JP2022188325A - Turning weld joint with excellent fatigue strength and turning welding method - Google Patents

Turning weld joint with excellent fatigue strength and turning welding method Download PDF

Info

Publication number
JP2022188325A
JP2022188325A JP2021096245A JP2021096245A JP2022188325A JP 2022188325 A JP2022188325 A JP 2022188325A JP 2021096245 A JP2021096245 A JP 2021096245A JP 2021096245 A JP2021096245 A JP 2021096245A JP 2022188325 A JP2022188325 A JP 2022188325A
Authority
JP
Japan
Prior art keywords
gusset
weld bead
main plate
weld
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021096245A
Other languages
Japanese (ja)
Other versions
JP7468461B2 (en
Inventor
隆志 平出
Takashi Hiraide
恒久 半田
Tsunehisa Handa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2021096245A priority Critical patent/JP7468461B2/en
Publication of JP2022188325A publication Critical patent/JP2022188325A/en
Application granted granted Critical
Publication of JP7468461B2 publication Critical patent/JP7468461B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a turning weld joint which can improve a fatigue strength inexpensively and stably, and a turning welding method.SOLUTION: A turning weld joint, which is obtained by turning welding a gusset 2 to a main plate, has a first weld bead 3 which is continuously heaped up so as to pass a short side from one side of a long side of the gusset 2 by fillet-welding of the gusset 2 and the main plate to reach the other side of the long side of the gusset 2, and further has: a second weld bead 4 which is so formed as to extend on the main plate along the first weld bead 3 on one side of the long side of the gusset; and a third weld bead 5 which is so formed as to extend on the main plate along the first weld bead 3 on the other side of the long side of the gusset. An interval M between an extension part of the second bead 4 and an extension part of the third bead 5 is equal to or less than a length W of the short side of the gusset. The weld joint has a striking mark 9 over a range of 50% or more of the interval M in a region that extends from a weld toe of the first weld bead 3 to a surface of the main plate and is sandwiched between the two extension parts.SELECTED DRAWING: Figure 5

Description

本発明は、鋼構造物を建造する際に広く採用される主板とガセットとの回し溶接継手および溶接方法に関し、特に、優れた疲労特性が要求される鋼橋や船舶等の鋼構造物に好適な回し溶接継手および回し溶接方法に関する。 The present invention relates to a turn-welded joint between a main plate and a gusset and a welding method that are widely used when constructing steel structures, and is particularly suitable for steel structures such as steel bridges and ships that require excellent fatigue properties. The present invention relates to a turn-welded joint and a turn-welding method.

一般に、鋼構造物では、図8に示すように、ガセット2の周囲を主板1に隅肉溶接(いわゆる角回し溶接)した回し溶接継手が多数存在する。この回し溶接継手においては、溶接ビード3がガセット2を取り囲んでおり、その溶接ビード3に欠陥、例えば、割れなどが発生して、溶接ビード3と主板1との溶接止端部3aの形状が円滑に形成されなかった場合、その溶接止端部3aにおいて応力集中が生じ易くなる。 Generally, in steel structures, as shown in FIG. 8, there are many boxing weld joints in which the periphery of the gusset 2 is fillet welded (so-called angle boxing welding) to the main plate 1 . In this boxing welded joint, the weld bead 3 surrounds the gusset 2, and defects such as cracks occur in the weld bead 3, and the shape of the weld toe 3a between the weld bead 3 and the main plate 1 changes. If it is not formed smoothly, stress concentration tends to occur at the weld toe 3a.

これに対し、溶接止端部から主板の表面に至る境界領域を変形させることで応力集中の程度を減少させる技術が実用化されている。その変形は、高硬度の端子を境界領域に打撃することで形成され、一般にピーニングと呼称される。ピーニングによって外力に起因する溶接継手の疲労亀裂の発生を抑制することができる。なお、外力とは、鋼構造物に外部から繰り返し作用する荷重であり、鋼構造物が鋼橋である場合は、風などの自然の気象状況や車両の通行によって繰り返し生じる荷重であり、鋼構造物が船舶である場合は、風や波によって繰り返し生じる荷重である。 On the other hand, a technique for reducing the degree of stress concentration by deforming the boundary region from the weld toe to the surface of the main plate has been put into practical use. The deformation is created by striking a hard terminal against the boundary area and is commonly referred to as peening. Peening can suppress the occurrence of fatigue cracks in welded joints caused by external forces. The external force is the load that repeatedly acts on the steel structure from the outside, and in the case where the steel structure is a steel bridge, the load that is repeatedly generated by natural weather conditions such as wind and the passage of vehicles. If the object is a ship, it is a repetitive load caused by wind and waves.

また近年、鋼構造物の老朽化に伴って、疲労に起因する損傷に関する報告が増加している。そのような損傷を防止するためには、鋼構造物を定期的に検査して、損傷の進行状況を管理し、さらに、損傷の進行に応じて対策を講じる必要がある。とりわけ疲労に起因する損傷が鋼橋に発生した場合は、車両の通行を規制することによって鋼橋に作用する外力を軽減することは可能であるが、交通の渋滞や物流の遅延等を引き起こすので社会活動に多大な悪影響を及ぼす。そこで、鋼構造物の回し溶接継手を健全化することにより、溶接継手の疲労特性を改善する技術が検討されている。 In recent years, with the aging of steel structures, there have been an increasing number of reports on damage caused by fatigue. In order to prevent such damage, it is necessary to periodically inspect steel structures, manage the progress of damage, and take countermeasures as the damage progresses. In particular, when damage caused by fatigue occurs in a steel bridge, it is possible to reduce the external force acting on the steel bridge by restricting the passage of vehicles, but it causes traffic congestion and delays in logistics. It has a great negative impact on social activities. Therefore, techniques for improving the fatigue properties of welded joints by improving the soundness of boxing welded joints of steel structures are being studied.

特許文献1には、ガセットが主板に当接する矩形の当接面(以下、矩形当接面という)の短辺周囲を回した溶接部の止端に対してピーニング処理を施すことによって、溶接部の疲労強度を向上する技術が開示されている。この技術によれば、回し溶接部の全長に渡ってピーニング処理を行うことで疲労強度を向上するものであり、前記の通り継手の溶接長の多くをピーニングする必要があり、施工コストについて課題を有する。 In Patent Document 1, a gusset contacts a main plate with a rectangular contact surface (hereinafter referred to as a rectangular contact surface). Techniques for improving the fatigue strength of are disclosed. According to this technology, fatigue strength is improved by performing peening treatment over the entire length of the boxing weld. have.

特許文献2には、回し溶接にあたり短辺ビードを形成し、次いで矩形当接面の長辺に沿って2本の長辺ビード形成し、かつその長辺ビードに間隔を設け、さらにその範囲内の溶接止端を打撃することにより疲労強度を向上させる方法が開示されている。この技術はガセットの矩形当接面の短辺に沿って形成される溶接ビードが短いため、回し溶接継手の応力集中箇所に溶接始終端が存在する。溶接始終端の溶接ビードには空隙等が生じやすく、ピーニング処理を施した箇所以外が疲労亀裂の発生起点となることが懸念される。 In Patent Document 2, a short-side bead is formed in boxing welding, then two long-side beads are formed along the long side of the rectangular contact surface, and an interval is provided between the long-side beads. A method is disclosed for improving fatigue strength by striking the weld toe of the steel. In this technique, since the weld bead formed along the short side of the rectangular abutment surface of the gusset is short, the start and end of the weld are present at the stress concentration points of the boxing weld joint. Weld beads at the start and end of the weld are likely to have gaps, and there is concern that fatigue cracks may start at locations other than the peened locations.

特開2006-175512号公報JP 2006-175512 A 特開2018-171647号公報JP 2018-171647 A

本発明は、従来の技術の問題点を解消し、疲労強度を安価に且つ安定して向上させることができる回し溶接継手および回し溶接方法を提供することを目的とする。 SUMMARY OF THE INVENTION It is an object of the present invention to solve the problems of the prior art and to provide a rotary welded joint and a rotary welding method capable of stably improving the fatigue strength at a low cost.

