JP2022512084A - 適応バイアスを有するトランスコンダクタ回路 - Google Patents

適応バイアスを有するトランスコンダクタ回路 Download PDF

Info

Publication number
JP2022512084A
JP2022512084A JP2021530959A JP2021530959A JP2022512084A JP 2022512084 A JP2022512084 A JP 2022512084A JP 2021530959 A JP2021530959 A JP 2021530959A JP 2021530959 A JP2021530959 A JP 2021530959A JP 2022512084 A JP2022512084 A JP 2022512084A
Authority
JP
Japan
Prior art keywords
node
current path
current
transistor
signal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021530959A
Other languages
English (en)
Other versions
JP7241873B2 (ja
Inventor
マティアス シュタイナー
ナイジェル グリア
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ams Osram AG
Original Assignee
Ams AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ams AG filed Critical Ams AG
Publication of JP2022512084A publication Critical patent/JP2022512084A/ja
Application granted granted Critical
Publication of JP7241873B2 publication Critical patent/JP7241873B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45475Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using IC blocks as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45076Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier
    • H03F3/45179Differential amplifiers with semiconductor devices only characterised by the way of implementation of the active amplifying circuit in the differential amplifier using MOSFET transistors as the active amplifying circuit
    • H03F3/45197Pl types
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45641Measuring at the loading circuit of the differential amplifier
    • H03F3/45659Controlling the loading circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45663Measuring at the active amplifying circuit of the differential amplifier
    • H03F3/45672Controlling the common source circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45636Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedback means
    • H03F3/45681Measuring at the common source circuit of the differential amplifier
    • H03F3/4569Controlling the common source circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45695Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedforward means
    • H03F3/45699Measuring at the input circuit of the differential amplifier
    • H03F3/45708Controlling the common source circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45695Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedforward means
    • H03F3/45699Measuring at the input circuit of the differential amplifier
    • H03F3/45717Controlling the loading circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F3/00Amplifiers with only discharge tubes or only semiconductor devices as amplifying elements
    • H03F3/45Differential amplifiers
    • H03F3/45071Differential amplifiers with semiconductor devices only
    • H03F3/45479Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection
    • H03F3/45632Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit
    • H03F3/45695Differential amplifiers with semiconductor devices only characterised by the way of common mode signal rejection in differential amplifiers with FET transistors as the active amplifying circuit by using feedforward means
    • H03F3/4573Measuring at the common source circuit of the differential amplifier
    • H03F3/45739Controlling the loading circuit of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45061Indexing scheme relating to differential amplifiers the common mode reference signal being taken or deducted from the one or more inputs of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45078Indexing scheme relating to differential amplifiers the common mode signal being taken or deducted from the one or more inputs of the differential amplifier
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45288Differential amplifier with circuit arrangements to enhance the transconductance
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45366Indexing scheme relating to differential amplifiers the AAC comprising multiple transistors parallel coupled at their gates only, e.g. in a cascode dif amp, only those forming the composite common source transistor
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45418Indexing scheme relating to differential amplifiers the CMCL comprising a resistor addition circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45424Indexing scheme relating to differential amplifiers the CMCL comprising a comparator circuit
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45471Indexing scheme relating to differential amplifiers the CSC comprising one or more extra current sources
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03FAMPLIFIERS
    • H03F2203/00Indexing scheme relating to amplifiers with only discharge tubes or only semiconductor devices as amplifying elements covered by H03F3/00
    • H03F2203/45Indexing scheme relating to differential amplifiers
    • H03F2203/45491Indexing scheme relating to differential amplifiers the CSC being a pi circuit and the resistor being implemented by one or more transistors

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Amplifiers (AREA)

Abstract

適応バイアスを有するトランスコンダクタ回路(10)は、第1の入力信号(inp)を加える第1の入力端子(E10A)と、第2の入力信号(inn)を加える第2の入力端子(E10b)を有する。制御回路(200)は、第1の電流経路(101)の第1のノード(N1)の第1の電位および第2の電流経路(102)の第2のノード(N2)の第2の電位のうちの少なくとも一方に応じて、第1の電流経路(101)の第1の制御可能電流源(110)および第2の電流経路(102)の第2の制御可能電流源(120)を制御するように構成されている。第1のノード(N1)は、第1のトランジスタ(150)と第1の制御可能電流源(110)の間に位置し、第2のノード(N2)は、第2のトランジスタ(160)と第2の制御可能電流源(120)の間に位置する。【選択図】図1

