σ)相が完全に分解される温度であり、Tは、実際の溶体化熱処理温度である。下記式CNVTHにおいて、各合金元素は、当該元素の重量%を意味し、Tは、1,100~1,200℃の間の値を有する。 Since the formation and decomposition of the σ phase are affected by the alloy composition and solution heat treatment temperature, in order to suppress the σ phase, which lowers the impact toughness, the solution heat treatment conditions and alloy composition must be appropriately controlled. not. In the present invention, impact toughness is ensured by setting the value of impact toughness (CNV TH ) represented by the following formula, which is a function of alloy composition and solution heat treatment temperature, to 80 or more. The CNV TH value corresponds to the theoretical value of impact toughness according to the invention. In CNV TH below, Tσ is the temperature at which the sigma ( σ ) phase is completely decomposed thermodynamically, and T is the actual solution heat treatment temperature. In the formula CNV TH below, each alloying element means the weight percent of that element, and T has a value between 1,100 and 1,200.degree.

CNVTH=336-1432×C-22.1×Si+64.1×Mn+8.5×Cr+0.11×Ni-10.1×Mo-3.3×Cu+22.1×W-392×N-293×(Tσ/T) CNV TH = 336-1432 x C-22.1 x Si + 64.1 x Mn + 8.5 x Cr + 0.11 x Ni-10.1 x Mo-3.3 x Cu + 22.1 x W-392 x N-293 x ( /T)

本発明によれば、式CNVTHの値を80以上になるように制御した結果、σ相を抑制できる。例えば、本発明によるオーステナイト系ステンレス鋼は、試料表面から厚さ1/4~3/4深さまでの領域で50倍の倍率で26mmの面積で測定されるσ相面積率が1.0%以下であってもよい。 According to the present invention, as a result of controlling the value of the formula CNV TH to be 80 or more, the σ phase can be suppressed. For example, the austenitic stainless steel according to the present invention has a σ phase area ratio of 1.0% measured in an area of 26 mm 2 at a magnification of 50 times in a region from the surface of the sample to a depth of 1/4 to 3/4 in thickness. It may be below.

また、本発明によるオーステナイト系ステンレス鋼は、熱間加工性に優れている。以下、本発明において鋼の熱間加工性を確保するための技術的手段について、詳細に説明する。 Also, the austenitic stainless steel according to the present invention is excellent in hot workability. Hereinafter, technical means for ensuring the hot workability of steel in the present invention will be described in detail.

オーステナイト系ステンレス鋼の耐食性の確保のためには、必然的に多量のCr、Mo、Nなどの合金元素が添加されなければならない。Cr、Mo、Nなどの元素の含量が高くなると、結晶粒界に偏析する不純物により熱間加工時の粒界が脆化して熱間加工性が低下する。したがって、耐食性を確保するとともに熱間加工性の確保のためには、Cr、Mo、Nなどの合金元素を添加するとともに結晶粒界に偏析する不純物を最小化し、熱間加工時の粒界が脆化しないようにすることが重要である。 In order to secure the corrosion resistance of austenitic stainless steel, a large amount of alloying elements such as Cr, Mo and N must be added. When the contents of elements such as Cr, Mo, and N become high, the grain boundaries during hot working become embrittled due to segregation of impurities at grain boundaries, resulting in deterioration of hot workability. Therefore, in order to ensure corrosion resistance and hot workability, alloying elements such as Cr, Mo and N are added and impurities segregated at grain boundaries are minimized so that the grain boundaries during hot working are kept. It is important to avoid embrittlement.

オーステナイト系ステンレス鋼の結晶粒界に偏析する不純物は、代表的に酸素(O)と硫黄(S)がある。本発明では、微量元素を制御して結晶粒界に偏析する酸素、硫黄などの不純物を最小化し、優れた熱間加工性を確保する。 Impurities that segregate at grain boundaries of austenitic stainless steel are typically oxygen (O) and sulfur (S). In the present invention, trace elements are controlled to minimize impurities such as oxygen and sulfur that segregate at grain boundaries, thereby ensuring excellent hot workability.

