JP2012011462A - Welded joint - Google Patents
Welded joint Download PDFInfo
- Publication number
- JP2012011462A JP2012011462A JP2011120006A JP2011120006A JP2012011462A JP 2012011462 A JP2012011462 A JP 2012011462A JP 2011120006 A JP2011120006 A JP 2011120006A JP 2011120006 A JP2011120006 A JP 2011120006A JP 2012011462 A JP2012011462 A JP 2012011462A
- Authority
- JP
- Japan
- Prior art keywords
- less
- vibration terminal
- welded joint
- toe
- shape
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Landscapes
- Golf Clubs (AREA)
Abstract
Description
本発明は、鋼橋など優れた疲労特性が要求される鋼構造物に好適な溶接継手で、溶接部に新たな応力集中部となる変形を与えずに圧縮残留応力を導入し疲労強度を向上させたものに関する。 The present invention is a welded joint suitable for steel structures that require excellent fatigue properties such as steel bridges, and improves fatigue strength by introducing compressive residual stress without deforming the welded part as a new stress concentration part. About what
近年、鋼橋の老朽化に伴い腐食や疲労に伴う損傷事例の報告が増加している。これらの防止にはまず検査体制を確立することが必要であるが、特に疲労損傷の場合は、通過車両などの作用外力を軽減したり、設計製作面からの溶接品質の向上が重要である。 In recent years, with the aging of steel bridges, reports of damage cases due to corrosion and fatigue are increasing. In order to prevent these problems, it is necessary to establish an inspection system. In particular, in the case of fatigue damage, it is important to reduce the external force of the passing vehicle and improve the welding quality from the design and production aspects.
溶接部は、割れなどの欠陥が存在したり、止端の形状が不適で応力集中部となると繰り返し応力に溶接残留応力の影響が重畳して疲労ノッチが発生しやすく、疲労破壊をもたらす場合があるため、その防止のため種々の観点からの提案がなされている。 If the weld has defects such as cracks, or if the shape of the toe is inadequate and becomes a stress concentrated part, the effect of welding residual stress is superimposed on the repeated stress and fatigue notches are likely to occur, resulting in fatigue failure. Therefore, proposals from various viewpoints have been made for the prevention.
特許文献1は、溶接部の疲労強度向上方法およびそれを用いた溶接構造物に関し、溶接止端の近傍を超音波振動しながら打撃して塑性変形させる加工装置で、特定寸法の溝を所定の打撃条件で加工することで高速に作業者の熟練度に依存しないで安定して疲労強度を向上させることが記載されている。 Patent Document 1 relates to a method for improving the fatigue strength of a welded portion and a welded structure using the welded portion, and is a processing device that performs plastic deformation by striking the vicinity of the weld toe while ultrasonically oscillating. It is described that the fatigue strength can be stably improved without depending on the skill level of the worker at high speed by processing under the striking condition.
特許文献2は、レーザ衝撃ピーニング方法に関し、レーザ光源からのパルスレーザビームを使用して、表面の薄層もしくはプラズマを形成する表面のコーティングを瞬間的に気化させてその爆発力により表面の一部に局所的に圧縮力を発生させる方法で、ガスタービンエンジンのファン動翼に圧縮残留応力を導入させることが記載されている。 Patent Document 2 relates to a laser shock peening method, which uses a pulsed laser beam from a laser light source to instantaneously vaporize a surface thin layer or a surface coating that forms a plasma, and a part of the surface due to its explosive force. Describes a method of introducing a compressive residual stress into a fan rotor blade of a gas turbine engine by a method of locally generating a compressive force.
特許文献3は、溶接継手の疲労特性改善打撃処理方法及びその装置に関し、先端が特定寸法の打撃ピンを用いて、溶接止端に打撃痕による特定寸法の溝部が形成されるように鋼板表面を圧縮して溶接部に圧縮残留応力を導入することが記載されている。 Patent Document 3 relates to a method and apparatus for improving the fatigue characteristics of a welded joint, and a device for the same, and using a striking pin whose tip is a specific size, the steel plate surface is formed so that a groove having a specific size is formed at the weld toe. It is described that compressive residual stress is introduced into the weld by compressing.
非特許文献1は、ハンマーピーニング及びTIG処理による高強度鋼(SM570)の溶接継手部の疲労強度向上法に関し、ハンマーピーニングを施すと疲労強度が低下する場合があるため、溶接止端の応力集中や残留応力を低減させる新たなハンマーピーニング法について検討した結果が記載されている。 Non-Patent Document 1 relates to a method for improving the fatigue strength of a welded joint portion of high strength steel (SM570) by hammer peening and TIG treatment, and since fatigue strength may decrease when hammer peening is applied, the stress concentration at the weld toe And the results of studies on a new hammer peening method that reduces residual stress.