Description

本開示は、トランスコンダクタ回路であって当該トランスコンダクタ回路の入力トランジスタの適応バイアスを有するものに関する。本開示は、さらに、トランスコンダクタ回路であって当該トランスコンダクタ回路の入力トランジスタの適応バイアスを有するものを有するセンサデバイスに関する。
センサデバイス、例えば、MEMSマイクロホンは、MEMSマイクロホンのトランスデューサに影響を与える音圧を検出するが、通常、アナログ出力信号を出し、これは、後段のアナログ/デジタル変換器(ADC)によってデジタル信号に変換される。ADCは、センサデバイスの出力信号に依存する入力信号に応じて、デジタル値を次々と生成することができる。MEMSマイクロホンに基づくセンサデバイスに関して、ADCは、通常、入力電圧を必要とする離散時間スイッチトキャパシタで構築される。その結果、MEMSトランスデューサとADCの間に配置される前段の増幅器は、電圧バッファまたは電圧利得段でなければならない。
離散時間スイッチトキャパシタADCを連続時間ADCトポロジで置き換えることが望ましい場合、容量性(MEMS)マイクロホンセンサの電圧出力信号を、後段の連続時間ADC段に入力信号として加えられる差動電流に変換することができるトランスコンダクタ回路を使用しなければならない。その後、ADCは、トランスコンダクタ回路の受信出力電流をデジタル信号に変換する。
センサデバイス(例えば、MEMSセンサを有するセンサデバイス)と、連続時間フロントエンドを有する後段のアナログ/デジタル回路との間のインタフェースとして使用することができる、適応バイアスを有するトランスコンダクタ回路を提供する必要がある。さらなる要望は、センサであって当該センサのアナログ出力信号が連続時間トポロジを有するADCによってデジタル信号に変換されるものを有するセンサデバイスを提供することである。
センサデバイス(例えば、容量性マイクロホンセンサ)からの出力電圧信号を、連続時間トポロジを有する後段のADCに入力信号として使用することができる差動電流に変換するのに使用することができる、適応バイアスを有するトランスコンダクタ回路の一実施形態が、請求項1に記載されている。
適応バイアスを有する前記トランスコンダクタ回路の可能な一実施形態によれば、当該回路は、第1の入力信号を加える第1の入力端子と、第2の入力信号を加える第2の入力端子とを有する。前記トランスコンダクタ回路は、第1のトランジスタおよび第1の制御可能電流源を含んで前記第1のトランジスタの第1のバイアス電流を調整する第1の電流経路をさらに有する。前記第1のトランジスタは、前記第1の入力端子に結合されている制御ノードを有する。さらに、前記トランスコンダクタ回路は、第2のトランジスタおよび第2の制御可能電流源を含んで前記第2のトランジスタの第2のバイアス電流を調整する第2の電流経路を有する。前記第2のトランジスタは、前記第2の入力端子に結合されている制御ノードを有する。
前記トランスコンダクタ回路は、前記第1の電流経路の第1のノードの第1の電位および前記第2の電流経路の第2のノードの第2の電位のうちの少なくとも一方に応じて、前記第1の制御可能電流源および前記第2の制御可能電流源を制御するように構成されている制御回路をさらに有する。前記第1のノードは、前記第1のトランジスタと前記第1の制御可能電流源の間に位置する。前記第2のノードは、前記第2のトランジスタと前記第2の制御可能電流源の間に位置する。
前記トランスコンダクタ回路の提案トポロジは、有利には、第1の入力端子および第2の入力端子で受信された、センサデバイス(例えば、容量性マイクロホンセンサを有するセンサデバイス)からの電圧信号を、それに比例する出力電流に高効率で変換することを可能にする。特に、前記トランスコンダクタ回路は、消費電流が低く、小信号では低ノイズを示し、それと同時に、大信号では依然として適度な信号歪みを示す。
前記トランスコンダクタ回路の可能な一実施形態によれば、前記制御回路は、増幅器を有し、当該増幅器は、前記第1の制御可能電流源および前記第2の制御可能電流源を制御するための制御信号を生成する出力ノードを有する。前記トランスコンダクタ回路は、前記第1の電流経路と前記第2の電流経路との間に配置されている連結電流経路を有する。前記制御回路の前記増幅器の入力ノードは、前記連結電流経路の中間ノードに接続され得る。
前記トランスコンダクタ回路の構成は、有利には、制御回路が連結電流経路の中間ノードでセンシング信号(例えば、センシング電圧)を検出することを可能にする。内部信号は、第1のトランジスタおよび第2のトランジスタの差動トランジスタペアの中心ノードでタップされる。制御回路は、制御信号を生成して、センシング信号に応じて第1の電流経路内および第2の電流経路内の各バイアス電流を調節/調整するように構成されている。
前記トランスコンダクタ回路は、第1のトランジスタおよび第2のトランジスタの各動作点が、ゼロ入力信号、つまり、ゼロレベルを有する差動入力信号における、第1のトランジスタおよび第2のトランジスタの各アイドル点からシフトするにつれて、第1の入力端子および第2の入力端子において加えられる差動入力信号が大きくなるに従って連結電流経路の中間ノードにおけるセンシング信号/センシング電圧が増加するという観察結果を有利に活用する。したがって、連結電流経路の中間ノードにおけるセンシング信号/センシング電圧は、第1のトランジスタおよび第2のトランジスタの差動トランジスタペアがすでに「どれだけ非線形」になっているかを示す尺度であり、適応バイアスのための制御信号/電圧として使用される。
前記トランスコンダクタ回路の他の実施形態によれば、前記連結電流経路は、第1の抵抗素子および第2の抵抗素子を有し得る。前記第1の抵抗素子は、前記連結電流経路に、前記第1の電流経路の前記第1のノードと前記連結電流経路の前記中間ノードとの間に配置され得る。前記第2の抵抗素子は、前記連結電流経路に、前記第2の電流経路の前記第2のノードと前記連結電流経路の前記中間ノードとの間に配置され得る。
第1の抵抗素子および第2の抵抗素子は、第1の電位および第2の電位を連結電流経路の中間ノードにおける電位にシフトさせるようにする縮退抵抗(degeneration resistor)として働く。この実施形態によれば、制御回路は、連結電流経路の中間ノード、つまり、第1のトランジスタおよび第2のトランジスタの差動トランジスタペアの中心ノードで、センシング信号/電圧を検出する。第1の抵抗素子および第2の抵抗素子を有するトランスコンダクタ回路の本実施形態によれば、第1のトランジスタおよび第2のトランジスタの各動作点が、ゼロ差動入力信号における、第1のトランジスタおよび第2のトランジスタの各アイドル点からシフトするにつれて、連結電流経路の中間ノードにおけるセンシング信号/電圧も増加するため、トランスコンダクタ回路は、センシング信号/電圧を、差動トランジスタペアの非線形性の程度の尺度として有利に使用し得る。センシング信号/電圧は、制御回路によって、適応バイアスのための制御信号として使用することができる。
