JP2022192025A - 熱伝導シート及び熱伝導シートの製造方法 - Google Patents
熱伝導シート及び熱伝導シートの製造方法 Download PDFInfo
- Publication number
- JP2022192025A JP2022192025A JP2022092767A JP2022092767A JP2022192025A JP 2022192025 A JP2022192025 A JP 2022192025A JP 2022092767 A JP2022092767 A JP 2022092767A JP 2022092767 A JP2022092767 A JP 2022092767A JP 2022192025 A JP2022192025 A JP 2022192025A
- Authority
- JP
- Japan
- Prior art keywords
- thermally conductive
- conductive sheet
- heat
- volume
- binder resin
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Images
Landscapes
- Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
- Manufacture Of Macromolecular Shaped Articles (AREA)
- Compositions Of Macromolecular Compounds (AREA)
- Cooling Or The Like Of Electrical Apparatus (AREA)
Abstract
【課題】発熱体への密着性に優れ、バインダ樹脂の過剰なブリードを抑制できる熱伝導シートを提供する。【解決手段】熱伝導シート1は、バインダ樹脂2と、異方性熱伝導性フィラー3と、異方性熱伝導性フィラー3以外の他の熱伝導性フィラー4とを含有する組成物の硬化物からなり、以下の条件1及び条件2を満たす。[条件1]:熱伝導シート1のタック力が80gf以上である。[条件2]:25mm×25mmの大きさであって1mm厚の熱伝導シート1が40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂2のブリード量が0.20g以下である。【選択図】図1
Description
本技術は、熱伝導シート及び熱伝導シートの製造方法に関する。
電子機器の更なる高性能化に伴って、半導体素子の高密度化、高実装化が進んでいる。これに伴って、電子機器を構成する電子部品から発熱する熱をさらに効率よく放熱することが重要になっている。例えば、半導体装置は、効率よく放熱させるために、電子部品が、熱伝導シートを介して、放熱ファン、放熱板等のヒートシンクに取り付けられている。熱伝導シートとしては、シリコーン樹脂に、無機フィラー等の充填材を含有(分散)させたものが広く使用されている(例えば、特許文献1,2を参照)。
熱伝導シートのような放熱部材は、更なる熱伝導率の向上が要求されている。例えば、熱伝導シートの高熱伝導性を目的として、バインダ樹脂などのマトリクス内に配合されている無機フィラーの充填率を高めることが検討されている。しかし、無機フィラーの充填率を高めると、熱伝導シートの柔軟性が損なわれるおそれや、無機フィラーの粉落ちが発生するおそれがある。そのため、熱伝導シートにおいて無機フィラーの充填率を高めることには限界がある。
無機フィラーとしては、例えば、アルミナ、窒化アルミニウム、水酸化アルミニウム等が挙げられる。また、高熱伝導率を目的として、窒化ホウ素、黒鉛等の鱗片状粒子、炭素繊維等をマトリクス内に充填させることもある。これは、鱗片状粒子、炭素繊維等の有する熱伝導率の異方性によるものである。例えば、炭素繊維は、繊維方向に約600~1200W/m・Kの熱伝導率を有することが知られている。また、鱗片状粒子である窒化ホウ素は、面方向に約110W/m・K程度の熱伝導率を有し、面方向に対して垂直な方向に約2W/m・K程度の熱伝導率を有することが知られている。このように、炭素繊維や鱗片状粒子は、熱伝導率に異方性を有することが知られている。炭素繊維の繊維方向や鱗片状粒子の面方向を、熱の伝達方向である熱伝導シートの厚み方向と同じにする、すなわち、炭素繊維や鱗片状粒子を熱伝導シートの厚み方向に配向させることによって、熱伝導シートの熱伝導率を飛躍的に向上させることができる。
ところで、熱伝導シートを用いた電子機器における、熱伝導シートを用いた電子部品等の周辺の美観や、電気接点に対する導通性への影響の観点から、熱伝導シートを構成するバインダ樹脂(例えばシリコーン樹脂)のブリード(残渣)を飛散させないことや、電気接点に付着させないことが求められる。また、熱伝導シート中のバインダ樹脂のブリードは、例えば、付加反応型のシリコーン樹脂の配合比の偏りによって生じる。バインダ樹脂のブリードは、熱伝導シートのタック性にも影響を与えるため、被着体(発熱体)への熱伝導シートの密着性(仮固定性)の優劣にも影響する。特許文献1,2に記載の技術では、発熱体への密着性に優れ、バインダ樹脂の過剰なブリードを抑制できる熱伝導シートを提供することが困難であった。
本技術は、このような従来の実情に鑑みて提案されたものであり、発熱体への密着性に優れ、バインダ樹脂の過剰なブリードを抑制できる熱伝導シートを提供する。
本技術に係る熱伝導シートは、バインダ樹脂と、異方性熱伝導性フィラーと、異方性熱伝導性フィラー以外の他の熱伝導性フィラーとを含有する組成物の硬化物からなり、以下の条件1及び条件2を満たす。
[条件1]:熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂のブリード量が0.20g以下である。
[条件1]:熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂のブリード量が0.20g以下である。
本技術に係る熱伝導シートの製造方法は、バインダ樹脂と、異方性熱伝導性フィラーと、異方性熱伝導性フィラー以外の熱伝導性フィラーとを含有する熱伝導性組成物を作製する工程Aと、熱伝導性組成物を押出成形した後硬化し、柱状の硬化物を得る工程Bと、柱状の硬化物を柱の長さ方向に対し略垂直方向に所定の厚みに切断して熱伝導シートを得る工程Cとを有し、熱伝導シートが以下の条件1及び条件2を満たす。
[条件1]:熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂のブリード量が0.20g以下である。
[条件1]:熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂のブリード量が0.20g以下である。
本技術は、発熱体への密着性に優れ、バインダ樹脂の過剰なブリードを抑制できる熱伝導シートを提供できる。
本明細書において、異方性熱伝導性フィラー及び他の熱伝導性フィラーの平均粒子径(D50)とは、異方性熱伝導性フィラー又は他の熱伝導性フィラーの粒子径分布全体を100%とした場合に、粒子径分布の小粒子径側から粒子径の値の累積カーブを求めたとき、その累積値が50%となるときの粒子径をいう。なお、本明細書における粒度分布(粒子径分布)は、体積基準によって求められたものである。粒度分布の測定方法としては、例えば、レーザー回折型粒度分布測定機を用いる方法が挙げられる。
<熱伝導シート>
図1は、本技術に係る熱伝導シート1の一例を示す断面図である。熱伝導シート1は、バインダ樹脂2と、異方性熱伝導性フィラー3と、異方性熱伝導性フィラー3以外の他の熱伝導性フィラー4とを含む組成物の硬化物からなる。熱伝導シート1は、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とがバインダ樹脂2に分散しており、異方性熱伝導性フィラー3が熱伝導シート1の厚み方向Bに配向している。
図1は、本技術に係る熱伝導シート1の一例を示す断面図である。熱伝導シート1は、バインダ樹脂2と、異方性熱伝導性フィラー3と、異方性熱伝導性フィラー3以外の他の熱伝導性フィラー4とを含む組成物の硬化物からなる。熱伝導シート1は、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とがバインダ樹脂2に分散しており、異方性熱伝導性フィラー3が熱伝導シート1の厚み方向Bに配向している。
ここで、熱伝導シート1の厚み方向Bに異方性熱伝導性フィラー3が配向しているとは、例えば、熱伝導シート1中の全ての異方性熱伝導性フィラー3のうち、熱伝導シート1の厚み方向Bに長軸が配向している異方性熱伝導性フィラー3の割合が50%以上であり、55%以上であってもよく、60%以上であってもよく、65%以上であってもよく、70%以上であってもよく、80%以上であってもよく、90%以上であってもよく、95%以上であってもよく、99%以上であってもよい。
異方性熱伝導性フィラー3は、形状に異方性を有する熱伝導性フィラーである。異方性熱伝導性フィラー3としては、長軸と短軸と厚みとを有する熱伝導性フィラー(例えば、鱗片状の熱伝導性フィラー)が挙げられる。鱗片状の熱伝導性フィラーとは、長軸と短軸と厚みとを有する熱伝導性フィラーであって、高アスペクト比(長軸/厚み)であり、長軸を含む面方向に等方的な熱伝導率を有するものである。鱗片状の熱伝導性フィラーの短軸とは、鱗片状の熱伝導性フィラーの長軸を含む面において、鱗片状の熱伝導性フィラーの長軸の中点を通って交差する方向であって、鱗片状の熱伝導性フィラーの最も短い部分の長さをいう。鱗片状の熱伝導性フィラーの厚みとは、鱗片状の熱伝導性フィラーの長軸を含む面の厚みを10点測定して平均した値をいう。異方性熱伝導性フィラー3のアスペクト比は、特に限定されず、目的に応じて適宜選択することができる。例えば、異方性熱伝導性フィラー3のアスペクト比は、10~100の範囲とすることができ、20~50の範囲であってもよく、15~40の範囲であってもよい。異方性熱伝導性フィラー3の長軸、短軸及び厚みは、例えば、マイクロスコープ、走査型電子顕微鏡(SEM)、粒度分布計などにより測定できる。
他の熱伝導性フィラー4は、異方性熱伝導性フィラー3以外の熱伝導性フィラー、すなわち、形状に異方性を有しない熱伝導性フィラーである。
熱伝導シート1は、以下の条件1及び条件2を満たす。
[条件1]:熱伝導シート1のタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の熱伝導シート1が40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂2のブリード量が0.20g以下である。