通常、ハンマーピーニングは、作業者が手持ちのピーニング装置を溶接止端にチップ先端(チップは振動端子、チッパーとも言う)が斜め上方から当たるように持って、ピーニング装置の荷重を溶接止端に預けるようにして作業を行い作業負荷を軽減している。 Normally, hammer peening is performed by an operator holding a peening device in hand so that the tip of the tip (tip is also called a vibration terminal or chipper) hits the welding toe from an oblique upper side, and deposits the load of the peening device on the welding toe. In this way, work is reduced to reduce the workload.
そのため、図13に示す母材1にリブ2を直立させた面外ガセット継手にハンマーピーニングを施した場合、ピーニング装置のチッパー5の先端により溶接止端に応力集中箇所となる深い溝(打撃痕)が形成され、溶接ビード3の先端部から疲労き裂7が発生する場合がある。 Therefore, when hammer peening is performed on the out-of-plane gusset joint in which the rib 2 is erected on the base material 1 shown in FIG. 13, a deep groove (striking mark) that becomes a stress concentration point at the weld toe by the tip of the chipper 5 of the peening apparatus. ) And a fatigue crack 7 may occur from the tip of the weld bead 3.
非特許文献1にはハンマーピーニングの前にグラインダで溶接止端の一部を予め研削すると疲労ノッチの発生防止に有効であることが紹介され、ハンマーピーニングを3パス程度の複数回行うことを提案している。 Non-Patent Document 1 introduces that grinding a part of the weld toe with a grinder before hammer peening is effective in preventing the occurrence of fatigue notches, and proposes that hammer peening be performed multiple times of about 3 passes. is doing.
ところで、溶接構造物を製造する際、作業環境、作業能率および溶接継手性能を考慮した溶接方法が選定され、溶接部の疲労強度向上のため、特許文献1等に記載の溶接部の疲労強度向上方法が施されるが、疲労特性に優れた溶接継手の特徴が明確であれば、溶接方法の選定と同様に最適な疲労強度向上方法を選定することが可能となる。 By the way, when manufacturing a welded structure, a welding method is selected in consideration of the work environment, work efficiency, and welded joint performance. In order to improve the fatigue strength of the welded portion, the fatigue strength of the welded portion described in Patent Document 1 is improved. Although the method is applied, if the characteristics of the welded joint having excellent fatigue characteristics are clear, it is possible to select an optimal fatigue strength improving method in the same manner as the selection of the welding method.
特許文献3には、耐疲労特性に優れた溶接構造物が記載され、疲労き裂発生危険部の溶接部として好ましい溶接部が開示されているが、実構造物に適用した場合に当該溶接部を得るための装置の入手困難性や施工能率が懸念される。また、特許文献3記載の打撃処理方法は、先端曲率半径が金属材料の厚さの1/2以下かつ2〜10mmの打撃ピンを用い、打撃ピンが打撃中に溶接金属に触れない範囲までの母材金属材料表面に打撃痕を与えるものであるが、効率的に圧縮残留応力を導入するのは困難である。 Patent Document 3 describes a welded structure having excellent fatigue resistance characteristics, and discloses a welded portion that is preferable as a welded part of a fatigue crack occurrence risk part. However, when applied to an actual structure, the welded part is disclosed. There are concerns about the difficulty in obtaining the equipment and the construction efficiency. Moreover, the hit | damage processing method of patent document 3 uses the hit | damage pin whose tip curvature radius is 1/2 or less of the thickness of a metal material and 2-10 mm, and the hit pin does not touch a weld metal during hitting. Although it gives an impact mark on the surface of the base metal material, it is difficult to efficiently introduce compressive residual stress.
また、特許文献1記載の超音波によるピーニング方法は使用する装置が従来の空気圧でチップを駆動する装置と比較すると高価で入手も困難である。特許文献2記載のレーザ衝撃ピーニング方法は、素材の前処理が必要で、且つ装置が高価で大きく、鋼橋製造に適用することは難しい。 In addition, the ultrasonic peening method described in Patent Document 1 is expensive and difficult to obtain as compared with a conventional device that drives a chip with air pressure. The laser shock peening method described in Patent Document 2 requires pretreatment of the material, and the apparatus is expensive and large, and is difficult to apply to steel bridge manufacturing.