本発明者は、回し溶接継手の疲労強度を高めるために、疲労亀裂の発生およびその伝播を抑制する技術について検討した。その結果、短辺ビードが短い、いわゆるショートビードとならないようガセットと主板とを隅肉溶接によってガセットの長辺から短辺を通過し、反対側のガセット長辺に至るよう連続的に溶接ビードを形成し、その後にガセット長辺の溶接ビード沿って主板上に延伸して第2溶接ビードならびに第3溶接ビードを形成し、かつ第2溶接ビードの延伸部と第3溶接ビードの延伸部との間の溶接止端部から主板表面に至る領域にピーニング処理を施すことで、溶接部からの疲労亀裂の発生を抑制できることを見出した。 In order to increase the fatigue strength of boxing welded joints, the present inventors have studied techniques for suppressing the initiation and propagation of fatigue cracks. As a result, the gusset and the main plate are fillet welded so that the bead on the short side does not become a so-called short bead. and then extending onto the main plate along the weld bead on the long side of the gusset to form a second weld bead and a third weld bead, and between the extension of the second weld bead and the extension of the third weld bead It was found that the occurrence of fatigue cracks from the weld can be suppressed by peening the area from the weld toe between the welds to the surface of the main plate.

さらに、疲労亀裂が発生した場合には、疲労亀裂の起点が2本の延伸された溶接ビードの間のみに存在し、主板側に発生する疲労亀裂の伝播が2本のビードの間に制限され、ひいては疲労亀裂が広範囲に伝播するのを防止できることを知見した。 Furthermore, when a fatigue crack occurs, the starting point of the fatigue crack exists only between the two elongated weld beads, and the propagation of the fatigue crack occurring on the main plate side is restricted between the two beads. , and eventually fatigue cracks can be prevented from propagating over a wide area.

本発明は、かかる知見に基づき、さらに検討を加えて完成されたものであって、本発明の要旨は、次のとおりである。
〔1〕ガセットを主板に回し溶接して得られる溶接継手であって、前記ガセットと前記主板とを隅肉溶接によって前記ガセットの長辺の一方の側から前記ガセットの短辺を通過し、前記ガセットの長辺の他方の側に至るよう連続的に盛られた第1溶接ビードを有し、さらに前記ガセット長辺の一方の側の前記第1溶接ビードに沿って前記主板上に延伸して形成された第2溶接ビードと、前記ガセット長辺の他方の側の前記第1溶接ビードに沿って前記主板上に延伸して形成された第3溶接ビードとを有し、前記第2溶接ビードの延伸部と前記第3溶接ビードの延伸部との間隔Mが前記ガセットの短辺の長さW以下(M≦W)であり、前記2つの延伸部に挟まれ前記第1溶接ビードの溶接止端部から前記主板の表面に至る領域に前記間隔Mの50%以上の範囲にわたり打撃痕を有することを特徴とする回し溶接継手。
〔2〕〔1〕において、前記ガセットの短辺の長さWが30.0mm以下であり、前記間隔Mが10.0mm以下であることを特徴とする回し溶接継手。
〔3〕〔1〕または〔2〕において、前記間隔Mが1.0mm~4.0mmであることを特徴とする回し溶接継手。
〔4〕〔1〕ないし〔3〕のいずれか一つにおいて、前記打撃痕の最大深さが0.03mm以上0.50mm未満であることを特徴とする回し溶接継手。
〔5〕〔1〕ないし〔4〕のいずれか一つにおいて、前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板幅または板厚方向の疲労亀裂伝播速度が1.75×10-8m/cycle以下であることを特徴とする回し溶接継手。
〔6〕〔1〕ないし〔5〕のいずれか一つにおいて、前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板厚方向への疲労亀裂伝播速度が1.00×10-8m/cycle以下であることを特徴とする回し溶接継手。
〔7〕ガセットを主板に回し溶接して接合する溶接方法において、前記ガセットと前記主板とを隅肉溶接によって前記ガセットの長辺の一方の側から前記ガセットの短辺を通過し、前記ガセットの長辺の他方の側に至るよう連続的に盛られた第1溶接ビードを形成し、前記ガセット長辺の一方の側の前記第1溶接ビードに沿って前記主板上に延伸する第2溶接ビードを形成し、前記ガセット長辺の他方の側の前記第1溶接ビードに沿って前記主板上に延伸する第3溶接ビードを形成し、前記第2溶接ビードの延伸部と前記第3溶接ビードの延伸部との間隔Mを前記ガセットの短辺の長さW以下(M≦W)とし、前記2つの延伸部に挟まれ前記第1溶接ビードの溶接止端部から前記主板の表面に至る領域に前記間隔Mの50%以上の範囲にわたり打撃痕を設けることを特徴とする回し溶接方法。
〔8〕〔7〕において、前記打撃痕を設けるにあたり、前記ガセットの短辺に平行な方向の長さTが1mm~10mmであり、前記短辺に垂直な断面における曲率半径Rが1mm~10mmである打撃用端子を用いることを特徴とする回し溶接方法。
〔9〕〔8〕において、前記打撃用端子が空気圧または高周波電流で駆動することを特徴とする回し溶接方法。
〔10〕〔7〕ないし〔9〕のいずれか一つにおいて、前記ガセットの短辺の長さWが30.0mm以下であり、前記間隔Mを10.0mm以下とすることを特徴とする回し溶接方法。
〔11〕〔7〕ないし〔10〕のいずれか一つにおいて、前記間隔Mを1.0mm~4.0mmとすることを特徴とする回し溶接方法。
〔12〕〔7〕ないし〔11〕のいずれか一つにおいて、前記打撃痕の最大深さDを0.03mm以上0.50mm未満とすることを特徴とする回し溶接方法。
〔13〕〔7〕ないし〔12〕のいずれか一つにおいて、前記回し溶接を行うにあたって、前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板幅または板厚方向の疲労亀裂伝播速度が1.75×10-8m/cycle以下であることを特徴とする回し溶接方法。
〔14〕〔7〕ないし〔13〕のいずれか一つにおいて、前記回し溶接を行うにあたって、前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板厚方向への疲労亀裂伝播速度が1.00×10-8m/cycle以下であることを特徴とする回し溶接方法。
The present invention was completed based on these findings and further studies, and the gist of the present invention is as follows.
[1] A welded joint obtained by turn-welding a gusset to a main plate, wherein the gusset and the main plate are welded together by fillet welding so that one of the long sides of the gusset passes through the short side of the gusset and the It has a first weld bead continuously heaped up to the other long side of the gusset, and further extends on the main plate along the first weld bead on one side of the long side of the gusset. a formed second weld bead; and a third weld bead formed extending on the main plate along the first weld bead on the other side of the gusset long side, wherein the second weld bead The distance M between the extending portion of and the extending portion of the third weld bead is less than or equal to the length W of the short side of the gusset (M ≤ W), and the welding of the first weld bead sandwiched between the two extending portions A boxy welded joint characterized by having an impact mark over a range of 50% or more of the distance M in a region from the toe to the surface of the main plate.
[2] A rotary welded joint according to [1], wherein the length W of the short side of the gusset is 30.0 mm or less, and the interval M is 10.0 mm or less.
[3] The boxy welded joint according to [1] or [2], wherein the interval M is 1.0 mm to 4.0 mm.
[4] The boxy welded joint according to any one of [1] to [3], wherein the maximum depth of the impact mark is 0.03 mm or more and less than 0.50 mm.
[5] In any one of [1] to [4], when the stress intensity factor range ΔK of the main plate is 15 MPa·m 1/2 , fatigue crack propagation in the width or thickness direction of the main plate A boxy welded joint characterized by a speed of 1.75×10 −8 m/cycle or less.
[6] In any one of [1] to [5], when the stress intensity factor range ΔK of the main plate is 15 MPa·m 1/2 , the fatigue crack propagation rate in the plate thickness direction of the main plate is A boxy welded joint characterized by being 1.00×10 −8 m/cycle or less.
[7] In the welding method of joining the gusset to the main plate by turn welding, the gusset and the main plate are welded together by fillet welding from one of the long sides of the gusset through the short side of the gusset. A first weld bead is formed continuously extending to the other side of the long side, and a second weld bead extends onto the main plate along the first weld bead on one side of the long side of the gusset. forming a third weld bead extending on the main plate along the first weld bead on the other side of the gusset long side, and the extension of the second weld bead and the third weld bead The distance M from the extending portion is set to be equal to or less than the length W of the short side of the gusset (M≦W), and the region sandwiched between the two extending portions and extending from the weld toe of the first weld bead to the surface of the main plate A rounding welding method characterized in that an impact mark is provided over a range of 50% or more of the distance M in the.
[8] In [7], in providing the hit mark, the length T in the direction parallel to the short side of the gusset is 1 mm to 10 mm, and the radius of curvature R in the cross section perpendicular to the short side is 1 mm to 10 mm. A round welding method characterized by using a striking terminal.
[9] The round welding method according to [8], wherein the striking terminal is driven by air pressure or high-frequency current.
[10] In any one of [7] to [9], the turning is characterized in that the length W of the short side of the gusset is 30.0 mm or less and the interval M is 10.0 mm or less. Welding method.
[11] A round welding method according to any one of [7] to [10], wherein the interval M is set to 1.0 mm to 4.0 mm.
[12] A round welding method according to any one of [7] to [11], wherein the maximum depth D of the impact mark is 0.03 mm or more and less than 0.50 mm.
[13] In any one of [7] to [12], when the stress intensity factor range ΔK of the main plate is 15 MPa m 1/2 in performing the boxing welding, the width of the main plate or A boxing welding method, wherein a fatigue crack propagation rate in a plate thickness direction is 1.75×10 −8 m/cycle or less.
[14] In any one of [7] to [13], when the stress intensity factor range ΔK of the main plate is 15 MPa m 1/2 in performing the boxing welding, the thickness direction of the main plate A boxing welding method characterized in that the fatigue crack propagation rate to 1.00×10 −8 m/cycle or less.