[条件1]:熱伝導シート1のタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の熱伝導シート1が40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂2のブリード量が0.20g以下である。
条件1について、熱伝導シート1のタック力は、被着体である発熱体に対する熱伝導シート1の密着性の観点で、80gf以上であり、85gf以上であってもよく、88gf以上であってもよく、92gf以上であってもよく、80~92gfの範囲であってもよい。熱伝導シート1のタック力の測定方法は、後述する実施例の方法と同様である。
条件2について、熱伝導シート1が使用される状況(環境)を考慮して、熱伝導シート1は、40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂2のブリード量が0.20g以下であり、0.19g以下であってもよく、0.18g以下であってもよく、0.17g以下であってもよく、0.15g以下であってもよい。また、熱伝導シート1は、条件1を満たす観点で、40%圧縮された状態で、125℃下で48時間静置後のバインダ樹脂2のブリード量が、所定量以上であることが好ましく、0.15g以上であってもよく、0.15~0.20gの範囲であってもよく、0.15~0.19gの範囲であってもよい。熱伝導シート1におけるバインダ樹脂2のブリード量の測定方法は、後述する実施例の方法と同様である。例えば、25mm×25mm、厚み1mmの熱伝導シート1が40%圧縮された状態で、125℃下で48時間静置後にバインダ樹脂2のブリード量を測定する。
このように、熱伝導シート1は、上述した条件1及び条件2を満たすため、発熱体への密着性に優れ、バインダ樹脂2の過剰なブリードを抑制できる。また、熱伝導シート1は、高熱伝導化の観点では、上述した条件1及び条件2に加えて、以下の条件3をさらに満たすことが好ましい。
[条件3]:熱伝導シート1のバルク熱伝導率が9.5W/m・K以上である。
[条件3]:熱伝導シート1のバルク熱伝導率が9.5W/m・K以上である。
条件3について、熱伝導シート1は、バルク熱伝導率が、9.5W/m・K以上であることが好ましく、9.9W/m・K以上であってもよく、10.5W/m・K以上であってもよく、10.6W/m・K以上であってもよく、11.3W/m・K以上であってもよく、11.4W/m・K以上であってもよく、12.3W/m・K以上であってもよく、13.1W/m・K以上であってもよく、9.5~13.1W/m・Kの範囲であってもよく、9.9~13.1W/m・Kの範囲であってもよい。熱伝導シート1のバルク熱伝導率は、後述する実施例に記載の方法で測定することができる。
熱伝導シート1は、厚み方向Bの実効熱伝導率が7.5W/m・K以上であってもよく、8.0W/m・K以上であってもよく、8.3W/m・K以上であってもよく、8.5W/m・K以上であってもよく、9.1W/m・K以上であってもよく、9.2W/m・K以上であってもよく、9.3W/m・K以上であってもよく、10.5W/m・K以上であってもよく、11.1W/m・K以上であってもよく、7.5~9.2W/m・Kの範囲であってもよく、7.5~11.1W/m・Kの範囲であってもよい。熱伝導シート1の実効熱伝導率は、後述する実施例に記載の方法で測定することができる。
熱伝導シート1の厚みは、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シートの厚みは、0.05mm以上とすることができ、0.1mm以上とすることもできる。また、熱伝導シートの厚みの上限値は、5mm以下とすることができ、4mm以下であってもよく、3mm以下であってもよい。熱伝導シート1の取り扱い性の観点から、熱伝導シート1の厚みは、0.1~4mmとすることが好ましい。熱伝導シート1の厚みは、例えば、熱伝導シート1の厚みBを任意の5箇所で測定し、その算術平均値から求めることができる。
熱伝導シート1は、150℃下で1000時間静置後に圧縮率10%で測定した熱抵抗値の、製造直後に圧縮率10%で測定した熱抵抗値に対する変化率が10%以内であることが好ましく、8.7%以下であってもよく、8.6%以下であってもよく、8.2%以下であってもよく、8.1%以下であってもよく、8.0%以下であってもよく、7.8%以下であってもよく、7.7%以下であってもよく、7.6%以下であってもよく、7.4%以下であってもよく、7.1%以下であってもよく、6.7%以下であってもよく、6.7~10%の範囲であってもよく、6.7~8.7%の範囲であってもよく、6.7~8.2%の範囲であってもよい。この範囲にあることで、長時間にわたり使用しても熱抵抗値の変動がより少ない傾向にある。熱伝導シート1の熱抵抗値の変化率は、後述する実施例に記載の方法で測定することができる。
熱伝導シート1は、製造直後に圧縮率10%で測定した熱抵抗値が、例えば、1.27℃・cm2/W以下であり、1.19℃・cm2/W以下であってもよく、1.16℃・cm2/W以下であってもよく、1.05℃・cm2/W以下であってもよく、1.04℃・cm2/W以下であってもよく、0.92℃・cm2/W以下であってもよく、0.88℃・cm2/W以下であってもよく、0.88~1.27℃・cm2/Wの範囲であってもよい。
熱伝導シート1は、150℃下で1000時間静置後に圧縮率10%で測定した熱抵抗値が、例えば、1.36℃・cm2/W以下であってもよく、1.27℃・cm2/W以下であってもよく、1.25℃・cm2/W以下であってもよく、1.14℃・cm2/W以下であってもよく、1.13℃・cm2/W以下であってもよく、1.12℃・cm2/W以下であってもよく、1.00℃・cm2/W以下であってもよく、0.95℃・cm2/W以下であってもよく、0.95~1.36℃・cm2/Wの範囲であってもよい。
熱伝導シート1は、柔軟性の観点で、150℃下で1000時間静置後に荷重3kgf/cm2で測定した圧縮率が20%以上であることが好ましく、21%以上であってもよく、22%以上であってもよく、23%以上であってもよく、25%以上であってもよく、26%以上であってもよく、28%以上であってもよく、20~28%の範囲であってもよく、21~28%の範囲であってもよい。このように、熱伝導シート1は、150℃下で1000時間静置後も、良好な柔軟性を維持できる。熱伝導シート1の荷重3kgf/cm2での圧縮率は、後述する実施例に記載の方法で測定することができる。
熱伝導シート1は、硬度に関して、例えば製造直後のショアタイプOOにおける硬度(初期ショア硬度)が20~90の範囲であることが好ましく、40~70の範囲であってもよく、55~60の範囲であってもよい。また、熱伝導シート1は、150℃下で1000時間静置後のショアタイプOOにおける硬度が40~95の範囲であることが好ましく、65~90の範囲であってもよい。熱伝導シート1の硬度がこのような範囲であることにより、熱伝導シート1の被着体に対する追従性がより良好であり、被着体と熱伝導シートとが面接触しやすくなることで、より効果的に熱伝導させることができる。熱伝導シート1の硬度は、後述する実施例に記載の方法で測定することができる。
熱伝導シート1は、絶縁破壊電圧が高いことが好ましく、厚み1mmのときの絶縁破壊電圧が7.0kV以上であってもよく、7.5kV以上であってもよく、8.1kV以上であってもよく、8.4kV以上であってもよく、8.5kV以上であってもよく、8.6kV以上であってもよく、8.7kV以上であってもよく、9.0kV以上であってもよく、8.1~9.0kVの範囲であってもよい。熱伝導シート1の絶縁破壊電圧は、後述の実施例の方法で測定することができる。
以下、熱伝導シート1の構成要素の具体例について説明する。
<バインダ樹脂>
バインダ樹脂2は、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とを熱伝導シート1内に保持するためのものである。バインダ樹脂2は、熱伝導シート1に要求される機械的強度、耐熱性、電気的性質等の特性に応じて選択される。バインダ樹脂2としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。
バインダ樹脂2は、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とを熱伝導シート1内に保持するためのものである。バインダ樹脂2は、熱伝導シート1に要求される機械的強度、耐熱性、電気的性質等の特性に応じて選択される。バインダ樹脂2としては、熱可塑性樹脂、熱可塑性エラストマー、熱硬化性樹脂の中から選択することができる。
熱可塑性樹脂としては、ポリエチレン、ポリプロピレン、エチレン-プロピレン共重合体等のエチレン-αオレフィン共重合体、ポリメチルペンテン、ポリ塩化ビニル、ポリ塩化ビニリデン、ポリ酢酸ビニル、エチレン-酢酸ビニル共重合体、ポリビニルアルコール、ポリビニルアセタール、ポリフッ化ビニリデン及びポリテトラフルオロエチレン等のフッ素系重合体、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリスチレン、ポリアクリロニトリル、スチレン-アクリロニトリル共重合体、アクリロニトリル-ブタジエン-スチレン共重合体(ABS)樹脂、ポリフェニレン-エーテル共重合体(PPE)樹脂、変性PPE樹脂、脂肪族ポリアミド類、芳香族ポリアミド類、ポリイミド、ポリアミドイミド、ポリメタクリル酸、ポリメタクリル酸メチルエステル等のポリメタクリル酸エステル類、ポリアクリル酸類、ポリカーボネート、ポリフェニレンスルフィド、ポリサルホン、ポリエーテルサルホン、ポリエーテルニトリル、ポリエーテルケトン、ポリケトン、液晶ポリマー、シリコーン樹脂、アイオノマー等が挙げられる。
熱可塑性エラストマーとしては、スチレン-ブタジエンブロック共重合体又はその水添化物、スチレン-イソプレンブロック共重合体又はその水添化物、スチレン系熱可塑性エラストマー、オレフィン系熱可塑性エラストマー、塩化ビニル系熱可塑性エラストマー、ポリエステル系熱可塑性エラストマー、ポリウレタン系熱可塑性エラストマー、ポリアミド系熱可塑性エラストマー等が挙げられる。
熱硬化性樹脂としては、架橋ゴム、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、ジアリルフタレート樹脂等が挙げられる。架橋ゴムの具体例としては、天然ゴム、アクリルゴム、ブタジエンゴム、イソプレンゴム、スチレン-ブタジエン共重合ゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレン-プロピレン共重合ゴム、塩素化ポリエチレンゴム、クロロスルホン化ポリエチレンゴム、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、及びシリコーンゴムが挙げられる。