そこで、本発明は、上記課題を解決するため、疲労特性に優れた溶接継手を提供することを目的とする。 Then, in order to solve the said subject, this invention aims at providing the welded joint excellent in the fatigue characteristic.
本発明者らは溶接継手の疲労強度を向上させるため、特に疲労き裂が発生しやすい止端部の溶接による引張残留応力を軽減させる方法について鋭意検討し、ハンマーピーニングによる打撃痕を溶接止端より母材側に離した場合に、打撃による最大の圧縮残留応力を溶接止端に導入することが可能なことを見出した。本発明は上記知見をもとに更に検討を加えてなされたもので、すなわち、本発明は
1.ハンマーピーニングまたは超音波衝撃処理された、鋼材の溶接継手であって、振動端子によって溶接ビードに沿って鋼材表面に連続形成された打撃痕を有し、前記振動端子は、その先端部が、進行方向直角断面の頂部が曲率半径:1mm以上10mm以下の円弧状で、進行方向に1mm以上10mm以下の長さを有し、前記打撃痕は、前記振動端子によって、溶接止端より母材側に5mmまでの領域において、最大深さが0.03mm以上0.50mm未満に形成されたことを特徴とする溶接継手。
2.前記振動端子は、その先端部が、進行方向直角断面の頂部が3mm以下の直線部の両端に曲率半径0.1mm以上2mm以下の面取り部を有し、進行方向に1mm以上10mm以下の長さを有することを特徴とする1記載の溶接継手。
3.前記振動端子は、その先端部が、進行方向直角断面の頂部が短径が1mm以上の楕円形の長径側の円弧状で、進行方向に1mm以上10mm以下の長さを有することを特徴とする1記載の溶接継手。
4.前記打撃痕は、前記振動端子によって、溶接止端より母材側に0.5mm離れた位置から5mmまでの領域に形成することを特徴とする1乃至3のいずれか一つに記載の溶接継手。
In order to improve the fatigue strength of the welded joint, the present inventors have intensively studied a method for reducing the tensile residual stress due to welding of the toe portion where fatigue cracks are likely to occur, and the hammer peening damage mark is welded to the weld toe. It has been found that the maximum compressive residual stress due to impact can be introduced into the weld toe when it is further away from the base metal side. The present invention has been made based on the above findings and further studies. Hammer peened or ultrasonic impact treated steel welded joint, having a striking trace continuously formed on the steel surface along the weld bead by the vibration terminal, the tip of the vibration terminal is advancing The apex of the cross section perpendicular to the direction is an arc shape with a radius of curvature of 1 mm or more and 10 mm or less, and has a length of 1 mm or more and 10 mm or less in the traveling direction. A welded joint having a maximum depth of 0.03 mm or more and less than 0.50 mm in a region up to 5 mm.
2. The vibration terminal has a chamfered portion with a radius of curvature of 0.1 mm or more and 2 mm or less at both ends of a linear portion whose top portion of the cross section perpendicular to the traveling direction is 3 mm or less, and a length of 1 mm or more and 10 mm or less in the traveling direction. 2. The welded joint according to 1, wherein
3. The tip of the vibration terminal has an elliptical arcuate shape with a short axis of 1 mm or more at the top of the cross section perpendicular to the traveling direction, and has a length of 1 mm or more and 10 mm or less in the traveling direction. The weld joint according to 1.
4). The weld joint according to any one of claims 1 to 3, wherein the hitting mark is formed in a region from a position 0.5 mm away from the weld toe to the base metal side to 5 mm by the vibration terminal. .
本発明によれば、溶接部の疲労強度に優れた溶接継手が得られ、産業上、極めて有用である。 According to the present invention, a welded joint excellent in fatigue strength of a welded portion is obtained, which is extremely useful industrially.
本発明は鋼材の溶接継手であって、溶接金属や溶接止端を除いた、溶接止端周辺の鋼材表面に、溶接ビードに沿って打撃痕を連続形成することによって、溶接止端部に圧縮の残留応力を導入することを特徴とする。以下の説明において止端(溶接止端ということもある。)は部材の面と溶接金属の表面との交線とする(図解溶接用語辞典日刊工業昭和46年9月20日第4版)。 The present invention is a welded joint of steel material, and is compressed to the weld toe by continuously forming a striking trace along the weld bead on the surface of the steel material around the weld toe, excluding the weld metal and the weld toe. The residual stress is introduced. In the following description, the toe (sometimes referred to as a weld toe) is defined as the line of intersection between the surface of the member and the surface of the weld metal (the illustrated welding terminology dictionary, Nikkan Kogyo, September 20, 1971, 4th edition).