本発明においては、どのような材質の主板やガセットを用いても効果が発揮されるが、疲労破壊の初期段階である、主板において発生した疲労亀裂の進展を制限できることから、疲労亀裂伝播速度の低い(疲労亀裂が進展しにくい)主板およびガセットに適用することによって、より一層の長寿命化が期待できる。 In the present invention, the effect can be exhibited by using the main plate and the gusset of any material. Further extension of life can be expected by applying this to the main plates and gussets with low fatigue crack growth.

なお本発明は、鋼構造物を新たに建造する場合のみならず、老朽化した鋼構造物を補修する場合にも適用できる。 The present invention can be applied not only when constructing a new steel structure but also when repairing an aged steel structure.

本発明によれば、鋼構造物を新たに建造する場合や老朽化した鋼構造物を補修する場合に、回し溶接継手の疲労強度を安価に且つ安定して向上することが可能となり、産業上格段の効果を奏する。 According to the present invention, when constructing a new steel structure or when repairing an aged steel structure, it is possible to inexpensively and stably improve the fatigue strength of boxing welded joints. It has a remarkable effect.

本発明に係る回し溶接継手を模式的に示す概略斜視図である。1 is a schematic perspective view schematically showing a boxing welded joint according to the present invention; FIG. 本発明に係る回し溶接方法の溶接施工手順を模式的に示す概略平面図である。It is a schematic plan view which shows typically the welding execution procedure of the box welding method which concerns on this invention. 本発明に係る回し溶接継手のガセット長辺側から見た概略断面図である。FIG. 3 is a schematic cross-sectional view of the boxing welded joint according to the present invention, viewed from the gusset long side. 本発明に係る回し溶接継手の溶接ビード延伸部周辺を示す概略平面図である。FIG. 4 is a schematic plan view showing the vicinity of the weld bead extending portion of the boxing welded joint according to the present invention; 本発明に係る回し溶接継手の溶接ビード延伸部周辺の打撃痕を示す概略平面図である。FIG. 4 is a schematic plan view showing an impact mark around the weld bead extending portion of the boxing welded joint according to the present invention. 本発明に係る回し溶接方法に用いる打撃用端子を模式的に示す概略斜視図である。1 is a schematic perspective view schematically showing a striking terminal used in the boxing welding method according to the present invention; FIG. 本発明に係る回し溶接継手の試験片を示す概略平面図および概略右側面図である。FIG. 2 is a schematic plan view and a schematic right side view showing a test piece of a boxing welded joint according to the present invention; 従来の回し溶接継手を模式的に示す概略斜視図である。It is a schematic perspective view which shows the conventional boxing-welded joint typically.

まず、本発明の対象となるガセットおよび主板について説明する。 First, the gusset and main plate to which the present invention is applied will be described.

[ガセット]
ガセットの板厚は、前述したガセットの短辺の長さWのことであり、具体的には、5.0mm~30.0mmが好ましい。また、ガセットの板長がガセットの長辺の長さであり、具体的には、30.0mm~1,000.0mmが好ましい。さらに、ガセットの板幅がガセットの高さであり、具体的には、50.0mm~1,000.0mmが好ましい。
ガセットの鋼種としては、SM400、SM490などが挙げられ、引張強度は400MPa~720MPaの範囲が好ましい。
[Gusset]
The plate thickness of the gusset is the length W of the short side of the gusset described above, and specifically, it is preferably 5.0 mm to 30.0 mm. Further, the plate length of the gusset is the length of the long side of the gusset, and specifically, it is preferably 30.0 mm to 1,000.0 mm. Furthermore, the width of the gusset is the height of the gusset, and specifically, it is preferably 50.0 mm to 1,000.0 mm.
Steel grades of the gusset include SM400, SM490, etc., and the tensile strength is preferably in the range of 400 MPa to 720 MPa.

[主板]
主板の形状としては、特に規定されるものではなく、どのような形状であっても適用することができるが、一般的には、板状であれば、板厚は、9.0mm~80.0mmが好ましい。
[Main plate]
The shape of the main plate is not particularly specified, and any shape can be applied. 0 mm is preferred.

主板の鋼種としては、SM400、SM490などが挙げられる。特に、耐疲労亀裂伝播特性が必要な鋼材としては、SM490、SM570などが挙げられ、引張強度は400MPa~720MPaの範囲が好ましい。 Examples of steel types for the main plate include SM400 and SM490. In particular, steel materials that require fatigue crack propagation resistance include SM490 and SM570, and the tensile strength is preferably in the range of 400 MPa to 720 MPa.

この耐疲労亀裂伝播特性は、後述するように、ASTM E647に規格に準拠した疲労亀裂伝播試験により、応力拡大係数範囲(ΔK)に対応する疲労亀裂伝播速度(da/dN)を求めて評価している。 As will be described later, this fatigue crack propagation resistance is evaluated by obtaining the fatigue crack propagation rate (da/dN) corresponding to the stress intensity factor range (ΔK) by a fatigue crack propagation test conforming to ASTM E647. ing.

次に、図面を用いて本発明の溶接継手および施工手順を具体的に説明する。 Next, the welded joint and construction procedure of the present invention will be specifically described with reference to the drawings.

[回し溶接継手の施工手順および構造]
図1は、本発明に係る回し溶接継手の例を模式的に示す概略斜視図であり、図2の(a)~(d)は、その回し溶接継手を得るための溶接施工の手順を模式的に示す概略平面図である。以下に、図2(a)~(d)により本発明に係る回し溶接継手の施工手順を説明する。
[Construction procedure and structure of boxing welded joint]
FIG. 1 is a schematic perspective view schematically showing an example of a box-welded joint according to the present invention, and FIGS. 1 is a schematic plan view schematically shown; FIG. The construction procedure of the boxing weld joint according to the present invention will be described below with reference to FIGS. 2(a) to 2(d).