バインダ樹脂2としては、例えば、発熱体(例えば電子部品)の発熱面とヒートシンク面との密着性の観点では、シリコーン樹脂が好ましい。シリコーン樹脂としては、例えば、アルケニル基を有するシリコーン(ポリオルガノシロキサン)を主成分とし、硬化触媒を含有する主剤と、ヒドロシリル基(Si-H基)を有する硬化剤とからなる、2液型の付加反応型シリコーン樹脂を用いることができる。アルケニル基を有するシリコーンとしては、1分子中に少なくとも2個のアルケニル基を有するポリオルガノシロキサンを用いることができる。一例として、ビニル基を有するポリオルガノシロキサンを用いることができる。硬化触媒は、アルケニル基を有するシリコーン中のアルケニル基と、ヒドロシリル基を有する硬化剤中のヒドロシリル基との付加反応を促進するための触媒である。硬化触媒としては、ヒドロシリル化反応に用いられる触媒として周知の触媒が挙げられ、例えば、白金族系硬化触媒、例えば白金、ロジウム、パラジウムなどの白金族金属単体や塩化白金などを用いることができる。ヒドロシリル基を有する硬化剤としては、例えば、ヒドロシリル基を有するポリオルガノシロキサン(ケイ素原子に直接結合した水素原子を1分子中に少なくとも2個有するオルガノハイドロジェンポリシロキサン)を用いることができる。
特に、熱伝導シート1が、発熱体への密着性に優れ、バインダ樹脂2の過剰なブリードを抑制できるようにする観点では、バインダ樹脂2が、1分子中にアルケニル基を有するポリオルガノシロキサンと、1分子中にケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンとからなる、付加反応型のシリコーン樹脂であって、ポリオルガノシロキサンと、オルガノハイドロジェンポリシロキサンの配合比が以下の式1を満たすものを用いることが好ましい。
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下
式1中、ケイ素原子に直接結合した水素原子のモル数とは、ケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサン中のケイ素原子に直接結合した水素原子のモル数を表す。また、式1中、アルケニル基のモル数とは、アルケニル基を有するポリオルガノシロキサン中のアルケニル基のモル数を表す。バインダ樹脂2は、式1で表されるモル比(以下、「Si-H/アルケニル基比」ともいう。)が0.40以上であることにより、バインダ樹脂2のブリード量が抑制される傾向にあり、熱伝導シート1が上述した条件2を満たしやすくなる。また、バインダ樹脂2は、式1で表されるモル比が0.60以下であることにより、熱伝導シート1のタック力が向上する傾向にあり、上述した条件1を満たしやすくなる。バインダ樹脂2は、式1で表されるモル比が0.45~0.58の範囲であってもよい。
アルケニル基を有するポリオルガノシロキサンは、23℃における動粘度が、10~100,000mm2/sの範囲であってもよく、500~50,000mm2/sの範囲であってもよい。アルケニル基を有するポリオルガノシロキサンは、23℃における動粘度が10mm2/s以上であると、得られる組成物の保存安定性がより良好となる傾向にある。また、アルケニル基を有するポリオルガノシロキサンは、23℃における動粘度が100,000mm2/s以下であると、得られる組成物の伸展性がより高くなる傾向にある。なお、アルケニル基を有するポリオルガノシロキサンの動粘度は、オストワルド粘度計を用いて測定した値を意味する。アルケニル基を有するポリオルガノシロキサンは、1種単独で用いてもよいし、粘度(動粘度)が異なる2種以上を併用してもよい。
熱伝導シート1中のバインダ樹脂2の含有量は、特に限定されず、目的に応じて適宜選択することができる。例えば、熱伝導シート1中のバインダ樹脂2の含有量は、30体積%以上とすることができ、32体積%以上であってもよく、34体積%以上であってもよく、36体積%以上であってもよい。また、熱伝導シート1中のバインダ樹脂2の含有量の上限値は、60体積%以下とすることができ、50体積%以下であってもよく、40体積%以下であってもよく、38体積%以下であってもよく、37体積%以下であってもよい。特に、上述した条件1及び条件2を満たす観点では、熱伝導シート1中のバインダ樹脂2の含有量は、30~38体積%の範囲とすることができ、32~36体積%の範囲であってもよい。バインダ樹脂2は、1種単独で用いてもよいし、2種以上を併用してもよい。
特に、熱伝導シート1中、式1で表されるモル比が0.40以上0.60以下である付加反応型のシリコーン樹脂の含有量は、バインダ樹脂2の総量に対して80体積%以上であることが好ましく、90体積%以上であってもよく、95体積%以上であってもよく、99体積%以上であってもよく、実質的に100%であってもよい。
<異方性熱伝導性フィラー>
異方性熱伝導性フィラー3の材質は、特に限定されず、例えば、窒化ホウ素(BN)、雲母、アルミナ、窒化アルミニウム、炭化珪素、シリカ、酸化亜鉛、二硫化モリブデン等が挙げられ、熱伝導率の観点では、窒化ホウ素が好ましい。異方性熱伝導性フィラー3は、1種単独で用いてもよいし、2種以上を併用してもよい。
異方性熱伝導性フィラー3の材質は、特に限定されず、例えば、窒化ホウ素(BN)、雲母、アルミナ、窒化アルミニウム、炭化珪素、シリカ、酸化亜鉛、二硫化モリブデン等が挙げられ、熱伝導率の観点では、窒化ホウ素が好ましい。異方性熱伝導性フィラー3は、1種単独で用いてもよいし、2種以上を併用してもよい。
図2は、異方性熱伝導性フィラー3の一例である、結晶形状が六方晶型である鱗片状の窒化ホウ素3Aを模式的に示す斜視図である。図2中、aは鱗片状の窒化ホウ素3Aの長軸を表し、bは鱗片状の窒化ホウ素3Aの厚みを表し、cは鱗片状の窒化ホウ素3Aの短軸を表す。異方性熱伝導性フィラー3としては、熱伝導率の観点では、図2に示すように結晶形状が六方晶型である鱗片状の窒化ホウ素3Aを用いることが好ましい。本技術では、異方性熱伝導性フィラー3として、球状の熱伝導性フィラー(例えば球状の窒化ホウ素)よりも安価な鱗片状の熱伝導性フィラー(例えば、鱗片状の窒化ホウ素3A)を用いることで、低コストと優れた熱特性(高熱伝導率)を両立させた熱伝導シート1が得られる。
異方性熱伝導性フィラー3の平均粒子径は、目的に応じて適宜選択することができる。熱伝導シート1の熱伝導性を良好にする観点では、熱伝導シート1中の異方性熱伝導性フィラー3の平均粒子径は、15μm以上であり、20μm以上であってもよく、25μm以上であってもよく、30μm以上であってもよく、35μm以上であってもよく、40μm以上であってもよい。また、熱伝導シート1中の異方性熱伝導性フィラー3の平均粒子径は、熱伝導シート1の熱伝導性を良好にする観点では、30~60μmの範囲であってもよく、30~50μmの範囲であってもよく、35~55μmの範囲であってもよく、35~45μmの範囲であってもよい。
熱伝導シート1中の異方性熱伝導性フィラー3の含有量は、目的に応じて適宜選択することができる。熱伝導シート1中における異方性熱伝導性フィラー3の含有量は、上述した条件2の観点では、20体積%を超えることが好ましく、21体積%以上であってもよく、23体積%以上であってもよく、25体積%以上であってもよく、26体積%以上であってもよい。また、熱伝導シート1中における異方性熱伝導性フィラー3の含有量は、上述した条件1の観点では、30体積%未満が好ましく、28体積%以下であってもよく、27体積%以下であってもよい。また、熱伝導シート1中における異方性熱伝導性フィラー3の含有量は、23~27体積%の範囲であってもよく、23~25体積%の範囲であってもよく、25~27体積%の範囲であってもよい。
<他の熱伝導性フィラー>
他の熱伝導性フィラー4には、球状、粉末状、顆粒状などの熱伝導性フィラーが含まれる。他の熱伝導性フィラー4の材質は、熱伝導シート1の熱伝導性の観点では、例えば、セラミックフィラーが好ましく、具体例としては、酸化アルミニウム(アルミナ、サファイア)、窒化アルミニウム、水酸化アルミニウム、酸化亜鉛、窒化ホウ素、ジルコニア、炭化ケイ素などが挙げられる。他の熱伝導性フィラー4は、1種単独で用いてもよいし、2種以上(平均粒子径が異なる2種以上の熱伝導性フィラー)を併用してもよい。
他の熱伝導性フィラー4には、球状、粉末状、顆粒状などの熱伝導性フィラーが含まれる。他の熱伝導性フィラー4の材質は、熱伝導シート1の熱伝導性の観点では、例えば、セラミックフィラーが好ましく、具体例としては、酸化アルミニウム(アルミナ、サファイア)、窒化アルミニウム、水酸化アルミニウム、酸化亜鉛、窒化ホウ素、ジルコニア、炭化ケイ素などが挙げられる。他の熱伝導性フィラー4は、1種単独で用いてもよいし、2種以上(平均粒子径が異なる2種以上の熱伝導性フィラー)を併用してもよい。
特に、他の熱伝導性フィラー4としては、熱伝導シート1の熱伝導率や、熱伝導シート1の比重の観点などを考慮して、アルミナ、窒化アルミニウム、酸化亜鉛及び水酸化アルミニウムのうち、少なくともアルミナを含む1種以上であることが好ましく、窒化アルミニウムとアルミナとを併用してもよく、窒化アルミニウムとアルミナと酸化亜鉛とを併用してもよい。
窒化アルミニウムの平均粒子径は、熱伝導シート1の比重の観点では、30μm未満とすることができ、0.1~10μmであってもよく、0.5~5μmであってもよく、1~3μmであってもよく、1~2μmであってもよい。アルミナの平均粒子径は、熱伝導シート1の比重の観点では、0.1~10μmとすることができ、0.1~8μmであってもよく、0.1~7μmであってもよく、0.1~3μmであってもよい。酸化亜鉛の平均粒子径は、熱伝導シート1の比重の観点では、例えば、0.01~5μmとすることができ、0.03~3μmであってもよく、0.05~2μmであってもよい。
熱伝導シート1中の他の熱伝導性フィラー4の含有量は、目的に応じて適宜選択することができる。熱伝導シート1中における他の熱伝導性フィラー4の含有量は、10体積%以上とすることができ、15体積%以上であってもよく、20体積%以上であってもよく、25体積%以上であってもよく、30体積%以上であってもよく、35体積%以上であってもよい。また、熱伝導シート1中の他の熱伝導性フィラー4の含有量の上限値は、50体積%以下とすることができ、45体積%以下であってもよく、40体積%以下であってもよい。また、熱伝導シート1中における他の熱伝導性フィラー4の含有量は、30~50体積%の範囲であってもよく、35~45体積%の範囲であってもよい。