鋼中の酸素の含量を下げるためには、脱酸工程が重要であり、主な脱酸剤としてAlが用いられてもよい。Alは、酸素と結合してスラグを形成することにより、溶鋼中の酸素を除去して鋼の熱間加工性を向上させることができる。しかし、Al含量が高すぎると、非金属介在物を形成して鋼の清浄度を低下させ、AlNの形成により鋼の衝撃靭性が低下するおそれがある。これを考慮して本発明では、Al添加による酸素含量の変化をO/Alで指数化し、O/Alの値を0.01以上0.12以下に制御する。 In order to reduce the oxygen content in steel, the deoxidizing process is important, and Al may be used as the main deoxidizing agent. Al combines with oxygen to form slag, thereby removing oxygen from molten steel and improving the hot workability of the steel. However, if the Al content is too high, non-metallic inclusions may be formed to lower the cleanliness of the steel, and the formation of AlN may reduce the impact toughness of the steel. Considering this, in the present invention, the change in oxygen content due to the addition of Al is indexed by O/Al, and the value of O/Al is controlled to 0.01 or more and 0.12 or less.

また、本発明では、鋼中の硫黄の含量を下げるため、溶鋼中の硫黄と結合して安定したCaS化合物を形成するCaを添加する。Caは、CaS化合物を形成して結晶粒界に硫黄が偏析する傾向を抑制し、鋼の熱間加工性を向上させることができる。しかし、Ca含量が高すぎると、非金属介在物を形成して鋼の清浄度を低下させるおそれがある。これを考慮して本発明では、Ca添加による硫黄含量の変化をS/Caで指数化し、S/Caの値を0.01以上0.4以下に制御してもよい。 In addition, in the present invention, in order to reduce the sulfur content in the steel, Ca is added which combines with sulfur in the molten steel to form a stable CaS compound. Ca can form a CaS compound to suppress the tendency of sulfur to segregate at grain boundaries and improve the hot workability of steel. However, if the Ca content is too high, it may form non-metallic inclusions and degrade the cleanliness of the steel. Considering this, in the present invention, the change in sulfur content due to Ca addition may be indexed by S/Ca, and the value of S/Ca may be controlled to 0.01 or more and 0.4 or less.

本発明は、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすように制御し、熱間加工時に鋼の表面やエッジ(edge)部にクラックが発生しないようにする。 In the present invention, O/Al: 0.01 to 0.12, S/Ca: 0.01 to 0.4 are controlled so that cracks do not occur on the surface or edge of the steel during hot working. prevent it from occurring.

本発明によれば、PREW-Mn値が40以上50以下になるように制御して高耐食性を確保し、衝撃靭性(CNVTH)値が80以上になるように合金成分及び熱処理条件を制御して優れた衝撃靭性を確保し、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすように微量元素を制御して優れた熱間加工性を確保する。 According to the present invention, the PREW-Mn value is controlled to be 40 or more and 50 or less to ensure high corrosion resistance, and the alloy composition and heat treatment conditions are controlled so that the impact toughness (CNV TH ) value is 80 or more. and ensure excellent impact toughness, and control trace elements to satisfy O/Al: 0.01 to 0.12 and S/Ca: 0.01 to 0.4 to ensure excellent hot workability. do.

以下、実施例を通じて本発明をより具体的に説明する。ただし、下記の実施例は、本発明を例示してより詳細に説明するためのものであり、本発明の権利範囲を限定するためのものではないことに留意する必要がある。本発明の権利範囲は、特許請求の範囲に記載された事項とこれから合理的に類推される事項によって決定されるものであるからである。 Hereinafter, the present invention will be described in more detail through examples. However, it should be noted that the following examples are for the purpose of illustrating and describing the present invention in more detail, and are not intended to limit the scope of rights of the present invention. This is because the scope of rights of the present invention is determined by matters described in the claims and matters reasonably inferred therefrom.

[実施例]
下記表1に記載の化学組成を有する鋼を真空誘導溶解炉で溶解した後、熱間圧延を行った後、溶体化熱処理を1,100~1,200℃区間で行い、厚さ5mmの熱間圧延板材を製造した。
[Example]
Steel having the chemical composition shown in Table 1 below is melted in a vacuum induction melting furnace, hot rolled, and then solution heat treated in the range of 1,100 to 1,200 ° C. to obtain a heat of 5 mm in thickness. Inter-rolled plate material was produced.