まず、図2(a)に示すように、ガセット2の全周に亘って第1溶接ビード3を形成する。第1溶接ビード3は、ガセット2の周囲を回り込むように形成されているので、ガセット2の短辺よりも長くなり、短辺の周辺領域における溶接ビードの健全性を確保している。 First, as shown in FIG. 2( a ), the first weld bead 3 is formed along the entire circumference of the gusset 2 . Since the first weld bead 3 is formed so as to wrap around the gusset 2, it is longer than the short side of the gusset 2, ensuring soundness of the weld bead in the peripheral region of the short side.

なお、図3に示すように、第1溶接ビード3の幅Sは、第1溶接ビード3の高さHと、ほぼ等しくすることが好ましい。具体的には、幅と高さの割合〔S/H〕を0.9~1.2の範囲とすることが当該領域の応力集中を軽減する観点から好ましい。 In addition, as shown in FIG. 3, it is preferable that the width S of the first weld bead 3 and the height H of the first weld bead 3 are substantially equal. Specifically, it is preferable to set the width-to-height ratio [S/H] in the range of 0.9 to 1.2 from the viewpoint of reducing stress concentration in the region.

次いで、図2(b)に示すように、ガセット2に形成された第1溶接ビード3の長辺の一方の側に沿って第2溶接ビード4を形成する。そして、第2溶接ビード4を第1溶接ビード3から更に主板1上に延伸して延伸部4aを形成する。 Next, as shown in FIG. 2(b), a second weld bead 4 is formed along one of the long sides of the first weld bead 3 formed on the gusset 2. Next, as shown in FIG. Then, the second weld bead 4 is extended from the first weld bead 3 onto the main plate 1 to form an extension portion 4a.

続けて、図2(c)に示すように、ガセット2に形成された第1溶接ビード3の長辺の他方の側に沿って第3溶接ビード5を形成する。そして、第3溶接ビード5を第1溶接ビード3から更に主板1上に延伸して延伸部5aを形成する。 Subsequently, as shown in FIG. 2C, a third weld bead 5 is formed along the other long side of the first weld bead 3 formed on the gusset 2 . Then, the third weld bead 5 is extended from the first weld bead 3 onto the main plate 1 to form an extension portion 5a.

このようにして、第1溶接ビード3に第2溶接ビード4および第3溶接ビード5を形成することによって、第1溶接ビード3内部の空隙等の欠陥が生じるのを防ぎ、かつ、溶接ビード3、4、5と主板1との間に物理的な隙間が生じるのを防止でき、その結果、第1溶接ビード3の溶接止端部3aの形状に関わらず疲労亀裂が発生するのを防止できる。 By forming the second weld bead 4 and the third weld bead 5 in the first weld bead 3 in this way, the occurrence of defects such as voids inside the first weld bead 3 can be prevented, and the weld bead 3 can be , 4, 5 and the main plate 1, and as a result, fatigue cracks can be prevented regardless of the shape of the weld toe 3a of the first weld bead 3. .

なお、第2溶接ビード4、第3溶接ビード5について、図2(b)~(c)では、ガセット2の長辺の左側に沿って形成した溶接ビードを第2溶接ビード4とし、長辺の右側に沿って形成した溶接ビードを第3溶接ビード5としたが、左右を逆にしても問題はない。つまり、ガセット2の長辺の右側に沿って形成した溶接ビードを第2溶接ビード4とし、長辺の左側に沿って形成した溶接ビードを第3溶接ビード5としても、本発明を適用することができる。 Regarding the second weld bead 4 and the third weld bead 5, in FIGS. Although the third weld bead 5 is formed along the right side of , there is no problem even if the left and right are reversed. That is, the present invention can be applied even if the weld bead formed along the right side of the long side of the gusset 2 is the second weld bead 4 and the weld bead formed along the left side of the long side is the third weld bead 5. can be done.

このような手順で各溶接ビード3、4、5を形成した後、さらに、図2(d)に示した第2溶接ビード4の延伸部4aと第3溶接ビード5の延伸部5aとに挟まれ第1溶接ビードの溶接止端部3aから主板1の表面に至る領域(以下、「境界領域」ともいう。)8を、打撃(ピーニング)して、図5(a)~(b)に示す打撃痕9を設ける。その範囲は、第2溶接ビード4の延伸部4aと第3溶接ビード5の延伸部5aとの間隔Mの50%以上の範囲とする。50%以上の範囲を打撃することによって、打撃痕9とその周囲の主板表面に圧縮残留応力を導入し、溶接止端部からの疲労亀裂発生を防止でき、また、疲労亀裂が発生した場合に、その亀裂の伝播を抑制することができる。この範囲が間隔Mの50%未満では、圧縮残留応力の導入範囲が小さく、溶接止端からの疲労亀裂防止効果を発揮しない。 After forming each weld bead 3, 4, 5 in such a procedure, it is sandwiched between the extended portion 4a of the second weld bead 4 and the extended portion 5a of the third weld bead 5 shown in FIG. 2(d). A region (hereinafter also referred to as a “boundary region”) 8 from the weld toe 3a of the first weld bead to the surface of the main plate 1 is hit (peened) and shown in FIGS. A hit mark 9 shown is provided. The range is 50% or more of the distance M between the extended portion 4 a of the second weld bead 4 and the extended portion 5 a of the third weld bead 5 . By striking a range of 50% or more, compressive residual stress is introduced into the impact mark 9 and the surrounding main plate surface, fatigue cracks can be prevented from occurring from the weld toe, and fatigue cracks can be prevented from occurring. , the crack propagation can be suppressed. If this range is less than 50% of the interval M, the range of introduction of compressive residual stress is small and the effect of preventing fatigue cracks from the weld toe is not exhibited.

[延伸部の間隔M、長さN]
以上のような手順で、各溶接ビード3、4および5を形成し、さらに境界領域8を形成した例を拡大して示したのが図4である。主板1上に延伸して形成された第2溶接ビード4の延伸部4aと第3溶接ビード5の延伸部5aとの間隔Mがガセット2の短辺の長さWよりも大きくなると、第2溶接ビード4と第3溶接ビード5の間の第1溶接ビード3の溶接止端部に起点を持つ疲労亀裂が発生し易くなる。したがって、上記の間隔Mは、短辺の長さW以下(M≦W)とする。ここで、間隔Mは、第2溶接ビード4の延伸部4aと第3溶接ビード5の延伸部5aとの間の最も短い距離を指す。
[Gap between extensions M, length N]
FIG. 4 is an enlarged view showing an example in which the weld beads 3, 4 and 5 are formed and the boundary region 8 is formed by the above procedure. When the distance M between the extended portion 4a of the second weld bead 4 and the extended portion 5a of the third weld bead 5 formed by extending on the main plate 1 becomes larger than the length W of the short side of the gusset 2, the second A fatigue crack starting at the weld toe portion of the first weld bead 3 between the weld bead 4 and the third weld bead 5 is likely to occur. Therefore, the distance M is set to be equal to or less than the length W of the short side (M≦W). Here, the distance M refers to the shortest distance between the extension 4a of the second weld bead 4 and the extension 5a of the third weld bead 5.