他の熱伝導性フィラー4として、例えば、窒化アルミニウム粒子とアルミナ粒子と酸化亜鉛粒子とを併用する場合、熱伝導シート1中、窒化アルミニウム粒子の含有量は10~25体積%(特に、17~23体積%)とすることが好ましく、アルミナ粒子の含有量は10~25体積%(特に、17~23体積%)とすることが好ましく、酸化亜鉛粒子の含有量は0.1~5体積%(特に、0.5~3体積%)とすることが好ましい。
熱伝導シート1中、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量は、上述した条件1及び条件2を満たす観点では、61体積%を超えることが好ましく、64体積%以上であってもよく、66体積%以上であってもよい。また、熱伝導シート1中、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量は、上述した条件1及び条件2を満たす観点では、68体積%以下とすることが好ましく、67体積%以下であってもよく、66体積%以下であってもよく、65体積%以下であってもよい。熱伝導シート1が上述した条件1及び条件2を満たす観点では、熱伝導シート1中、異方性熱伝導性フィラー3と他の熱伝導性フィラー4の合計含有量は、64~68体積%の範囲とすることができ、64~66体積%の範囲であってもよい。
熱伝導シート1は、本技術の効果を損なわない範囲で、上述した成分以外の他の成分をさらに含有してもよい。他の成分としては、例えば、カップリング剤、分散剤、硬化促進剤、遅延剤、粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤、溶剤などが挙げられる。例えば、熱伝導シート1は、異方性熱伝導性フィラー3及び他の熱伝導性フィラー4の分散性をより向上させる観点で、カップリング剤で処理した異方性熱伝導性フィラー3及び/又はカップリング剤で処理した他の熱伝導性フィラー4を用いてもよい。
<熱伝導シートの製造方法>
熱伝導シート1の製造方法は、下記工程Aと、工程Bと、工程Cとを有する。
熱伝導シート1の製造方法は、下記工程Aと、工程Bと、工程Cとを有する。
<工程A>
工程Aでは、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とをバインダ樹脂2に分散させることにより、バインダ樹脂2と、異方性熱伝導性フィラー3と、他の熱伝導性フィラー4とを含有する熱伝導性組成物を作製する。熱伝導性組成物は、バインダ樹脂2と、異方性熱伝導性フィラー3と、他の熱伝導性フィラー4との他に、必要に応じて上述した他の成分を公知の手法により均一に混合することで調製できる。
工程Aでは、異方性熱伝導性フィラー3と他の熱伝導性フィラー4とをバインダ樹脂2に分散させることにより、バインダ樹脂2と、異方性熱伝導性フィラー3と、他の熱伝導性フィラー4とを含有する熱伝導性組成物を作製する。熱伝導性組成物は、バインダ樹脂2と、異方性熱伝導性フィラー3と、他の熱伝導性フィラー4との他に、必要に応じて上述した他の成分を公知の手法により均一に混合することで調製できる。
<工程B>
工程Bでは、工程Aで調製した熱伝導性組成物を押出成形した後硬化し、柱状の硬化物(成形体ブロック)を得る。押出成形する方法としては、特に制限されず、公知の各種押出成形法の中から、熱伝導性組成物の粘度や熱伝導シート1に要求される特性等に応じて適宜採用することができる。押出成形法において、熱伝導性組成物をダイより押し出す際、熱伝導性組成物中のバインダ樹脂2が流動し、その流動方向に沿って異方性熱伝導性フィラー3が配向する。
工程Bでは、工程Aで調製した熱伝導性組成物を押出成形した後硬化し、柱状の硬化物(成形体ブロック)を得る。押出成形する方法としては、特に制限されず、公知の各種押出成形法の中から、熱伝導性組成物の粘度や熱伝導シート1に要求される特性等に応じて適宜採用することができる。押出成形法において、熱伝導性組成物をダイより押し出す際、熱伝導性組成物中のバインダ樹脂2が流動し、その流動方向に沿って異方性熱伝導性フィラー3が配向する。
工程Bで得られる柱状の硬化物の大きさ・形状は、求められる熱伝導シート1の大きさに応じて決めることができる。例えば、断面の縦の大きさが0.5~15cmで横の大きさが0.5~15cmの直方体が挙げられる。直方体の長さは必要に応じて決定すればよい。
<工程C>
工程Cでは、工程Bで得た柱状の硬化物を柱の長さ方向に対し所定の厚みに切断して熱伝導シート1を得る。工程Cで得られる熱伝導シート1の表面(切断面)には、異方性熱伝導性フィラー3が露出する。切断方法としては特に制限はなく、柱状の硬化物の大きさや機械的強度により公知のスライス装置の中から適宜選択することができる。柱状の硬化物の切断方向としては、成形方法が押出成形法である場合、押出し方向に異方性熱伝導性フィラー3が配向しているものもあるため、押出し方向に対して60~120度であることが好ましく、70~100度の方向であることがより好ましく、90度(略垂直)の方向であることがさらに好ましい。柱状の硬化物の切断方向は、上記の他は特に制限はなく、熱伝導シート1の使用目的等に応じて適宜選択することができる。
工程Cでは、工程Bで得た柱状の硬化物を柱の長さ方向に対し所定の厚みに切断して熱伝導シート1を得る。工程Cで得られる熱伝導シート1の表面(切断面)には、異方性熱伝導性フィラー3が露出する。切断方法としては特に制限はなく、柱状の硬化物の大きさや機械的強度により公知のスライス装置の中から適宜選択することができる。柱状の硬化物の切断方向としては、成形方法が押出成形法である場合、押出し方向に異方性熱伝導性フィラー3が配向しているものもあるため、押出し方向に対して60~120度であることが好ましく、70~100度の方向であることがより好ましく、90度(略垂直)の方向であることがさらに好ましい。柱状の硬化物の切断方向は、上記の他は特に制限はなく、熱伝導シート1の使用目的等に応じて適宜選択することができる。
このように、工程Aと、工程Bと、工程Cとを有する熱伝導シートの製造方法では、上述した条件1及び条件2を満たす熱伝導シート1が得られる。
熱伝導シート1の製造方法は、上述した例に限定されず、例えば、工程Cの後に、切断面をプレスする工程Dをさらに有していてもよい。プレスする工程Dをさらに有することで、工程Cで得られる熱伝導シート1の表面がより平滑化され、他の部材との密着性をより向上させることができる。プレスの方法としては、平盤と表面が平坦なプレスヘッドとからなる一対のプレス装置を使用することができる。また、ピンチロールでプレスしてもよい。プレスの際の圧力としては、例えば、0.1~100MPaとすることができる。プレスの効果をより高め、プレス時間を短縮するために、プレスは、バインダ樹脂2のガラス転移温度(Tg)以上で行うことが好ましい。例えば、プレス温度は、0~180℃とすることができ、室温(例えば25℃)~100℃の温度範囲内であってもよく、30~100℃であってもよい。
<電子機器>
熱伝導シート1は、例えば、発熱体と放熱体との間に配置させることにより、発熱体で生じた熱を放熱体に逃がすためにそれらの間に配された構造の電子機器(サーマルデバイス)とすることができる。電子機器は、発熱体と放熱体と熱伝導シート1とを少なくとも有し、必要に応じて、その他の部材をさらに有していてもよい。このように、熱伝導シート1を適用した電子機器は、発熱体と放熱体との間に熱伝導シート1が挟持されているため、熱伝導シート1により高熱伝導性を実現しつつ、発熱体への熱伝導シート1の密着性に優れ、熱伝導シート1からのバインダ樹脂2の過剰なブリードを抑制できる。
熱伝導シート1は、例えば、発熱体と放熱体との間に配置させることにより、発熱体で生じた熱を放熱体に逃がすためにそれらの間に配された構造の電子機器(サーマルデバイス)とすることができる。電子機器は、発熱体と放熱体と熱伝導シート1とを少なくとも有し、必要に応じて、その他の部材をさらに有していてもよい。このように、熱伝導シート1を適用した電子機器は、発熱体と放熱体との間に熱伝導シート1が挟持されているため、熱伝導シート1により高熱伝導性を実現しつつ、発熱体への熱伝導シート1の密着性に優れ、熱伝導シート1からのバインダ樹脂2の過剰なブリードを抑制できる。
発熱体としては、特に限定されず、例えば、CPU、GPU(Graphics Processing Unit)、DRAM(Dynamic Random Access Memory)、フラッシュメモリなどの集積回路素子、トランジスタ、抵抗器など、電気回路において発熱する電子部品等が挙げられる。また、発熱体には、通信機器における光トランシーバ等の光信号を受信する部品も含まれる。
放熱体としては、特に限定されず、例えば、ヒートシンクやヒートスプレッダなど、集積回路素子やトランジスタ、光トランシーバ筐体などと組み合わされて用いられるものが挙げられる。ヒートシンクやヒートスプレッダの材質としては、例えば、銅、アルミニウムなどが挙げられる。放熱体としては、ヒートスプレッダやヒートシンク以外にも、熱源から発生する熱を伝導して外部に放散させるものであればよく、例えば、放熱器、冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、ベーパーチャンバー、金属カバー、筐体等が挙げられる。ヒートパイプは、例えば、円筒状、略円筒状又は扁平筒状の中空構造体である。
図3は、熱伝導シートを適用した半導体装置の一例を示す断面図である。例えば、熱伝導シート1は、図3に示すように、各種電子機器に内蔵される半導体装置50に実装され、発熱体と放熱体との間に挟持される。図3に示す半導体装置50は、電子部品51と、ヒートスプレッダ52と、熱伝導シート1とを備え、熱伝導シート1がヒートスプレッダ52と電子部品51との間に挟持される。熱伝導シート1が、ヒートスプレッダ52とヒートシンク53との間に挟持されることにより、ヒートスプレッダ52とともに、電子部品51の熱を放熱する放熱部材を構成する。熱伝導シート1の実装場所は、ヒートスプレッダ52と電子部品51との間や、ヒートスプレッダ52とヒートシンク53との間に限らず、電子機器や半導体装置の構成に応じて、適宜選択できる。ヒートスプレッダ52は、例えば方形板状に形成され、電子部品51と対峙する主面52aと、主面52aの外周に沿って立設された側壁52bとを有する。ヒートスプレッダ52は、側壁52bに囲まれた主面52aに熱伝導シート1が設けられ、主面52aと反対側の他面52cに熱伝導シート1を介してヒートシンク53が設けられる。
以上、本技術に係る熱伝導シート及び熱伝導シートの製造方法の実施形態について述べたが、上述した実施形態以外の様々な構成を採用することもできる。以下、実施形態の例を付記する。
(付記1)
バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の他の熱伝導性フィラーとを含有する組成物の硬化物からなり、以下の条件1及び条件2を満たす、熱伝導シート。