Figure 2022546776000002
Figure 2022546776000002

表2には、各実施例の成分によるPREW-Mn値と臨界孔食温度(CPT)、Tσ、T、O/Al、S/Ca、表面クラック、σ相面積率、衝撃靭性(CNVTH、CNVEX)値をそれぞれ示した。 Table 2 shows the PREW-Mn value and critical pitting temperature (CPT), T σ , T, O/Al, S/Ca, surface cracks, σ phase area ratio, impact toughness (CNV TH , CNV EX ) values are shown, respectively.

表2のPREW-Mn値は、以下の式に表1の各合金元素の含量(重量%)を代入して導出したものである。 The PREW-Mn values in Table 2 are derived by substituting the content (% by weight) of each alloying element in Table 1 into the following formula.

PREW-Mn=Cr+3.3×(Mo+0.5×W)+16×N-0.5×Mn PREW−Mn=Cr+3.3×(Mo+0.5×W)+16×N−0.5×Mn

表2の臨界孔食温度(CPT)は、ASTM G150法による表面部CPTを測定し、温度が高いほど耐食性に優れていることを意味する。オーステナイト系ステンレス鋼の中で耐食性に最も優れたスーパーオーステナイト系ステンレス鋼について、前記方法で臨界孔食温度を測定してみると、80℃以上の値が得られることに基づいて、本発明では、臨界孔食温度が80℃以上であれば、十分な耐食性を確保したものと判断した。 The critical pitting temperature (CPT) in Table 2 is measured by surface CPT according to the ASTM G150 method, and the higher the temperature, the better the corrosion resistance. Super austenitic stainless steel, which has the best corrosion resistance among austenitic stainless steels, has a critical pitting corrosion temperature of 80°C or higher when measured by the above method. If the critical pitting corrosion temperature was 80° C. or higher, it was determined that sufficient corrosion resistance was ensured.

表2のTσは、熱力学的にシグマ(σ)相が完全に分解される温度であり、Tは、各実施例の実際の溶体化熱処理温度である。 T σ in Table 2 is the temperature at which the sigma (σ) phase is completely decomposed thermodynamically, and T is the actual solution heat treatment temperature for each example.

表2のO/Al、S/Caは、表1の各合金元素の含量(重量%)を代入して導出したものである。 O/Al and S/Ca in Table 2 are derived by substituting the content (% by weight) of each alloying element in Table 1.

表2の表面クラックは、長さ5mm以上のクラックが150mm×250mm面積の表面に5個未満の頻度で観察される場合には「Good」、5個以上の頻度で観察される場合には「Bad」で示した。 The surface cracks in Table 2 are "Good" when cracks with a length of 5 mm or more are observed at a frequency of less than 5 on the surface of an area of 150 mm × 250 mm, and "Good" when they are observed at a frequency of 5 or more. Bad”.

表2のσ相面積率は、最終焼鈍熱処理後の鋼の断面を1μmサイズのダイヤモンドペーストで鏡面研磨を行った後、NaOH溶液でエッチングしてσ相と基地組織が区分されるように試片を準備した後、前記のように準備された試片を表面から厚さ1/4~3/4深さまでの領域で50倍の倍率で26mmの面積で10個の視野を連続的に測定して計算した。 The σ phase area ratio in Table 2 was obtained by mirror-polishing the cross section of the steel after the final annealing heat treatment with a diamond paste of 1 μm size and etching it with a NaOH solution so that the σ phase and the matrix structure could be separated. After preparing the specimen prepared as described above, continuously measure 10 fields of view with an area of 26 mm 2 at 50 times magnification in the area from the surface to the depth of 1/4 to 3/4 of the thickness. calculated by

表2のCNVTH値は、本発明による衝撃靭性の理論値であり、下記式に各合金成分の重量%数値及びTσ、T値を代入してCNVTH値を導出した。導出されたCNVTH値は、有効数字2桁まで示した。 The CNV TH value in Table 2 is a theoretical value of impact toughness according to the present invention, and the CNV TH value was derived by substituting the weight % value of each alloy component, T σ , and T value into the following formula. Derived CNV TH values are shown to two significant figures.