さらに、短辺の長さWは、一般的な例としては30.0mm以下であり、したがって、短辺の長さWが10.0mm~30.0mmの場合には、間隔Mを10.0mm以下とすることが好ましい。当然ながら、短辺の長さWが10.0mm以下の場合には、間隔M≦Wとする。さらに、短辺の長さWがいずれの場合であっても、間隔Mを1.0mm~4.0mmとすることにより、耐疲労特性がより優れる(疲労寿命向上効果が大きい)ことからより好ましい。なお、間隔M=0mm、すなわち間隔が存在しない場合は、従来の回し溶接継手において回し溶接部が延伸された状態となり、本発明の形態を実施することができなくなる。したがって、間隔Mは、M>0mmを満たすこととする。また、間隔Mが短辺の長さWよりも大きくなったとしても、通常の溶接継手に比べて若干の疲労寿命向上の効果が見込まれることを付記しておく。 Furthermore, the length W of the short side is 30.0 mm or less as a general example. It is preferable to: As a matter of course, when the length W of the short side is 10.0 mm or less, the interval M≤W. Furthermore, regardless of the length W of the short side, by setting the interval M to 1.0 mm to 4.0 mm, the fatigue resistance is more excellent (the effect of improving the fatigue life is greater), which is more preferable. . If the interval M=0 mm, that is, if the interval does not exist, the case-welded portion of the conventional case-welded joint is stretched, and the embodiment of the present invention cannot be implemented. Therefore, the interval M should satisfy M>0 mm. It should be noted that even if the distance M is larger than the length W of the short side, the effect of improving the fatigue life to some extent can be expected compared to a normal welded joint.

次に、第2溶接ビード4と第3溶接ビード5の延伸部4aと5aの長さNは、図4に示すように、第1溶接ビード端部から延伸部先端までの長さを言い、その長さNが10.0mmを超えると、溶接施工効率および施工コストの観点から好ましくないので、Nは10.0mm以下であることが好ましい。より好ましくは、Nは、4.0mm~8.0mmである。 Next, the length N of the extended portions 4a and 5a of the second weld bead 4 and the third weld bead 5 is the length from the end of the first weld bead to the tip of the extended portion, as shown in FIG. If the length N exceeds 10.0 mm, it is not preferable from the viewpoint of welding work efficiency and work cost, so N is preferably 10.0 mm or less. More preferably, N is between 4.0 mm and 8.0 mm.

[打撃痕]
図5は、打撃痕9によって圧縮残留応力が導入される範囲を示す概略平面図である。図5に記載された符号Qは、ガセット2の短辺に平行な方向の打撃痕9の長さ(幅)である。図5(a)に示すように、打撃痕の幅Qと間隔Mが、Q≧0.5Mを満たす場合は、第2溶接ビード4の延伸部4aと第3溶接ビード5の延伸部5aと第1溶接ビードの溶接止端部に挟まれた範囲全体に圧縮残留応力が導入され、疲労亀裂発生が抑制され、溶接継手の疲労寿命を向上させることができる。なお、図5(a)は、Q=Mの例である。しかしながら、図5(b)に示すように、Q<0.5Mの場合には、圧縮残留応力の導入される範囲が狭く、圧縮残留応力の導入されていない溶接止端部から疲労亀裂が発生し易い状態となる。ただし、Q<0.5Mの場合であったとしても、打撃を行っていない状態に比べ疲労寿命向上効果があることを付記しておく。
[Blow mark]
FIG. 5 is a schematic plan view showing a range in which compressive residual stress is introduced by the impact mark 9. As shown in FIG. Reference character Q shown in FIG. 5 indicates the length (width) of the impact mark 9 in the direction parallel to the short side of the gusset 2 . As shown in FIG. 5( a ), when the width Q and the interval M of the impact marks satisfy Q≧0.5M, the extended portion 4 a of the second weld bead 4 and the extended portion 5 a of the third weld bead 5 Compressive residual stress is introduced into the entire range sandwiched between the weld toes of the first weld bead, fatigue cracking is suppressed, and the fatigue life of the welded joint can be improved. Note that FIG. 5A is an example of Q=M. However, as shown in FIG. 5(b), when Q<0.5M, the range in which the compressive residual stress is introduced is narrow, and fatigue cracks occur from the weld toe where the compressive residual stress is not introduced. becomes an easy state. However, it should be noted that even when Q<0.5M, the effect of improving the fatigue life is obtained compared to the state in which no impact is applied.

さらに、打撃痕9の深さとしては、その最大深さが0.03mm以上0.50mm未満であることが好ましい。0.03mm未満では、疲労亀裂発生の抑制する効果が乏しく、0.50mmを超えると、局所的な板厚減少に伴う応力集中が疲労亀裂発生を促進する点で好ましくないからである。 Furthermore, as for the depth of the impact mark 9, the maximum depth is preferably 0.03 mm or more and less than 0.50 mm. This is because if the thickness is less than 0.03 mm, the effect of suppressing fatigue crack initiation is poor, and if it exceeds 0.50 mm, stress concentration associated with a local decrease in plate thickness accelerates the initiation of fatigue cracks, which is undesirable.

[打撃用端子]
打撃用端子10は、図6に示すように、四角柱の下端部を半円弧状に湾曲した曲面を呈するものを使用し、その円弧状の曲面で前述の境界領域8を打撃することが好ましい。
[Battering terminal]
As shown in FIG. 6, the striking terminal 10 preferably has a curved surface in which the lower end portion of a quadrangular prism is curved in a semi-arc shape, and the aforementioned boundary region 8 is struck with the arc-shaped curved surface. .

図6に示す打撃用端子10を使用する場合は、打撃用端子10の厚さTの方向とガセット2の短辺とが平行になるように配置し、境界領域8を打撃することが好ましい。打撃用端子10の厚さTが小さいと、打撃痕9を起点として疲労亀裂が発生し易くなる。厚さTが大きすぎると、前記の適切な打撃痕9を得ることが困難となる。したがって、打撃用端子10の厚さTは、1mm~10mmの範囲が好ましい。 When the striking terminal 10 shown in FIG. 6 is used, it is preferable to arrange the striking terminal 10 so that the direction of the thickness T of the striking terminal 10 and the short side of the gusset 2 are parallel to each other, and strike the boundary region 8 . When the thickness T of the striking terminal 10 is small, fatigue cracks are likely to occur starting from the striking mark 9 . If the thickness T is too large, it will be difficult to obtain the appropriate impact marks 9 described above. Therefore, the thickness T of the striking terminal 10 is preferably in the range of 1 mm to 10 mm.

また、打撃用端子10の厚さTの方向とガセット2の短辺とが平行になるように配置すると、打撃用端子10の幅Lは、ガセット2の長辺と平行になる。その幅Lで規定される面の下端は、曲率半径Rの半円形とすることが好ましい。曲率半径Rが小さすぎると、打撃痕9の幅Qが小さくなり、疲労亀裂の発生起点となりやすい。曲率半径Rが大きすぎると、前記の適当な打撃痕9を得ることが困難となる。したがって、打撃用端子10の幅Qは、1mm~10mmの範囲が好ましい。 When the direction of the thickness T of the striking terminal 10 and the short side of the gusset 2 are arranged parallel to each other, the width L of the striking terminal 10 becomes parallel to the long side of the gusset 2 . The lower end of the surface defined by the width L is preferably semicircular with a radius of curvature R. If the radius of curvature R is too small, the width Q of the impact mark 9 becomes small, and fatigue cracks are likely to start. If the radius of curvature R is too large, it will be difficult to obtain the appropriate impact marks 9 described above. Therefore, the width Q of the striking terminal 10 is preferably in the range of 1 mm to 10 mm.

打撃痕9の形成方法は、上記の打撃用端子10を空気圧または高周波電流で駆動させて行うことが好ましい。例えば、前述の半円柱形の先端を空気圧で作動させて溶接止端部を狙って打撃する方法が好ましい。また、前述の方法に限らず、打撃用端子10の先端は、球形、矩形状、あるいはそれに準じた形状のものを用いても構わず、打撃箇所も溶接部の母材側を打撃しても良い。さらに、打撃装置についても、高周波電流、超音波など他の駆動力の装置も使用できる。 It is preferable that the impact mark 9 is formed by driving the impact terminal 10 with air pressure or high-frequency current. For example, a method of pneumatically actuating the semi-cylindrical tip described above and striking the weld toe is preferred. In addition, the tip of the striking terminal 10 may be spherical, rectangular, or similar in shape, and the striking point may be the base metal side of the welded portion. good. Furthermore, for the percussion device, devices with other driving force such as high-frequency current, ultrasonic waves, etc. can also be used.