[条件1]:当該熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の当該熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後の上記バインダ樹脂のブリード量が0.20g以下である。
(付記2)
上記バインダ樹脂が、付加反応型のシリコーン樹脂であり、
上記付加反応型のシリコーン樹脂が、1分子中にアルケニル基を有するポリオルガノシロキサンと、1分子中にケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンとからなり、
上記ポリオルガノシロキサンと、上記オルガノハイドロジェンポリシロキサンの配合比が以下の式1を満たす、付記1に記載の熱伝導シート。
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下
(付記3)
上記バインダ樹脂の含有量が、30体積%以上38体積%以下である、付記1又は2に記載の熱伝導シート。
(付記4)
上記異方性熱伝導性フィラーの含有量が、22体積%以上29体積%以下である、付記1~3のいずれかに記載の熱伝導シート。
(付記5)
上記異方性熱伝導性フィラーが、窒化ホウ素であり、
上記他の熱伝導性フィラーが、アルミナ、窒化アルミニウム、酸化亜鉛及び水酸化アルミニウムのうち、少なくともアルミナを含む1種以上である、付記1~4のいずれかに記載の熱伝導シート。
(付記6)
上記異方性熱伝導性フィラーが、鱗片状の窒化ホウ素であり、
上記鱗片状の窒化ホウ素が、当該熱伝導シートの厚み方向に配向している、付記1~5のいずれかに記載の熱伝導シート。
(付記7)
以下の条件3をさらに満たす、付記1~6のいずれかに記載の熱伝導シート。
[条件3]:当該熱伝導シートのバルク熱伝導率が9.5W/m・K以上である。
(付記8)
150℃下で1000時間静置後に圧縮率10%で測定した熱抵抗値の、製造直後に圧縮率10%で測定した熱抵抗値に対する変化率が10%以内である、付記1~7のいずれかに記載の熱伝導シート。
(付記9)
150℃下で1000時間静置後に荷重3kgf/cm2で測定した圧縮率が20%以上である、付記1~8のいずれかに記載の熱伝導シート。
(付記10)
バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の熱伝導性フィラーとを含有する熱伝導性組成物を作製する工程Aと、
上記熱伝導性組成物を押出成形した後硬化し、柱状の硬化物を得る工程Bと、
上記柱状の硬化物を柱の長さ方向に対し略垂直方向に所定の厚みに切断して熱伝導シートを得る工程Cとを有し、
上記熱伝導シートが以下の条件1及び条件2を満たす、熱伝導シートの製造方法。
[条件1]:上記熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の上記熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後の上記バインダ樹脂のブリード量が0.20g以下である。
(付記11)
上記バインダ樹脂が、付加反応型のシリコーン樹脂であり、
上記付加反応型のシリコーン樹脂が、1分子中にアルケニル基を有するポリオルガノシロキサンと、1分子中にケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンとからなり、
上記ポリオルガノシロキサンと、上記オルガノハイドロジェンポリシロキサンの配合比が以下の式1を満たす、付記10に記載の熱伝導シートの製造方法。
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下
(付記12)
以下の条件3をさらに満たす、付記10又は11に記載の熱伝導シートの製造方法。
[条件3]:上記熱伝導シートのバルク熱伝導率が9.5W/m・K以上である。
(付記13)
発熱体と、
放熱体と、
発熱体と放熱体の間に挟持された付記1~9のいずれかに記載の熱伝導シートとを備える、電子機器。
(付記1)
バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の他の熱伝導性フィラーとを含有する組成物の硬化物からなり、以下の条件1及び条件2を満たす、熱伝導シート。
[条件1]:当該熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の当該熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後の上記バインダ樹脂のブリード量が0.20g以下である。
(付記2)
上記バインダ樹脂が、付加反応型のシリコーン樹脂であり、
上記付加反応型のシリコーン樹脂が、1分子中にアルケニル基を有するポリオルガノシロキサンと、1分子中にケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンとからなり、
上記ポリオルガノシロキサンと、上記オルガノハイドロジェンポリシロキサンの配合比が以下の式1を満たす、付記1に記載の熱伝導シート。
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下
(付記3)
上記バインダ樹脂の含有量が、30体積%以上38体積%以下である、付記1又は2に記載の熱伝導シート。
(付記4)
上記異方性熱伝導性フィラーの含有量が、22体積%以上29体積%以下である、付記1~3のいずれかに記載の熱伝導シート。
(付記5)
上記異方性熱伝導性フィラーが、窒化ホウ素であり、
上記他の熱伝導性フィラーが、アルミナ、窒化アルミニウム、酸化亜鉛及び水酸化アルミニウムのうち、少なくともアルミナを含む1種以上である、付記1~4のいずれかに記載の熱伝導シート。
(付記6)
上記異方性熱伝導性フィラーが、鱗片状の窒化ホウ素であり、
上記鱗片状の窒化ホウ素が、当該熱伝導シートの厚み方向に配向している、付記1~5のいずれかに記載の熱伝導シート。
(付記7)
以下の条件3をさらに満たす、付記1~6のいずれかに記載の熱伝導シート。
[条件3]:当該熱伝導シートのバルク熱伝導率が9.5W/m・K以上である。
(付記8)
150℃下で1000時間静置後に圧縮率10%で測定した熱抵抗値の、製造直後に圧縮率10%で測定した熱抵抗値に対する変化率が10%以内である、付記1~7のいずれかに記載の熱伝導シート。
(付記9)
150℃下で1000時間静置後に荷重3kgf/cm2で測定した圧縮率が20%以上である、付記1~8のいずれかに記載の熱伝導シート。
(付記10)
バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の熱伝導性フィラーとを含有する熱伝導性組成物を作製する工程Aと、
上記熱伝導性組成物を押出成形した後硬化し、柱状の硬化物を得る工程Bと、
上記柱状の硬化物を柱の長さ方向に対し略垂直方向に所定の厚みに切断して熱伝導シートを得る工程Cとを有し、
上記熱伝導シートが以下の条件1及び条件2を満たす、熱伝導シートの製造方法。
[条件1]:上記熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の上記熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後の上記バインダ樹脂のブリード量が0.20g以下である。
(付記11)
上記バインダ樹脂が、付加反応型のシリコーン樹脂であり、
上記付加反応型のシリコーン樹脂が、1分子中にアルケニル基を有するポリオルガノシロキサンと、1分子中にケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンとからなり、
上記ポリオルガノシロキサンと、上記オルガノハイドロジェンポリシロキサンの配合比が以下の式1を満たす、付記10に記載の熱伝導シートの製造方法。
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下
(付記12)
以下の条件3をさらに満たす、付記10又は11に記載の熱伝導シートの製造方法。
[条件3]:上記熱伝導シートのバルク熱伝導率が9.5W/m・K以上である。
(付記13)
発熱体と、
放熱体と、
発熱体と放熱体の間に挟持された付記1~9のいずれかに記載の熱伝導シートとを備える、電子機器。
以下、本技術の実施例について説明する。なお、本技術は、これらの実施例に限定されるものではない。
<実施例1>
上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製した。この熱伝導性組成物を、押出成形法により、直方体状の内部空間を有する金型(開口部:50mm×50mm)中に流し込み、60℃のオーブンで4時間加熱して、柱状の硬化物(成形体ブロック)を形成した。なお、金型の内面には、剥離処理面が内側となるように剥離ポリエチレンテレフタレートフィルムを貼り付けておいた。得られた柱状の硬化物を柱の長さ方向に対し略直交する方向に、柱状の硬化物をスライサーで1mm厚のシート状に切断(スライス)することにより、鱗片状の窒化ホウ素がシートの厚み方向に配向した熱伝導シートを得た。
上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製した。この熱伝導性組成物を、押出成形法により、直方体状の内部空間を有する金型(開口部:50mm×50mm)中に流し込み、60℃のオーブンで4時間加熱して、柱状の硬化物(成形体ブロック)を形成した。なお、金型の内面には、剥離処理面が内側となるように剥離ポリエチレンテレフタレートフィルムを貼り付けておいた。得られた柱状の硬化物を柱の長さ方向に対し略直交する方向に、柱状の硬化物をスライサーで1mm厚のシート状に切断(スライス)することにより、鱗片状の窒化ホウ素がシートの厚み方向に配向した熱伝導シートを得た。
<実施例2>
実施例2では、上述した式1で表されるSi-H/アルケニル基比が0.58であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
実施例2では、上述した式1で表されるSi-H/アルケニル基比が0.58であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<実施例3>
実施例3では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂34体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)25体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