CNVTH=336-1432×C-22.1×Si+64.1×Mn+8.5×Cr+0.11×Ni-10.1×Mo-3.3×Cu+22.1×W-392×N-293×(Tσ/T) CNV TH = 336-1432 x C-22.1 x Si + 64.1 x Mn + 8.5 x Cr + 0.11 x Ni-10.1 x Mo-3.3 x Cu + 22.1 x W-392 x N-293 x ( /T)

表2のCNVEX値は、シャルピーノッチ衝撃靭性結果の実験値であり、試片の厚さが4mmとなるように加工した後、常温25℃でノッチ衝撃靭性を測定した。 The CNV EX values in Table 2 are experimental values of the Charpy notch impact toughness results, and the notch impact toughness was measured at room temperature of 25° C. after processing the test pieces to a thickness of 4 mm.

表2のCNVTH値とCNVEX値とを比較すると、衝撃靭性の実験値と理論値が偏差なしにほぼ類似しており、本発明で提案したCNVTHの式で実際の衝撃靭性の値を大きな誤差なしに正確に導出できることが分かる。 Comparing the CNV TH value and the CNV EX value in Table 2, the experimental value and the theoretical value of impact toughness are almost similar without deviation, and the actual value of impact toughness can be calculated by the formula of CNV TH proposed in the present invention. It can be seen that it can be derived accurately without large errors.

Figure 2022546776000003
Figure 2022546776000003

以下、表1及び表2を参照し、各発明例及び比較例を比較評価する。 Hereinafter, each invention example and comparative example are comparatively evaluated with reference to Tables 1 and 2.

発明例1~8は、本発明が限定する合金成分の範囲を満たした。また、発明例1~8は、PREW-Mn値が40以上50以下となり、臨界孔食温度が80℃を超えて高耐食性を確保できた。発明例1~8は、σ面積率が1.0%以下、CNVTH値が80以上となるように合金成分及び熱処理条件を制御し、衝撃靭性(CNVEX)値が80J以上の優れた衝撃靭性を確保できた。発明例1~8は、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすように微量元素を制御し、熱間加工時に表面クラックが発生しない優れた熱間加工性を確保できた。 Inventive Examples 1 to 8 satisfied the range of alloy composition defined by the present invention. In addition, invention examples 1 to 8 had a PREW-Mn value of 40 or more and 50 or less, and the critical pitting corrosion temperature exceeded 80°C, ensuring high corrosion resistance. In invention examples 1 to 8, the alloy composition and heat treatment conditions are controlled so that the σ area ratio is 1.0% or less and the CNV TH value is 80 or more, and the impact toughness (CNV EX ) value is 80 J or more. I was able to secure toughness. In invention examples 1 to 8, trace elements are controlled to satisfy O/Al: 0.01 to 0.12 and S/Ca: 0.01 to 0.4, and surface cracks do not occur during hot working. It was possible to ensure good hot workability.

一方、比較例1、2は、Si含量が本発明で限定するSi含量の上限である1.0重量%を超えた。その結果、σ相などの金属間化合物の析出が助長され、σ面積率が1.0%を超え、衝撃靭性値が約32Jで発明例に対して劣っていた。 On the other hand, in Comparative Examples 1 and 2, the Si content exceeded 1.0% by weight, which is the upper limit of the Si content defined in the present invention. As a result, the precipitation of intermetallic compounds such as the σ phase was promoted, the σ area ratio exceeded 1.0%, and the impact toughness value was about 32 J, which was inferior to the invention examples.

比較例3は、Cr、Mo含量が本発明で限定するCr、Mo含量の下限に達せず、PREW-Mn値が40未満であり、臨界孔食温度が80℃に達しなかったため、十分な耐食性を確保できなかった。 In Comparative Example 3, the Cr and Mo contents did not reach the lower limits of the Cr and Mo contents defined in the present invention, the PREW-Mn value was less than 40, and the critical pitting corrosion temperature did not reach 80°C, so sufficient corrosion resistance was obtained. could not be secured.

