JP2022546687A - 高品質イオンビーム形成のためのシステム、デバイス、および方法 - Google Patents

高品質イオンビーム形成のためのシステム、デバイス、および方法 Download PDF

Info

Publication number
JP2022546687A
JP2022546687A JP2022512783A JP2022512783A JP2022546687A JP 2022546687 A JP2022546687 A JP 2022546687A JP 2022512783 A JP2022512783 A JP 2022512783A JP 2022512783 A JP2022512783 A JP 2022512783A JP 2022546687 A JP2022546687 A JP 2022546687A
Authority
JP
Japan
Prior art keywords
accelerator
magnetic focusing
tube
downstream
source
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022512783A
Other languages
English (en)
Other versions
JPWO2021045970A5 (ja
Inventor
アレクサンダー ドゥナエフスキー,
アルテム エヌ. スミルノフ,
アレクサンドル エー. イワノフ,
ヴラディスラフ ヴェクセルマン,
Original Assignee
ティーエーイー テクノロジーズ, インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ティーエーイー テクノロジーズ, インコーポレイテッド filed Critical ティーエーイー テクノロジーズ, インコーポレイテッド
Publication of JP2022546687A publication Critical patent/JP2022546687A/ja
Publication of JPWO2021045970A5 publication Critical patent/JPWO2021045970A5/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/06Multistage accelerators
    • H05H5/063Tandems
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1048Monitoring, verifying, controlling systems and methods
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N5/1077Beam delivery systems
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H3/00Production or acceleration of neutral particle beams, e.g. molecular or atomic beams
    • H05H3/06Generating neutron beams
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/02Details
    • H05H5/03Accelerating tubes
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05HPLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
    • H05H5/00Direct voltage accelerators; Accelerators using single pulses
    • H05H5/06Multistage accelerators
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/1087Ions; Protons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1085X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy characterised by the type of particles applied to the patient
    • A61N2005/109Neutrons
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61NELECTROTHERAPY; MAGNETOTHERAPY; RADIATION THERAPY; ULTRASOUND THERAPY
    • A61N5/00Radiation therapy
    • A61N5/10X-ray therapy; Gamma-ray therapy; Particle-irradiation therapy
    • A61N2005/1092Details
    • A61N2005/1095Elements inserted into the radiation path within the system, e.g. filters or wedges

Landscapes

  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Biomedical Technology (AREA)
  • Plasma & Fusion (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Pathology (AREA)
  • Radiology & Medical Imaging (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Animal Behavior & Ethology (AREA)
  • General Health & Medical Sciences (AREA)
  • Public Health (AREA)
  • Veterinary Medicine (AREA)
  • High Energy & Nuclear Physics (AREA)
  • Particle Accelerators (AREA)
  • Radiation-Therapy Devices (AREA)

Abstract

ビームシステムに関連する、システム、デバイス、および方法の実施形態。例示的ビームシステムは、荷電粒子のビームを発生させるように構成される、荷電粒子源と、ビームを加速させるように構成される、前段加速器システムと、前段加速器システムからのビームを加速させるように構成される、加速器とを含む。前段加速器システムは、源から加速器の入力開口に伝搬されるにつれて、ビームを収束させることができる。前段加速器システムはさらに、加速器から源に向かって進行する逆流によって引き起こされる、源擾乱または損傷を低減または排除することができる。