好ましくないことに、連結電流経路の中間ノードにおけるセンシング信号/電圧は、第1の入力端子および第2の入力端子における、つまり、第1のトランジスタおよび第2のトランジスタの各制御ノードにおけるコモンモード電圧の影響を直接受けるため、補助トランジスタペアを有する基準発生器をトランスコンダクタ回路に有利に導入して、適応バイアスをコモンモード電圧の変化に対してロバストにすることができる。補助トランジスタペアを実現するために、トランスコンダクタ回路の制御回路は、第3の電流経路および第4電流経路を有し得る。
前記第3の電流経路は、第3のトランジスタおよび第1の定電流源を含んで前記第3の電流経路内に前記第3のトランジスタのバイアス電流を生成し得る。前記第3のトランジスタは、前記第1の入力端子に結合されている制御ノードを有する。前記第4の電流経路は、第4のトランジスタおよび第2の定電流源を含んで前記第4の電流経路内に前記第4のトランジスタの別バイアス電流を生成する。前記第4のトランジスタは、前記第2の入力端子に結合されている制御ノードを有する。
前記制御回路の前記増幅器は、基準信号を加える第2の入力ノードを有し得る。制御回路の当該構成により、中間ノードにおけるセンシング信号を設定したレベルの基準信号と比較することができる。前記基準信号を加える前記制御回路の前記増幅器の前記第2の入力ノードは、前記第3の電流経路および前記第4の電流経路に結合されている。これは、前記増幅器の前記基準信号が、前記第3の電流経路の第3のノードにおける第3の電位に応じて、且つ、前記第4の電流経路の第4のノードにおける第4の電位に応じて、有利に変化することを意味する。前記第3のノードは、前記第3のトランジスタと前記第1の定電流源との間に位置し得る。前記第4のノードは、前記第4のトランジスタと前記第2の定電流源との間に位置し得る。
前記制御回路の提案トポロジは、有利には、トランスコンダクタ回路の第1の入力端子および第2の入力端子における入力コモンモード電圧と同期して変わる基準信号を生成することを可能にする。したがって、制御回路は、第1のトランジスタおよび第2のトランジスタの各動作点の変化によって生じるセンシング信号のレベルの増加を検出するのみである。その結果、第1のトランジスタおよび第2のトランジスタのバイアス電流の発生を制御する制御方式は、入力コモンモード電圧の変動に対して影響を受けない。
前記提案したトランスコンダクタ回路を使用するセンサデバイスの一実施形態が、請求項項14に記載されている。
可能な一実施形態によれば、前記センサデバイスは、上記記載の、または請求項1~13のいずれかで定義された、適応バイアスを有するトランスコンダクタ回路を有する。前記トランスコンダクタ回路は、出力電流信号を生成するように構成されている。前記センサデバイスは、トランスデューサを含んで前記トランスデューサに影響を与える環境信号を検出するセンサをさらに有する。前記トランスデューサは、前記環境信号に応じて電圧信号を生成するように構成されている。前記センサデバイスは、前記出力電流信号を受信する入力側を有するアナログ/デジタル変換器をさらに有する。前記アナログ/デジタル変換器は、前記出力電流信号に応じてデジタル出力信号を生成するように構成されている。
前記トランスコンダクタ回路は、前記センサに接続されて、前記トランスコンダクタ回路の前記第1の入力端子および前記第2の入力端子において前記センサから前記電圧信号を受信する。前記トランスコンダクタ回路は、さらに、アナログ/デジタル変換器に接続されて、前記アナログ/デジタル変換器の前記入力側に前記出力電流信号を供給する。
前記センサデバイスは、有利には、センサとアナログ/デジタル変換器の間のインタフェースとして前記トランスコンダクタ回路を使用することを可能にする。アナログ/デジタル変換器は、連続時間フロントエンドで設計され得る。前記トランスコンダクタ回路の前記設計は、前記トランスコンダクタ回路に100Gohmよりも大きく且つ1pFよりも小さい非常に高い入力インピーダンスを提供して、センサ信号を減衰させないようにすることを可能にする。前記トランスコンダクタ回路の前記設計は、有利には、正確なシステム利得のための相互コンダクタンスを設定して、良好な歪み(THD)性能のために高信号レベルまで線形特性を提供し、且つ、マイクロホンセンサの場合には、高いアコースティックオーバーロードポイント(AOP)を提供することを可能にする。さらに、前記トランスコンダクタ回路は、高いシステム信号対ノイズ比(SNR)に対して低ノイズであり、特に、入力信号が存在しないかまたはほとんど存在しない場合には、ほとんど電力を消費しない。
添付の図面が、さらなる理解を提供するために含まれるとともに、本明細書に組み込まれ、その一部を構成している。図面は、適応バイアスを有するトランスコンダクタ回路のいくつかの実施形態を示しており、説明と共に、トランスコンダクタ回路のさまざまな実施形態の原理および動作を説明する役割を果たしている。
トランスコンダクタ回路の差動入力信号レベルに応じた適応バイアスを有する当該トランスコンダクタ回路の第1の実施形態を示す図 トランスコンダクタ回路の差動入力信号レベルに応じた適応バイアスを有する当該トランスコンダクタ回路の第2の実施形態を示す図 トランスコンダクタ回路の差動入力信号レベルに応じた適応バイアスを有する当該トランスコンダクタ回路の第3の実施形態を示す図 適応バイアスを有するトランスコンダクタ回路の制御回路の第1の変更例を示す図 適応バイアスを有するトランスコンダクタ回路の制御回路の第2の変更例を示す図 適応バイアスを有するトランスコンダクタ回路の制御回路の第3の変更例を示す図 適応バイアスを有するトランスコンダクタ回路を含むセンサデバイスの一実施形態を示す図
図1は、バイアス電流が差動入力信号に応じて変化する、適応バイアスを有するトランスコンダクタ回路10の第1の実施形態を示す。トランスコンダクタ回路は、入力信号inpを加える入力端子E10aと、入力信号innを加える入力端子E10bとを有する。
トランスコンダクタ回路10は、トランジスタ150および制御可能電流源110を含んでトランジスタ150の第1のバイアス電流を調整する電流経路101をさらに有する。トランジスタ150は、入力端子E10aに結合されている制御ノードを有する。特に、トランジスタ150のゲート端子は、トランスコンダクタ回路の入力端子E10aに結合されて、入力信号inpを受信する。
トランスコンダクタ回路10は、トランジスタ160および制御可能電流源120を含んでトランジスタ160の第2のバイアス電流を調整する電流経路102をさらに有する。トランジスタ160は、入力端子E10bに結合されている制御ノードを有する。特に、トランジスタ160のゲートノードは、入力端子E10bに結合されて、入力信号innを受信する。
図1に示すトランスコンダクタ回路10は、電流経路101のノードN1の第1の電位および電流経路102のノードN2の第2の電位のうちの少なくとも一方に応じて、制御可能電流源110、120を制御するように構成されている制御回路200をさらに有する。電流経路101のノードN1は、トランジスタ150と制御可能電流源110の間に位置する。電流経路102のノードN2は、トランジスタ160と制御可能電流源120の間に位置する。