比較例4は、Cr、Mo含量が本発明で限定するCr、Mo含量の上限を超え、PREW-Mn値が50を超えて過剰なCr、Mo含量による金属間化合物であるσ相などが基地組織内に析出し、むしろ耐食性が低下した。表2を参照すると、σ面積率が1.0%を超え、その結果、耐食性が低下し、衝撃靭性値が35Jで発明例に対して劣っていた。 In Comparative Example 4, the Cr and Mo contents exceed the upper limits of the Cr and Mo contents defined in the present invention, and the PREW-Mn value exceeds 50, and the σ phase, which is an intermetallic compound due to the excessive Cr and Mo contents, is the base. Precipitated in the structure, rather the corrosion resistance decreased. Referring to Table 2, the σ area ratio exceeded 1.0%, and as a result, the corrosion resistance decreased and the impact toughness value was 35J, which was inferior to the invention examples.

比較例5、6は、Al、Ca含量が本発明で限定するAl、Ca含量の下限に達せず、酸素と硫黄の含量が相対的に高く、本発明で限定するO/Al、S/Ca値の上限を超え、その結果、熱間加工時に表面クラックが発生し、熱間加工性が発明例に対して劣っていた。 In Comparative Examples 5 and 6, the Al and Ca contents did not reach the lower limits of the Al and Ca contents defined in the present invention, the oxygen and sulfur contents were relatively high, and the O/Al and S/Ca contents defined in the present invention The upper limit of the value was exceeded, and as a result, surface cracks occurred during hot working, and the hot workability was inferior to that of the invention examples.

比較例7において、Al、Ca含量は、本発明で限定するAl、Ca含量の範囲内である。しかし、比較例7は、本発明で規定するO/Al、S/Ca値の上限を超え、その結果、熱間加工時に表面クラックが発生し、熱間加工性が発明例に対して劣っていた。 In Comparative Example 7, the Al and Ca contents are within the limits of the Al and Ca contents defined in the present invention. However, Comparative Example 7 exceeds the upper limits of the O/Al and S/Ca values stipulated in the present invention, and as a result, surface cracks occur during hot working, and the hot workability is inferior to the invention examples. rice field.

また、前記結果は、本発明の図1及び図2から可視的に確認できる。図1は、各実施例のPREW-Mnの変化による臨界孔食温度(CPT)を示すグラフである。図2は、各実施例のS/Ca、O/Al値を示すグラフである。各図面において網掛けされた領域領域は、本発明が目的とする範囲領域に該当する。 Also, the above results can be visually confirmed from FIGS. 1 and 2 of the present invention. FIG. 1 is a graph showing critical pitting temperature (CPT) according to changes in PREW-Mn in each example. FIG. 2 is a graph showing the S/Ca and O/Al values of each example. The shaded area in each drawing corresponds to the target area of the present invention.

図1を参照すると、PREW-Mn値が本発明の目的とする40以上50以下に該当しない場合、臨界孔食温度(CPT)が80℃に達しない場合、又は臨界孔食温度(CPT)が100℃を超える場合(比較例4)でも過剰なCr、Mo含量による金属間化合物であるσ相などが基地組織内に析出し、むしろ耐食性が低下した。 Referring to FIG. 1, when the PREW-Mn value does not correspond to 40 or more and 50 or less, which is the object of the present invention, when the critical pitting temperature (CPT) does not reach 80 ° C., or when the critical pitting temperature (CPT) is Even when the temperature exceeded 100° C. (Comparative Example 4), the σ phase, which is an intermetallic compound due to excessive Cr and Mo contents, was precipitated in the matrix structure, and rather the corrosion resistance was lowered.

図2を参照すると、S/Ca、O/Al値が本発明が目的とする範囲から外れた場合(比較例5、6、7)は、熱間加工時に表面クラックが発生したことが確認できる。特に、比較例7の場合、本発明が限定するAl、Ca含量範囲内であるか、または図2に示されるように、比較例7のO/Al、S/Ca値が本発明以外の範囲で、熱間加工時に表面クラックが発生した。 Referring to FIG. 2, when the S/Ca and O/Al values were out of the ranges targeted by the present invention (Comparative Examples 5, 6, and 7), surface cracks occurred during hot working. . In particular, in the case of Comparative Example 7, the Al and Ca contents are within the ranges defined by the present invention, or as shown in FIG. , surface cracks occurred during hot working.