Description

(関連出願の相互参照)
本願は、その全てが、参照することによってその全体として本明細書に組み込まれる、「SYSTEMS, DEVICES, AND METHODS FOR HIGH QUALITY ION BEAM FORMATION」と題され、2020年6月25日に出願された、米国仮出願第63/044,310号、「EINZEL LENS FOR LOW ENERGY ION BEAM TRANSPORT」と題され、2019年9月3日に出願された、米国仮出願第62/895,203号、「NEUTRON GENERATING TARGET FOR NEUTRON BEAM SYSTEMS」と題され、2019年8月30日に出願された、米国仮出願第62/894,106号、「SYSTEMS AND METHODS FOR GAS PUFF BEAM IMAGING」と題され、2019年8月30日に出願された、米国仮出願第62/894,220号、および「SYSTEMS AND METHODS FOR FAST BEAM POSITION MONITORING」と題され、2019年8月30日に出願された、米国仮出願第62/894,290号の優先権を主張する。
本明細書に説明される主題は、概して、タンデム加速器システムのための高品質イオンビームを形成するシステム、デバイス、および方法に関する。
ホウ素中性子捕捉療法(BNCT)は、最も困難なタイプのうちのいくつかを含む、種々のタイプの癌の治療のモダリティである。BNCTは、ホウ素化合物を使用して、正常細胞を避けながら、腫瘍細胞を治療するように選択的に照準する、技法である。ホウ素を含有する、物質が、血管の中に注入され、ホウ素が、腫瘍細胞内に集中する。患者は、次いで、(例えば、中性子ビームの形態における)中性子を用いた放射線療法を受ける。中性子は、ホウ素と反応し、周囲正常細胞への害を低減させながら、腫瘍細胞を死滅させる。長期臨床研究は、3~30キロ電子ボルト(keV)以内のエネルギースペクトルを伴う、中性子のビームが、患者への放射線負荷を減少させながら、より効率的癌治療を達成するために好ましいことを証明している。本エネルギースペクトルまたは範囲は、頻繁に、熱外と称される。
熱外中性子(例えば、熱外中性子ビーム)の発生のための大部分の従来の方法は、陽子とベリリウムまたはリチウム(例えば、ベリリウム標的またはリチウム標的)のいずれかの核反応に基づく。両場合において、結果として生じる中性子のエネルギースペクトルは、より高いエネルギーに偏移され、したがって、減勢を要求する。(例えば、熱外スペクトル内の)要求されるエネルギーに対する中性子のそのような減速は、BNCTのための必要中性子ビームの形成とともに、従来、ビーム成形アセンブリ(BSA)を使用して達成される。
サイクロトロン加速器は、荷電粒子を加速器の中心から外向きに螺旋経路に沿って加速させる。粒子は、静的磁場によって、螺旋軌道に保持され、急速に変動する(高周波)電場によって加速される。陽子とベリリウム標的の反応は、中性子の高収率によって特徴付けられ、これは、例えば、陽子のサイクロトロン加速器上で達成可能な限界内で比較的に低陽子ビーム電流の維持を可能にする。陽子ビームのエネルギーはまた、サイクロトロン加速器の限界内にある。故に、サイクロトロン加速器およびベリリウム標的に基づく、中性子源は、高中性子収率によって特徴付けられる。しかしながら、結果として生じる中性子のエネルギースペクトルは、より高いエネルギーに向かって偏移され、上記に説明されるように、複合BSA内で実質的減勢を要求する。そのような複合BSAは、中性子を減速させ、理想的BNCT用途のための必要中性子ビームを形成するために非効率的である。
高エネルギー加速器は、通常、高価であって、より高いエネルギーを伴う、陽子および中性子は、システム構成要素のより高いアクティブ化を引き起こし、これは、ベリリウム標的を伴うシステムをBNCT治療センターのためにあまり魅力的ではないものにする。
ベリリウム標的を伴うサイクロトロンベースのシステム内に形成される、熱外中性子のビームは、リチウム標的を伴うシステムと匹敵する、束密度を有する。しかしながら、リチウム標的を伴うシステムは、通常、1.9~3.0メガ電子ボルト(MeV)の範囲内である、より低いエネルギーの陽子ビームをもたらす。リチウム標的のために設計される、既存の陽子ビーム加速器は、2つのカテゴリ、すなわち、RFベースの加速器および静電加速器に分割され得る。
RFベースの加速器:典型的には、本必要エネルギー範囲のためのRFベースの陽子加速器は、高周波四重極、すなわち、RFQに基づく。RFQは、線形加速器であって、これは、エミッタンスを保存しながら、高効率を伴って、荷電粒子の持続ビームを集束および加速させる。集束ならびに加速は、高周波(RF)電場によって実施される。RFQ技術は、十分に発達しているが、依然として、高価であって、かつ魅力的ではないことに、製造および動作が複雑のままであるである。さらに、10ミリアンペア(mA)またはより高い平均電流のためのRFQシステムを構築することは、困難である。
静電加速器:本必要エネルギー範囲は、静電加速器にとって到達範囲内にある。静電加速器は、それらを静的高電圧電位に曝すことによって、荷電粒子を加速させる。例えば、高電圧端子が、約数百万ボルトの静的電位(例えば、加速電圧とも称される)として保たれる。静電加速器は、通常、他の従来の解決策より実質的に安価であって、よりコンパクトであって、かつよりエネルギー効率的である。静電加速器はまた、有利なこととして、陽子ビームエネルギーの変動によって結果として生じる中性子のスペクトルを調節する能力を提供する。
直接加速を用いた静電加速器システム内における2メガボルト(MV)より高い必要加速電圧の発生は、非常に困難であって、これは、理想的陽子ビームの達成可能エネルギーを限定する。静電加速器の高電圧端における陽子源の設置は、低エミッタンスを伴う注入される陽子ビームを形成する能力を限定し、これは、加速されるビームの品質を限定する。静電加速器の高電圧端における陽子注入器/源の制御および保守もまた、非常に技術的に困難である。
タンデム加速器は、単一高電圧端子を使用したイオン粒子の2段階加速を採用し得る、静電加速器のタイプである。高電圧は、例えば、流入する負のビームに印加され、それを加速させる、漸増的に正になる勾配を形成するために使用され、その時点で、タンデム加速器は、負のビームを正のビームに変換し、次いで、高電圧は、再び、正のビームをタンデム加速器から加速(例えば、押動)させる、逆転された漸減的に正になる勾配を形成するために使用される。高電圧が、2回、使用され得るため、3MeVの粒子エネルギーを伴う陽子ビームの発生は、典型的には、1.5MVの加速電圧のみを要求し、これは、電気絶縁の現代の技術の範囲内である。さらに、タンデム加速器のイオン源は、接地電位に設置され、これは、イオン源の維持および制御をより容易にする。
プラズマベースのイオン源を利用する、イオンビームシステムでは、イオンが、プラズマの境界表面(メニスカスと呼ばれる)から抽出される。境界表面の形状およびパラメータは、抽出される電流密度、イオン化の局所的率、再結合および拡散、ならびに印加される電場分布への強依存性によって特徴付けられる。新生イオンビームは、典型的には、低初期エネルギーに起因して、高度に発散性であって、変型であって(同一極性の電子およびイオンを分離する、磁気双極子の効果)、空間電荷効果を被る。結果として、種々の既存の解決策は、いくつかの短所に直面する。
十分に高電流を伴う、負の水素イオンの単一開口源は、通常、高電流ビーム発生の条件に起因した高初期ビーム発散、高電流ビーム発生のために要求される高ガス負荷に起因したイオン源開口内の限定されたビーム加速、およびビームの空間電荷に起因したビーム発散等のいくつかの課題に直面し、これは、より低いエネルギーのビーム粒子においてより顕著である。
これらおよび他の理由から、タンデム加速器システムのための高品質イオンビームを提供する、改良された、効率的、かつコンパクトなシステム、デバイス、および方法の必要性が存在する。
種々の加速器システム内で使用され得る、高品質イオンビームを形成するためのシステム、デバイス、および方法の例示的実施形態が、本明細書に説明される。本開示の実施形態は、ビームシステム、その中のデバイス、およびその使用方法を対象とする。例示的ビームシステムは、粒子をビーム形態において発生させるように構成される、粒子源(例えば、イオン源)と、源からの粒子を加速させるように構成される、前段加速器システムと、前段加速器システムからの粒子を加速させるように構成される、加速器とを含む。前段加速器システムは、源から加速器の入力開口に伝搬されるにつれて、ビームを収束させることができる。前段加速器システムはさらに、加速器から源に向かって進行する逆流によって引き起こされる、源擾乱または損傷を低減または排除することができる。
本明細書に説明される主題の他のシステム、デバイス、方法、特徴、および利点は、以下の図および詳細な説明の吟味に応じて、当業者に明白である、または明白となるであろう。全てのそのような付加的システム、方法、特徴、および利点は、本説明内に含まれ、本明細書に説明される主題の範囲内であって、付随の請求項によって保護されることが、意図される。それらの特徴の明治的列挙が請求項内に不在であっても、いかようにも、例示的実施形態の特徴は、添付の請求項を限定するものとして解釈されるべきではない。
その構造および動作の両方に関する、本明細書に記載される主題の詳細は、付随の図の精査によって明白となり得、その中の同様の参照番号は、同様の部品を指す。図中の構成要素は、必ずしも、正確な縮尺ではなく、強調が、代わりに、主題の原理を図示する際に置かれ得る。さらに、全ての例証は、概念を伝達するように意図され、相対的サイズ、形状、および他の詳述される属性は、文字通りまたは精密にではなく、図式的に図示され得る。
図1Aは、本開示の実施形態と併用するための中性子ビームシステムの例示的実施形態の概略図である。
図1Bは、ホウ素中性子捕捉療法(BNCT)において使用するための中性子ビームシステムの例示的実施形態の概略図である。
図2は、本開示の実施形態と併用するための例示的前段加速器システムまたはイオンビーム注入器を図示する。
図3Aは、図2に示される、イオン源およびイオン源真空ボックスの斜視図である。
図3Bは、図3Aに示されるアインツェルレンズの例示的実施形態を描写する、分解斜視図である。
図4は、本開示の実施形態と併用するための例示的前段加速器管を図示する。
図5は、例示的イオン化曲線の断面を図示する。
図6は、本開示の実施形態と併用するための例示的前段加速器システムまたはイオンビーム注入器の動作を図示する。
図7は、垂直イオン源および屈曲磁石を採用する、例示的ビーム注入器システムを図示する。
図8はさらに、本開示の実施形態と併用するための例示的前段加速器システムまたはイオンビーム注入器の動作を図示する。
図9は、本開示の実施形態と併用するための例示的イオン源バックプレートを図示する。
図10は、その中で本開示の実施形態が動作し得る、システムのブロック図を図示する。
図11は、本開示の実施形態による、特別に構成され得る、例示的コンピューティング装置を図示する。
詳細な説明
本主題が詳細に説明される前に、本開示は、説明される特定の実施形態に限定されず、したがって、当然ながら、変動し得ることを理解されたい。また、専門用語は、特定の実施形態を説明する目的のためにのみ、本明細書で使用され、本開示の範囲は、添付の請求項によってのみ限定されるであろうため、限定することを意図するものではないことを理解されたい。
用語「粒子」は、本明細書では、広義に使用され、別様に限定されない限り、電子、陽子(またはH+イオン)、または中性子、ならびに1つを上回る電子、陽子、および/または中性子(例えば、他のイオン、原子、および分子)を有する、種を説明するために使用され得る。
高ビーム発散および低ビームエネルギーをもたらす、前述および他の限界は、粒子加速器との動作のために好適なイオン注入器を設計することを困難にする。タンデム加速器を実施例として挙げると、タンデム加速器の中に注入される、低エネルギーの負のイオン(例えば、H-イオン)は、好ましくない条件をタンデム加速器の第1の加速間隙に生成し得る。実際、負のイオン源の出力エネルギーは、通常、20~40keVによって限定される。そのような負のイオンが、通常、約200キロボルト(kV)の加速電圧を有する、タンデム加速器の第1の加速間隙の中に注入されると、負のイオンは、典型的には、第1の加速間隙の中央において、約100keVのエネルギーに到達する。
100keVのエネルギーは、負の水素イオンに関するイオン化断面の近似最大値に対応する(例えば、図5に示されるように)。イオン化断面は、空間を通して移動する間、特定の粒子が他の粒子に対して現れる大きさの測定値を表す。加速器は、多くの場合、近真空環境内に存在する微量の背景ガスを有することができる。タンデム加速器に関して、背景ガス(例えば、アルゴン中性子)は、タンデム加速器の中心における流入ビームの電荷を修正するために使用される、ガス状電荷交換デバイスによって意図的に導入されることができる。H-イオン等のビーム粒子は、本背景ガスをイオン化することができ、本イオン化は、実質的または集中し得る。ガス状電荷交換標的を伴う、そのようなタンデム加速器では、背景ガスの結果として生じる相対的高圧およびより大きいイオン化断面は、H-イオンがタンデム加速器の第1の加速間隙内で背景ガスと衝突する可能性がより高いことを意味し得る。
さらに、タンデム加速器の第1の加速間隙内の集中したイオン化は、ビーム持続プラズマ放電を第1の加速間隙内に誘発し、これは、(i)望ましくない持続時間時間(例えば、数百秒)にわたって、加速器を動作不能にする、タンデム加速器の高電圧絶縁破壊、(ii)第1の加速間隙上の減少された電圧、結果として、ビームのデフォーカスおよびビームエネルギーの減少につながる、高電圧電力供給源の過負荷、(iii)タンデム加速器の電極の過熱、(iv)粒子源を過熱させ、その動作を妨害する、加速された正のイオンの集中した逆流の形成、および(v)タンデム加速器の高電圧絶縁体の表面を照射し、その高電圧強度を減少させる、制動放射線の発生を含む、いくつかの短所につながる。制動放射線は、別の荷電粒子の電場によって引き起こされるその加速に起因して、荷電粒子によって生じる放射線である。
負のイオンビームの高電流はまた、負のイオンビームをタンデム加速器の入力開口に集束させるための実質的労力を要求し得る。通常、5ミリアンペア(mA)より高い電流を伴う、負のイオンビームの注入器は、複雑であって、かついくつかの集束磁気要素およびガスまたはプラズマ充填ビームラインを有し、イオンビームの空間電荷を補償する。そのような実施例では、図7に描写されるように、負のイオンビームの注入器は、垂直イオン源を含み、屈曲磁石を利用して、結果として生じるイオンビームを入力開口に向かって集束させる。そのようなシステムは、低ビーム品質および楕円形ビームを含む、短所を被る。楕円形ビームは、タンデム加速器にとって望ましくなく、したがって、そのような実装は、タンデム加速器のためのビーム品質(例えば、実質的に非楕円形または略円形断面)を達成するために、有意に複雑なビーム取扱を要求する。さらに、ガス充填されたビームラインを有する、任意の加速器は、近真空環境下であっても、電荷交換に起因して、ビーム電流の実質的損失を被り得る。
粒子加速器と併用するための前段加速器システムのためのシステム、デバイス、および方法の例示的実施形態が、本明細書に説明される。粒子加速器は、一般的実施例であって、本明細書に説明される実施形態は、任意のタイプの粒子加速器と併用される、または粒子加速器に供給するための規定されたエネルギーにおける荷電粒子ビームの生産を伴う、任意の粒子加速器用途において使用されることができる。本前段加速器システムまたはイオンビーム注入器の実施形態は、負の粒子ビームをタンデム加速器に提供するために好適であるが、これは、例示的タイプの加速器にすぎない。本明細書に説明される前段加速器実施形態は、核物理学研究等のための科学ツールとして使用される粒子加速器、半導体チップの製造等の産業または製造プロセスにおいて使用される粒子加速器、材料性質の改変(表面処理等)のための加速器、食品の照射のための粒子加速器、および医療滅菌における病原破壊のための粒子加速器内に実装されることができる。実施形態はまた、積荷またはコンテナ点検等の撮像用途においても使用されることができる。また、別の非包括的実施例として、実施形態は、医療診断システム、医療撮像システム、または放射線療法システム等の医療用途のための粒子加速器において使用されることができる。
1つのそのような放射線療法システムは、BNCTシステムである。説明を容易にするために、本明細書に説明される多くの実施形態は、BNCTにおいて使用するための中性子ビームシステムの文脈においてそのように行われるであろうが、実施形態は、中性子ビームまたはBNCT用途のみに限定されない。本開示の実施形態は、リチウム(Li)またはベリリウム(Be)等の中性子発生標的を用いたBNCTのための中性子の源のために好適なパラメータを伴う、陽子ビームを発生させるための加速器システム(本明細書には、前段加速器システムとも称される)の構成を可能にする。