図1に示すように、トランスコンダクタ回路10は、出力信号outnを生成する出力端子O10aを有する。出力端子O10aは、トランジスタ150のドレイン端子に接続されている。トランスコンダクタ回路10は、出力信号outpを出力する出力端子O10bをさらに有する。出力端子O10bは、トランジスタ160のドレイン端子に接続されている。
図1に示すように、制御回路200は、増幅器250を有し、この増幅器250は、制御可能電流源110および120を制御するための制御信号CSを生成する出力ノードO250を有する。増幅器250は、相互コンダクタンス増幅器として構成され得る。増幅器250は、入力ノードI250aを有し、この入力ノードI250aは、増幅器250の入力ノードI250aにおいて加えられるセンシング信号Vxが、ノードN1の第1の電位およびノードN2の第2の電位のうちの少なくとも一方に応じて変化するように、電流経路101、102に結合されている。
図1のトランスコンダクタ回路10は、電流経路101のノードN1と電流経路102のノードN2との間に配置されている連結電流経路103を有する。制御回路200の増幅器250の入力ノードI250aは、連結電流経路103の中間ノードN103に接続されている。制御回路200は、増幅器250によって制御信号CSを生成して、連結電流経路103の中間ノードN103で検出されたセンシング信号Vxに応じて制御可能電流源110、120を制御するように構成されている。
図1のトランスコンダクタ回路10の実施形態に対して示すように、連結電流経路103は、抵抗素子170および抵抗素子180を有し得る。抵抗素子170および180は、両方とも、同じ抵抗値を有する抵抗器として構成され得る。図1のトランスコンダクタ回路10の実施形態に従って示すように、抵抗素子170は、電流経路101のノードN1と連結電流経路103の中間ノードN103との間に接続されている。抵抗素子180は、電流経路102のノードN2と連結電流経路103の中間ノードN103との間に接続されている。
図1を参照すると、増幅器250は、基準信号Vrefxを加える入力ノードI250bをさらに有する。特に、増幅器250は、センシング信号Vxおよび基準信号Vrefxに応じて制御信号CSを生成するように構成されている。
図1に示すトランスコンダクタ回路10の実施形態によれば、電流経路101は、制御可能電流源130を含み得る。電流経路102は、制御可能電流源140を含み得る。出力端子O10aは、トランジスタ150と制御可能電流源130の間に配置されている。出力端子O10bは、トランジスタ160と制御可能電流源140の間に配置されている。
制御回路200は、電流経路101のノードN1の第1の電位に応じて、且つ、電流経路102のノードN2の第2の電位に応じて、制御可能電流源130および140を制御するように構成されている。図1に示すトランスコンダクタ回路10の実施形態によれば、制御回路200は、増幅器250によって制御信号CSを生成して、連結電流経路103の中間ノードN103で検出されたセンシング信号Vxに応じて制御可能電流源110、120および制御可能電流源130、140を制御するように構成されている。
以下では、図1に示すトランスコンダクタ回路10がどのように動作するかについて説明する。原理をよりよく理解するために、トランスコンダクタ回路10は、制御可能電流源110、120および任意選択的に制御可能電流源130、140を制御する制御回路200を有していないと仮定する。差動入力電圧は、第1の入力信号inpを入力端子E10Aに加え、且つ、第2の入力信号innを入力端子E10bに加えることによって、トランスコンダクタ回路10に印加される。さらに、出力端子O10a、O10bは、両方とも、出力端子O10a、O10bに結合された負荷回路(図1には示していない)によって一定の電圧に保たれている。
入力端子E10aおよびE10bに加えられる差動入力信号が小さい場合、トランジスタ150および160は、それぞれ、自己のソース電流を少しだけ変化させ、自己の動作点をほぼ一定にしておく。その結果、差動入力電圧は、減衰され、適度に直線的にノードN1およびノードN2に転送される。図1に示すトランスコンダクタ回路10の実施形態に関して、連結電流経路103に流れる電流は、差動入力電圧に比例する。この電流は、トランジスタ150および160のドレインノード、つまり、出力端子O10aおよびO10bに出力される。
例えば、入力信号inpのレベル/電位を増加させ、且つ、入力信号innのレベル/電位を低下させることによって、差動入力電圧が増加する場合、トランジスタ150および160の各動作点が変化する、なぜなら、トランジスタ150および160の導電経路を流れる電流も変化するからである。その結果、両方のトランジスタ150および160の各相互コンダクタンスは、さまざまな形で変化するため、出力端子における発生出力電流は、もはや差動入力電圧に直線的には依存しない。
図1を参照すると、トランスコンダクタ回路10には、差動入力信号レベルに応じてトランジスタ150および160のバイアス電流を調整する制御回路200が設けられている。特に、制御回路200は、入力端子E10aおよびE10bに印加される差動入力信号電圧に応じてトランジスタ150および160を流れるバイアス電流を増加させる特別な適応バイアス回路として構成されている。
トランスコンダクタ回路10の提案トポロジは、トランジスタ150および160の非線形動作から生じる、入力端子E10aおよびE10bにおける差動入力電圧が、(いずれかの極性で)増加するにつれて、抵抗素子170と180の間のセンシング信号Vxが徐々に増加するという観察結果を活用する。トランジスタ150および160がゼロ差動入力信号レベルである自己のアイドル動作点から引き離されるほど、センシング信号Vxのレベルは高くなる。
最終的に、例えば、差動入力電圧が非常に大きく且つ正である場合、例えば、入力端子E10aにおける入力信号inpのレベルが高く、且つ、入力端子E10bにおける入力信号innのレベルが低い場合、トランジスタ160は、完全にオフされ、センシング信号Vxは、トランジスタ150がソースフォロアとして働き、入力信号inpのレベルに直接追従することになる。
したがって、センシング信号Vxのレベルは、トランジスタ150および160の動作点に対する良い指標であり、トランジスタ150および160のうちの一方がどのようにバイアス電流を失っているかを反映している。したがって、センシング信号Vxを使用して回路に追加バイアス電流を徐々に導いて、過度に非線形な伝達特性、またはトランジスタ150もしくは160のターンオフさえ、防止することができる。