図1は本発明に係る溶接継手により疲労特性が向上する原理を説明するための概略図で、母材1にリブ2を廻し溶接で溶接した溶接継手の側面図を示す。溶接ビード3の止端4から距離d離れた母材1の表面が、母材表面と垂直方向に幅Bのチップ(図示しない)で母材表面が加圧されて塑性変形(点線で表示)を生じた打撃痕となっている。 FIG. 1 is a schematic view for explaining the principle of improving fatigue characteristics by a welded joint according to the present invention, and shows a side view of a welded joint welded by welding a rib 2 around a base material 1. The surface of the base material 1 at a distance d from the toe 4 of the weld bead 3 is plastically deformed (indicated by a dotted line) by pressing the base material surface with a tip (not shown) having a width B in a direction perpendicular to the base material surface. It is a blow mark that caused.
母材1の表面において打撃痕の位置(止端4からの距離dで規定)は、幅Bのチップにより打撃痕を形成する際、母材1に生じる圧縮残留応力が止端4の溶接による引張残留応力を打消して、その結果、止端4が圧縮残留応力を有するように、規定する。打撃痕が止端に接して形成される場合(距離d=0)でも圧縮残留応力を止端に導入することが可能なため本発明範囲内とする。 The position of the impact mark on the surface of the base material 1 (specified by the distance d from the toe 4) is determined by the compressive residual stress generated in the base material 1 due to the welding of the toe 4 when the impact mark is formed by the tip having the width B. The tensile residual stress is canceled out so that the toe 4 has a compressive residual stress. Even when the hitting mark is formed in contact with the toe (distance d = 0), the compressive residual stress can be introduced into the toe, and therefore is within the scope of the present invention.
本発明に係る溶接継手では、止端4での引張残留応力に及ぼす、打撃痕を形成する際に母材1に生じる圧縮残留応力の影響の指標として、母材表面を加圧して、母材表面に打撃痕を形成するために用いる振動端子の形状と、溶接止端より母材側の領域における打撃痕の最大深さを用いる。尚、本発明に係る溶接継手では、溶接止端を含めて溶接ビードを打撃しないことを原則とするが、作業開始直前および直後の調整などで溶接ビードに塑性変形を与えない程度に一時的に打撃することは差し支えない。 In the welded joint according to the present invention, the base material surface is pressurized as an index of the influence of the compressive residual stress generated in the base material 1 when the impact mark is formed on the tensile residual stress at the toe 4. The shape of the vibration terminal used for forming the hitting mark on the surface and the maximum depth of the hitting mark in the region closer to the base material than the weld toe are used. In the welded joint according to the present invention, the weld bead including the weld toe is not struck in principle. However, the weld bead is temporarily deformed to such an extent that the weld bead is not subjected to plastic deformation by adjustment immediately before and after the operation. You can strike it.
図3〜5に振動端子の先端の形状を示す。図2はこれらの図におけるX方向、Y方向を説明する図で、X方向は打撃の進行方向と直角方向、Y方向は打撃の進行方向とする。 3 to 5 show the shape of the tip of the vibration terminal. FIG. 2 is a diagram for explaining the X direction and the Y direction in these drawings. The X direction is a direction perpendicular to the striking direction, and the Y direction is the striking direction.
図3に示す振動端子は、振動端子の先端部が、進行方向(Y方向)に対して直角となる断面(XZ断面)において、頂部に曲率半径(r):1mm以上10mm以下の円弧状の外周部を有し(図3(a))、進行方向(Y方向)に1mm以上10mm以下の長さ(b)を有する、略蒲鉾形状のものである(図3(b))。 The vibration terminal shown in FIG. 3 has a circular arc shape with a radius of curvature (r) of 1 mm or more and 10 mm or less at the top in a cross section (XZ cross section) in which the tip of the vibration terminal is perpendicular to the traveling direction (Y direction). It has an outer periphery (FIG. 3 (a)) and has a length (b) of 1 mm or more and 10 mm or less in the traveling direction (Y direction) (FIG. 3 (b)).
頂部に円弧状の外周部を有する振動端子の場合、円弧の曲率半径が1mm未満では止端に応力集中部となる変形が形成される可能性があり、一方、10mm超えの場合は接触面積が大きくなり、止端に十分な圧縮残留応力を付与することができないため、曲率半径(r):1mm以上10mm以下とする。 In the case of an oscillating terminal having an arcuate outer periphery at the top, if the radius of curvature of the arc is less than 1 mm, deformation that becomes a stress concentration part may be formed at the toe, whereas if it exceeds 10 mm, the contact area may be Since it becomes large and sufficient compressive residual stress cannot be applied to the toe, the radius of curvature (r) is set to 1 mm or more and 10 mm or less.