リチウム標的上での熱外中性子の効率的発生のために、1.9~3.0MeVのエネルギーを伴う陽子のビームが、望ましい。そのような用途における、合理的に短治療時間にわたる、好ましい束密度を伴う中性子ビームの形成はまた、5mAを上回る陽子ビーム電流を伴い得る。タンデム加速器システムをそのような用途において採用するために、水素の負のイオンの源が、好ましくあり得る。十分に高電流を伴う負の水素イオンの源は、高エミッタンスを有し得、これは、好適なビーム品質を維持しながら、タンデム加速器のための負のイオンビーム注入器を構築することを困難にし得る。提案される構成は、本および他の難点を克服し、高ビーム品質を伴う、(例えば、負の水素イオンの)コンパクトな効率的負のイオンビーム源を提供する。
本開示の実施形態は、イオン源等の荷電粒子源からのその入射直後に、荷電粒子のエネルギーを増加させることができ、これは、事実上、空間電荷の減少につながる。その空間電荷に起因する、イオンビーム粒子の発散は、粒子エネルギーの増加に伴って減少し、これは、ガスまたはプラズマ充填ビームラインの必要性を排除もしくは低減させる。
本開示の実施形態は、短焦点距離を可能にすることができ、これは、本前段加速器またはイオンビーム注入器システムを従来のシステムより比較的にコンパクトにする。本開示の実施形態はさらに、イオン注入器を加速器のビーム軸外に移動させる必要性が排除される程度まで(したがって、ビーム屈曲磁石が、注入されるイオンビームを適切な軸上に実質的に再配向するために加速器の上流に含まれる程度まで)、逆流を減少させることができる(例えば、図5に関する議論参照)。用語「上流」および「下流」の使用は、逆流の方向ではなく、ビームの進行の方向を指すことに留意されたい。
本開示の実施形態は、500~1,500ミリメートル(mm)の焦点距離が60~180kVの加速電圧において達成されるように選択される寸法を伴う、前段加速器管の使用に関する。したがって、タンデム加速器の入力開口の場所へのビーム集束スポットの微調整は、単一付加的磁気要素(例えば、ソレノイド)を前段加速器管の下流に位置付けることによって達成され得る。
本開示の実施形態は、タンデム加速器の入力開口における負のイオンビームの減少されたサイズを可能にする。実際、ビームの入力サイズが小さいほど、タンデム加速器の中心におけるそのサイズは、より小さくなる。タンデム加速器の中心におけるビームのより小さい半径は、電荷交換デバイスの内径の減少を可能にし、これは、ビーム粒子の効率的電荷変換のために十分に高ガス圧力を電荷交換デバイス内に生成するために必要とされるガス流動の減少につながる。通常、90~95%の効率が、ガス電荷交換デバイスのために容認可能と見なされる。より少ないガス流動は、タンデム加速器内の背景圧力を減少させ、結果として、その信頼性を増加させる。
従来のアプローチと比較して、本開示の実施形態は、とりわけ、以下の付加的利点、すなわち、高電圧絶縁破壊のより低い可能性に起因したタンデム加速器のより高い信頼性、タンデム加速器内の絶縁体のより高い高電圧強度、より均一および安定した加速率をタンデム加速器内にもたらす、第1の加速間隙上のより低い負荷、タンデム加速器から負のイオン源へのより低いまたは抑制された逆流、第1の加速間隙内の制動放射線の減少された発生、およびタンデム加速器の電極上のより低い熱負荷を提供することができる。
本前段加速器システムの実施形態の特徴は、例えば、負のイオン源およびタンデム加速器の物理学に関連するいくつかの問題を解決する。
本開示の実施形態は、数ミリアンペアを上回るビーム電流を伴う、負のイオンの任意のタイプの静電加速器に有用であり得る。本明細書に開示される実施形態は、前段加速器システムの前、その中、または後に、特定の用途による要求に応じて、イオン光学系およびビーム診断器を含む、任意の付加的要素を有してもよい。
本開示の実施形態は、持続または変調された陽子ビームを提供する、中性子ビームシステム(NBS)のために使用されることができる。陽子ビームは、広範囲のエネルギーおよび電流を有することができる。例えば、いくつかの実施形態では、陽子ビームは、5~15mAのビーム電流を伴う、1.9~3.0MeVの範囲内の粒子エネルギーを有する。他の実施形態では、陽子ビームは、これらの範囲外のエネルギーおよび/または電流を有する。ビームは、リチウム標的に指向され、中性子ビームを発生させることができる、またはNBSは、リチウムの代わりに、ベリリウム等の中性子発生のための他の材料を有する、標的と併用されることができる。
いくつかの実施形態では、イオン源は、最大15mAの電流を伴う、水素の負のイオンのビームを発生させる。ビーム粒子は、イオン源内において、30keVの(またはより高い)エネルギーに加速されることができる。イオン源は、前段加速器システム(1つまたはそれを上回る介在構成要素を伴う)に接続されることができ、これは、120~150keVの(またはより高い)エネルギーへの負のイオンビーム粒子の付加的加速を提供する。ビームはまた、タンデム加速器入力チャンバの入力開口までの距離に対応する焦点距離、例えば、1メートル(m)未満の距離を伴って、前段加速器システム内で集束されることができる。前段加速器システムは、静電レンズ(例えば、アインツェルレンズ)、前段加速器デバイス(例えば、複数の端子を有する、前段加速器管)、および/またはタンデム加速器に進入することに立って、イオンビームをより高いエネルギーに加速させるための磁気要素(例えば、1つまたはそれを上回るソレノイド)を含むことができる。
前段加速器システムの静電レンズは、静電レンズがイオン源の接地レンズの下流にあるように、イオン源と前段加速器管との間に位置付けられることができる。静電レンズは、イオン源からのイオンビームの発散を低減させることができ、また、イオン化された逆流粒子を迂回および収集させることができる。
前段加速器システムの磁気要素(または磁気集束デバイス)は、前段加速器管とタンデム加速器との間に位置付けられることができ、ビームを焦点スポットに向かって微調整することができる。磁気要素は、例えば、ソレノイドであることができる。
本明細書に開示されるイオンビーム入射スキームは、荷電粒子逆流の有意な低減を伴う、または有意な荷電粒子(例えば、二次イオン)逆流を伴わない、動作を可能にすることができる。これは、供給された粒子が、それに沿って加速器を通して通過する粒子が加速される、加速器を横断する、同一または実質的に同一軸に沿って放出されるように、荷電粒子源の設置を可能にする。荷電粒子源は、加速器によって使用される同一軸上に放出することができるため、有意なビーム偏向は、要求されず(整合を微調整するための比較的にわずかな調節を除き)、したがって、そのような有意な偏向に固有のビーム歪曲は、回避されることができる。したがって、本入射スキームは、ビームの角度を1つの主要な軸から別の軸に変化させる(例えば、20度またはそれを上回って)、ビーム偏向磁石を荷電粒子源とタンデム加速器との間に伴わずに、中性子ビームシステムの動作を可能にする。
図1Aは、本開示の実施形態と併用するためのビームシステムの例示的実施形態の概略図である。ここでは、ビームシステム10は、源22と、低エネルギービームライン(LEBL)190と、低エネルギービームライン(LEBL)190に結合される、加速器40と、加速器40から標的196を格納する標的アセンブリまで延在する、高エネルギービームライン(HEBL)50とを含む。LEBL190は、ビームを源22から、ビームを加速させるように構成される、加速器40に移送するように構成される。HEBL50は、ビームを加速器40の出力から標的196に輸送する。
図1Bは、本開示の実施形態による、ホウ素中性子捕捉療法(BNCT)において使用するための例示的中性子ビームシステム10を図示する、概略図である。中性子ビームシステム10は、LEBLの少なくとも一部を形成する、前段加速器システム20であって、図2に示されるように、荷電粒子ビーム注入器としての役割を果たす、前段加速器システム20と、前段加速器システム20に結合される、高電圧(HV)タンデム加速器40と、タンデム加速器40から中性子生産標的を格納する、中性子標的アセンブリ200まで延在する、高エネルギービームライン50とを含む。本実施形態では、ビーム源22は、イオン源であって、荷電粒子ビームは、タンデム加速器40内での陽子ビームへの変換に先立って、負のイオンビームである。中性子ビームシステム10ならびに前段加速器システム20はまた、積荷点検およびその他等の他の用途のためにも使用され、BNCTに限定されないことができることを理解されたい。
前段加速器システム20(本明細書には、荷電粒子ビーム注入器またはイオンビーム注入器とも称される)は、イオンビームをイオン源22からタンデム加速器40の入力(例えば、入力開口)に移送するように構成され、したがって、また、LEBL190としても作用する。
そこに結合される、高電圧電力供給源42によって給電される、タンデム加速器40は、概して、タンデム加速器40内に位置付けられる加速電極に印加される電圧の2倍に等しいエネルギーを伴う、陽子ビームを生産することができる。陽子ビームのエネルギーレベルは、負の水素イオンのビームをタンデム加速器40の入力から最内高電位電極まで加速させ、2個の電子を各イオンから奪取し、次いで、結果として生じる陽子を同一の印加される電圧によって下流に加速させることによって達成されることができる。
高エネルギービームライン50は、陽子ビームを、タンデム加速器40の出力から、患者治療室の中に延在する、ビームラインの分岐70の端部に位置付けられる、中性子標的アセンブリ200内の中性子発生標的に輸送することができる。システム10は、陽子ビームを任意の数の1つまたはそれを上回る標的および関連付けられる治療面積に指向するように構成されることができる。本実施形態では、高エネルギービームライン50は、3つの分岐70、80、および90を含み、3つの異なる患者治療室の中に延在する。本実施形態では、高エネルギービームライン50は、ポンプチャンバ51と、ビームのデフォーカスを防止するための四重極磁石52および72と、ビームを治療室の中に操向するための双極子または屈曲磁石56および58と、ビーム補正器53と、電流モニタ54および76等の診断器と、高速ビーム位置モニタ55区分と、走査磁石74とを含む。
高エネルギービームライン50の設計は、治療設備の構成(例えば、1階建構成の治療設備、2階建構成の治療設備、および同等物)に依存する。ビームは、屈曲磁石56の使用を用いて、(例えば、治療室の近傍に位置付けられる)標的アセンブリ200に送達されることができる。四重極磁石72は、次いで、ビームを標的においてあるサイズに集束させるように含まれることができる。次いで、ビームは、1つまたはそれを上回る走査磁石74を通過し、これは、所望のパターン(例えば、螺旋、湾曲、行および列における段階的、それらの組み合わせ、およびその他)において、標的表面上のビームの側方移動を提供する。ビーム側方移動は、リチウム標的上で陽子ビームの平滑かつ均一な時間平均分布を達成し、過熱を防止し、中性子発生をリチウム層内で可能な限り均一にすることに役立ち得る。
走査磁石74に進入後、ビームは、電流モニタ76の中に送達されることができ、これは、ビーム電流を測定する。標的アセンブリ200は、ゲート弁77を用いて、高エネルギービームライン体積から物理的に分離されることができる。ゲート弁の主要機能は、標的を装填し、および/または使用済み標的を新しいものと交換しながらの、ビームラインの真空体積の標的からの分離である。実施形態では、ビームは、屈曲磁石56によって、90度屈曲されなくてもよく、むしろ、右に直線に進み、次いで、水平ビームライン内に位置する、四重極磁石52に進入する。その後、ビームは、別の屈曲磁石58によって、部屋構成に応じて、必要とされる角度まで、屈曲され得る。そうでなければ、屈曲磁石58は、同一階上に位置する2つの異なる治療室のために、ビームラインを2つの方向に分裂させるために、Y形状磁石と置換され得る。
図2は、本開示の実施形態と併用するための前段加速器システムまたはイオンビーム注入器の実施例を図示する。本実施例では、前段加速器システム20は、アインツェルレンズ30(図2において不可視であるが、図3A-3Bに描写される)と、前段加速器管26と、ソレノイド510とを含み、イオン源22から注入される負のイオンビームを加速させるように構成される。前段加速器システム20は、タンデム加速器40のために要求されるエネルギーへのビーム粒子の加速を提供し、タンデム加速器40の入力開口または入口における入力開口面積に合致するために、負のイオンビームの全体的収束を提供するように構成される。前段加速器システム20はさらに、イオン源への損傷および/または逆流がイオン源のフィラメントに到達する可能性を低減させるために、タンデム加速器40から前段加速器システムを通して通過するにつれて、逆流を最小限またはデフォーカスさせるように構成される。
実施形態では、イオン源22は、負のイオンビームをアインツェルレンズ30の上流に提供するように構成されることができ、負のイオンビームは、前段加速器管26および磁気集束デバイス(例えば、ソレノイド)510を通して通過し続ける。ソレノイド510は、前段加速器管とタンデム加速器との間に位置付けられることができ、電力供給源と電気的に結合可能である。負のイオンビームは、ソレノイド510を通してタンデム加速器40まで通過する。
前段加速器システム20はまた、ガスを除去するためのイオン源真空ボックス24と、ポンプチャンバ28とを含むことができ、これは、前段加速器管26ならびに上記に説明される他の要素とともに、タンデム加速器40につながる、比較的に低エネルギービームラインの一部である。その中にアインツェルレンズ30が位置付けられ得る、イオン源真空ボックス24は、イオン源22から延在する。前段加速器管26は、イオン源真空ボックス24およびソレノイド510に結合されることができる。ガスを除去するための真空ポンプチャンバ28は、ソレノイド510およびタンデム加速器40に結合されることができる。イオン源22は、荷電粒子の源としての役割を果たし、これは、加速され、調整され、最終的に、中性子生産標的に送達されると、中性子を生産するために使用されることができる。例示的実施形態は、負の水素イオンビームを生産するイオン源を参照して本明細書に説明されるであろうが、実施形態は、そのようなものに限定されず、他の正または負の粒子も、源によって生産されることができる。
前段加速器システム20は、ビームを集束および/またはその整合を調節する等の目的のために、ゼロ、1つ、または複数の磁気要素を有することができる。例えば、任意のそのような磁気要素は、ビームをビームライン軸およびタンデム加速器40の受光角に合致させるために使用されることができる。イオン真空ボックス24は、その中に位置付けられる、イオン光学系を有してもよい。
概して、負のイオンの発生の機構と異なる、2つのタイプの負のイオン源22、すなわち、表面タイプおよび体積タイプが存在する。表面タイプは、概して、具体的内部表面上にセシウム(Cs)の存在を要求する。体積タイプは、高電流放電プラズマの体積内の負のイオンの形成に依拠する。両方のタイプのイオン源が、タンデム加速器に関連する用途のために、所望の負のイオン電流を送達することができるが、表面タイプの負のイオン源は、変調のために望ましくない。すなわち、本明細書に説明される実施形態における負のイオンビームの変調のためには、(例えば、セシウム(Cs)を採用しない)体積タイプの負のイオン源が、好ましい。
図3Aに目を向けると、イオンビーム注入器20のイオン源真空ボックス24は、その中に位置付けられる、アインツェルレンズ30を含むことができる。図3Bに詳細に示されるように、真空ボックス24内のイオン源22の接地レンズ25の下流に搭載され得る、アインツェルレンズ30は、搭載プレート32と、搭載プレート32に搭載され、搭載ロッド35を用いて、離間関係において相互に結合される、2つの接地された電極34と、2つの接地された電極34間に位置付けられる、給電(バイアス)される電極38とを含む。電極34および38は、円筒形開口の形態に作製され、ビーム経路と一致する軸方向軸を有するように組み立てられる。給電される電極38は、接地された電極または開口34間に延在する、アイソレータ(または絶縁体)36によって支持される。
隔離アイソレータ36は、電子雪崩の発達を阻止し、フラッシュオーバ形成をもたらし得る、ストリーマ形成および伝搬を抑制するように構成される、幾何学的設計を有してもよい。隔離アイソレータ36の幾何学的設計は、部分的に、電子雪崩を駆動し、経路長を事実上増加させる、絶縁体表面上の外部電場をスクリーニングし得る。加えて、絶縁体/アイソレータ36の材料は、スパッタリング効果、表面上の負のイオンの損失、体積汚染、および電気強度の減少につながる絶縁体またはアイソレータ表面上の伝導性コーティングの形成を減少させる傾向にある。