なお、上記の説明では、ガセット2の一方の短辺の周辺に第2溶接ビード4および第3溶接ビード5を形成した例について説明したが、図1に示すように、ガセット2の反対側の短辺周辺に第2溶接ビード6および第3溶接ビード7を形成する場合も、同様に本発明を適用することができる。 In the above description, an example was described in which the second weld bead 4 and the third weld bead 5 were formed around one short side of the gusset 2. However, as shown in FIG. The present invention can be similarly applied when forming the second weld bead 6 and the third weld bead 7 around the short side.

以上に説明した本発明によって得られる回し溶接継手は、溶接止端部の形状に関わらず疲労亀裂の発生を防止できる。そして、疲労亀裂が発生した場合には、その疲労亀裂が広範囲に伝播するのを防止できる。しかも、従来の溶接装置、溶接材料を用いて得ることが可能であるから、施工コストの上昇を抑制できる。 The boxing welded joint obtained by the present invention described above can prevent the occurrence of fatigue cracks regardless of the shape of the weld toe. And when a fatigue crack occurs, it can prevent the fatigue crack from propagating over a wide area. Moreover, since it can be obtained using conventional welding equipment and welding materials, it is possible to suppress an increase in construction costs.

[溶接方法]
回し溶接を行なう溶接方法は、被覆アーク溶接法、ガスメタルアーク溶接法が主であるが、それ以外の手段についても適宜用いることができ、手動溶接または自動溶接いずれを採用しても良い。
本発明は、鋼構造物を新たに建造する場合のみならず、老朽化した鋼構造物を補修する場合にも適用できる。
[Welding method]
Welding methods for carrying out box welding are mainly shielded arc welding and gas metal arc welding, but other means can also be used as appropriate, and either manual welding or automatic welding may be employed.
The present invention can be applied not only when constructing a new steel structure, but also when repairing an aged steel structure.

[耐疲労亀裂伝播特性]
溶接継手および鋼板(ガセット、主板)の耐疲労亀裂伝播特性は、ASTM E647の規格に準拠した疲労亀裂伝播試験により、応力拡大係数範囲ΔKに対応する疲労亀裂伝播速度(da/dN)を求めて評価している。この応力拡大係数範囲ΔKとは、ΔK=Kmax-Kminであり、応力拡大係数の最大値と最小値の差を表している。また、疲労亀裂伝播速度(da/dN)は、試験片に一定荷重が繰り返し負荷されると疲労亀裂が伝播し、そのときの速度(疲労亀裂伝播速度)は、亀裂長さaと繰り返し数Nの関係を表す曲線の接線(da/dN)として求められる。
[Fatigue crack propagation resistance]
The fatigue crack propagation resistance properties of welded joints and steel plates (gussets, main plates) are determined by fatigue crack propagation tests conforming to the standard of ASTM E647 to determine the fatigue crack propagation rate (da/dN) corresponding to the stress intensity factor range ΔK. I am evaluating. This stress intensity factor range ΔK is ΔK=Kmax−Kmin, and represents the difference between the maximum value and the minimum value of the stress intensity factor. In addition, the fatigue crack propagation rate (da / dN) indicates that the fatigue crack propagates when a constant load is repeatedly applied to the test piece, and the rate at that time (fatigue crack propagation rate) is the crack length a and the number of repetitions N is obtained as a tangent line (da/dN) of a curve representing the relationship of

ここで、本発明において、耐疲労亀裂伝播特性に優れた溶接継手および鋼板としては、応力拡大係数範囲ΔKが15MPa・m1/2である場合に、板幅または板厚方向への疲労亀裂伝播速度が1.75×10-8m/cycle以下となるものをいい、さらに優れた特性を示す溶接継手および鋼板としては、応力拡大係数範囲ΔKが15MPa・m1/2である場合に、板厚方向への疲労亀裂伝播速度が1.00×10-8m/cycle以下となるものをいう。 Here, in the present invention, as a welded joint and a steel plate having excellent resistance to fatigue crack propagation, when the stress intensity factor range ΔK is 15 MPa m 1/2 , fatigue crack propagation in the plate width or plate thickness direction The speed is 1.75 × 10 -8 m / cycle or less, and as a welded joint and a steel plate exhibiting further excellent properties, when the stress intensity factor range ΔK is 15 MPa m 1/2 , the plate It means that the fatigue crack propagation rate in the thickness direction is 1.00×10 −8 m/cycle or less.

ガセットを主板に回し溶接して得られる溶接継手において、疲労亀裂は、図1に示す境界領域8で発生し、板幅方向および板厚方向に伝播し、板幅または板厚を貫通することで継手の破損を引き起こす。したがって、鋼板の板幅または板厚方向への疲労亀裂伝播が遅延されれば、すなわち疲労亀裂伝播速度が遅ければ、継手破断までの期間が延びることが期待される。種々の鋼板で溶接継手を作製し、疲労亀裂伝播特性と溶接継手の破断寿命の関係を検証した。本発明の溶接継手において、板幅または板厚方向への疲労亀裂伝播速度が1.75×10-8m/cycle以下であれば、そうでない鋼板の溶接継手に対して、破断寿命が4%以上向上することが明らかとなった。さらに、板厚方向への疲労亀裂伝播速度が1.00×10-8m/cycle以下となる鋼板が主板である溶接継手は、その特性を満たさない鋼板に対し、破断寿命が20%以上向上することが明らかとなった。 In the welded joint obtained by turn-welding the gusset to the main plate, the fatigue crack occurs in the boundary region 8 shown in FIG. Cause joint failure. Therefore, if the fatigue crack propagation in the width or thickness direction of the steel sheet is delayed, that is, if the fatigue crack propagation speed is slow, it is expected that the period until joint fracture will be extended. Welded joints were prepared from various steel plates to verify the relationship between fatigue crack propagation characteristics and rupture life of welded joints. In the welded joint of the present invention, if the fatigue crack propagation rate in the plate width or plate thickness direction is 1.75 × 10 -8 m / cycle or less, the rupture life is 4% compared to the welded joint of the steel plate otherwise. It was found that the above was improved. Furthermore, a welded joint whose main plate is a steel plate whose fatigue crack propagation rate in the plate thickness direction is 1.00 × 10 -8 m / cycle or less has a rupture life improved by 20% or more compared to a steel plate that does not satisfy the characteristics. It became clear that

図7に示す試験片を用いて、以下の溶接実験を行った。
主板1(板厚:12mm、板幅:80mm、長さ:500mm)にガセット2(板厚:25mm、板幅:75mm、高さ:60mm)をフラックス入り溶接ワイヤを用いたガスシールドアーク溶接によって回し溶接を行い、溶接継手を作製した。フラックス入り溶接ワイヤは、(株)神戸製鋼所製MX-Z200(ワイヤ径1.2mm)を用い、溶接条件は電圧240V、電流36Aを狙いとし、脚長が8mm程度となるよう溶接を行った。ガセット2は、主板1の板幅および長さ方向それぞれの中央に位置するようにした。打撃用端子は、図6に示す形状としてT=3~5mm、L=4mmのものを用い、空気圧6kg/cm2で90Hzの周波数で打撃させた。主板1およびガセット2には、表1に示す成分を有する材料を使用した。
Using the test piece shown in FIG. 7, the following welding experiment was conducted.
Gusset 2 (plate thickness: 25mm, plate width: 75mm, height: 60mm) was welded to main plate 1 (plate thickness: 12mm, plate width: 80mm, length: 500mm) by gas-shielded arc welding using a flux-cored welding wire. A welded joint was produced by box welding. MX-Z200 (wire diameter: 1.2 mm) manufactured by Kobe Steel, Ltd. was used as the flux-cored welding wire, and the welding conditions were aimed at a voltage of 240 V and a current of 36 A, and welding was performed so that the leg length was about 8 mm. The gusset 2 was positioned at the center of the main plate 1 in the width and length directions. The striking terminal used had a shape of T=3 to 5 mm and L=4 mm as shown in FIG. 6, and was struck at an air pressure of 6 kg/cm 2 and a frequency of 90 Hz. Materials having the components shown in Table 1 were used for the main plate 1 and gussets 2 .