図4は、本発明の他の例に係る振動端子の形状を示し、振動端子の先端部が、進行方向(Y方向)に対して直角となる断面(XZ断面)において、頂部に3mm以下の直線部aの両端に曲率半径(r)0.1mm以上2mm以下の面取り部を備えた外周部を有し(図4(a))、進行方向(Y方向)に1mm以上10mm以下の長さ(b)を有する略蒲鉾形状のものである(図4(b))。本発明例の振動端子の先端は平坦な矩形部となっている。 FIG. 4 shows the shape of a vibration terminal according to another example of the present invention, and the tip of the vibration terminal is 3 mm or less at the top in a cross section (XZ cross section) perpendicular to the traveling direction (Y direction). It has an outer peripheral portion having a chamfered portion with a radius of curvature (r) of 0.1 mm or more and 2 mm or less at both ends of the linear portion a (FIG. 4A), and a length of 1 mm or more and 10 mm or less in the traveling direction (Y direction). It has a substantially bowl shape having (b) (FIG. 4 (b)). The tip of the vibration terminal of the example of the present invention is a flat rectangular portion.
頂部の一部に直線部aのある外周部を有する振動端子の場合、その両側に打撃によるき裂発生を防止するため面取り部を設けることが必要となる。面取り部の曲率半径(r)が0.1mm未満では、面取り部により止端に応力集中部となる変形が形成される可能性があり、一方、2mmを超えると接触面積が大きくなり、止端に十分な圧縮残留応力を付与することができないため、曲率半径0.1mm以上2mm以下の面取り部とする。 In the case of a vibration terminal having an outer peripheral portion with a straight portion a at a part of the top portion, it is necessary to provide chamfered portions on both sides to prevent the occurrence of cracks due to impact. If the radius of curvature (r) of the chamfered portion is less than 0.1 mm, the chamfered portion may form a deformation that becomes a stress concentrated portion at the toe, whereas if it exceeds 2 mm, the contact area increases, Therefore, a chamfered portion with a radius of curvature of 0.1 mm to 2 mm is used.
面取り部によっても、圧縮残留応力が付与されるので、矩形部の直線部aの長さは3mm以下とする。矩形部の直線部aの長さが3mm超えの場合、止端に応力集中部となる変形が形成される。 Since the compressive residual stress is also applied by the chamfered portion, the length of the straight portion a of the rectangular portion is set to 3 mm or less. When the length of the straight part a of the rectangular part exceeds 3 mm, a deformation that becomes a stress concentration part is formed at the toe.
図4に示した振動端子は、振動端子の先端に矩形部を有するので、先端が球状や円弧状のものに比べて、より少ない打撃回数で同一箇所を繰返し打撃することが可能で、能率良く、安定して深い打撃痕形状が得られる。 Since the vibration terminal shown in FIG. 4 has a rectangular portion at the tip of the vibration terminal, it is possible to repeatedly hit the same place with a smaller number of hits compared to a tip or a tip having a spherical shape, which is efficient. A stable and deep impact mark shape can be obtained.
図5は、本発明の他の例に係る振動端子の形状を示し、振動端子の先端部が、進行方向(Y方向)に対して直角となる断面(XZ断面)において、頂部に楕円形長径側の円弧状の外周部を有し、前記楕円形の短径(r1)が1mm以上で(図5(a))、進行方向(Y方向)に1mm以上10mm以下の長さを有する略蒲鉾形状に形成されたものである(図5(b))。 FIG. 5 shows the shape of a vibration terminal according to another example of the present invention, and the tip of the vibration terminal has an elliptical long diameter at the top in a cross section (XZ cross section) perpendicular to the traveling direction (Y direction). And the elliptical minor axis (r1) is 1 mm or more (FIG. 5A) and has a length of 1 mm or more and 10 mm or less in the traveling direction (Y direction). It is formed in a shape (FIG. 5B).
頂部に楕円形の長径側の円弧状の外周部を有する振動端子の場合、楕円形の短径(r1)が1mm未満では長径側の円弧状の外周部による打撃で、止端に応力集中部となる変形が形成されるため、楕円形の短径(r1)は1mm以上とする。 In the case of an oscillating terminal having an elliptical long-diameter arc-shaped outer peripheral portion at the top, if the elliptical short diameter (r1) is less than 1 mm, it is hit by the long-circular arc-shaped outer peripheral portion, and the stress concentrated portion at the toe Therefore, the elliptical minor axis (r1) is 1 mm or more.