機能的に、イオン源22から前進する荷電粒子のビーム上へのアインツェルレンズ30の作用は、光のビーム上への光学集束レンズの作用に類似する。すなわち、アインツェルレンズ30は、流入発散ビームを焦点面においてスポットの中に集束させる。しかしながら、ここでは、対の給電される電極38と2つの接地された電極34との間に形成される電場は、アインツェルレンズの集束強度(焦点長距離)を判定する。
アインツェルレンズ30をイオン源接地レンズ25の下流に搭載することによって、固有の空間電荷に起因して、ビームが発散に曝される場合、ビーム自由空間移送を減少させる。
アインツェルレンズ30の軸対称または実質的軸対称設計の寸法は、抽出されるイオンとアインツェルレンズ30の暴露表面の直接相互作用を回避するために最適化される。
動作時、アインツェルレンズ30の負の極性バイアスは、正のバイアス極性より高い集束電力をもたらす。また、動作時、アインツェルレンズ30への電力送達の方法は、瞬間電圧印加の代わりに、漸次的電圧成長を提供し、これは、例えば、爆発放出機構を介して、プラズマ形成に関わるアインツェルレンズ30の表面上に既存の微小突出部における電場の成長率(dE/dt)を低減させる。そのようなプラズマ形成の妨害は、電気強度を改良する。
高背景圧力内のアインツェルレンズのための負のバイアス電位は、通常、電気絶縁破壊に起因して、不可能である。本明細書に提供されるアインツェルレンズの例示的実施形態の構成は、電気絶縁破壊を伴わずに、100%電流利用のために十分に高い負のバイアス電圧の印加を可能にする。
図4は、本開示の実施形態と併用するための例示的前段加速器管26を図示する。例示的前段加速器管26は、円筒形形状であって、第1の前段加速器管端部26Aと、第2の前段加速器管端部26Bとを含むことができる。実施形態では、第1の前段加速器管端部26Aは、前段加速器管の内側円筒形構造から外向きに突出する、固定具(例えば、端子または電極)を含む。実施形態では、第2の前段加速器管端部26Bは、前段加速器管の内側円筒形構造から外向きに突出する、固定具(例えば、端子または電極)を含む。すなわち、前段加速器管の内側円筒形構造から外向きに突出する、付属設備は、円筒形形状であるが、内側円筒形構造のものより大きい直径を有してもよい。実施形態では、前段加速器管26は、第1の前段加速器管端部26Aから第2の前段加速器管端部26Bまで均一に離間される、複数の前段加速器管端子27-1、27-2、27-3、27-4、27-5、27-6を含む。第1の前段加速器管端部26Aは、いくつかの実装では、遠位前段加速器管端部26Bである、第2の前段加速器管26Bに関連して、近位前段加速器管端部26Aと称され得る。各対の隣接する前段加速器管端子(例えば、前段加速器管端子27-1、27-2、27-3、27-4、27-5、27-6)は、その間に接続される、1つまたはそれを上回る抵抗器を有してもよく、抵抗器は、同一(好ましい)または異なる抵抗値を有することができる。実施形態では、第1の前段加速器管端部26Aにおける第1の端子27-1は、第1の電力供給源と電気的に結合可能である一方、第2の前段加速器管端部26Bにおける第2の端子27-2は、接地と電気的に結合可能である。故に、電圧は、前段加速器管26を横断して均一に分散され得る。実施形態では、前段加速器管26は、負のイオンビームが、前段加速器管26を通して通過する間、少なくとも、平行経路上で持続する、または持続的に収束するように、それを通して通過する負のイオンビームの収束を制御するように構成されることができる。
実施形態では、前段加速器管26のビーム集束性質は、前段加速器管26の長さおよび内径によって判定される。その長さおよび内径の組み合わせは、60~180kVの加速電圧において、500~1,500mmの焦点長/距離を達成するように選択される。前段加速器管の長さL、幅W、および内径は、それに関して前段加速器管が使用される、所与の用途に従って変動してもよい。
図6は、本開示の実施形態と併用するための例示的前段加速器システム内のビーム収束を図示する。イオン源22が、随意に、イオン源エンクロージャ500内に格納される。イオン源22は、プラズマ電極320、接地レンズ(例えば、または加速器電極)310、および抽出電極330等の複数の電極を含む。イオン源22は、アインツェルレンズ30と結合され、負のイオンビームは、イオン源22から、アインツェルレンズ30、前段加速器管26、およびソレノイド510を通して、タンデム加速器40の入力開口まで注入または伝搬される。
イオン源22は、加速器電極(例えば、または接地レンズ)310において、電力供給源PS3の第1の端子と電気的に結合されることができ、これは、ひいては、第2の端子において、イオン源22のエンクロージャに電気的に結合される。加速器電極(例えば、または接地レンズ)310におけるイオン源22のバイアスは、そのようなビームがイオン源22から通過されるとき、負のイオンビームを維持および伝搬するための前段加速器システム20を構成する。イオン源22のプラズマ電極320は、電力供給源PS1に電気的に結合されることができ、イオン源22の抽出電極330は、変調器(図示せず)に電気的に結合されることができ、これは、ひいては、別の電力供給源(図示せず)に電気的に結合される。プラズマ電極320のバイアスは、イオン源22が、プラズマをイオン源22内に維持し、抽出電極330がバイアスされると、負のイオンビームの中への抽出のために使用されることを可能にする。抽出電極330が、バイアスされると、負のイオンビームは、イオン源22からタンデム加速器40に向かって通過または伝搬される。抽出電極330が、バイアスされないと、負のイオンビームは、イオン源22からタンデム加速器40に沿って通過または伝搬されない。前段加速器管26は、第1の前段加速器管端子27-1において、電力供給源PS1にバイアスされてもよく、第2の前段加速器管端子27-2において、接地にバイアスされてもよい。
上記に議論されるように、タンデム加速器40は、そこに結合される、高電圧電力供給源PS5によって給電され、概して、タンデム加速器40内に位置付けられる加速電極に印加される電圧の2倍に等しいエネルギーを伴う、陽子ビームを生産することができる。電力供給源PS5は、フィードバックループ(図示せず)によって統制されてもよく、それによって、タンデム加速器40内の電圧安定性は、維持される。
図8は、動作時の前段加速器システム20の例示的実施形態の概略ブロック図であって、負のイオンビーム600を収束させる前段加速器システム20の能力を描写する。ここから分かるように、ビーム600は、イオン源22からアインツェルレンズ30に通過することに応じて、発散する(図8における進行点Pから進行点Pに図示されるように)。アインツェルレンズ30は、ビーム600の発散を減らすために、負にバイアスされ、ビーム集束を提供する。ここでは、アインツェルレンズ30は、ビーム600を発散形態から収束形態に遷移させる。ビーム600は、再び、レンズ30から退出後に発散し始めるが、源22と前段加速器管26との間のほぼ同一空間に制約された状態のままである(例えば、図8における進行点Pから進行点P)。前段加速器管26は、負のイオンビーム600の収束を助長するために、ビーム集束をさらに提供するように構成されることができる(例えば、図8における進行点Pから進行点P)。ソレノイド510は、タンデム加速器40の入力開口に到達するとき、負のイオンビーム600が適切な品質および集束サイズであるように、ビーム集束の微調整を提供し、負のイオンビーム600の収束をさらに助長するために、バイアスされることができる(例えば、図8における進行点Pから進行点P)。ソレノイド510上のバイアスを制御することはさらに、ビームが十分かつ正確にタンデム加速器40の入力開口に照準されることを確実にするために、ビーム集束の微調整を可能にする。電力供給源PS1の制御は、タンデム加速器の入力開口に照準される負のイオンビームの大まかな調節を可能にする。電力供給源PS2の制御は、入力開口に照準される負のイオンビームの調節の微調整を可能にする。
図8はまた、前段加速器システム20の例示的実施形態の逆流デフォーカス動作を図示する。上記に議論されるように、タンデム加速器の中に注入される低エネルギーの負のイオンは、好ましくない条件をタンデム加速器の第1の加速間隙内に生成する。従来のシステムでは、負のイオンビームが、タンデム加速器の第1の加速間隙(例えば、G1)の中に注入されると、イオンは、典型的には、第1の加速間隙の中央において、約100keVのエネルギーに到達する。
タンデム加速器40の電荷交換デバイス内のガス状媒体(例えば、アルゴン、窒素)の使用は、電荷交換ガスがビームによってイオン化された状態になるための電位を生成する。ガス状中性子は、ガスが、例えば、電荷交換管の中に圧送され、電子を負のイオンビーム(例えば、H-イオン)から奪取し、陽子(例えば、H+イオン)を生成すると、タンデム加速器の中心における電荷交換デバイスから生じる。ガス状電荷交換デバイスを伴う、タンデム加速器内の背景ガスの圧力は、多くの場合、比較的に高く、タンデム加速器の第1の加速間隙(例えば、G1)内で生じる、より大きい粒子断面(例えば、図5における100keV)は、負の水素イオンが、タンデム加速器40の第1の加速間隙内で背景ガスと衝突し、続いて、イオン化する可能性がより高く、これが、アーク放電および絶縁破壊等の有害な効果につながり得ることを意味する。さらに、ガス状中性子は、先行する加速間隙(例えば、G4、G3、G2、G1)を通してタンデム加速器の中心における電荷交換デバイスから逆進行するため、背景ガスのイオン化が、内側間隙ならびに第1の加速間隙内で生じる。
本実施形態では、負のイオンビームのイオンは、前段加速器管26の近似中点において(例えば、タンデム加速器の第1の加速間隙G1の内側とは対照的に、例えば、図8における進行点Pと進行点Pとの間のある点において)、約100keVのエネルギーに到達する。これは、前段加速器システム20とタンデム加速器40との間に位置付けられる真空ポンプチャンバ(図示せず)ならびに前段加速器システム20の構成に起因して、より少ないガス状中性子が前段加速器管26の中央に存在するためである。ビームがビームの成分粒子の最大断面エネルギーに到達する、位置は、前段加速器管26の中点から変動し得、タンデム加速器の入力開口の上流の他のそのような位置も、本主題の範囲内である(例えば、前段加速器管26の端部26Aまたは26Bと近接する位置、ソレノイド510内の位置、アインツェルレンズ30内の位置、前述の構成要素間は、そのようなものの実施例である)。
タンデム加速器の第1の加速間隙内の逆流に対する既存のシステムに優る前述の改良にもかかわらず、前段加速器システム20は、依然として、それに対して前段加速器システム26が負のイオンビーム600を提供する、タンデム加速器40から生じる、本システムを通して通過する、逆流610を被り得る。逆流は、加速されたビームの反対方向における磁場によって加速される、正のイオン化されたガスである。電荷交換デバイスから先行する加速間隙(例えば、G4、G3、G2、G1)を通して逆進行する、ガス状中性子は、潜在的に、イオン化し(衝突を通して)、逆流になり得る、粒子を表す。タンデム加速器40から生じる有意な量のガス状中性子の真空除去は、逆流となり得る、可能性として考えられる粒子の低減をもたらす。
故に、前段加速器システム26の構成要素はまた、イオン源22への損傷の可能性を低減させ、および/または逆流がイオン源22のフィラメントに到達する可能性を排除するために、前段加速器システム26を通して通過するにつれて、逆流610を最小限にする、デフォーカスさせる、または排除するように構成される。アインツェルレンズ30、前段加速器管26、および/またはソレノイド510を含む、任意のバイアスされる構成要素は、逆流610をデフォーカスさせることができる。例えば、ソレノイド510は、逆流をデフォーカスさせることができる、デフォーカスの量または方向は、ソレノイド510に印加される電圧の調節によって制御されることができ(例えば、第2の電力供給源PS2によって)、これは、ビーム集束ならびに逆流デフォーカスに向かったソレノイド510寄与の微調整を可能にする。
同様に、前段加速器管26およびアインツェルレンズ30のバイアスの制御の調節は、逆流610のデフォーカスを補助する。すなわち、前段加速器管26およびアインツェルレンズ30は、独立して、ビーム600の集束およびその最小限化のための逆流610のデフォーカスの所望の程度に到達するように制御されてもよい。
図8に示されるように、逆流610は、ソレノイド510および前段加速器管26を通して進行するにつれて、ビーム軸からデフォーカスまたは方向転換される(例えば、図8における進行点Pから進行点P)。逆流は、構成要素がバイアスされるかどうかにかかわらず、ビームシステムの任意の構成要素によって収集されてもよい。ここで示されるように、一部の逆流は、アインツェルレンズ30の電極を冷却するように構成される、冷却デバイス520によって収集される。
いったん逆流610が、イオン源22に到達すると、イオン源22への損傷の可能性が低減または排除されるようにデフォーカスされ、冷却デバイス660はさらに、イオン源22の上流筐体(例えば、バックプレート)650に到達するにつれて、逆流610を低減または排除する。図9は、本開示の実施形態と併用するための例示的イオン源バックプレートアセンブリを図示する。実施形態では、バックプレートアセンブリ650は、プラズマを発生させ、負の水素イオンをイオン源22から生成するためのフィラメントを含む。実施形態では、バックプレートアセンブリ650は、随意に、逆流接触点670においてバックプレートアセンブリ650に衝打し得る、逆流610が、フィラメントに到達しないように防止するために、冷却デバイス660(例えば、水冷)を使用して冷却される。これは、イオン源22の安定性を確実にし、タンデム加速器40内の間隙からの逆流620および前段加速器システム20を通して進行する逆流610に基づく、イオン源22および前段加速器システム20の信頼性の低減を排除する。
図10は、その中で本開示の実施形態が動作し得る、例示的システム3000を示す、ブロック図である。例えば、図示される例示的システム3000は、前段加速器システム3001と、1つまたはそれを上回るコンピューティングデバイス3002と、タンデム加速器システム3003とを含む。実施形態では、前段加速器システム3001およびタンデム加速器システム3003は、集合的に、例示的中性子ビームシステム(例えば、上記のシステム10)の一部であってもよい。そのような実施形態では、中性子ビームシステム10は、1つまたはそれを上回る制御システムを採用してもよく、それを用いて1つまたはそれを上回るコンピューティングデバイス3002は、中性子ビームシステム10のシステムおよび構成要素と相互作用するために、通信してもよい。これらのデバイスおよび/またはシステムはそれぞれ、直接相互に(図示せず)、またはネットワーク3004等のローカルネットワークを介して、通信するように構成される。
コンピューティングデバイス3002は、種々のユーザデバイス、システム、コンピューティング装置、および同等物によって具現化されてもよい。例えば、第1のコンピューティングデバイス3002は、特定のユーザと関連付けられる、デスクトップコンピュータまたはワークステーションであってもよい一方、別のコンピューティングデバイス3002は、特定のユーザと関連付けられる、ラップトップコンピュータであってもよく、さらに別のコンピューティングデバイス3002は、モバイルデバイス(例えば、タブレットまたはスマートデバイス)であってもよい。コンピューティングデバイス3002はそれぞれ、例えば、コンピューティングデバイスを介してアクセス可能なユーザインターフェースを通して、前段加速器システム3001および/またはタンデム加速器システム3003と通信するように構成されてもよい。例えば、ユーザは、デスクトップアプリケーションをコンピューティングデバイス3002上で実行してもよく、これは、前段加速器システム3001および/またはタンデム加速器システム3003と通信するように構成される。
コンピューティングデバイス3002を使用して、前段加速器システム3001またはタンデム加速器システム3003のうちの1つまたはそれを上回るものと通信することによって、ユーザは、本明細書に説明される実施形態による、システムのいずれかのための動作パラメータを提供してもよい。実施形態では、前段加速器システム3001は、制御システム3001Aを含んでもよく、それによって前段加速器システム3001は、動作パラメータをコンピューティングデバイス3002から受信し、適用してもよい。実施形態では、タンデム加速器システム3003は、制御システム3003Aを含んでもよく、それによってタンデム加速器システム3003は、動作パラメータをコンピューティングデバイス3002から受信し、適用してもよい。