Figure 2022188325000002
Figure 2022188325000002

鋼種A~Cを主板1に用い、鋼種Dはガセット2に用いた。また、試験番号3、4、7、8、11、12については、ガセット2は板厚を10mmとなるように加工した。なお、試験番号5~7については、応力拡大係数範囲ΔKが15MPa・m1/2である場合に、板幅方向への疲労亀裂伝播速度が1.75×10-8m/cycle以下となる鋼板Bを主板1として使用した。試験番号8については、応力拡大係数範囲ΔKが15MPa・m1/2である場合に、板厚方向への疲労亀裂伝播速度が1.00×10-8m/cycle以下である鋼板Cを主板1として使用した。鋼板Aの応力拡大係数範囲ΔKが15MPa・m1/2である場合の板幅方向への疲労亀裂伝播速度は、1.92×10-8m/cycleである。 Steel grades A to C were used for the main plate 1, and steel grade D was used for the gusset 2. For test numbers 3, 4, 7, 8, 11, and 12, the gusset 2 was processed to have a plate thickness of 10 mm. Regarding test numbers 5 to 7, when the stress intensity factor range ΔK is 15 MPa m 1/2 , the fatigue crack propagation speed in the plate width direction is 1.75 × 10 -8 m / cycle or less. Steel plate B was used as main plate 1 . For test number 8, when the stress intensity factor range ΔK is 15 MPa m 1/2 , steel plate C having a fatigue crack propagation rate in the plate thickness direction of 1.00 × 10 -8 m / cycle or less is used as the main plate. used as 1. When the stress intensity factor range ΔK of steel plate A is 15 MPa·m 1/2 , the fatigue crack propagation speed in the plate width direction is 1.92×10 −8 m/cycle.

上記の通り作製した溶接継手の疲労試験結果を表2に示す。
なお、疲労試験は、油圧サーボパルサを用い、試験片長手両端部を試験機に固定して荷重制御によって実施した。時刻に沿って正弦波状に荷重が変化する負荷を与えた。最小または最大荷重に到達し、再び最小または最大荷重に到達するまでの期間を1回の応力負荷サイクルとする。最小荷重は、最大荷重の0.1倍となるように設定し、最大荷重は、1本の疲労試験において一定とした。応力範囲は、最大荷重から最小荷重を減算した値である。破断寿命は、負荷開始、すなわち0サイクルから、疲労亀裂が主板の板厚および板幅方向を貫通し、試験片が破断するまでのサイクル数と定義した。
Table 2 shows the fatigue test results of the welded joints produced as described above.
The fatigue test was carried out by load control using a hydraulic servo pulsar and fixing both longitudinal ends of the test piece to the testing machine. A load was applied in which the load varied sinusoidally along time. One stress loading cycle is defined as the period from reaching the minimum or maximum load to reaching the minimum or maximum load again. The minimum load was set to be 0.1 times the maximum load, and the maximum load was constant in one fatigue test. The stress range is the maximum load minus the minimum load. The rupture life was defined as the number of cycles from the start of loading, i.e., 0 cycles, until the fatigue crack penetrated through the thickness and width direction of the main plate and the specimen fractured.

Figure 2022188325000003
Figure 2022188325000003

表2の結果から、本発明例である試験番号1~8は、いずれも優れた破断寿命、すなわち疲労特性を有することが分かる。板厚方向への疲労亀裂伝播速度に優れた鋼板Bおよび鋼板Cを用いた試験番号5~8は、特に優れた疲労特性を示した。 From the results in Table 2, it can be seen that Test Nos. 1 to 8, which are examples of the present invention, all have excellent rupture life, that is, fatigue properties. Test numbers 5 to 8 using steel plate B and steel plate C, which are excellent in the fatigue crack propagation rate in the plate thickness direction, showed particularly excellent fatigue properties.

1 主板
2 ガセット
3 第1溶接ビード
3a 溶接止端部
4、6 第2溶接ビード
5、7 第3溶接ビード
4a 第2溶接ビードの延伸部
5a 第3溶接ビードの延伸部
8 境界領域
9 打撃痕
10 打撃用端子
1 main plate 2 gusset 3 first weld bead 3a weld toes 4, 6 second weld bead 5, 7 third weld bead 4a second weld bead extension 5a third weld bead extension 8 boundary region 9 impact mark 10 striking terminal

Claims (14)