図3〜5に示した振動端子はいずれも進行方向(Y方向)に1mm以上10mm以下の長さを有する。 3 to 5 all have a length of 1 mm or more and 10 mm or less in the traveling direction (Y direction).
1mm未満の長さでは、止端に圧縮残留応力を付与することが出来ず、一方、10mm超えの長さの場合は、止端に応力集中部となる変形が形成されるため、1mm以上、10mm以下とする。 If the length is less than 1 mm, compressive residual stress cannot be applied to the toe, whereas if the length is more than 10 mm, a deformation that becomes a stress concentration portion is formed at the toe, so that it is 1 mm or more. 10 mm or less.
図6に振動端子の先端部の形状が圧縮残留応力に及ぼす影響を調査した結果を示す。先端部が、図6に示す(1)(図の丸数字1を指し、以下同じとする)、(2)、(3)、(4)の形状の振動端子モデルを用い、母材(平板、降伏強さ294MPa・引張強さ445MPaの12mm厚鋼板)表面に対して振動端子の中心軸が垂直となるようにして、振動端子モデルに負荷を与えて母材を0.1mm押し込み、母材表面側に凹の変形を与えた後、負荷を解除した場合をシミュレートして応力分布をFEM解析で求めたものである。図6(b)の横軸は、振動端子中心軸からの距離、縦軸は残留応力を示す。 FIG. 6 shows the results of investigating the influence of the shape of the tip of the vibration terminal on the compressive residual stress. The tip portion is a base material (flat plate) using the vibration terminal model shown in FIG. 6 (1) (points to the circled numeral 1 in the figure, hereinafter the same), (2), (3), (4). 12 mm thick steel plate with a yield strength of 294 MPa and a tensile strength of 445 MPa) With the center axis of the vibration terminal perpendicular to the surface, a load was applied to the vibration terminal model and the base material was pushed in 0.1 mm. The stress distribution was obtained by FEM analysis by simulating the case where the load was released after the concave deformation was given to the surface side. In FIG. 6B, the horizontal axis indicates the distance from the center axis of the vibration terminal, and the vertical axis indicates the residual stress.
(1)、(2)の振動端子は先端部の頂部がXZ断面(打撃進行方向に直角な断面)において、半径4.5mmの円弧状の外周部を有し、YZ断面(打撃進行方向の断面)の長さを1の振動端子は9mm、(2)の振動端子は4mmとした。 The vibration terminals of (1) and (2) have an arcuate outer periphery with a radius of 4.5 mm in the XZ cross section (cross section perpendicular to the striking direction) at the top of the tip, and the YZ cross section (in the striking direction) The length of the cross section) was 1 mm for the vibration terminal and 4 mm for the vibration terminal (2).
(3)の振動端子は、先端部が、XZ断面(打撃進行方向に直角な断面)において、頂部に1mmの直線部の両端に曲率半径0.5mmの面取り部を備えた外周部を有し、YZ断面(打撃進行方向の断面)の長さを9mmとした。(4)の振動端子は先端部が曲率半径3mmの半球状とした。 The vibration terminal of (3) has an outer peripheral portion with a chamfered portion having a curvature radius of 0.5 mm at both ends of a linear portion of 1 mm at the top in the XZ cross section (cross section perpendicular to the striking direction). The length of the YZ cross section (cross section in the striking direction) was 9 mm. The vibration terminal (4) has a hemispherical shape with a radius of curvature of 3 mm at the tip.
図より、振動端子((1)、(2)、(3))の場合、先端部が半球状の振動端子((4))よりも、変形部中央(振動端子の軸中心)から離れた位置でも大きな圧縮残留応力を付与することが可能で、より効率的に止端の残留応力(引張残留応力)を軽減することが可能である。特にその先端に矩形部を有する(3)の振動端子では、最も圧縮残留応力が大きく、先端が球状や円弧状のものに比べて、より少ない打撃回数で同一箇所を繰返し打撃することが可能で、能率良く、安定して深い打撃痕形状が得られる。 From the figure, in the case of the vibration terminal ((1), (2), (3)), the tip is farther from the center of the deformed part (the axis center of the vibration terminal) than the hemispherical vibration terminal ((4)). A large compressive residual stress can be applied even at the position, and the residual stress at the toe (tensile residual stress) can be reduced more efficiently. In particular, the vibration terminal of (3) having a rectangular portion at its tip has the largest compressive residual stress, and it is possible to repeatedly hit the same place with a smaller number of times of hitting than a tip having a spherical or arc shape at the tip. Efficient, stable and deep strike mark shape can be obtained.