本明細書に説明される制御側面のいずれかは、システム3000(例えば、コンピューティングデバイス3002、制御システム3001Aまたは3003A)を用いて、制御または調節、管理、および/または監視されることができる。これらの制御側面の実施例は、イオン源22の任意の電極に印加されるバイアスまたは電圧、アインツェルレンズ30に印加されるバイアスまたは電圧、前段加速器管26に印加されるバイアスまたは電圧、ソレノイド510に印加されるバイアスまたは電圧、タンデム加速器40に印加されるバイアスまたは電圧、電力供給源PS1-PS5のいずれかによって出力された電圧、変調、始動、または絶縁破壊回復のためのシステムの構成要素に印加されるバイアスまたは電圧のシーケンス、整合のためのビーム位置の調節、ビーム集束位置の調節、逆流デフォーカス量の調節、およびその他を含む。
通信ネットワーク3004は、例えば、有線または無線ローカルエリアネットワーク(LAN)、パーソナルエリアネットワーク(PAN)、都市規模ネットワーク(MAN)、広域ネットワーク(WAN)、または同等物を含む、任意の有線または無線通信ネットワーク、ならびにそれを実装するために要求される、任意のハードウェア、ソフトウェア、および/またはファームウェアを含んでもよい(例えば、ネットワークルータ等)。例えば、通信ネットワーク3004は、802.11、802.16、802.20、および/またはWiMaxネットワークを含んでもよい。さらに、通信ネットワーク3004は、インターネット等のパブリックネットワーク、イントラネット等のプライベートネットワーク、またはそれらの組み合わせを含んでもよく、限定ではないが、TCP/IPベースのネットワーキングプロトコルを含む、現在利用可能なまたは後に開発される種々のネットワーキングプロトコルを利用してもよい。
コンピューティングデバイス3002ならびに制御システム3001Aおよび3003Aは、図11に示される装置3100等の1つまたはそれを上回るコンピューティングシステムによって具現化されてもよい。図11に図示されるように、装置3100は、プロセッサ3102と、メモリ3104と、入力および/または出力回路網3106と、通信デバイスまたは回路網3108とを含んでもよい。これらの構成要素3102-3108は、類似ハードウェアを含んでもよい。例えば、2つの構成要素は両方とも、複製ハードウェアがデバイス毎に要求されないように、同一プロセッサ、ネットワークインターフェース、記憶媒体、または同等物の使用を活用し、その関連付けられる機能を実施してもよい。
用語「デバイス」および/または「回路網」は、広義には、ハードウェア単独、またはハードウェアとソフトウェアの組み合わせ(例えば、ハードウェアを構成するため、またはハードウェアを用いて機能を遂行するためのソフトウェア)を含むものと理解されたい。例えば、いくつかの実施形態では、デバイスおよび/または回路網は、処理回路網、記憶媒体、ネットワークインターフェース、入/出力デバイス、および同等物を含んでもよい。いくつかの実施形態では、装置3100の他の要素は、特定のデバイスの機能性を提供または補完してもよい。例えば、プロセッサ3102は、処理機能性を提供してもよく、メモリ3104は、記憶機能性を提供してもよく、通信デバイスまたは回路網3108は、ネットワークインターフェース機能性を提供してもよい等となる。
いくつかの実施形態では、プロセッサ3102(および/またはプロセッサを補助する、もしくは別様にそれと関連付けられる、コプロセッサまたは任意の他の処理回路網)は、装置の構成要素間で情報を通過させるために、バスを介して、メモリ3104と通信してもよい。メモリ3104は、非一過性であってもよく、例えば、1つまたはそれを上回る揮発性および/または不揮発性メモリを含んでもよい。換言すると、例えば、メモリ3104は、電子記憶デバイス(例えば、コンピュータ可読記憶媒体)であってもよい。メモリ3104は、装置が、本開示の例示的実施形態による種々の機能を行うことを可能にするために、情報、データ、コンテンツ、アプリケーション、命令、または同等物を記憶するように構成されてもよい。
プロセッサ3102は、いくつかの異なる方法において具現化されてもよく、例えば、独立して実施するように構成される、1つまたはそれを上回る処理デバイスを含んでもよい。加えて、または代替として、プロセッサは、バスを介して連動し、命令、パイプライン、および/またはマルチスレッドの独立実行を可能にするように構成される、1つまたはそれを上回るプロセッサを含んでもよい。用語「処理デバイス」および/または「処理回路網」の使用は、装置の内部のシングルコアプロセッサ、マルチコアプロセッサ、複数のプロセッサ、および/または遠隔もしくは「クラウド」プロセッサを含むと理解され得る。
例示的実施形態では、プロセッサ3102は、メモリ3104内に記憶される、または別様にプロセッサにアクセス可能である、命令を実行するように構成されてもよい。代替として、または加えて、プロセッサ3104は、ハードコーディングされた機能性を実行するように構成されてもよい。したがって、ハードウェアまたはソフトウェア方法によって、もしくはハードウェアとソフトウェアの組み合わせによって、構成されるかどうかにかかわらず、プロセッサ3104は、適宜構成される間、本開示のある実施形態による動作を実施することが可能である、(例えば、回路網内で物理的に具現化される)エンティティを表し得る。代替として、別の実施例として、プロセッサが、ソフトウェア命令のエグゼキュータとして具現化されると、命令は、命令が実行されると、本明細書に説明されるアルゴリズムおよび/または動作を実施するように、プロセッサを具体的に構成してもよい。
いくつかの実施形態では、装置3100は、入/出力デバイス3106を含んでもよく、これは、ひいては、プロセッサ3102と通信し、出力をユーザに提供し、いくつかの実施形態では、入力をユーザから受信し得る。入/出力デバイス3106は、ユーザインターフェースを含んでもよく、ウェブユーザインターフェース、モバイルアプリケーション、クライアントデバイス、または同等物を含み得る、ユーザデバイスディスプレイ等のデバイスディスプレイを含んでもよい。いくつかの実施形態では、入/出力デバイス3106はまた、キーボード、マウス、ジョイスティック、タッチスクリーン、タッチエリア、ソフトキー、マイクロホン、スピーカ、または他の入/出力機構を含んでもよい。プロセッサおよび/またはプロセッサを含むユーザインターフェース回路網は、プロセッサにアクセス可能なメモリ(例えば、メモリ3104および/または同等物)上に記憶されたコンピュータプログラム命令(例えば、ソフトウェアおよび/またはファームウェア)を通して、1つまたはそれを上回るユーザインターフェース要素の1つまたはそれを上回る機能を制御するように構成されてもよい。
通信デバイスまたは回路網3108は、データを/ネットワークおよび/または装置3100と通信する任意の他のデバイスまたは回路網から受信し、および/またはそこに伝送するように構成される、ハードウェアまたはハードウェアとソフトウェアの組み合わせのいずれか内に具現化される、任意のデバイスまたは回路網であってもよい。この点において、通信デバイスまたは回路網3108は、例えば、有線または無線通信ネットワークとの通信を可能にするためのネットワークインターフェースを含んでもよい。例えば、通信デバイスまたは回路網3108は、1つまたはそれを上回るネットワークインターフェースカード、アンテナ、バス、スイッチ、ルータ、モデム、およびサポートハードウェアおよび/またはソフトウェア、もしくはネットワークを介して通信を可能にするために好適な任意の他のデバイスを含んでもよい。加えて、または代替として、通信インターフェースは、アンテナと相互作用し、アンテナを介して信号の伝送を引き起こす、またはアンテナを介して受信される信号の受信をハンドリングするための回路網を含んでもよい。これらの信号は、装置3100によって、現在および将来的Bluetooth(登録商標)規格(Bluetooth(登録商標)およびBluetooth(登録商標)低エネルギー(BLE)を含む)、赤外線無線(例えば、IrDA)、FREC、超広帯域(UWB)、誘導無線伝送、または同等物等のいくつかの無線パーソナルエリアネットワーク(PAN)技術のいずれかを使用して、伝送されてもよい。加えて、これらの信号は、Wi-Fi、短距離通信(NFC)、ワールドワイド・インターオペラビリティ・フォー・マイクロウェーブ・アクセス(WiMAX)、または他の近接度ベースの通信プロトコルを使用して、伝送されてもよいことを理解されたい。
デジタル情報に作用する、またはそれを操作する、デバイスの実施形態は、完全にハードウェアとして、またはソフトウェアとハードウェアの任意の組み合わせで構成されてもよい。さらに、実施形態は、記憶媒体内に具現化されるコンピュータ可読プログラム命令(例えば、コンピュータソフトウェア)を有する、少なくとも1つの非一過性コンピュータ可読記憶媒体上のコンピュータプログラム製品の形態をとってもよい。非一過性ハードディスク、CD-ROM、フラッシュメモリ、光学記憶デバイス、または磁気記憶デバイスを含む、任意の好適なコンピュータ可読記憶媒体が、利用されてもよい。本開示の実施形態と併用するための処理回路網は、処理回路網に、異なるアクションの集合を行わせ、本明細書の図中の他の構成要素を制御させる、メモリ上に記憶されたソフトウェア命令を実行することができる。
本開示の実施形態と併用するためのメモリは、種々の機能ユニットのうちの1つまたはそれを上回るものによって共有されることができる、またはそれらのうちの2つまたはそれを上回るもの間に分散されることができる(例えば、異なるチップ内に存在する別個のメモリとして)。メモリはまた、その独自の別個のチップであることができる。メモリは、非一過性であって、さらに、揮発性(例えば、RAM等)および/または不揮発性メモリ(例えば、ROM、フラッシュメモリ、F-RAM等)を含むことができる。
任意のそのようなコンピュータプログラム命令および/または他のタイプのコードは、コンピュータ、プロセッサ、または他のプログラマブル装置の回路網上にロードされ、コードを機械上で実行する、コンピュータ、プロセッサ、または他のプログラマブル回路網が、本明細書に説明されるものを含む、種々の機能を実装するための構造を生成するように、機械を生産してもよい。説明される主題による動作を行うためのコンピュータプログラム命令は、Java(登録商標)、Java(登録商標)スクリプト、Smalltalk、C++、C#、Transact-SQL、XML、PHP、または同等物等の、オブジェクト指向プログラミング言語、および「C」プログラミング言語または類似プログラミング言語等の従来の手続型プログラミング言語を含む、1つまたはそれを上回るプログラミング言語の任意の組み合わせで書き込まれてもよい。
本主題の種々の側面は、これまで説明された実施形態の復習として、および/またはその補完として、下記に記載され、以下の実施形態の相互関係および相互交換可能性がここで強調される。換言すると、実施形態の各特徴は、別様に明示的に述べられない、または論理的にあり得ない限り、あらゆる他の特徴と組み合わせられることができるという事実が強調される。
多くの実施形態では、ビームシステムは、荷電粒子ビームを放出するように構成される、粒子源と、粒子源からの荷電粒子ビームを加速させるように構成される、前段加速器システムと、前段加速器システムからの荷電粒子ビームを加速させるように構成される、加速器とを含む。これらの実施形態のうちのいくつかでは、粒子源は、イオン源であって、荷電粒子ビームは、負の水素イオンを備える、イオンビームである。これらの実施形態のうちのいくつかでは、前段加速器システムは、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの少なくとも1つを含む。これらの実施形態のうちのいくつかでは、前段加速器システムは、静電レンズ、前段加速器デバイス、および磁気集束デバイスを含む。
これらの実施形態のうちのいくつかでは、静電レンズは、アインツェルレンズであって、前段加速器デバイスは、複数の加速端子を含む、前段加速器管であって、磁気集束デバイスは、ソレノイドである。これらの実施形態のうちのいくつかでは、静電レンズは、粒子源の下流にあって、前段加速器デバイスは、静電レンズの下流にあって、磁気集束デバイスは、前段加速器デバイスの下流にある。これらの実施形態のうちのいくつかでは、静電レンズは、アインツェルレンズであって、相互に離間関係に結合される、2つの接地された電極と、2つの接地された電極間に位置付けられ、その間に延在する絶縁体によって支持される、バイアス電極とを含む。これらの実施形態のうちのいくつかでは、バイアス電極または2つの接地された電極のうちの1つまたはそれを上回るものは、負のバイアスのために構成される。
これらの実施形態のうちのいくつかでは、前段加速器管は、第1の前段加速器管端子と、第2の前段加速器管端子とを含む。これらの実施形態のうちのいくつかでは、第1の前段加速器管端子は、第1の電力供給源と電気的に結合可能である。これらの実施形態のうちのいくつかでは、第2の前段加速器管端子は、接地と電気的に結合可能である。
これらの実施形態のうちのいくつかでは、加速器は、タンデム加速器であって、複数の入力電極と、電荷交換デバイスと、複数の出力電極とを含む。これらの実施形態のうちのいくつかでは、荷電粒子ビームは、負のイオンビームである。これらの実施形態のうちのいくつかでは、複数の入力電極は、前段加速器システムからの負のイオンビームを加速させるように構成され、電荷交換デバイスは、負のイオンビームを正のビームに変換するように構成され、複数の出力電極は、正のビームを加速させるように構成される。
これらの実施形態のうちのいくつかでは、ビームシステムはさらに、中性ビームをタンデム加速器から受容される正のビームから形成するように構成される、標的デバイスを含む。
これらの実施形態のうちのいくつかでは、前段加速器システムは、粒子源に隣接して、その下流に位置付けられる。
これらの実施形態のうちのいくつかでは、前段加速器デバイスは、静電レンズの下流に位置付けられる。これらの実施形態のうちのいくつかでは、磁気集束デバイスは、前段加速器デバイスの下流に位置付けられる。これらの実施形態のうちのいくつかでは、前段加速器デバイスは、静電レンズまたは粒子源のうちの1つまたはそれを上回るものの下流に位置付けられる。これらの実施形態のうちのいくつかでは、磁気集束デバイスは、アインツェルレンズ、前段加速器管、または粒子源のうちの1つまたはそれを上回るものの下流に位置付けられる。
これらの実施形態のうちのいくつかでは、ビームシステムはさらに、1つまたはそれを上回る真空ポンプチャンバを含む。これらの実施形態のうちのいくつかでは、第1の真空ポンプチャンバは、前段加速器システムと加速器との間に位置付けられる。これらの実施形態のうちのいくつかでは、第2の真空ポンプチャンバは、粒子源と前段加速器システムとの間に位置付けられる。
これらの実施形態のうちのいくつかでは、1つまたはそれを上回る真空ポンプチャンバは、加速器上に位置付けられる。
これらの実施形態のうちのいくつかでは、粒子源は、そこに隣接して位置する1つまたはそれを上回るフィラメントを有する、壁を含む。これらの実施形態のうちのいくつかでは、ビームシステムは、壁を冷却するように構成される、第1の冷却デバイスを含む。これらの実施形態のうちのいくつかでは、ビームシステムは、アインツェルレンズを冷却するように構成される、第2の冷却デバイスを含む。これらの実施形態のうちのいくつかでは、第1および第2の冷却デバイスは、流体冷却剤を使用するように構成される。
これらの実施形態のうちのいくつかでは、前段加速器システムは、粒子源から伝搬する荷電粒子ビームを加速器の入力開口において収束させるように構成される。
これらの実施形態のうちのいくつかでは、前段加速器システムは、デフォーカスさせ、加速器から粒子源に向かって伝搬する、イオン化された逆流を収集するように構成される。
これらの実施形態のうちのいくつかでは、前段加速器システムは、粒子源からの粒子ビームを発散状態から収束状態に遷移させるように構成される。
これらの実施形態のうちのいくつかでは、前段加速器システムは、粒子源からの粒子ビームを発散状態から収束状態に遷移させるように構成される、静電レンズを含む。これらの実施形態のうちのいくつかでは、静電レンズは、ビーム集束または逆流デフォーカスを調整するように制御可能である。
これらの実施形態のうちのいくつかでは、前段加速器システムは、ビーム集束または逆流デフォーカスを調整するように制御可能である、磁気集束デバイスを含む。
これらの実施形態のうちのいくつかでは、前段加速器システムは、ビーム集束または逆流デフォーカスを調整するように制御可能である、前段加速器管を含む。
これらの実施形態のうちのいくつかでは、ビームシステムは、可変電力を磁気集束デバイス、静電レンズ、および前段加速器管に調節可能に出力するように構成される、複数の電力供給源を含む。