この挙動は、増幅器250として具現化されるレギュレータ回路250を有する制御回路200によって達成される。特に、制御回路200は、センシング信号Vxのレベルが基準信号Vrefxのレベルと比較して増加するにつれて、制御可能電流源110、120、130、および140によって生成される4つの電流I1、I2、I3、およびI4のすべてを同時に増加させることができる。
このようにして、差動入力信号が大きい場合におけるトランジスタ150および160の動作点の変化から生じる、差動入力信号と出力電流の間の望ましくない非線形特性を平坦化することができる。一方でそれと同時に、差動入力信号が小さい場合におけるバイアス電流(および、したがって、電力消費)は小さいままである。
なお、本回路は、制御可能電流源110、120、130、および140によってそれぞれ生成される電流部分I1、I2、I3、およびI4を調整するために、安定性問題に対する高利得調整ループを必要としないことに留意されたい。さらに、本回路のノイズ要因はすべて、当該トランスコンダクタ回路に何らかの形で存在しなければならない固有の回路素子、例えば、トランジスタ150、160、抵抗素子170、180、および制御可能電流源110、…、140に限定されている。
図2は、適応バイアスを有するトランスコンダクタ回路10の第2の実施形態を示し、ここでは、基準信号Vrefxを生成する制御回路200の構成が詳細に示されている。図2に示す実施形態によれば、制御回路200は、調整回路250を有し、この調整回路250は、制御可能電流源110、…、140を制御するための制御信号CSを生成する増幅器250として構成されている。
制御回路200は、電流経路260を有し、この電流経路260は、電流経路260に一定電流I5を生成する定電流源261と、レベルシフトトランジスタ262とを有する。基準信号Vrefcmが、レベルシフトトランジスタ262の制御ノードに加えられ、さらに、抵抗271を介して入力端子E10Aに、抵抗272を介して入力端子E10bに加えられる。
レベルシフトトランジスタ262は、トランジスタ150および160と一致するが、2つの高インピーダンス入力ノードE10aおよびE10bの直流電圧バイアスの基準ともなるコモンモード基準電圧Vrefcmをシフトダウンするのに使用される。理論的には、このような回路トポロジは、入力コモンモード電圧が一定である特定の用途に対して実現可能であろうものの、MEMSマイクロホンの用途では、入力端子E10aおよびE10bにおける入力コモンモード電圧が、例えば、シングルエンド(single-ended)トポロジが使用される場合には入力信号inpおよびinnによって直接的に、または、高電圧MEMSセンサバイアスノード上の過渡の結果として、変化し、このような変化が直接的に中間ノードN103に転送されることが考慮されなければならない。結果として、センシング信号Vxは、コモンモード電圧によって影響を受け、それによって、適応バイアスの動作を阻害する可能性がある。
図3は、適応バイアスを有するトランスコンダクタ回路10の第3の実施形態を示し、ここでは、制御回路200が、基準信号Vrefxを生成するために、図2と比較して、別の(改良された)トポロジを含んでいる。
図3のトランスコンダクタ回路10の制御回路200は、電流経路201および電流経路202を有する。電流経路201は、トランジスタ230および定電流源210を含み、電流経路201にトランジスタ230のバイアス電流を生成する。トランジスタ230は、入力端子E10aに結合されている制御ノードを有する。電流経路202は、トランジスタ240および定電流源220を含み、電流経路202にトランジスタ240の別のバイアス電流を生成する。トランジスタ240は、入力端子E10bに結合されている制御ノードを有する。
増幅器250の入力ノードI250bは、基準信号Vrefxが、電流経路201のノードN3の電位に応じて且つ電流経路202のノードN4の電位に応じて変化するように、電流経路201および電流経路202に結合されている。ノードN3は、トランジスタ230と定電流源210の間の電流経路201に位置する。ノードN4は、トランジスタ240と定電流源220の間の電流経路202に位置する。
図3に示すトランスコンダクタ回路10の実施形態によれば、制御回路200は、電流経路201のノードN3と電流経路202のノードN4との間に配置されている連結電流経路203を有する。増幅器250の入力ノードI250bは、連結電流経路203の中間ノードN203に接続されている。
図3に示すように、連結電流経路203は、両方とも抵抗器として具現化され得る抵抗素子260および抵抗素子270を有する。抵抗素子260は、電流経路201のノードN3と連結電流経路203の中間ノードN203との間に接続されている。抵抗素子270は、電流経路202のノードN4と連結電流経路203の中間ノードN203との間に接続されている。
図3のトランスコンダクタ回路10の制御回路200の構成は、トランジスタ230および240と共に、入力端子E10aおよびE10bにおける入力コモンモード電圧と連動して変わる基準信号Vrefxを生成することを可能にする補助トランジスタペアを使用する。したがって、増幅器段250は、トランジスタ150および160の各動作点の変化から生じるセンシング信号Vxのレベルの増加を検出するのみであり、一方で、制御回路は、入力コモンモード電圧の変動に対して影響を受けない。これにより、図3に示す制御回路トポロジの適応バイアス方式が、このような変動に対してロバストになる。
図1~3に示すトランスコンダクタ回路の各実施形態に関して、トランジスタ150および160、ならびにトランジスタ230および240(図3)は、n型のトランジスタ(例えば、NMOSトランジスタ)として、または、p型のトランジスタ(例えば、PMOSトランジスタ)として、具現化され得ることに留意されたい。さらに、これらのトランジスタをJFETトランジスタとして具現化することも可能である。NMOSトランジスタの使用は、有利には、トランジスタに対して適切な相互コンダクタンスと低いエリア消費を提供することを可能にする。
図1~3に示すトランスコンダクタ回路の各実施形態は、制御可能電流源110、120、130、および140を有する。トランジスタ150および160のバイアス電流を調整するためには、電流経路101および102がそれぞれ1つの制御可能電流源のみを有すれば十分であることに留意されたい。トランジスタ150および160が、n型であり、例えば、NMOSトランジスタとして具現化されると仮定すると、電流源130および140の電流は一定に保ちながら、電流源110および120のみが制御可能電流源として構成される必要がある。トランジスタ150および160が、p型のトランジスタとして実現され、例えば、PMOSトランジスタとして具現化される場合、電流源110および120の電流は一定に保ちながら、電流源130および140のみが制御可能電流源として具現化される必要がある。結論として、電流経路101および102のそれぞれに1つの制御可能電流源のみを使用することによって、トランスコンダクタ回路10のトポロジは、可変出力コモンモード電流を受け入れることによって単純化することができる。