実施例3では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂34体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)25体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<実施例4>
実施例4では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂36体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)23体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
実施例4では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂36体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)23体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<実施例5>
実施例5では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が25~60)を用いた熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
実施例5では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が25~60)を用いた熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<実施例6>
実施例6では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が25~60)を用いた熱伝導性組成物を調製したこと以外は、実施例2と同様の方法で熱伝導シートを得た。
実施例6では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が20~50)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が25~60)を用いた熱伝導性組成物を調製したこと以外は、実施例2と同様の方法で熱伝導シートを得た。
<実施例7>
実施例7では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が20~50)を用いた熱伝導性組成物を調製したこと以外は、実施例3と同様の方法で熱伝導シートを得た。
実施例7では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が20~50)を用いた熱伝導性組成物を調製したこと以外は、実施例3と同様の方法で熱伝導シートを得た。
<実施例8>
実施例8では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が20~50)を用いた熱伝導性組成物を調製したこと以外は、実施例4と同様の方法で熱伝導シートを得た。
実施例8では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が20~50)を用いた熱伝導性組成物を調製したこと以外は、実施例4と同様の方法で熱伝導シートを得た。
<実施例9>
実施例9では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
実施例9では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<実施例10>
実施例10では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)27体積%と、窒化アルミニウム(D50が1.2μm)30体積%と、球状アルミナ粒子(D50が2μm)10体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
実施例10では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂33体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が15~40)27体積%と、窒化アルミニウム(D50が1.2μm)30体積%と、球状アルミナ粒子(D50が2μm)10体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<比較例1>
比較例1では、上述した式1で表されるSi-H/アルケニル基比が0.33であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
比較例1では、上述した式1で表されるSi-H/アルケニル基比が0.33であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<比較例2>
比較例2では、上述した式1で表されるSi-H/アルケニル基比が0.84であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
比較例2では、上述した式1で表されるSi-H/アルケニル基比が0.84であるシリコーン樹脂32体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)27体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<比較例3>
比較例3では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂29体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)30体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
比較例3では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂29体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)30体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<比較例4>
比較例4では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂39体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)20体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
比較例4では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂39体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)20体積%と、窒化アルミニウム(D50が1.2μm)20体積%と、球状アルミナ粒子(D50が2μm)20体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<比較例5>
比較例5では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂39体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)20体積%と、窒化アルミニウム(D50が1.2μm)10体積%と、球状アルミナ粒子(D50が2μm)30体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
比較例5では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂39体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)20体積%と、窒化アルミニウム(D50が1.2μm)10体積%と、球状アルミナ粒子(D50が2μm)30体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<比較例6>
比較例6では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂39体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)20体積%と、窒化アルミニウム(D50が1.2μm)30体積%と、球状アルミナ粒子(D50が2μm)10体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
比較例6では、上述した式1で表されるSi-H/アルケニル基比が0.45であるシリコーン樹脂39体積%と、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)20体積%と、窒化アルミニウム(D50が1.2μm)30体積%と、球状アルミナ粒子(D50が2μm)10体積%と、酸化亜鉛粒子(D50が0.1μm)1体積%とを均一に混合することにより、熱伝導性組成物を調製したこと以外は、実施例1と同様の方法で熱伝導シートを得た。
<比較例7>
比較例7では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例1と同様の方法で熱伝導シートを得た。
比較例7では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例1と同様の方法で熱伝導シートを得た。
<比較例8>
比較例8では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例2と同様の方法で熱伝導シートを得た。
比較例8では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例2と同様の方法で熱伝導シートを得た。
<比較例9>
比較例9では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例3と同様の方法で熱伝導シートを得た。
比較例9では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例3と同様の方法で熱伝導シートを得た。
<比較例10>