これらの実施形態のうちのいくつかでは、ビームシステムは、加速器の中への進入の前に、荷電粒子をその最大断面まで加速させるように構成される。これらの実施形態のうちのいくつかでは、荷電粒子は、負の水素イオンである。これらの実施形態のうちのいくつかでは、ビームシステムは、加速器の中への進入の前に、荷電粒子を100keVのエネルギーまで加速させるように構成される。これらの実施形態のうちのいくつかでは、ビームシステムは、前段加速器システムの前段加速器管内のある位置において、荷電粒子をその最大断面まで加速させるように構成される。これらの実施形態のうちのいくつかでは、位置は、前段加速器管の中心領域内にある。
これらの実施形態のうちのいくつかでは、ビームシステムは、加速器から前段加速器システムの中に退出するガスを除去するように構成される、真空ポンプチャンバを含む。
これらの実施形態のうちのいくつかでは、粒子源は、荷電粒子ビームが、それに沿って加速器を通して通過する荷電粒子が加速される、加速器を横断する、同一または実質的に類似する軸に沿って放出されるように位置付けられる。
これらの実施形態のうちのいくつかでは、ビームシステムは、制御システムを含む。これらの実施形態のうちのいくつかでは、制御システムは、動作パラメータまたは命令をコンピューティングデバイスから受信するように構成される。これらの実施形態のうちのいくつかでは、制御システムは、動作データをコンピューティングデバイスに伝送するように構成される。これらの実施形態のうちのいくつかでは、制御システムは、以下、すなわち、粒子源の電極に印加される電圧、前段加速器システムの静電レンズに印加される電圧、前段加速器システムの前段加速器デバイスに印加される電圧、前段加速器システムの磁気集束デバイスに印加される電圧、加速器に印加される電圧、ビームシステムの電力供給源によって出力される電圧、整合のためのビーム位置の調節、ビーム集束位置の調節、または逆流デフォーカス量の調節のうちの少なくとも1つを制御するように構成される。
これらの実施形態のうちのいくつかでは、ビームシステムは、ホウ素中性子捕捉療法(BNCT)において使用するために構成される。
多くの実施形態では、ビームシステムを動作させる方法は、荷電粒子を備えるビームを粒子源から放出するステップと、前段加速器システムを用いて、ビームを加速器に向かって加速させるステップと、加速器を用いて、ビームを加速させるステップとを含む。
これらの実施形態のうちのいくつかでは、前段加速器システムは、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの1つまたはそれを上回るものを含む。これらの実施形態のうちのいくつかでは、静電レンズは、アインツェルレンズであって、前段加速器デバイスは、複数の加速端子を含む、前段加速器管であって、磁気集束デバイスは、ソレノイドである。
これらの実施形態のうちのいくつかでは、加速器は、タンデム加速器である。これらの実施形態のうちのいくつかでは、タンデム加速器は、電荷交換デバイスを含む。これらの実施形態のうちのいくつかでは、前段加速器システムを用いて、ビームを加速器に向かって加速させるステップは、加速器に進入することに先立って、荷電粒子がその最大断面に到達するように、ビームを加速させるステップを含む。これらの実施形態のうちのいくつかでは、荷電粒子は、負の水素イオンである。これらの実施形態のうちのいくつかでは、荷電粒子は、前段加速器システムの前段加速器管内において、その最大断面に到達する。
これらの実施形態のうちのいくつかでは、本方法は、前段加速器システムを用いて、ビームを収束させるステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、前段加速器システムに供給される電力を調節し、ビームの収束を制御するステップを含む。これらの実施形態のうちのいくつかでは、ビームを収束させるステップはさらに、前段加速器システムを用いて、ビームを発散状態から収束状態に遷移させるステップを含む。これらの実施形態のうちのいくつかでは、ビームは、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの1つまたはそれを上回るものを用いて収束される。これらの実施形態のうちのいくつかでは、前段加速器システムは、静電レンズ、前段加速器デバイス、および磁気集束デバイスを含む。これらの実施形態のうちのいくつかでは、静電レンズは、粒子源の下流にあって、前段加速器デバイスは、静電レンズの下流にあって、磁気集束デバイスは、前段加速器デバイスの下流にある。
これらの実施形態のうちのいくつかでは、本方法は、前段加速器デバイスに供給される電力を調節し、ビームの収束を制御するステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、磁気集束デバイスに供給される電力を調節し、ビームの焦点を制御するステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、前段加速器デバイスに供給される電力を調節し、ビームの収束を制御するステップおよび磁気集束デバイスに供給される電力を調節し、ビームの焦点を制御するステップを含む。これらの実施形態のうちのいくつかでは、磁気集束デバイスに供給される電力を調節し、ビームの焦点を制御するステップは、磁気集束デバイスに供給される電力を調節し、ビームを加速器の入力開口に集束させるステップを含む。
これらの実施形態のうちのいくつかでは、粒子源は、ビームが、それに沿って加速器を通して通過する荷電粒子が加速される、加速器を横断する、同一または実質的に類似する軸に沿って放出されるように位置付けられる。
これらの実施形態のうちのいくつかでは、粒子源は、体積タイプ源および表面タイプ源のうちの1つである。
これらの実施形態のうちのいくつかでは、本方法は、前段加速器システムを用いて、逆流を加速器からデフォーカスさせるステップを含む。これらの実施形態のうちのいくつかでは、逆流は、イオン化された背景ガスを含む。これらの実施形態のうちのいくつかでは、本方法は、前段加速器システムに供給される電力を調節し、逆流のデフォーカスを制御するステップを含む。これらの実施形態のうちのいくつかでは、本方法は、前段加速器システムに供給される電力を調節し、逆流をビームシステムの1つまたはそれを上回る構成要素によって収集させるステップを含む。これらの実施形態のうちのいくつかでは、本方法は、前段加速器システムに供給される電力を調節し、逆流に粒子源の逆流に敏感な構成要素を回避させるステップを含む。これらの実施形態のうちのいくつかでは、逆流に敏感な構成要素は、フィラメントである。
これらの実施形態のうちのいくつかでは、逆流は、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの1つまたはそれを上回るものを用いて、デフォーカスされる。
これらの実施形態のうちのいくつかでは、前段加速器システムは、静電レンズと、前段加速器デバイスと、磁気集束デバイスとを含む。これらの実施形態のうちのいくつかでは、ビームの進行に対して、静電レンズは、粒子源の下流にあって、前段加速器デバイスは、静電レンズの下流にあって、磁気集束デバイスは、前段加速器デバイスの下流にある。これらの実施形態のうちのいくつかでは、本方法は、前段加速器デバイスに供給される電力を調節し、逆流のデフォーカスを制御するステップを含む。これらの実施形態のうちのいくつかでは、本方法は、磁気集束デバイスに供給される電力を調節し、逆流のデフォーカスを制御するステップを含む。これらの実施形態のうちのいくつかでは、本方法は、前段加速器デバイスに供給される電力を調節し、逆流のデフォーカスを制御するステップと、磁気集束デバイスに供給される電力を調節し、逆流のデフォーカスを制御するステップとを含む。
これらの実施形態のうちのいくつかでは、粒子源は、ビームが、それに沿って加速器を通して通過する荷電粒子が加速される、加速器を横断する、同一または実質的に類似する軸に沿って放出されるように位置付けられる。
これらの実施形態のうちのいくつかでは、本方法は、ガスの真空除去を実施するステップを含む。これらの実施形態のうちのいくつかでは、本方法は、前段加速器システムと加速器との間の第1の位置と、粒子源と前段加速器システムとの間の第2の位置とにおいて、ガスの真空除去を実施するステップを含む。これらの実施形態のうちのいくつかでは、前段加速器システムを用いて、ビームを加速器に向かって加速させるステップは、加速器に進入することに先立って、荷電粒子がその最大断面に到達するように、ビームを加速させるステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、ビームシステムの制御システムを用いて、以下、すなわち、粒子源の電極に印加される電圧、前段加速器システムの静電レンズに印加される電圧、前段加速器システムの前段加速器デバイスに印加される電圧、前段加速器システムの磁気集束デバイスに印加される電圧、加速器に印加される電圧、ビームシステムの電力供給源によって出力される電圧、整合のためのビーム位置の調節、ビーム集束位置の調節、または逆流デフォーカス量の調節のうちの少なくとも1つを制御するステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、制御システムを使用して、動作パラメータまたは命令をコンピューティングデバイスから受信するステップ、または制御システムを使用して、動作データをコンピューティングデバイスに伝送するステップのうちの1つまたはそれを上回るものを含む。これらの実施形態のうちのいくつかでは、制御システムは、無線または有線通信のうちの1つまたはそれを上回るもののために構成される。
これらの実施形態のうちのいくつかでは、本方法は、ビームを標的に印加するステップを含む。これらの実施形態のうちのいくつかでは、粒子源は、イオン源であって、荷電粒子は、負の水素イオンである。これらの実施形態のうちのいくつかでは、本方法は、加速器内でビームを負の水素イオンビームから陽子ビームに変換するステップを含む。これらの実施形態のうちのいくつかでは、ビームを標的に印加するステップは、陽子ビームを中性子発生標的に印加するステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、ホウ素中性子捕捉療法(BNCT)においてビームシステムを使用するステップを含む。
多くの実施形態では、ビームシステム内で逆流をデフォーカスさせる方法は、ガス状中性子をタンデム加速器から真空排気するステップと、タンデム加速器に結合される、前段加速器システムをバイアスするステップとを含む。これらの実施形態のうちのいくつかでは、前段加速器システムは、ビームシステムの加速されたビームの反対方向に磁場によって加速される、正のイオン化されたガスをデフォーカスさせるように構成される。これらの実施形態のうちのいくつかでは、前段加速器システムは、前段加速器管、アインツェルレンズ、磁気集束デバイス、またはソレノイドのうちの1つまたはそれを上回るものを含む。
これらの実施形態のうちのいくつかでは、本方法は、前段加速器管を、第1の前段加速器管端子において、第1の電力供給源と、第2の前段加速器管端子において、接地と電気的に結合するステップを含む。
これらの実施形態のうちのいくつかでは、前段加速器システムは、イオン源に隣接して、その下流に位置付けられる。
これらの実施形態のうちのいくつかでは、前段加速器管は、アインツェルレンズに隣接して、その下流に搭載される。
これらの実施形態のうちのいくつかでは、磁気集束デバイスは、前段加速器管に隣接して、その下流に搭載される。
これらの実施形態のうちのいくつかでは、前段加速器管は、アインツェルレンズまたはイオン源のうちの1つまたはそれを上回るものの下流に位置付けられる。
これらの実施形態のうちのいくつかでは、アインツェルレンズは、イオン源の下流に位置付けられる。
これらの実施形態のうちのいくつかでは、磁気集束デバイスは、アインツェルレンズ、前段加速器管、またはイオン源のうちの1つまたはそれを上回るものの下流に位置付けられる。
これらの実施形態のうちのいくつかでは、第1の真空ポンプチャンバは、前段加速器システムとタンデム加速器との間に位置付けられる。これらの実施形態のうちのいくつかでは、第2の真空ポンプチャンバは、イオン源と前段加速器システムとの間に位置付けられる。
これらの実施形態のうちのいくつかでは、1つまたはそれを上回る真空ポンプチャンバは、タンデム加速器の上部表面上に位置付けられる。
これらの実施形態のうちのいくつかでは、本方法は、第1の冷却デバイスを使用して、イオン源のバックプレートを冷却するステップを含む。これらの実施形態のうちのいくつかでは、バックプレートは、1つまたはそれを上回るフィラメントを含む。これらの実施形態のうちのいくつかでは、本方法は、第2の冷却デバイスを使用して、アインツェルレンズを冷却するステップを含む。これらの実施形態のうちのいくつかでは、第1の冷却デバイスまたは第2の冷却デバイスのうちの1つまたはそれを上回るものは、水冷を含む。
これらの実施形態のうちのいくつかでは、本方法は、第1の電力供給源を使用して、磁気集束デバイスをバイアスし、磁気集束デバイスのビーム集束または逆流デフォーカス性質を調整するステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、第2の電力供給源を使用して、アインツェルレンズをバイアスし、アインツェルレンズのビーム集束または逆流デフォーカス性質を調整するステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、第3の電力供給源を使用して、前段加速器管をバイアスし、前段加速器管のビーム集束または逆流デフォーカス性質を調整するステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、イオンが、それに沿ってタンデム加速器を通して通過するイオンが加速される、タンデム加速器を横断する、同一または実質的に類似する軸に沿って放出されるように、イオン源を位置付けるステップを含む。
これらの実施形態のうちのいくつかでは、本方法は、制御システムを使用して、動作パラメータまたは命令をコンピューティングデバイスから受信するステップ、または制御システムを使用して、動作データをコンピューティングデバイスに伝送するステップのうちの1つまたはそれを上回るものを含む。
本明細書に提供される任意の実施形態に関して説明される、全ての特徴、要素、構成要素、機能、およびステップは、自由に組み合わせ可能であって、任意の他の実施形態からのものと代用可能であるように意図されることに留意されたい。ある特徴、要素、構成要素、機能、またはステップが、一実施形態のみに関して説明される場合、特徴、要素、構成要素、機能、またはステップは、別様に明示的に述べられない限り、本明細書に説明される全ての他の実施形態と併用されることができることを理解されたい。本段落は、したがって、随時、異なる実施形態からの特徴、要素、構成要素、機能、およびステップを組み合わせる、または一実施形態からの特徴、要素、構成要素、機能、およびステップを別の実施形態からのもので代用することの請求項の導入の前提および記述支援としての役割を果たし、以下の説明が、特定の事例において、そのような組み合わせまたは代用が可能であることを明示的に述べていない場合でも該当する。特に、あらゆるそのような組み合わせおよび代用の許容性は、当業者によって容易に認識されるであろうことを前提として、あらゆる可能性として考えられる組み合わせおよび代用の列挙を表すことは、過度に負担であることが明示的に認識される。
本明細書に開示される実施形態が、メモリ、記憶装置、および/またはコンピュータ可読媒体を含む、またはそれと関連付けて動作する限りにおいて、そのメモリ、記憶装置、および/またはコンピュータ可読媒体は、非一過性である。故に、メモリ、記憶装置、および/またはコンピュータ可読媒体が、1つまたはそれを上回る請求項によって網羅される限りにおいて、そのメモリ、記憶装置、および/またはコンピュータ可読媒体は、非一過性にすぎない。
本明細書および添付の請求項で使用されるように、単数形「a」、「an」、および「the」は、文脈が別様に明確に決定付けない限り、複数参照を含む。
実施形態は、種々の修正および代替形態を被るが、その具体的実施例が、図面に示され、本明細書で詳細に説明される。しかしながら、これらの実施形態は、開示される特定の形態に限定されず、対照的に、これらの実施形態は、本開示の精神内に該当する、全ての修正、均等物、および代替を網羅することを理解されたい。さらに、実施形態の任意の特徴、機能、ステップ、または要素が、その範囲内に該当しない、特徴、機能、ステップ、または要素によって、請求項の本発明の範囲を定義する、負の限定とともに、請求項内に列挙される、もしくはそれに追加されてもよい。