他の可能な実施形態によれば、カスコードトランジスタを、トランジスタ150、160のドレインノードに設けることができ、これにより、トランスコンダクタ回路の出力インピーダンスを改善することができる。
図1~3に示すトランスコンダクタ回路10の上記実施形態は、連結電流経路103の抵抗素子170、180と、連結電流経路203の抵抗素子260、270とを有する。図1~3のトランスコンダクタ回路10の変更実施形態によれば、抵抗素子170および180を除去またはゼロに設定することができる。この場合、ノードN1およびN2は、直接接続される。任意選択で、抵抗素子260および270も、ノードN3およびN4が互いに直接接続されるように、除去またはゼロに設定され得る。トランスコンダクタ回路のこのような単純化されたトポロジは、回路のエリア消費を削減することを可能にする。
図1~3に示すトランスコンダクタ回路10の可能な一実施形態によれば、制御回路200の増幅器段250に意図的に入力電圧オフセットを追加することができる。この変更は、有利には、差動入力信号が一定の信号レベルに達するまで適応バイアス手順の制御が始まらないことを確実にすることを可能にする。
図4Aおよび図4Bは、入力電圧オフセットを制御回路200に追加する可能な実装例を示す。図4Aに示すトランスコンダクタ回路10の実施形態によれば、抵抗282を有する電流源281が、増幅器250の入力ノードI250b(例えば、反転入力ノード)に結合されている。他の可能な実施形態によれば、入力電圧オフセットは、図4Bに示すように、抵抗素子170と180の間の中間ノードN103に加えられる電流源または電流シンク283を提供することによって、制御回路200に追加され得る。図4Bは、抵抗素子260と270の間の中間ノードN203に加えられる電流源または電流シンク284を提供することによって、入力電圧オフセットを増幅器段250に追加する別の実施形態を破線で示す。
図4Cは、定電流源191、192、193、および194が、それぞれ、制御可能電流源110、120、130、および140にそれぞれ並列に接続されている、図1のトランスコンダクタ回路10の一実施形態を示す。一定のまたは非調整可能な電流源191、…、194を制御可能または調整可能な電流源110、…、140に並列に追加することは、有利には、たとえ適応バイアスがアクティブになることがなくても、設定したバイアス電流を確立することを可能にする。定電流源191、…、194を制御可能電流源に並列に追加することは、図1のトランスコンダクタ回路10の構成に対してのみ図4Cに示されているが、図2および図3に示すトランスコンダクタ回路10の実施形態に対しても使用され得る。
トランスコンダクタ回路の可能な一実施形態によれば、電流源110および120の一部または全部を抵抗素子170と180の間の中間ノードN103に加えることができる。別の実施形態によれば、電流源110および120の一部または全部を、2つの抵抗素子170および180を4つの抵抗素子に分割することによって得られる追加のノードペアに接続することができる。同様に、電流源210および220の一部または全部を、抵抗素子260と270の間の中間ノードN203に接続することができる。別の実施形態によれば、定電流源210および220の一部または全部を、抵抗素子260および270を4つの抵抗素子に分割することによって得られる追加のノードペアに結合することができる。
図5は、適応バイアスを有するトランスコンダクタ回路10がセンサ20とアナログ/デジタル変換器30の間のインタフェースとして使用され得る、センサデバイス1の一適用例を示す。センサデバイス1は、出力電流信号outp、outnを生成するように構成されている、適応バイアスを有するトランスコンダクタ回路10を有する。センサ20は、例えば、MEMマイクロフォン、圧力センサ、抵抗センサ、誘導センサ、容量センサ、または地震センサのうちの1つとして具現化され得る。
センサ20は、トランスデューサ21を含み、トランスデューサ21に影響を与える環境信号を検出する。トランスデューサ21は、環境信号に応じて電圧信号inn、inpを生成するように構成されている。アナログ/デジタル変換器30は、出力電流信号outp、outnを受信する入力側I30を有する。アナログ/デジタル変換器30は、出力電流信号outp、outnに応じてデジタル出力信号を生成するように構成されている。可能な一実施形態によれば、アナログ/デジタル変換器30は、連続するタイミングを有する変換器として構成され得る。
トランスコンダクタ回路10は、センサ20に接続され、入力端子E10aおよびE10bにおいてセンサ20からの電圧信号inp、innを受信する。トランスコンダクタ回路10は、アナログ/デジタル変換器30にさらに接続され、アナログ/デジタル変換器30の入力側I30に出力電流信号outp、outnを供給する。トランスコンダクタ回路10およびアナログ/デジタル変換器30は、ASIC段として具現化され得る。
センサデバイス1に関して、トランスコンダクタ回路10は、差動入力信号のレベルに従って入力トランジスタのバイアスを調整することを可能にするセンサ入力段として使用される。特に、トランスコンダクタ回路は、例えば、縮退抵抗170と180の間にタップされた検知信号Vxと、補助トランジスタペアのソースノードにタップされた基準信号Vrefxとを使用して、必要なバイアス電流を導出するように構成されている。
トランスコンダクタ回路10は、有利には、本質的に存在する部品(例えば、入力トランジスタおよびこれのバイアス電流源ならびに縮退抵抗)以外の余分なノイズ要因を使用することなく実装され得る。もう1つの利点は、消費電力が、小さな差動入力信号を加える場合には低く、差動入力信号が大きくなる場合にのみ増加することである。これは、オーディオ用途に有益である、なぜなら、差動入力信号は、通常、ほとんどの時間小さいからである。トランスコンダクタ回路10は、小さな差動入力信号で低ノイズを示すだけであり、差動入力信号が大きくなる場合にのみ増加する。大きな差動入力信号に対するノイズ増加は、通常、オーディオ用途では許容される、なぜなら、人間の聴覚が気付くことができる最大SNR(信号対ノイズ比)は制限されているからである。さらに、回路の設計により、THD(全高調波歪み)と電力消費の間のトレードオフを設計中に効率的に調整することができる。大きな信号ダイナミックレンジで安定にするのに費用のかかる高利得調整ループを設ける必要はない。
1 センサデバイス
10 トランスコンダクタ回路
20 センサ
21 トランスデューサ
30 アナログ/デジタル変換器
101,102 電流経路
110,…,140 制御可能電流源
150,160 トランジスタ
170,180 抵抗素子
200 制御回路
201,202 電流経路
210,220 定電流源
230,240 トランジスタ
250 増幅器
260,270 抵抗素子
N1,…,N4 ノード
N103,N203 中間ノード
103,203 連結電流経路
inp,inn 入力信号
outn,outp 出力信号