上述の実施例の結果から、本発明が限定する合金成分内でPREW-Mn値が40以上50以下になるように制御して高耐食性を確保し、衝撃靭性(CNVTH)値が80以上になるように合金成分及び熱処理条件を制御して優れた衝撃靭性を確保し、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすように微量元素を制御し、優れた熱間加工性を確保したことが分かる。 From the results of the above-described examples, the PREW-Mn value is controlled to be 40 or more and 50 or less within the alloy composition defined by the present invention to ensure high corrosion resistance, and the impact toughness (CNV TH ) value is 80 or more. Ensure excellent impact toughness by controlling the alloy composition and heat treatment conditions so that the It can be seen that control was performed to ensure excellent hot workability.

以上、本発明の例示的な実施例を説明したが、本発明はこれに限定されず、当該技術分野において通常の知識を有する者であれば、以下に記載する特許請求の範囲の概念と範囲から逸脱しない範囲内で、様々な変更及び変形が可能である。 While illustrative embodiments of the invention have been described above, the invention is not so limited and those of ordinary skill in the art will appreciate the concept and scope of the claims set forth below. Various modifications and variations are possible without departing from the scope of the invention.

本発明によるオーステナイト系ステンレス鋼は、脱硫設備、熱交換器、淡水設備、食・飲料設備などの様々な産業設備用素材に好適である。 The austenitic stainless steel according to the present invention is suitable as a material for various industrial facilities such as desulfurization facilities, heat exchangers, fresh water facilities, food and beverage facilities.

Claims (5)

重量%で、C:0.03%以下(0を除く)、Si:1.0%以下、Mn:1.0%以下、Cr:18~24%、Ni:16~24%、Mo:5.0~7.0%、Cu:0.1~2.0%、W:1.0%以下、N:0.18~0.3%、Al:0.02~0.1%、O:0.01%以下、Ca:0.002~0.01%、S:0.001%未満、残りのFe及び不可避な不純物からなり、O/Al:0.01~0.12、S/Ca:0.01~0.4を満たすことを特徴とする衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼。 % by weight, C: 0.03% or less (excluding 0), Si: 1.0% or less, Mn: 1.0% or less, Cr: 18-24%, Ni: 16-24%, Mo: 5 .0-7.0%, Cu: 0.1-2.0%, W: 1.0% or less, N: 0.18-0.3%, Al: 0.02-0.1%, O : 0.01% or less, Ca: 0.002 to 0.01%, S: less than 0.001%, the remaining Fe and inevitable impurities, O / Al: 0.01 to 0.12, S / A highly corrosion-resistant austenitic stainless steel having excellent impact toughness and hot workability, characterized by satisfying Ca: 0.01 to 0.4. 下記式(1)で表される衝撃靭性(CNVTH)値が80以上であることを特徴とする請求項1に記載の衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼。
(1)CNVTH=336-1432×C-22.1×Si+64.1×Mn+8.5×Cr+0.11×Ni-10.1×Mo-3.3×Cu+22.1×W-392×N-293×(Tσ/T)
(前記式(1)において、C、Si、Mn、Cr、Ni、Mo、Cu、W、Nは、各合金元素の重量%を意味し、Tσは、熱力学的にシグマ(σ)相が完全に分解する温度を意味し、Tは、実際の溶体化熱処理温度を意味する)。
The highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability according to claim 1, characterized in that the impact toughness (CNV TH ) value represented by the following formula (1) is 80 or more.
(1) CNV TH = 336-1432 x C-22.1 x Si + 64.1 x Mn + 8.5 x Cr + 0.11 x Ni-10.1 x Mo-3.3 x Cu + 22.1 x W-392 x N- 293×( /T)
(In the above formula (1), C, Si, Mn, Cr, Ni, Mo, Cu, W, and N mean the weight percent of each alloying element, and T σ is the thermodynamic sigma (σ) phase. means the temperature at which is completely decomposed and T means the actual solution heat treatment temperature).
下記式(2)で表されるPREW-Mn値が40以上50以下であることを特徴とする請求項1に記載の衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼。
(2)PREW-Mn=Cr+3.3×(Mo+0.5×W)+16×N-0.5×Mn
(前記式(2)において、Cr、Mo、W、N、Mnは、各合金元素の重量%を意味する)。
A highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability according to claim 1, characterized in that the PREW-Mn value represented by the following formula (2) is 40 or more and 50 or less.
(2) PREW−Mn=Cr+3.3×(Mo+0.5×W)+16×N−0.5×Mn
(In the formula (2), Cr, Mo, W, N, and Mn mean weight percent of each alloying element).
表面から厚さ1/4~3/4深さまでの領域で50倍の倍率で26mmの面積で測定されるσ相の面積率が1.0%以下であることを特徴とする請求項1に記載の衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼。 Claim 1, characterized in that the area ratio of the σ phase measured in an area of 26 mm 2 at a magnification of 50 times in a region from the surface to the depth of 1/4 to 3/4 of the thickness is 1.0% or less. 2. A highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability according to . 臨界孔食温度が80℃以上であることを特徴とする請求項1に記載の衝撃靭性及び熱間加工性に優れた高耐食オーステナイト系ステンレス鋼。
A highly corrosion-resistant austenitic stainless steel excellent in impact toughness and hot workability according to claim 1, characterized by having a critical pitting corrosion temperature of 80°C or higher.
JP2022514735A 2019-09-04 2020-07-07 Highly corrosion-resistant austenitic stainless steel with excellent impact toughness and hot workability Active JP7271789B2 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
KR1020190109377A KR20210028382A (en) 2019-09-04 2019-09-04 High corrosion resistant austenitic stainless steel with excellent impact toughness and hot workability
KR10-2019-0109377 2019-09-04
PCT/KR2020/008864 WO2021045371A1 (en) 2019-09-04 2020-07-07 Highly corrosion-resistant austenitic stainless steel having excellent impact toughness and hot workability