比較例10では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例4と同様の方法で熱伝導シートを得た。
比較例10では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例4と同様の方法で熱伝導シートを得た。
<比較例11>
比較例11では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例5と同様の方法で熱伝導シートを得た。
比較例11では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例5と同様の方法で熱伝導シートを得た。
<比較例12>
比較例12では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例6と同様の方法で熱伝導シートを得た。
比較例12では、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が40μm、アスペクト比が10~30)に替えて、結晶形状が六方晶型である鱗片状の窒化ホウ素(D50が50μm、アスペクト比が15~40)を用いた熱伝導性組成物を調製したこと以外は、比較例6と同様の方法で熱伝導シートを得た。
<オイルブリード量>
図4(A)は、熱伝導シート1を圧縮治具(上治具61及び下治具62)で挟んだ状態を示す断面図であり、図4(B)は、熱伝導シート1を下治具62上に置いた状態を示す平面図である。図5(A)は、熱伝導シート1を圧縮治具(上治具61及び下治具62)で挟んだ状態を示す平面図であり、図5(B)は、熱伝導シート1を圧縮治具(上治具61及び下治具62)で挟んだ状態を示す側面図である。
図4(A)は、熱伝導シート1を圧縮治具(上治具61及び下治具62)で挟んだ状態を示す断面図であり、図4(B)は、熱伝導シート1を下治具62上に置いた状態を示す平面図である。図5(A)は、熱伝導シート1を圧縮治具(上治具61及び下治具62)で挟んだ状態を示す平面図であり、図5(B)は、熱伝導シート1を圧縮治具(上治具61及び下治具62)で挟んだ状態を示す側面図である。
各実施例及び比較例で得られた熱伝導シートを、25mm×25mmの大きさに加工した熱伝導シート10と、40mm×75mmの大きさに加工したメッシュ60(品名:PETメッシュシート、品番:TN180、サンプラテック社製)を準備し、各重量を測定した。各実施例及び比較例で準備した熱伝導シート10(25mm×25mm×1mm厚)の重量(g)を表1,2に示す。上治具61と下治具62を準備し、ろ紙63(型番:定性濾紙 NO,101、直径90mm)を3枚重ねて下治具62の上に置いた。ろ紙63の上にメッシュ60を2枚重ねて置き、メッシュ60の上に熱伝導シート10とスペーサ64を置いた。熱伝導シート10とスペーサ64との間隔は、図4(B)に示すように約1cmとした。熱伝導シート10とスペーサ64の上に、メッシュ65を2枚重ねて置いた。メッシュ65の上に、ろ紙66を3枚重ねて置いた。ろ紙66の上に、上治具61を載せ、熱伝導シート10が40%圧縮された状態になるまで上治具61の4箇所のナット67を均一に締めた。上治具61と下治具62の間に挟んだ熱伝導シート10が40%圧縮された状態で、125℃に昇温されたオーブンに投入した。上治具61と下治具62の間に挟んだ熱伝導シート10を、オーブンに投入してから48時間後に取り出し、冷めるまで常温で放置した。上治具61の4箇所のナット67を外し、熱伝導シート10とメッシュ60,65(合計4枚)を一体とした状態で重量測定した。測定した重量から、熱伝導シート10におけるシリコーン樹脂(バインダ樹脂)のブリード量(g)を求めた。結果を表1,2に示す。
<バルク熱伝導率>
バルク熱伝導率は、ASTM-D5470に準拠した方法で各熱伝導シートの熱抵抗を測定し、横軸に測定時の熱伝導シートの厚み(mm)、縦軸に熱伝導シートの熱抵抗(℃・cm2/W)をプロットし、そのプロットの傾きから熱伝導シートのバルク熱伝導率(W/m・K)を算出した。熱伝導シートの熱抵抗は、各実施例、比較例の熱伝導シートと同配合で厚みの異なる熱伝導シートを3種類用意して、それぞれの厚みの熱伝導シートについて測定した。結果を表1,2に示す。
バルク熱伝導率は、ASTM-D5470に準拠した方法で各熱伝導シートの熱抵抗を測定し、横軸に測定時の熱伝導シートの厚み(mm)、縦軸に熱伝導シートの熱抵抗(℃・cm2/W)をプロットし、そのプロットの傾きから熱伝導シートのバルク熱伝導率(W/m・K)を算出した。熱伝導シートの熱抵抗は、各実施例、比較例の熱伝導シートと同配合で厚みの異なる熱伝導シートを3種類用意して、それぞれの厚みの熱伝導シートについて測定した。結果を表1,2に示す。
<実効熱伝導率>
熱伝導シートの実効熱伝導率(W/m・K)は、ASTM-D5470に準拠した熱抵抗測定装置を用いて、厚み1mmの熱伝導シートに0.3~3kgf/cm2の荷重をかけて測定し、最も熱伝導率の高い値を選択した。結果を表1,2に示す。
熱伝導シートの実効熱伝導率(W/m・K)は、ASTM-D5470に準拠した熱抵抗測定装置を用いて、厚み1mmの熱伝導シートに0.3~3kgf/cm2の荷重をかけて測定し、最も熱伝導率の高い値を選択した。結果を表1,2に示す。
<タック力>
得られた熱伝導シートを、剥離処理したPETフィルムの間に挟んで、0.5MPaで30秒プレス処理を行い、その後、熱伝導シートからPETフィルムを剥がし、別の剥離処理したPETフィルムの間に再度熱伝導シートを挟んで7日放置した。7日放置後、熱伝導シートから剥離処理したPETフィルムを剥がした直後(3分以内)に、タックテスター(マルコム社製)を用いて、直径5.1mmのプローブにより熱伝導シートを2mm/秒で50μm押し込み、10mm/秒で引き抜いた際の熱伝導シートの表面のタック力(gf)を求めた。結果を表1,2に示す。
得られた熱伝導シートを、剥離処理したPETフィルムの間に挟んで、0.5MPaで30秒プレス処理を行い、その後、熱伝導シートからPETフィルムを剥がし、別の剥離処理したPETフィルムの間に再度熱伝導シートを挟んで7日放置した。7日放置後、熱伝導シートから剥離処理したPETフィルムを剥がした直後(3分以内)に、タックテスター(マルコム社製)を用いて、直径5.1mmのプローブにより熱伝導シートを2mm/秒で50μm押し込み、10mm/秒で引き抜いた際の熱伝導シートの表面のタック力(gf)を求めた。結果を表1,2に示す。
<アルミ板への固定>
図6は、熱伝導シートをアルミ板の上に載せ、90°ずらしたときに、熱伝導シートがずり落ちるかどうかの評価方法を説明するための図である。図6(A)に示すように、水平に置いたアルミ板70の上に熱伝導シート20を載せた後、図6(B)に示すように、熱伝導シート20を保持しながらアルミ板70を90°傾けたときに、熱伝導シート20がずり落ちるかどうかを評価した。結果を表1,2に示す。表1,2中、○とは、熱伝導シート20がずり落ちなかったこと(OK)を表す。また、表1,2中、×とは、熱伝導シート20がずり落ちたこと(NG)を表す。
図6は、熱伝導シートをアルミ板の上に載せ、90°ずらしたときに、熱伝導シートがずり落ちるかどうかの評価方法を説明するための図である。図6(A)に示すように、水平に置いたアルミ板70の上に熱伝導シート20を載せた後、図6(B)に示すように、熱伝導シート20を保持しながらアルミ板70を90°傾けたときに、熱伝導シート20がずり落ちるかどうかを評価した。結果を表1,2に示す。表1,2中、○とは、熱伝導シート20がずり落ちなかったこと(OK)を表す。また、表1,2中、×とは、熱伝導シート20がずり落ちたこと(NG)を表す。
<熱抵抗値の変化>
熱伝導シートの熱抵抗値(℃・cm2/W)の変化は、次のようにして求めた。まず、製造直後の熱伝導シートを初期厚みに対して10%圧縮した状態での熱抵抗値(10%圧縮時での初期熱抵抗値:第1の熱抵抗値)を測定した。この熱伝導シートを150℃下で1000時間静置後に、150℃下で1000時間静置後の厚みに対して10%圧縮した状態での熱抵抗値(10%圧縮時での150℃×1000H後の熱抵抗値:第2の熱抵抗値)を測定した。これらの第1の熱抵抗値と第2の熱抵抗値から、熱伝導シートを150℃下で1000時間静置する前後における10%圧縮時での熱抵抗値の変化率(%)を求めた。結果を表1,2に示す。
熱伝導シートの熱抵抗値(℃・cm2/W)の変化は、次のようにして求めた。まず、製造直後の熱伝導シートを初期厚みに対して10%圧縮した状態での熱抵抗値(10%圧縮時での初期熱抵抗値:第1の熱抵抗値)を測定した。この熱伝導シートを150℃下で1000時間静置後に、150℃下で1000時間静置後の厚みに対して10%圧縮した状態での熱抵抗値(10%圧縮時での150℃×1000H後の熱抵抗値:第2の熱抵抗値)を測定した。これらの第1の熱抵抗値と第2の熱抵抗値から、熱伝導シートを150℃下で1000時間静置する前後における10%圧縮時での熱抵抗値の変化率(%)を求めた。結果を表1,2に示す。
<荷重3kgf/cm2での圧縮率>
得られた熱伝導シートを150℃下で1000時間静置後に、荷重3kgf/cm2をかけたときの熱伝導シートの圧縮率(%)を測定した。結果を表1,2に示す。
得られた熱伝導シートを150℃下で1000時間静置後に、荷重3kgf/cm2をかけたときの熱伝導シートの圧縮率(%)を測定した。結果を表1,2に示す。
<ショア硬度の変化>
熱伝導シートのショアタイプOOにおける硬度をASTM-D2240に準拠した測定方法で測定した。具体的には、製造直後の厚み1mmの熱伝導シートを10枚積層した際のショア硬度(初期ショア硬度)と、厚み1mmの熱伝導シートを150℃下で1000時間静置後に10枚積層した際のショア硬度を測定した。熱伝導シートのショア硬度は、片面5点、両面で合計10点測定した測定結果の平均値とした。結果を表1,2に示す。
熱伝導シートのショアタイプOOにおける硬度をASTM-D2240に準拠した測定方法で測定した。具体的には、製造直後の厚み1mmの熱伝導シートを10枚積層した際のショア硬度(初期ショア硬度)と、厚み1mmの熱伝導シートを150℃下で1000時間静置後に10枚積層した際のショア硬度を測定した。熱伝導シートのショア硬度は、片面5点、両面で合計10点測定した測定結果の平均値とした。結果を表1,2に示す。
<絶縁破壊電圧>
熱伝導シートの絶縁破壊電圧は、超高電圧耐圧試験器(計測技術研究所製、7473)を用いて、熱伝導シートの厚み1mm、昇圧速度0.05kV/秒、室温の条件で測定した。絶縁破壊が生じた時点の電圧を絶縁破壊電圧(kV)とした。結果を表1,2に示す。