ガセットを主板に回し溶接して得られる溶接継手であって、前記ガセットと前記主板とを隅肉溶接によって前記ガセットの長辺の一方の側から前記ガセットの短辺を通過し、前記ガセットの長辺の他方の側に至るよう連続的に盛られた第1溶接ビードを有し、さらに前記ガセット長辺の一方の側の前記第1溶接ビードに沿って前記主板上に延伸して形成された第2溶接ビードと、前記ガセット長辺の他方の側の前記第1溶接ビードに沿って前記主板上に延伸して形成された第3溶接ビードとを有し、前記第2溶接ビードの延伸部と前記第3溶接ビードの延伸部との間隔Mが前記ガセットの短辺の長さW以下(M≦W)であり、前記2つの延伸部に挟まれ前記第1溶接ビードの溶接止端部から前記主板の表面に至る領域に前記間隔Mの50%以上の範囲にわたり打撃痕を有することを特徴とする回し溶接継手。 A welded joint obtained by turn-welding a gusset to a main plate, wherein the gusset and the main plate are welded together by fillet welding from one side of the long side of the gusset through the short side of the gusset to the length of the gusset. It has a first weld bead continuously heaped up to the other side of the gusset, and is formed extending on the main plate along the first weld bead on one side of the gusset long side. a second weld bead; and a third weld bead formed by extending on the main plate along the first weld bead on the other side of the gusset long side, the extended portion of the second weld bead and the distance M between the extending portion of the third weld bead is less than or equal to the length W of the short side of the gusset (M ≤ W), and the weld toe portion of the first weld bead sandwiched between the two extending portions A rotary welded joint characterized by having an impact mark over a range of 50% or more of the distance M in a region from to the surface of the main plate. 前記ガセットの短辺の長さWが30.0mm以下であり、前記間隔Mが10.0mm以下であることを特徴とする請求項1に記載の回し溶接継手。 2. A turn welded joint according to claim 1, wherein the length W of the short side of said gusset is 30.0 mm or less and said spacing M is 10.0 mm or less. 前記間隔Mが1.0mm~4.0mmであることを特徴とする請求項1または2に記載の回し溶接継手。 A turn-welded joint according to claim 1 or 2, characterized in that said spacing M is between 1.0 mm and 4.0 mm. 前記打撃痕の最大深さが0.03mm以上0.50mm未満であることを特徴とする請求項1ないし3のいずれか一項に記載の回し溶接継手。 4. The boxing welded joint according to any one of claims 1 to 3, wherein the maximum depth of said hit mark is 0.03 mm or more and less than 0.50 mm. 前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板幅または板厚方向の疲労亀裂伝播速度が1.75×10-8m/cycle以下であることを特徴とする請求項1ないし4のいずれか一項に記載の回し溶接継手。 When the stress intensity factor range ΔK of the main plate is 15 MPa·m 1/2 , the fatigue crack propagation rate in the plate width or plate thickness direction of the main plate is 1.75 × 10 -8 m/cycle or less. A rotary weld joint according to any one of claims 1 to 4. 前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板厚方向への疲労亀裂伝播速度が1.00×10-8m/cycle以下であることを特徴とする請求項1ないし5のいずれか一項に記載の回し溶接継手。 When the stress intensity factor range ΔK of the main plate is 15 MPa·m 1/2 , the fatigue crack propagation rate in the plate thickness direction of the main plate is 1.00×10 −8 m/cycle or less. A box weld joint according to any one of claims 1 to 5. ガセットを主板に回し溶接して接合する溶接方法において、前記ガセットと前記主板とを隅肉溶接によって前記ガセットの長辺の一方の側から前記ガセットの短辺を通過し、前記ガセットの長辺の他方の側に至るよう連続的に盛られた第1溶接ビードを形成し、前記ガセット長辺の一方の側の前記第1溶接ビードに沿って前記主板上に延伸する第2溶接ビードを形成し、前記ガセット長辺の他方の側の前記第1溶接ビードに沿って前記主板上に延伸する第3溶接ビードを形成し、前記第2溶接ビードの延伸部と前記第3溶接ビードの延伸部との間隔Mを前記ガセットの短辺の長さW以下(M≦W)とし、前記2つの延伸部に挟まれ前記第1溶接ビードの溶接止端部から前記主板の表面に至る領域に前記間隔Mの50%以上の範囲にわたり打撃痕を設けることを特徴とする回し溶接方法。 In the welding method for joining the gusset to the main plate by turning and welding, the gusset and the main plate are welded together by fillet welding, passing through the short side of the gusset from one side of the long side of the gusset, and joining the long side of the gusset. Forming a first weld bead continuously heaped up to the other side, and forming a second weld bead extending on the main plate along the first weld bead on one side of the gusset long side. forming a third weld bead extending on the main plate along the first weld bead on the other side of the gusset long side, the extension of the second weld bead and the extension of the third weld bead; The distance M is set to the length W or less of the short side of the gusset (M ≤ W), and the distance from the weld toe of the first weld bead sandwiched between the two extensions to the surface of the main plate is the distance A boxing welding method characterized by providing an impact mark over a range of 50% or more of M. 前記打撃痕を設けるにあたり、前記ガセットの短辺に平行な方向の長さTが1mm~10mmであり、前記短辺に垂直な断面における曲率半径Rが1mm~10mmである打撃用端子を用いることを特徴とする請求項7に記載の回し溶接方法。 In forming the impact mark, a striking terminal having a length T in a direction parallel to the short side of the gusset of 1 mm to 10 mm and a curvature radius R of 1 mm to 10 mm in a cross section perpendicular to the short side is used. The round welding method according to claim 7, characterized by: 前記打撃用端子が空気圧または高周波電流で駆動することを特徴とする請求項8に記載の回し溶接方法。 9. The round welding method according to claim 8, wherein the striking terminal is driven by air pressure or high-frequency current. 前記ガセットの短辺の長さWが30.0mm以下であり、前記間隔Mを10.0mm以下とすることを特徴とする請求項7ないし9のいずれか一項に記載の回し溶接方法。 The box welding method according to any one of claims 7 to 9, wherein the length W of the short side of the gusset is 30.0 mm or less, and the distance M is 10.0 mm or less. 前記間隔Mを1.0mm~4.0mmとすることを特徴とする請求項7ないし10のいずれか一項に記載の回し溶接方法。 The box welding method according to any one of claims 7 to 10, characterized in that the interval M is set to 1.0 mm to 4.0 mm. 前記打撃痕の最大深さDを0.03mm以上0.50mm未満とすることを特徴とする請求項7ないし11のいずれか一項に記載の回し溶接方法。 The boxing welding method according to any one of claims 7 to 11, characterized in that the maximum depth D of the impact mark is 0.03 mm or more and less than 0.50 mm. 前記回し溶接を行うにあたって、前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板幅または板厚方向の疲労亀裂伝播速度が1.75×10-8m/cycle以下であることを特徴とする請求項7ないし12のいずれか一項に記載の回し溶接方法。 In performing boxing welding, when the stress intensity factor range ΔK of the main plate is 15 MPa·m 1/2 , the fatigue crack propagation rate in the width or thickness direction of the main plate is 1.75 × 10 -8 m. /cycle or less. 前記回し溶接を行うにあたって、前記主板の応力拡大係数範囲ΔKが15MPa・m1/2である場合に、前記主板の板厚方向への疲労亀裂伝播速度が1.00×10-8m/cycle以下であることを特徴とする請求項7ないし13のいずれか一項に記載の回し溶接方法。 When performing boxing welding, when the stress intensity factor range ΔK of the main plate is 15 MPa m 1/2 , the fatigue crack propagation speed in the plate thickness direction of the main plate is 1.00 × 10 -8 m/cycle. The boxing welding method according to any one of claims 7 to 13, characterized in that:
JP2021096245A 2021-06-09 2021-06-09 Box welded joint and box welding method having excellent fatigue strength Active JP7468461B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021096245A JP7468461B2 (en) 2021-06-09 2021-06-09 Box welded joint and box welding method having excellent fatigue strength

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021096245A JP7468461B2 (en) 2021-06-09 2021-06-09 Box welded joint and box welding method having excellent fatigue strength

Publications (2)

Publication Number Publication Date
JP2022188325A true JP2022188325A (en) 2022-12-21
JP7468461B2 JP7468461B2 (en) 2024-04-16

Family

ID=84532296

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021096245A Active JP7468461B2 (en) 2021-06-09 2021-06-09 Box welded joint and box welding method having excellent fatigue strength

Country Status (1)

Country Link
JP (1) JP7468461B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4394860B2 (en) 2002-04-08 2010-01-06 新日本製鐵株式会社 Welding method using ultra low temperature transformation melt, high fatigue strength joint and ultra low temperature transformation melt
JP2015182130A (en) 2014-03-26 2015-10-22 日立造船株式会社 Method of manufacturing welded joint and welded joint
JP6662399B2 (en) 2017-03-31 2020-03-11 Jfeスチール株式会社 Turning welding joint and turning welding method excellent in fatigue strength

Also Published As

Publication number Publication date
JP7468461B2 (en) 2024-04-16

Similar Documents

Publication Publication Date Title
Marquis Failure modes and fatigue strength of improved HSS welds
KR101308773B1 (en) Out-of-plane gusset welded joint and fabrication method thereof
JP5881055B2 (en) Welding method and welded joint
JP5052918B2 (en) Welded joint, welded structure excellent in crack initiation propagation characteristics, and method for improving crack initiation propagation characteristics
Ishikawa et al. Effect of compression overload on fatigue strength improved by ICR treatment
JP6733683B2 (en) Rotating welded joint with excellent fatigue strength and rotating welding method
JP4757697B2 (en) Method for improving fatigue performance of fillet welds
JP6662399B2 (en) Turning welding joint and turning welding method excellent in fatigue strength
JP6319022B2 (en) Railway vehicle bogie frame and manufacturing method thereof
JP2022188325A (en) Turning weld joint with excellent fatigue strength and turning welding method
JP5364981B2 (en) Ships with excellent fatigue durability and methods for improving ship fatigue durability
JP4837428B2 (en) Ultrasonic impact treatment method for weld toe
JP7468460B2 (en) Box welded joint and box welding method having excellent fatigue strength
JP2012011462A (en) Welded joint
JP5919986B2 (en) Hammer peening treatment method and welded joint manufacturing method using the same
JP4767885B2 (en) Welded joint, welded structure excellent in brittle crack propagation stopping characteristics, and method for improving brittle crack propagation stopping characteristics
JP4537621B2 (en) Steel tube column base and method for strengthening steel tube column base
JP6314670B2 (en) Structure with excellent fatigue characteristics
JP2023165101A (en) Boxing welding joint excellent in fatigue life and boxing welding method
KR102606405B1 (en) Needle peening method
JP2014233747A (en) Welding method of gusset plate
JP2023162133A (en) Method for suppressing fatigue crack initiation of weld zone and method for manufacturing weld joint
JP6747416B2 (en) Tool for forming impact mark and method for producing welded joint
JP6017938B2 (en) Method for suppressing fatigue damage of welded structure and tool for forming hitting marks
JP5433928B2 (en) Multilayer butt-welded joint and welded structure with excellent brittle crack propagation characteristics

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230126

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231121

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231128

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20231227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240318