図6より、XZ断面の形状が異なる振動端子((1)、(2)は半径4.5mmの円弧状、(3)は頂部に1mmの直線部の両端に曲率半径0.5mmの面取り部)のいずれでも、変形部の端(x≒0.8mm)から約0.5mm離れた位置で大きな圧縮残留応力が発生しており、その最大値は、打撃部中央から2mm近傍すなわち打撃部の端(x≒0.8mm)から1mm近傍に位置している。 From FIG. 6, the vibration terminals having different XZ cross-sectional shapes ((1), (2) are arc-shaped with a radius of 4.5 mm, and (3) is a chamfered portion with a radius of curvature of 0.5 mm at both ends of a linear portion of 1 mm at the top. In any case, a large compressive residual stress is generated at a position about 0.5 mm away from the end of the deformed portion (x≈0.8 mm), and the maximum value is around 2 mm from the hitting portion center, that is, at the hitting portion. It is located near 1 mm from the end (x≈0.8 mm).
また、図より、先端部が半球状の振動端子((4))の場合、打撃中心(XZ断面の幅中心)から5mm離れた位置で圧縮残留応力が導入されなくなるが、(1)、(2)、(3)の振動端子の場合、打撃中心から5mm離れた位置においても100〜200MPa程度の圧縮残留応力を導入することが可能である。従って、打撃痕は振動端子の溶接止端側の端部がX方向(図2で定義する)で溶接止端より母材側に0.5mm離れた位置から5mmまでの領域に形成することが好ましい。特に、圧縮残留応力の大きい範囲を考慮すると、振動端子の溶接止端側側の端部がX方向(図2で定義する)で溶接止端より母材側に0.5mm離れた位置から2mmまでの領域に形成することが好ましい。但し、打撃痕(変形部)の端でも圧縮残留応力(−50MPa程度)が発生しているので、本発明は溶接止端より母材側に5mmまでの領域に打撃痕を形成するものとする。 Also, from the figure, in the case where the tip is a hemispherical vibration terminal ((4)), compressive residual stress is not introduced at a position 5 mm away from the impact center (width center of the XZ cross section), but (1), ( In the case of the vibration terminals 2) and (3), it is possible to introduce a compressive residual stress of about 100 to 200 MPa even at a position 5 mm away from the hit center. Therefore, the striking trace may be formed in the region from the position where the end of the vibration terminal on the weld toe side is 0.5 mm away from the weld toe in the X direction (defined in FIG. 2) to 5 mm. preferable. In particular, considering the large range of compressive residual stress, the end of the vibration terminal on the weld toe side is 2 mm from the position 0.5 mm away from the weld toe in the X direction (defined in FIG. 2). It is preferable to form in the area up to. However, since compressive residual stress (about −50 MPa) is also generated at the end of the hitting mark (deformed portion), the present invention forms the hitting mark in a region up to 5 mm from the weld toe to the base metal side. .
(1)、(2)、(3)の振動端子の先端部を、進行方向直角断面(XZ断面)の頂部が短径が1mm以上の楕円形における長径側の円弧状とするとより圧縮残留応力が広い範囲で分布して好ましい。 If the tip of the vibration terminal of (1), (2), (3) has an arc shape on the major axis side of an ellipse having a minor axis of 1 mm or more at the top of the traveling direction perpendicular section (XZ section), the compressive residual stress Is preferably distributed over a wide range.
打撃時は、振動端子先端の長辺側を止端に平行に打撃するのが好ましい。止端に平行な部分が長くなるほど、圧縮残留応力が広い範囲で分布するからである。 When hitting, it is preferable to hit the long side of the tip of the vibration terminal parallel to the toe. This is because the compressive residual stress is distributed in a wider range as the portion parallel to the toe becomes longer.
打撃痕は、最大深さが0.03mm以上0.50mm未満とする。底部までの最大深さが0.03mm未満の場合は、止端に十分な圧縮残留応力を付与することができず、0.50mm以上では打撃痕周辺の塑性変形が過大となり新たな応力集中源となる可能性があるためである。上記打撃痕深さの範囲内であれば、母材強度が変化しても、溶接止端の引張残留応力を軽減する圧縮残留応力と、打撃痕から離れた位置で圧縮残留応力が最大値となる分布状態が得られる。 The maximum hit depth is 0.03 mm or more and less than 0.50 mm. If the maximum depth to the bottom is less than 0.03 mm, sufficient compressive residual stress cannot be applied to the toe, and if it is 0.50 mm or more, the plastic deformation around the impact mark becomes excessive and a new stress concentration source This is because there is a possibility of becoming. As long as the base metal strength changes, the compressive residual stress that reduces the tensile residual stress of the weld toe and the maximum compressive residual stress at a position away from the impact mark are within the range of the impact mark depth. A distribution state is obtained.