熱伝導シートの絶縁破壊電圧は、超高電圧耐圧試験器(計測技術研究所製、7473)を用いて、熱伝導シートの厚み1mm、昇圧速度0.05kV/秒、室温の条件で測定した。絶縁破壊が生じた時点の電圧を絶縁破壊電圧(kV)とした。結果を表1,2に示す。
実施例1~10で得られた熱伝導シートは、バインダ樹脂と、異方性熱伝導性フィラーと、他の熱伝導性フィラーとを含有する組成物の硬化物からなり、上述した条件1及び条件2を満たすものであり、発熱体への密着性に優れ、バインダ樹脂の過剰なブリードを抑制できることが分かった。また、実施例1~10で得られた熱伝導シートは、上述した条件3を満たすものであり、熱伝導性が良好であることが分かった。
実施例1~10で得られた熱伝導シートは、150℃下で1000時間静置後に圧縮率10%で測定した熱抵抗値の、製造直後に圧縮率10%で測定した熱抵抗値に対する変化率が10%以内であることが分かった。また、実施例1~10で得られた熱伝導シートは、150℃下で1000時間静置後に荷重3kgf/cm2で測定した圧縮率が20%以上であることが分かった。
比較例1,4~7,10~12で得られた熱伝導シートは、上述した条件2を満たさず、バインダ樹脂の過剰なブリードを抑制できないことが分かった。
比較例2,3,8,9で得られた熱伝導シートは、上述した条件1を満たさず、アルミ板への固定性が良好ではないことが分かった。
比較例3,9~12で得られた熱伝導シートは、150℃下で1000時間静置後に圧縮率10%で測定した熱抵抗値の、製造直後に圧縮率10%で測定した熱抵抗値に対する変化率が10%以内の値を示さないことが分かった。また、比較例2,3,8,9で得られた熱伝導シートは、150℃下で1000時間静置後に荷重3kgf/cm2で測定した圧縮率が20%未満であることが分かった。
1 熱伝導シート、1A 表面、2 バインダ樹脂、3 異方性熱伝導性フィラー、4 他の熱伝導性フィラー、10 熱伝導シート、20 熱伝導シート、51 電子部品、52 ヒートスプレッダ、53 ヒートシンク、52a 主面、52b 側壁、60 メッシュ、61 上治具、62 下治具、63 ろ紙、64 スペーサ、65 メッシュ、66 ろ紙、67 ナット、70 アルミ板
Claims (13)
- バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の他の熱伝導性フィラーとを含有する組成物の硬化物からなり、以下の条件1及び条件2を満たす、熱伝導シート。
[条件1]:当該熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の当該熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後の上記バインダ樹脂のブリード量が0.20g以下である。 - 上記バインダ樹脂が、付加反応型のシリコーン樹脂であり、
上記付加反応型のシリコーン樹脂が、1分子中にアルケニル基を有するポリオルガノシロキサンと、1分子中にケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンとからなり、
上記ポリオルガノシロキサンと、上記オルガノハイドロジェンポリシロキサンの配合比が以下の式1を満たす、請求項1に記載の熱伝導シート。
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下 - 上記バインダ樹脂の含有量が、30体積%以上38体積%以下である、請求項1又は2に記載の熱伝導シート。
- 上記異方性熱伝導性フィラーの含有量が、22体積%以上29体積%以下である、請求項1又は2に記載の熱伝導シート。
- 上記異方性熱伝導性フィラーが、窒化ホウ素であり、
上記他の熱伝導性フィラーが、アルミナ、窒化アルミニウム、酸化亜鉛及び水酸化アルミニウムのうち、少なくともアルミナを含む1種以上である、請求項1又は2に記載の熱伝導シート。 - 上記異方性熱伝導性フィラーが、鱗片状の窒化ホウ素であり、
上記鱗片状の窒化ホウ素が、当該熱伝導シートの厚み方向に配向している、請求項1又は2に記載の熱伝導シート。 - 以下の条件3をさらに満たす、請求項1又は2に記載の熱伝導シート。
[条件3]:当該熱伝導シートのバルク熱伝導率が9.5W/m・K以上である。 - 150℃下で1000時間静置後に圧縮率10%で測定した熱抵抗値の、製造直後に圧縮率10%で測定した熱抵抗値に対する変化率が10%以内である、請求項1又は2に記載の熱伝導シート。
- 150℃下で1000時間静置後に荷重3kgf/cm2で測定した圧縮率が20%以上である、請求項1又は2に記載の熱伝導シート。
- バインダ樹脂と、異方性熱伝導性フィラーと、上記異方性熱伝導性フィラー以外の熱伝導性フィラーとを含有する熱伝導性組成物を作製する工程Aと、
上記熱伝導性組成物を押出成形した後硬化し、柱状の硬化物を得る工程Bと、
上記柱状の硬化物を柱の長さ方向に対し略垂直方向に所定の厚みに切断して熱伝導シートを得る工程Cとを有し、
上記熱伝導シートが以下の条件1及び条件2を満たす、熱伝導シートの製造方法。
[条件1]:上記熱伝導シートのタック力が80gf以上である。
[条件2]:25mm×25mmの大きさであって1mm厚の上記熱伝導シートが40%圧縮された状態で、125℃下で48時間静置後の上記バインダ樹脂のブリード量が0.20g以下である。 - 上記バインダ樹脂が、付加反応型のシリコーン樹脂であり、
上記付加反応型のシリコーン樹脂が、1分子中にアルケニル基を有するポリオルガノシロキサンと、1分子中にケイ素原子に直接結合した水素原子を有するオルガノハイドロジェンポリシロキサンとからなり、
上記ポリオルガノシロキサンと、上記オルガノハイドロジェンポリシロキサンの配合比が以下の式1を満たす、請求項10に記載の熱伝導シートの製造方法。
式1:ケイ素原子に直接結合した水素原子のモル数/アルケニル基のモル数=0.40以上0.60以下 - 以下の条件3をさらに満たす、請求項10又は11に記載の熱伝導シートの製造方法。
[条件3]:上記熱伝導シートのバルク熱伝導率が9.5W/m・K以上である。 - 発熱体と、
放熱体と、
発熱体と放熱体の間に挟持された請求項1又は2に記載の熱伝導シートとを備える、電子機器。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2022/023095 WO2022264895A1 (ja) | 2021-06-16 | 2022-06-08 | 熱伝導シート及び熱伝導シートの製造方法 |
US18/567,857 US20240262979A1 (en) | 2021-06-16 | 2022-06-08 | Thermally-conductive sheet and thermally-conductive sheet production method |
TW111122373A TW202309240A (zh) | 2021-06-16 | 2022-06-16 | 熱傳導片材及熱傳導片材之製造方法 |
Applications Claiming Priority (6)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2021099914 | 2021-06-16 | ||
JP2021099914 | 2021-06-16 | ||
JP2021176215 | 2021-10-28 | ||
JP2021176215 | 2021-10-28 | ||
JP2021180253 | 2021-11-04 | ||
JP2021180253 | 2021-11-04 |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2022192025A true JP2022192025A (ja) | 2022-12-28 |
Family
ID=84624183
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2022092767A Pending JP2022192025A (ja) | 2021-06-16 | 2022-06-08 | 熱伝導シート及び熱伝導シートの製造方法 |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2022192025A (ja) |
-
2022
- 2022-06-08 JP JP2022092767A patent/JP2022192025A/ja active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5882581B2 (ja) | 熱伝導シート、その製造方法及びこれを用いた放熱装置 | |
WO2022044724A1 (ja) | 熱伝導性シート及び熱伝導性シートの製造方法 | |
WO2022264790A1 (ja) | 熱伝導シート及び熱伝導シートの製造方法 | |
WO2022264895A1 (ja) | 熱伝導シート及び熱伝導シートの製造方法 | |
JP2023073998A (ja) | 熱伝導シート及び熱伝導シートの製造方法 | |
JP6987941B1 (ja) | 熱伝導性シート及び熱伝導性シートの製造方法 | |
JP2022192025A (ja) | 熱伝導シート及び熱伝導シートの製造方法 | |
WO2022176628A1 (ja) | 熱伝導シートの製造方法、熱伝導シートパッケージ及び熱伝導シートパッケージの製造方法 | |
WO2021230047A1 (ja) | 熱伝導性シート及び熱伝導性シートの製造方法 | |
WO2022172795A1 (ja) | 熱伝導シートの供給形態及び熱伝導シート本体 | |
JP6999003B1 (ja) | 熱伝導性シート及び熱伝導性シートの製造方法 | |
JP6307288B2 (ja) | 熱伝導性部材、及び半導体装置 | |
JP2021190698A (ja) | 熱伝導シート及びその製造方法、並びに放熱構造体及び電子機器 | |
WO2022181171A1 (ja) | 熱伝導シート及び熱伝導シートの製造方法 | |
CN117480600A (zh) | 导热片及导热片的制造方法 | |
WO2022172782A1 (ja) | 熱伝導シートの供給形態及び熱伝導シート | |
WO2022181206A1 (ja) | 熱伝導シート、熱伝導シートの製造方法、電子機器 | |
JP6976393B2 (ja) | 熱伝導性シート及び熱伝導性シートの製造方法 | |
JP2022129325A (ja) | 熱伝導シート及び熱伝導シートの製造方法 | |
CN114174435B (zh) | 导热片及其制造方法以及散热结构体和电子设备 | |
TW202222556A (zh) | 熱傳導性片材及熱傳導性片材之製造方法 |