Claims (110)

  1. ビームシステムであって、
    荷電粒子ビームを放出するように構成される粒子源と、
    前記粒子源からの前記荷電粒子ビームを加速させるように構成される前段加速器システムと、
    前段加速器システムからの前記荷電粒子ビームを加速させるように構成される加速器と
    を備える、ビームシステム。
  2. 前記粒子源は、イオン源であり、前記荷電粒子ビームは、負の水素イオンを備えるイオンビームである、請求項1に記載のビームシステム。
  3. 前記前段加速器システムは、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの少なくとも1つを備える、請求項1に記載のビームシステム。
  4. 前記前段加速器システムは、静電レンズと、前段加速器デバイスと、磁気集束デバイスとを備える、請求項1に記載のビームシステム。
  5. 前記静電レンズは、アインツェルレンズであり、前記前段加速器デバイスは、複数の加速端子を備える前段加速器管であり、前記磁気集束デバイスは、ソレノイドである、請求項4に記載のビームシステム。
  6. 前記静電レンズは、前記粒子源の下流にあり、前記前段加速器デバイスは、前記静電レンズの下流にあり、前記磁気集束デバイスは、前記前段加速器デバイスの下流にある、請求項4に記載のビームシステム。
  7. 前記静電レンズは、アインツェルレンズであり、前記アインツェルレンズは、
    相互に離間関係に結合される2つの接地された電極と、
    バイアス電極であって、前記バイアス電極は、前記2つの接地された電極間に位置付けられ、その間に延在する絶縁体によって支持され、前記バイアス電極または前記2つの接地された電極のうちの1つまたはそれを上回るものは、負のバイアスのために構成される、バイアス電極と
    を備える、請求項4に記載のビームシステム。
  8. 前記前段加速器管は、第1の前段加速器管端子と、第2の前段加速器管端子とを備える、請求項5に記載のビームシステム。
  9. 前記第1の前段加速器管端子は、第1の電力供給源と電気的に結合可能である、請求項8に記載のビームシステム。
  10. 前記第2の前段加速器管端子は、接地と電気的に結合可能である、請求項9に記載のビームシステム。
  11. 前記加速器は、複数の入力電極と、電荷交換デバイスと、複数の出力電極とを備えるタンデム加速器である、請求項1に記載のビームシステム。
  12. 前記荷電粒子ビームは、負のイオンビームであり、前記複数の入力電極は、前記前段加速器システムからの負のイオンビームを加速させるように構成され、前記電荷交換デバイスは、前記負のイオンビームを正のビームに変換するように構成され、前記複数の出力電極は、前記正のビームを加速させるように構成される、請求項11に記載のビームシステム。
  13. 中性ビームを前記タンデム加速器から受容される前記正のビームから形成するように構成される標的デバイスをさらに備える、請求項12に記載のビームシステム。
  14. 前記前段加速器システムは、前記粒子源に隣接して、その下流に位置付けられる、請求項1に記載のビームシステム。
  15. 前記前段加速器デバイスは、前記静電レンズの下流に位置付けられる、請求項4に記載のビームシステム。
  16. 前記磁気集束デバイスは、前記前段加速器デバイスの下流に位置付けられる、請求項4に記載のビームシステム。
  17. 前記前段加速器デバイスは、前記静電レンズまたは前記粒子源のうちの1つまたはそれを上回るものの下流に位置付けられる、請求項4に記載のビームシステム。
  18. 前記磁気集束デバイスは、アインツェルレンズ、前段加速器管、または前記粒子源のうちの1つまたはそれを上回るものの下流に位置付けられる、請求項4に記載のビームシステム。
  19. 1つまたはそれを上回る真空ポンプチャンバをさらに備える、請求項1に記載のビームシステム。
  20. 第1の真空ポンプチャンバは、前記前段加速器システムと前記加速器との間に位置付けられる、請求項19に記載のビームシステム。
  21. 第2の真空ポンプチャンバは、前記粒子源と前記前段加速器システムとの間に位置付けられる、請求項20に記載のビームシステム。
  22. 1つまたはそれを上回る真空ポンプチャンバは、前記加速器上に位置付けられる、請求項1に記載のビームシステム。
  23. 前記粒子源は、そこに隣接して位置する1つまたはそれを上回るフィラメントを有する壁を備える、請求項1に記載のビームシステム。
  24. 前記壁を冷却するように構成される第1の冷却デバイスをさらに備える、請求項23に記載のビームシステム。
  25. アインツェルレンズを冷却するように構成される第2の冷却デバイスをさらに備える、請求項24に記載のビームシステム。
  26. 前記第1および第2の冷却デバイスは、流体冷却剤を使用するように構成される、請求項24または25に記載のビームシステム。
  27. 前記前段加速器システムは、前記粒子源から伝搬する前記荷電粒子ビームを前記加速器の入力開口において収束させるように構成される、請求項1に記載のビームシステム。
  28. 前記前段加速器システムは、デフォーカスさせ、前記加速器から前記粒子源に向かって伝搬するイオン化された逆流を収集するように構成される、請求項1に記載のビームシステム。
  29. 前記前段加速器システムは、前記粒子源からの前記粒子ビームを発散状態から収束状態に遷移させるように構成される、請求項1に記載のビームシステム。
  30. 前記前段加速器システムは、前記粒子源からの前記粒子ビームを発散状態から収束状態に遷移させるように構成される静電レンズを備える、請求項1に記載のビームシステム。
  31. 前記静電レンズは、ビーム集束または逆流デフォーカスを調整するように制御可能である、請求項30に記載のビームシステム。
  32. 前記前段加速器システムは、ビーム集束または逆流デフォーカスを調整するように制御可能である磁気集束デバイスを備える、請求項1に記載のビームシステム。
  33. 前記前段加速器システムは、ビーム集束または逆流デフォーカスを調整するように制御可能である前段加速器管を備える、請求項1に記載のビームシステム。
  34. 可変電力を前記磁気集束デバイス、前記静電レンズ、および前記前段加速器管に調節可能に出力するように構成される複数の電力供給源をさらに備える、請求項30-33のいずれかに記載のビームシステム。
  35. 前記システムは、前記加速器の中への進入の前に、前記荷電粒子をその最大断面まで加速させるように構成される、請求項1に記載のビームシステム。
  36. 前記荷電粒子は、負の水素イオンである、請求項35に記載のビームシステム。
  37. 前記システムは、前記加速器の中への進入の前に、前記荷電粒子を100keVのエネルギーまで加速させるように構成される、請求項36に記載のビームシステム。
  38. 前記システムは、前記前段加速器システムの前段加速器管内のある位置において、前記荷電粒子をその最大断面まで加速させるように構成される、請求項35に記載のビームシステム。
  39. 前記位置は、前記前段加速器管の中心領域内にある、請求項38に記載のビームシステム。
  40. 前記加速器から前記前段加速器システムの中に退出するガスを除去するように構成される真空ポンプチャンバをさらに備える、請求項1に記載のビームシステム。
  41. 前記粒子源は、前記荷電粒子ビームが、それに沿って前記加速器を通して通過する荷電粒子が加速される前記加速器を横断する同一または実質的に類似する軸に沿って放出されるように位置付けられる、請求項1に記載のビームシステム。
  42. 制御システムをさらに備える、請求項1に記載のビームシステム。
  43. 前記制御システムは、動作パラメータまたは命令をコンピューティングデバイスから受信するように構成される、請求項42に記載のビームシステム。
  44. 前記制御システムは、動作データを前記コンピューティングデバイスに伝送するように構成される、請求項43に記載のビームシステム。
  45. 前記制御システムは、前記粒子源の電極に印加される電圧、前記前段加速器システムの静電レンズに印加される電圧、前記前段加速器システムの前段加速器デバイスに印加される電圧、前記前段加速器システムの磁気集束デバイスに印加される電圧、前記加速器に印加される電圧、前記ビームシステムの電力供給源によって出力される電圧、整合のためのビーム位置の調節、ビーム集束位置の調節、または逆流デフォーカス量の調節のうちの少なくとも1つを制御するように構成される、請求項42に記載のビームシステム。
  46. ホウ素中性子捕捉療法(BNCT)において使用するために構成される、請求項1-45のいずれかに記載のビームシステム。
  47. ビームシステムを動作させる方法であって、前記方法は、
    荷電粒子を備えるビームを粒子源から放出するステップと、
    前段加速器システムを用いて、前記ビームを加速器に向かって加速させるステップと、
    前記加速器を用いて、前記ビームを加速させるステップと
    を含む、方法。
  48. 前記前段加速器システムは、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの1つまたはそれを上回るものを備える、請求項47に記載の方法。
  49. 前記静電レンズは、アインツェルレンズであり、前記前段加速器デバイスは、複数の加速端子を備える前段加速器管であり、前記磁気集束デバイスは、ソレノイドである、請求項48に記載の方法。
  50. 前記加速器は、タンデム加速器である、請求項47に記載の方法。
  51. 前記タンデム加速器は、電荷交換デバイスを備える、請求項50に記載の方法。
  52. 前記前段加速器システムを用いて、前記ビームを前記加速器に向かって加速させるステップは、前記加速器に進入することに先立って、前記荷電粒子がその最大断面に到達するように、前記ビームを加速させるステップを含む、請求項47に記載の方法。
  53. 前記荷電粒子は、負の水素イオンである、請求項52に記載の方法。
  54. 前記荷電粒子は、前記前段加速器システムの前段加速器管内において、その最大断面に到達する、請求項52に記載の方法。
  55. 前記前段加速器システムを用いて、前記ビームを収束させるステップをさらに含む、請求項47に記載の方法。
  56. 前記前段加速器システムに供給される電力を調節し、前記ビームの収束を制御するステップをさらに含む、請求項47に記載の方法。
  57. 前記ビームを収束させるステップはさらに、前記前段加速器システムを用いて、前記ビームを発散状態から収束状態に遷移させるステップを含む、請求項56に記載の方法。
  58. 前記ビームは、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの1つまたはそれを上回るものを用いて収束される、請求項56に記載の方法。
  59. 前記前段加速器システムは、静電レンズと、前段加速器デバイスと、磁気集束デバイスとを備える、請求項56に記載の方法。
  60. 前記静電レンズは、前記粒子源の下流にあり、前記前段加速器デバイスは、前記静電レンズの下流にあり、前記磁気集束デバイスは、前記前段加速器デバイスの下流にある、請求項59に記載の方法。
  61. 前記前段加速器デバイスに供給される電力を調節し、前記ビームの収束を制御するステップをさらに含む、請求項59に記載の方法。
  62. 前記磁気集束デバイスに供給される電力を調節し、前記ビームの焦点を制御するステップをさらに含む、請求項59に記載の方法。
  63. 前記前段加速器デバイスに供給される電力を調節し、前記ビームの収束を制御するステップと、
    前記磁気集束デバイスに供給される電力を調節し、前記ビームの焦点を制御するステップと
    をさらに含む、請求項59に記載の方法。
  64. 前記磁気集束デバイスに供給される電力を調節し、前記ビームの焦点を制御するステップは、前記磁気集束デバイスに供給される電力を調節し、前記ビームを前記加速器の入力開口に集束させるステップを含む、請求項63に記載の方法。
  65. 前記粒子源は、前記ビームが、それに沿って前記加速器を通して通過する荷電粒子が加速される前記加速器を横断する同一または実質的に類似する軸に沿って放出されるように位置付けられる、請求項47に記載の方法。
  66. 前記粒子源は、体積タイプ源および表面タイプ源のうちの1つである、請求項65に記載の方法。
  67. 前記前段加速器システムを用いて、逆流を前記加速器からデフォーカスさせるステップをさらに含む、請求項47-66のいずれかに記載の方法。
  68. 前記逆流は、イオン化された背景ガスを備える、請求項67に記載の方法。
  69. 前記前段加速器システムに供給される電力を調節し、前記逆流のデフォーカスを制御するステップをさらに含む、請求項67に記載の方法。
  70. 前記前段加速器システムに供給される電力を調節し、逆流を前記ビームシステムの1つまたはそれを上回る構成要素によって収集させるステップをさらに含む、請求項69に記載の方法。
  71. 前記前段加速器システムに供給される電力を調節し、逆流に前記粒子源の逆流に敏感な構成要素を回避させるステップをさらに含む、請求項69に記載の方法。
  72. 前記逆流に敏感な構成要素は、フィラメントである、請求項71に記載の方法。
  73. 前記逆流は、静電レンズ、前段加速器デバイス、または磁気集束デバイスのうちの1つまたはそれを上回るものを用いて、デフォーカスされる、請求項67に記載の方法。
  74. 前記前段加速器システムは、静電レンズと、前段加速器デバイスと、磁気集束デバイスとを備える、請求項67に記載の方法。
  75. 前記ビームの進行に対して、前記静電レンズは、前記粒子源の下流にあり、前記前段加速器デバイスは、前記静電レンズの下流にあり、前記磁気集束デバイスは、前記前段加速器デバイスの下流にある、請求項74に記載の方法。
  76. 前記前段加速器デバイスに供給される電力を調節し、前記逆流のデフォーカスを制御するステップをさらに含む、請求項74に記載の方法。
  77. 前記磁気集束デバイスに供給される電力を調節し、前記逆流のデフォーカスを制御するステップをさらに含む、請求項74に記載の方法。
  78. 前記前段加速器デバイスに供給される電力を調節し、前記逆流のデフォーカスを制御するステップと、
    前記磁気集束デバイスに供給される電力を調節し、前記逆流のデフォーカスを制御するステップと
    をさらに含む、請求項74に記載の方法。
  79. 前記粒子源は、前記ビームが、それに沿って前記加速器を通して通過する荷電粒子が加速される前記加速器を横断する同一または実質的に類似する軸に沿って放出されるように位置付けられる、請求項47-78に記載の方法。
  80. ガスの真空除去を実施するステップをさらに含む、請求項47に記載の方法。
  81. 前記前段加速器システムと前記加速器との間の第1の位置と、前記粒子源と前記前段加速器システムとの間の第2の位置とにおいて、ガスの真空除去を実施するステップをさらに含む、請求項80に記載の方法。
  82. 前記前段加速器システムを用いて、前記ビームを前記加速器に向かって加速させるステップは、前記加速器に進入することに先立って、前記荷電粒子がその最大断面に到達するように、前記ビームを加速させるステップを含む、請求項81に記載の方法。
  83. 前記ビームシステムの制御システムを用いて、前記粒子源の電極に印加される電圧、前記前段加速器システムの静電レンズに印加される電圧、前記前段加速器システムの前段加速器デバイスに印加される電圧、前記前段加速器システムの磁気集束デバイスに印加される電圧、前記加速器に印加される電圧、前記ビームシステムの電力供給源によって出力される電圧、整合のためのビーム位置の調節、ビーム集束位置の調節、または逆流デフォーカス量の調節のうちの少なくとも1つを制御するステップをさらに含む、請求項47に記載の方法。
  84. 制御システムを使用して、動作パラメータまたは命令をコンピューティングデバイスから受信するステップ、または
    前記制御システムを使用して、動作データを前記コンピューティングデバイスに伝送するステップ
    のうちの1つまたはそれを上回るものをさらに含む、請求項47に記載の方法。
  85. 前記制御システムは、無線または有線通信のうちの1つまたはそれを上回るもののために構成される、請求項84に記載の方法。
  86. 前記ビームを標的に印加するステップをさらに含む、請求項47-85のいずれかに記載の方法。
  87. 前記粒子源は、イオン源であり、前記荷電粒子は、負の水素イオンである、請求項86に記載の方法。
  88. 前記加速器内で前記ビームを負の水素イオンビームから陽子ビームに変換するステップをさらに含む、請求項87に記載の方法。
  89. 前記ビームを標的に印加するステップは、前記陽子ビームを中性子発生標的に印加するステップを含む、請求項88に記載の方法。
  90. ホウ素中性子捕捉療法(BNCT)において前記ビームシステムを使用するステップをさらに含む、請求項47-89のいずれかに記載の方法。
  91. ビームシステム内で逆流をデフォーカスさせる方法であって、前記方法は、
    ガス状中性子をタンデム加速器から真空排気するステップと、
    前記タンデム加速器に結合される前段加速器システムをバイアスするステップであって、前記前段加速器システムは、磁場によって前記ビームシステムの加速されたビームの反対方向に加速される正のイオン化されたガスをデフォーカスさせるように構成される、ステップと
    を含む、方法。
  92. 前記前段加速器システムは、前段加速器管、アインツェルレンズ、磁気集束デバイス、またはソレノイドのうちの1つまたはそれを上回るものを備える、請求項91に記載の方法。
  93. 前記前段加速器管を、第1の前段加速器管端子において、第1の電力供給源と電気的に結合し、第2の前段加速器管端子において、接地と電気的に結合するステップをさらに含む、請求項92に記載の方法。
  94. 前記前段加速器システムは、イオン源に隣接して、その下流に位置付けられる、請求項91に記載の方法。
  95. 前記前段加速器管は、前記アインツェルレンズに隣接して、その下流に搭載される、請求項92に記載の方法。
  96. 前記磁気集束デバイスは、前記前段加速器管に隣接して、その下流に搭載される、請求項92に記載の方法。
  97. 前記前段加速器管は、アインツェルレンズまたはイオン源のうちの1つまたはそれを上回るものの下流に位置付けられる、請求項92に記載の方法。
  98. 前記アインツェルレンズは、イオン源の下流に位置付けられる、請求項92に記載の方法。
  99. 前記磁気集束デバイスは、アインツェルレンズ、前記前段加速器管、またはイオン源のうちの1つまたはそれを上回るものの下流に位置付けられる、請求項92に記載の方法。
  100. 第1の真空ポンプチャンバが、前記前段加速器システムと前記タンデム加速器との間に位置付けられる、請求項91に記載の方法。
  101. 第2の真空ポンプチャンバが、前記イオン源と前記前段加速器システムとの間に位置付けられる、請求項100に記載の方法。
  102. 1つまたはそれを上回る真空ポンプチャンバが、前記タンデム加速器の上部表面上に位置付けられる、請求項91に記載の方法。
  103. 第1の冷却デバイスを使用して、前記イオン源のバックプレートを冷却するステップをさらに含み、前記バックプレートは、1つまたはそれを上回るフィラメントを備える、請求項94に記載の方法。
  104. 第2の冷却デバイスを使用して、前記アインツェルレンズを冷却するステップをさらに含む、請求項94に記載の方法。
  105. 前記第1の冷却デバイスまたは第2の冷却デバイスのうちの1つまたはそれを上回るものは、水冷を備える、請求項103または104に記載の方法。
  106. 第1の電力供給源を使用して、前記磁気集束デバイスをバイアスし、前記磁気集束デバイスのビーム集束または逆流デフォーカス性質を調整するステップをさらに含む、請求項92に記載の方法。
  107. 第2の電力供給源を使用して、前記アインツェルレンズをバイアスし、前記アインツェルレンズのビーム集束または逆流デフォーカス性質を調整するステップをさらに含む、請求項92に記載の方法。
  108. 第3の電力供給源を使用して、前記前段加速器管をバイアスし、前記前段加速器管のビーム集束または逆流デフォーカス性質を調整するステップをさらに含む、請求項92に記載の方法。
  109. イオンが、それに沿って前記タンデム加速器を通して通過するイオンが加速される前記タンデム加速器を横断する同一または実質的に類似する軸に沿って放出されるように、前記イオン源を位置付けるステップをさらに含む、請求項94に記載の方法。
  110. 制御システムを使用して、動作パラメータまたは命令をコンピューティングデバイスから受信するステップ、または
    前記制御システムを使用して、動作データを前記コンピューティングデバイスに伝送するステップ
    のうちの1つまたはそれを上回るものをさらに含む、請求項91に記載の方法。
JP2022512783A 2019-08-30 2020-08-28 高品質イオンビーム形成のためのシステム、デバイス、および方法 Pending JP2022546687A (ja)