Claims (15)

  1. 適応バイアスを有するトランスコンダクタ回路であって、
    第1の入力信号(inp)を加える第1の入力端子(E10a)と、
    第2の入力信号(inn)を加える第2の入力端子(E10b)と、
    第1のトランジスタ(150)および第1の制御可能電流源(110)を含んで前記第1のトランジスタ(150)の第1のバイアス電流を調整する第1の電流経路(101)であって、前記第1のトランジスタ(150)が、前記第1の入力端子(E10a)に結合されている制御ノードを有する、第1の電流経路(101)と、
    第2のトランジスタ(160)および第2の制御可能電流源(120)を含んで前記第2のトランジスタ(160)の第2のバイアス電流を調整する第2の電流経路(102)であって、前記第2のトランジスタ(160)が、前記第2の入力端子(E10b)に結合されている制御ノードを有する、第2の電流経路(102)と、
    前記第1の電流経路(101)の第1のノード(N1)の第1の電位および前記第2の電流経路(102)の第2のノード(N2)の第2の電位のうちの少なくとも一方に応じて、前記第1の制御可能電流源(110)および前記第2の制御可能電流源(120)を制御するように構成されている制御回路(200)と、を有し、
    前記第1のノード(N1)は、前記第1のトランジスタ(150)と前記第1の制御可能電流源(110)の間に位置し、前記第2のノード(N2)は、前記第2のトランジスタ(160)と前記第2の制御可能電流源(120)の間に位置する、
    トランスコンダクタ回路。
  2. 前記制御回路(200)は、増幅器(250)を有し、前記増幅器(250)は、前記第1の制御可能電流源(110)および前記第2の制御可能電流源(120)を制御するための制御信号(CS)を生成する出力ノード(O250)を有する、
    請求項1に記載のトランスコンダクタ回路。
  3. 前記増幅器(250)は、第1の入力ノード(I250a)を有し、
    前記第1の入力ノード(I250a)は、前記増幅器(250)の前記第1の入力ノード(I250a)におけるセンシング信号(Vx)が、前記第1のノード(N1)における前記第1の電位および前記第2のノード(N2)における前記第2の電位のうちの少なくとも一方に応じて変化するように、前記第1の制御可能電流源(110)および前記第2の制御可能電流源(120)に結合されている、
    請求項2に記載のトランスコンダクタ回路。
  4. 前記増幅器(250)は、基準信号(Vrefx)を加える第2の入力ノード(I250b)を有し、
    前記増幅器(250)は、前記センシング信号(Vx)および前記基準信号(Vrefx)に応じて前記制御信号(CS)を生成するように構成されている、
    請求項3に記載のトランスコンダクタ回路。
  5. 前記第1の電流経路(101)の前記第1のノード(N1)と前記第2の電流経路(102)の前記第2のノード(N2)との間に配置されている第1の連結電流経路(103)を有し、
    前記増幅器(250)の前記第1の入力ノード(I250a)は、前記第1の連結電流経路(103)の第1の中間ノード(N103)に接続されている、
    請求項3または4に記載のトランスコンダクタ回路。
  6. 前記第1の連結電流経路(103)は、第1の抵抗素子(170)および第2の抵抗素子(180)を有し、
    前記第1の抵抗素子(170)は、前記第1の電流経路(101)の前記第1のノード(N1)と前記第1の連結電流経路(103)の前記第1の中間ノード(N103)との間に接続され、
    前記第2の抵抗素子(180)は、前記第2の電流経路(102)の前記第2のノード(N2)と前記第1の連結電流経路(103)の前記第1の中間ノード(N103)との間に接続されている、
    請求項5に記載のトランスコンダクタ回路。
  7. 前記第1の電流経路(101)は、第3の制御可能電流源(130)を含み、
    前記第2の電流経路(102)は、第4の制御可能電流源(140)を含み、
    前記制御回路(200)は、前記第1の電流経路(101)の前記第1のノード(N1)における前記第1の電位および前記第2の電流経路(102)の前記第2のノード(N2)における前記第2の電位のうちの少なくとも一方に応じて、前記第3の制御可能電流源(130)および前記第4の制御可能電流源(140)を制御するように構成されている、
    請求項1~6のいずれかに記載のトランスコンダクタ回路。
  8. 前記制御回路(200)は、増幅器(250)によって制御信号(CS)を生成して、第1の連結電流経路(103)の第1の中間ノード(N103)で検出されたセンシング信号(Vx)に応じて前記第1および第2の制御可能電流源(110、120)ならびに前記第3および第4の制御可能電流源(130、140)を制御するように構成されている、
    請求項7に記載のトランスコンダクタ回路。
  9. 前記制御回路(200)は、第3の電流経路(201)および第4の電流経路(202)を有し、
    前記第3の電流経路(201)は、第3のトランジスタ(230)および第1の定電流源(210)を含んで前記第3の電流経路(201)内に前記第3のトランジスタ(230)のバイアス電流を生成し、前記第3のトランジスタ(230)は、前記第1の入力端子(E10a)に結合されている制御ノードを有し、
    前記第4の電流経路(202)は、第4のトランジスタ(240)および第2の定電流源(220)を含んで前記第4の電流経路(202)内に前記第4のトランジスタ(240)の別バイアス電流を生成し、前記第4のトランジスタ(240)は、前記第2の入力端子(E10b)に結合されている制御ノードを有し、
    増幅器(250)の第2の入力ノード(I250b)は、基準信号(Vrefx)が、前記第3の電流経路(201)の第3のノード(N3)における第3の電位および前記第4の電流経路(202)の第4のノード(N4)における第4の電位に応じて変化するように、前記第3の電流経路(201)および前記第4の電流経路(202)に結合され、
    前記第3のノード(N3)は、前記第3のトランジスタ(230)と前記第1の定電流源(210)との間に位置し、前記第4のノード(N4)は、前記第4のトランジスタ(240)と前記第2の定電流源(220)との間に位置する、
    請求項4~8のいずれかに記載のトランスコンダクタ回路。
  10. 前記制御回路(200)は、前記第3の電流経路(201)の前記第3のノード(N3)と前記第4の電流経路(202)の前記第4のノード(N4)との間に配置されている第2の連結電流経路(203)を有し、
    前記増幅器(250)の前記第2の入力ノード(I250b)は、前記第2の連結電流経路(203)の第2の中間ノード(N203)に接続されている、
    請求項9に記載のトランスコンダクタ回路。
  11. 前記第2の連結電流経路(203)は、第3の抵抗素子(260)および第4の抵抗素子(270)を有し、
    前記第3の抵抗素子(260)は、前記第3の電流経路(201)の前記第3のノード(N3)と前記第2の連結電流経路(203)の前記第2の中間ノード(N203)との間に接続され、
    前記第4の抵抗素子(270)は、前記第4の電流経路(202)の前記第4のノード(N4)と前記第2の連結電流経路(203)の前記第2の中間ノード(N203)との間に接続されている、
    請求項10に記載のトランスコンダクタ回路。
  12. 前記制御回路(200)は、第1の連結電流経路(103)の第1の中間ノード(N103)に結合された電流シンク(283)を有し、または、
    前記制御回路(200)は、前記第2の連結電流経路(203)の前記第2の中間ノード(N203)に結合された第3の定電流源(284)を有する、
    請求項11に記載のトランスコンダクタ回路。
  13. 前記第1の制御可能電流源(110)、前記第2の制御可能電流源(120)、第3の制御可能電流源(130)、および第4の制御可能電流源(140)には、それぞれ、第5の定電流源(191、192、193、194)が並列に接続されている、
    請求項7~12のいずれかに記載のトランスコンダクタ回路。
  14. 請求項1~13のいずれかに記載の、適応バイアスを有するトランスコンダクタ回路(10)であって、出力電流信号(outp、outn)を生成するように構成されている、トランスコンダクタ回路(10)と、
    トランスデューサ(21)を含んで前記トランスデューサ(21)に影響を与える環境信号を検出するセンサ(20)であって、前記トランスデューサ(21)が、前記環境信号に応じて電圧信号(inn、inp)を生成するように構成されている、センサ(20)と、
    前記出力電流信号(outp、outn)を受信する入力側(I30)を有するアナログ/デジタル変換器(30)であって、前記出力電流信号(outn、outp)に応じてデジタル出力信号を生成するように構成されている、アナログ/デジタル変換器(30)と、を有し、
    前記トランスコンダクタ回路(10)は、前記センサ(20)に接続されて、前記トランスコンダクタ回路の前記第1の入力端子(E10a)および前記第2の入力端子(E10b)において前記センサ(20)から前記電圧信号(inn、inp)を受信し、さらに、アナログ/デジタル変換器(30)に接続されて、前記アナログ/デジタル変換器(30)の前記入力側(I30)に前記出力電流信号(outp、outn)を供給する、
    センサデバイス。
  15. 前記センサ(20)は、MEMSマイクロホン、圧力センサ、抵抗センサ、誘導センサ、容量センサ、および地震センサのうちの1つとして具現化される、
    請求項14に記載のセンサデバイス。
JP2021530959A 2018-12-20 2019-12-03 適応バイアスを有するトランスコンダクタ回路 Active JP7241873B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP18214610.0 2018-12-20
EP18214610.0A EP3672073B1 (en) 2018-12-20 2018-12-20 Transconductor circuitry with adaptive biasing
PCT/EP2019/083477 WO2020126475A1 (en) 2018-12-20 2019-12-03 Transconductor circuitry with adaptive biasing