Publications (2)

Publication Number Publication Date
JP2022546776A true JP2022546776A (en) 2022-11-08
JP7271789B2 JP7271789B2 (en) 2023-05-11

Family

ID=74852400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022514735A Active JP7271789B2 (en) 2019-09-04 2020-07-07 Highly corrosion-resistant austenitic stainless steel with excellent impact toughness and hot workability

Country Status (5)

Country Link
EP (1) EP4023785A4 (en)
JP (1) JP7271789B2 (en)
KR (1) KR20210028382A (en)
CN (1) CN114514333A (en)
WO (1) WO2021045371A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447817A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
JPH01154848A (en) * 1987-12-12 1989-06-16 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater resistance
JP2004156126A (en) * 2002-11-08 2004-06-03 Nippon Steel Corp High corrosion resistant austenitic stainless steel with excellent cold workability
JP2005133144A (en) * 2003-10-30 2005-05-26 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having excellent hot workability and corrosion resistance
CN101613834A (en) * 2008-06-25 2009-12-30 宝山钢铁股份有限公司 Peracidity deep-well Fe based austenite alloy tubing and casing and manufacture method
WO2016076254A1 (en) * 2014-11-11 2016-05-19 新日鐵住金ステンレス株式会社 High-corrosion-resistance austenitic stainless steel sheet

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0674490B2 (en) * 1987-09-09 1994-09-21 日本鋼管株式会社 Austenitic stainless steel for seawater resistance
JP2716937B2 (en) * 1994-06-07 1998-02-18 日本冶金工業株式会社 High corrosion resistant austenitic stainless steel with excellent hot workability
KR100215727B1 (en) * 1996-09-18 1999-08-16 박용수 Super duplex stainless steel with high wear-resistance
KR19990005962A (en) 1997-06-30 1999-01-25 김영환 Mobile Call Path Implementation Method in Digital Mobile Communication System
FR2780735B1 (en) * 1998-07-02 2001-06-22 Usinor AUSTENITIC STAINLESS STEEL WITH LOW NICKEL CONTENT AND CORROSION RESISTANT
KR100327618B1 (en) 1999-09-08 2002-03-14 윤덕용 W-containing duplex stainless steel casting alloy having high corrosion resistance, good structure stability
KR20010038199A (en) 1999-10-22 2001-05-15 장용균 Biaxially oriented strong polyester film
JP4437036B2 (en) * 2003-12-26 2010-03-24 パナソニック株式会社 Case material for storage cells
SE528008C2 (en) * 2004-12-28 2006-08-01 Outokumpu Stainless Ab Austenitic stainless steel and steel product
JP4494237B2 (en) * 2005-02-02 2010-06-30 新日鐵住金ステンレス株式会社 Austenitic stainless steel material excellent in corrosion resistance, toughness and hot workability, and method for producing the same
FI125854B (en) 2011-11-04 2016-03-15 Outokumpu Oy Duplex stainless steel
JP5850763B2 (en) * 2012-02-27 2016-02-03 日新製鋼株式会社 Stainless steel diffusion bonding products