Applications Claiming Priority (11)

Application Number Priority Date Filing Date Title
US201962894220P 2019-08-30 2019-08-30
US201962894290P 2019-08-30 2019-08-30
US201962894106P 2019-08-30 2019-08-30
US62/894,290 2019-08-30
US62/894,220 2019-08-30
US62/894,106 2019-08-30
US201962895203P 2019-09-03 2019-09-03
US62/895,203 2019-09-03
US202063044310P 2020-06-25 2020-06-25
US63/044,310 2020-06-25
PCT/US2020/048416 WO2021045970A2 (en) 2019-08-30 2020-08-28 Systems, devices, and methods for high quality ion beam formation

Publications (2)

Publication Number Publication Date
JP2022546687A true JP2022546687A (ja) 2022-11-07
JPWO2021045970A5 JPWO2021045970A5 (ja) 2023-08-24

Family

ID=74852039

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022512783A Pending JP2022546687A (ja) 2019-08-30 2020-08-28 高品質イオンビーム形成のためのシステム、デバイス、および方法

Country Status (7)

Country Link
US (2) US11524179B2 (ja)
EP (1) EP4023036A4 (ja)
JP (1) JP2022546687A (ja)
KR (1) KR20220053001A (ja)
CN (1) CN114600561A (ja)
CA (1) CA3148541A1 (ja)
WO (1) WO2021045970A2 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2587437A (en) * 2019-09-25 2021-03-31 The Univ Of Strathclyde System for radiation therapy
US20210345476A1 (en) * 2020-04-09 2021-11-04 Tae Technologies, Inc. Systems, devices, and methods for secondary particle suppression from a charge exchange device

Family Cites Families (29)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2548830B1 (fr) * 1983-07-04 1986-02-21 Centre Nat Rech Scient Source d'ions negatifs
US4782304A (en) 1986-08-20 1988-11-01 Applied Materials, Inc. Systems and methds for ion beam acceleration
JPH0823067B2 (ja) * 1987-07-15 1996-03-06 日新電機株式会社 イオン注入装置
US6403972B1 (en) 1999-07-08 2002-06-11 Varian Semiconductor Equipment Associates, Inc. Methods and apparatus for alignment of ion beam systems using beam current sensors
CA2397607A1 (en) 1999-12-17 2001-06-21 Carla M. Mann Magnitude programming for implantable electrical stimulator
US6744225B2 (en) * 2001-05-02 2004-06-01 Riken Ion accelerator
JP2003086400A (ja) * 2001-09-11 2003-03-20 Hitachi Ltd 加速器システム及び医療用加速器施設
US6922455B2 (en) 2002-01-28 2005-07-26 Starfire Industries Management, Inc. Gas-target neutron generation and applications
JP2003303569A (ja) * 2002-04-09 2003-10-24 Sony Corp イオン注入装置及びイオン注入方法
KR100533568B1 (ko) * 2004-07-15 2005-12-06 삼성전자주식회사 전하 교환 가스 감시 기능을 갖는 고에너지 이온 주입 장치
JP3806723B2 (ja) 2004-11-16 2006-08-09 株式会社日立製作所 粒子線照射システム
US7402821B2 (en) * 2006-01-18 2008-07-22 Axcelis Technologies, Inc. Application of digital frequency and phase synthesis for control of electrode voltage phase in a high-energy ion implantation machine, and a means for accurate calibration of electrode voltage phase
US8872057B2 (en) 2006-03-15 2014-10-28 Communications & Power Industries Llc Liquid cooling system for linear beam device electrodes
US8192399B2 (en) 2007-05-23 2012-06-05 Biosense Webster, Inc. Extension control handle with adjustable locking mechanism
JP4378396B2 (ja) 2007-06-22 2009-12-02 株式会社日立製作所 粒子線照射システム
WO2009039884A1 (en) * 2007-09-26 2009-04-02 Ion Beam Applications S.A. Particle beam transport apparatus and method of transporting a particle beam with small beam spot size
WO2009130220A2 (de) 2008-04-21 2009-10-29 Cryoelectra Gmbh Teilchenstrahl-therapieanlage und verfahren zum führen eines strahls geladener teilchen in einer teilchenstrahl-therapieanlage
US8178859B2 (en) 2008-05-22 2012-05-15 Vladimir Balakin Proton beam positioning verification method and apparatus used in conjunction with a charged particle cancer therapy system
US9022914B2 (en) * 2010-10-01 2015-05-05 Varian Medical Systems Inc. Laser accelerator driven particle brachytherapy devices, systems, and methods
CL2011000898A1 (es) * 2011-04-20 2011-06-24 Univ La Frontera Dispositivo para generar un haz convergente de electrones y rayos-x que comprende uno o mas lentes magneticos y/o electricos que permiten focalizar un haz de electrones provenientes de una fuente, impactar el haz en un casquete anodico y generar un haz de rayos-x colimado convergente.
US10940332B2 (en) 2011-05-19 2021-03-09 The Trustees Of Dartmouth College Cherenkov imaging systems and methods to monitor beam profiles and radiation dose while avoiding interference from room lighting
WO2013079311A1 (en) 2011-11-29 2013-06-06 Ion Beam Applications Rf device for synchrocyclotron
JP5668000B2 (ja) 2012-03-02 2015-02-12 株式会社日立製作所 ビームモニタシステム及び粒子線照射システム
US20140209481A1 (en) 2013-01-25 2014-07-31 Google Inc. Standby Biasing Of Electrochemical Sensor To Reduce Sensor Stabilization Time During Measurement
US9591740B2 (en) 2013-03-08 2017-03-07 Tri Alpha Energy, Inc. Negative ion-based neutral beam injector
JP5993778B2 (ja) * 2013-03-29 2016-09-14 株式会社日立製作所 粒子線照射システムとその運転方法
JP6692115B2 (ja) 2014-02-25 2020-05-13 株式会社日立製作所 ビーム位置監視装置及び荷電粒子ビーム照射システム
US9281165B1 (en) * 2014-08-26 2016-03-08 Varian Semiconductor Equipment Associates, Inc. Bias electrodes for tandem accelerator
CA2983413C (en) 2015-05-06 2024-05-14 Neutron Therapeutics, Inc. Neutron target for boron neutron capture therapy

Also Published As

Publication number Publication date
EP4023036A4 (en) 2023-09-27
CN114600561A (zh) 2022-06-07
US11524179B2 (en) 2022-12-13
US20210138273A1 (en) 2021-05-13
US20230249002A1 (en) 2023-08-10
CA3148541A1 (en) 2021-03-11
KR20220053001A (ko) 2022-04-28
WO2021045970A3 (en) 2021-06-03
WO2021045970A2 (en) 2021-03-11
EP4023036A2 (en) 2022-07-06

Similar Documents

Publication Publication Date Title
US20230249002A1 (en) Systems, devices, and methods for high quality ion beam formation
JP2007165250A (ja) マイクロ波イオン源、線形加速器システム、加速器システム、医療用加速器システム、高エネルギービーム応用装置、中性子発生装置、イオンビームプロセス装置、マイクロ波プラズマ源及びプラズマプロセス装置
EP3946583A1 (en) Compact rotational gantry for proton radiation systems
US9269528B2 (en) Medium current ribbon beam for ion implantation
White et al. Beam delivery and final focus systems for multi-TeV advanced linear colliders
US20230199935A1 (en) Charged particle beam injector and charged particle beam injection method
JP5380693B2 (ja) 荷電粒子線照射装置及び荷電粒子線装置の制御方法
US12010788B2 (en) Systems, devices, and methods for initiating beam transport in a beam system
US20220304136A1 (en) Use of magnetic elements to shape and defocus charged particle beams
JP2023539067A (ja) ビーム不整列検出のためのシステム、デバイス、および方法
JP2023531519A (ja) イオンビーム変調のためのシステム、デバイス、および方法
JP6052792B2 (ja) マイクロ波イオン源及びその運転方法
RU2660677C1 (ru) Сильноточный источник пучков ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке
RU2726143C1 (ru) Источник интенсивных пучков ионов на основе плазмы ЭЦР разряда, удерживаемой в открытой магнитной ловушке
US20230268096A1 (en) Systems, devices, and methods for multi-directional dipole magnets and compact beam systems
KR20180060243A (ko) 양성자 가속기 기반의 붕소-중성자 포획치료기를 위한 세 갈래로 분기된 콤펙트한 고에너지 빔 전송라인
Raubenheimer Accelerator physics and technologies for linear colliders
RU2650876C1 (ru) Источник пучка ионов на основе плазмы электронно-циклотронного резонансного разряда, удерживаемой в открытой магнитной ловушке
JP2023084781A (ja) 円形加速器および粒子線治療システム
Ciavola et al. Commissioning of the ECR ion sources at CNAO facility
JP3922022B2 (ja) 円形加速器の制御方法及び制御装置、並びに円形加速器システム
JP2022169060A (ja) 荷電粒子ビーム輸送装置
JP2022152591A (ja) 粒子線治療装置、及び加速器
CN116491226A (zh) 用于在束系统中启动束输送的系统、装置和方法
WO2019058511A1 (ja) イオン源装置

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230816

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230816

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240412