Publications (2)

Publication Number Publication Date
JP2022512084A true JP2022512084A (ja) 2022-02-02
JP7241873B2 JP7241873B2 (ja) 2023-03-17

Family

ID=64901865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021530959A Active JP7241873B2 (ja) 2018-12-20 2019-12-03 適応バイアスを有するトランスコンダクタ回路

Country Status (5)

Country Link
US (1) US20220052660A1 (ja)
EP (1) EP3672073B1 (ja)
JP (1) JP7241873B2 (ja)
CN (1) CN113728551A (ja)
WO (1) WO2020126475A1 (ja)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20240329153A1 (en) * 2023-03-29 2024-10-03 Arm Limited Current Measurement Architecture

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121608A (ja) * 2004-10-25 2006-05-11 Matsushita Electric Works Ltd 受信装置、トランスコンダクタンスアンプ
US20060261894A1 (en) * 2005-05-19 2006-11-23 Aspendos Communications Increasing the linearity of a transconductance cell
JP2012029206A (ja) * 2010-07-27 2012-02-09 Sharp Corp トランスコンダクタ回路、ミキサ回路、無線機器
JP2015115654A (ja) * 2013-12-09 2015-06-22 株式会社東芝 単相差動変換回路およびアナログフロントエンド回路
JP2018174477A (ja) * 2017-03-31 2018-11-08 エイブリック株式会社 トランスコンダクタンス増幅器

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69118693T2 (de) * 1991-09-25 1996-11-28 Bell Telephone Mfg Differenzverstärkeranordnung
US6023196A (en) * 1998-08-03 2000-02-08 Lucent Technologies Inc. Bias circuit for transconductance amplifier
US6727757B1 (en) * 2003-01-02 2004-04-27 Texas Instruments Incoporated Biasing circuit for transconductors
US7057460B2 (en) * 2004-06-29 2006-06-06 Rambus, Inc. Differential amplifier with adaptive biasing and offset cancellation
US7321259B1 (en) * 2005-10-06 2008-01-22 Altera Corporation Programmable logic enabled dynamic offset cancellation
US10211792B2 (en) * 2012-04-04 2019-02-19 Ams Ag Sensor amplifier arrangement and method of amplifying a sensor signal
US10804859B2 (en) * 2018-12-10 2020-10-13 Analog Devices, Inc. Transimpedance amplifiers with feedforward current

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006121608A (ja) * 2004-10-25 2006-05-11 Matsushita Electric Works Ltd 受信装置、トランスコンダクタンスアンプ
US20060261894A1 (en) * 2005-05-19 2006-11-23 Aspendos Communications Increasing the linearity of a transconductance cell
JP2012029206A (ja) * 2010-07-27 2012-02-09 Sharp Corp トランスコンダクタ回路、ミキサ回路、無線機器
JP2015115654A (ja) * 2013-12-09 2015-06-22 株式会社東芝 単相差動変換回路およびアナログフロントエンド回路
JP2018174477A (ja) * 2017-03-31 2018-11-08 エイブリック株式会社 トランスコンダクタンス増幅器

Also Published As

Publication number Publication date
US20220052660A1 (en) 2022-02-17
CN113728551A (zh) 2021-11-30
JP7241873B2 (ja) 2023-03-17
EP3672073B1 (en) 2023-02-08
EP3672073A1 (en) 2020-06-24
WO2020126475A1 (en) 2020-06-25

Similar Documents

Publication Publication Date Title
US10924069B2 (en) System and method for low distortion capacitive signal source amplifier
KR101588501B1 (ko) 프로그램가능 이득 증폭기를 위한 시스템 및 방법
US10027298B2 (en) System and method for adjusting the sensitivity of a capacitive signal source
CN107104648B (zh) 一种放大电路
JP5092009B2 (ja) 低ドロップアウト線形レギュレータ(ldo)、ldoを提供するための方法、およびldoを動作させるための方法
JP5098617B2 (ja) プリエンファシス回路
US10080082B2 (en) Microphone system having high acoustical overload point
AU2007219317B2 (en) Differential Amplifier with Current Source Controlled through Differential Feedback
CN110710105B (zh) 放大器装置和具有这种放大器装置的传感器装置
CN107171650B (zh) 可变增益放大电路
US20240154583A1 (en) Super source follower
JP2022512084A (ja) 適応バイアスを有するトランスコンダクタ回路
US7643573B2 (en) Power management in a data acquisition system
US10972122B2 (en) Sensor arrangement
JP5007937B2 (ja) 減衰器
JP2009153047A (ja) 電流電圧変換回路、受光アンプ回路、およびパルス再生回路
JP2012169820A (ja) プリアンプ回路、及びマイクロフォン
JP7191598B2 (ja) 増幅装置
US10951181B2 (en) Methods and apparatus for an amplifier circuit
JP2013207560A (ja) サンプル・ホールド回路
TW201822195A (zh) 感測裝置
JP4183957B2 (ja) ミュート回路および基準電圧発生回路
US20150244391A1 (en) Ramp signal generator using programmable gain amplifier
JPWO2018180111A1 (ja) ノイズ除去回路
TW201919335A (zh) 用於信號接收器中的雙模信號放大電路

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210727

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20220629

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220712

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221012

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230207

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230307

R150 Certificate of patent or registration of utility model

Ref document number: 7241873

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150