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6447817A (en) * 1987-08-13 1989-02-22 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater corrosion resistance
JPH01154848A (en) * 1987-12-12 1989-06-16 Nippon Steel Corp Production of austenitic stainless steel having excellent seawater resistance
JP2004156126A (en) * 2002-11-08 2004-06-03 Nippon Steel Corp High corrosion resistant austenitic stainless steel with excellent cold workability
JP2005133144A (en) * 2003-10-30 2005-05-26 Nippon Steel & Sumikin Stainless Steel Corp Austenitic stainless steel having excellent hot workability and corrosion resistance
CN101613834A (en) * 2008-06-25 2009-12-30 宝山钢铁股份有限公司 Peracidity deep-well Fe based austenite alloy tubing and casing and manufacture method
WO2016076254A1 (en) * 2014-11-11 2016-05-19 新日鐵住金ステンレス株式会社 High-corrosion-resistance austenitic stainless steel sheet

Also Published As

Publication number Publication date
EP4023785A1 (en) 2022-07-06
JP7271789B2 (en) 2023-05-11
WO2021045371A1 (en) 2021-03-11
EP4023785A4 (en) 2022-11-09
KR20210028382A (en) 2021-03-12
CN114514333A (en) 2022-05-17

Similar Documents

Publication Publication Date Title
KR101370205B1 (en) Ferrite stainless steel with low black spot generation
JP7059357B2 (en) Duplex stainless clad steel sheet and its manufacturing method
EP2787097A1 (en) Ferritic stainless steel
WO2013058274A1 (en) Duplex stainless steel, duplex stainless steel slab, and duplex stainless steel material
JP2010215995A (en) Martensitic stainless steel having excellent corrosion resistance
JP2004190103A (en) Austenitic stainless steel
WO2011093516A1 (en) Highly corrosion-resistant hot-rolled ferrite stainless steel sheet having excellent toughness
JP5324149B2 (en) Corrosion resistant austenitic stainless steel
CN111433382B (en) Ferritic stainless steel having excellent high-temperature oxidation resistance and method for producing same
CN113412337A (en) High Mn steel and method for producing same
JPH0885820A (en) Heat treatment for stainless steel with high nitrogen content
JPH0382740A (en) Duplex stainless steel excellent in hot workability and corrosion resistance
TW201207128A (en) Structural stainless steel sheet having excellent corrosion resistance at weld and method for manufacturing same
KR101593336B1 (en) Austenitic Stainless Steel Having Excellent Corrosion Resistant And High Temperature Properties
JP7271789B2 (en) Highly corrosion-resistant austenitic stainless steel with excellent impact toughness and hot workability
JP2002212684A (en) Martensitic stainless steel having high temperature strength
WO2019059095A1 (en) Steel plate and method for manufacturing same
JP4457492B2 (en) Stainless steel with excellent workability and weldability
KR102326046B1 (en) LOW-Cr FERRITIC STAINLESS STEEL WITH IMPROVED HIGH TEMPERATURE CHARACTERISTICS AND FORMABILITY AND MANUFACTURING METHOD THEREOF
KR102170945B1 (en) Austenitic stainless steels excellent in fatigue life and manufacturing method thereof
JP4465066B2 (en) Welding materials for ferrite and austenitic duplex stainless steels
KR0143481B1 (en) The making method and same product of duplex stainless steel plate
JP4082288B2 (en) Mo-containing austenitic stainless steel and method for producing the same
JP3890223B2 (en) Austenitic stainless steel
KR101991000B1 (en) High corrosion resistant austenitic stainless steel and method of manufacturing the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230322

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230404

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230426

R150 Certificate of patent or registration of utility model

Ref document number: 7271789

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150