尚、本発明に係る溶接継手では、溶接止端を含めて溶接ビードを打撃しないように、振動端子の先端部の形状と溶接止端より母材側に5mm、より好ましくは溶接止端より母材側に0.5mm離れた位置から5mmまでの領域内において打撃痕を形成する位置を適宜組み合わせる。 In the welded joint according to the present invention, the shape of the tip of the vibration terminal and the base metal side of the weld toe are 5 mm, more preferably the base of the weld toe so as not to hit the weld bead including the weld toe. The positions where the hitting marks are formed in the region from the position 0.5 mm away from the material side to 5 mm are appropriately combined.
例えば、(1)、(2)の振動端子の場合、打撃中心(XZ断面の幅中心)を溶接止端より母材側に0.5mmの位置とすると、幅が9mmのままでは振動端子の一部が溶接止端より溶接金属側となり溶接止端を覆うようになる。 For example, in the case of the vibration terminals of (1) and (2), if the striking center (width center of the XZ cross section) is 0.5 mm from the weld toe to the base metal side, the vibration terminal A part of the weld toe is closer to the weld metal and covers the weld toe.
頂部の形状を保ったまま、図3のように頂部付近で幅をつめることが可能であるが溶接止端形状によっては溶接止端を打撃することになるので、溶接止端より母材側に5mm、より好ましくは溶接止端より母材側に0.5mm〜5mmまでの領域内で、溶接止端を打撃しない位置を選定して溶接止端に沿って連続的に打撃する。 While maintaining the shape of the top, it is possible to close the width near the top as shown in Fig. 3, but depending on the shape of the weld toe, the weld toe will be struck, so it is closer to the base metal than the weld toe. In a region of 5 mm, more preferably 0.5 mm to 5 mm from the weld toe to the base metal side, a position where the weld toe is not struck is selected and struck continuously along the weld toe.
図7は溶接止端4と打撃痕6の位置関係を示す平面図で、本発明は、打撃痕6が溶接止端4から母材1側に5mm以内であれば溶接止端4との距離によらず圧縮残留応力を溶接止端4に導入できるので、溶接方向における溶接止端4の形状に沿うことなく、当該範囲内に直線状に打撃痕6を形成することが可能で作業能率が向上する。 FIG. 7 is a plan view showing the positional relationship between the weld toe 4 and the hitting mark 6. In the present invention, if the hitting mark 6 is within 5 mm from the weld toe 4 to the base metal 1 side, the distance from the weld toe 4 is as follows. Therefore, the compressive residual stress can be introduced into the weld toe 4, so that it is possible to form the striking dent 6 linearly within the range without following the shape of the weld toe 4 in the welding direction, and the work efficiency is improved. improves.
溶接止端から母材側に5mm離れた位置を打撃する場合は、振動端子先端の母材側の辺を母材側5mmの位置として打撃するので、打撃痕は母材側5mmより更に母材側に形成されることになる。この場合であっても、振動端子先端の母材側の長辺を溶接止端側とすることが好ましい。また、打撃痕が母材側5mmから更に打撃痕の幅だけ母材側に形成されても本発明の作用効果は損なわれない。 When hitting a position 5 mm away from the weld toe to the base metal side, the side on the base metal side of the tip of the vibration terminal is hit as the position of the base metal side 5 mm. Will be formed on the side. Even in this case, it is preferable that the long side on the base material side of the tip of the vibration terminal is the welding toe side. Further, even if the hitting mark is further formed on the base material side by the width of the hitting mark from 5 mm on the base material side, the effect of the present invention is not impaired.
また、図6に示す関係を本発明範囲内で種々に押し込み量を変えた場合について予め求めておくと、実作業で打撃痕を形成する打撃力の調整と打撃する位置の選定が容易となり好ましい。 Further, it is preferable to obtain the relationship shown in FIG. 6 in advance when the amount of pushing is variously changed within the scope of the present invention, because it is easy to adjust the striking force to form a striking mark and select the striking position in actual work. .
振動端子5で母材表面を加圧する前に、止端4と母材1の境界部にグラインダ研削などでr部を設けると母材表面の変形を止端4に及ばさずに、より大きな圧縮残留応力を止端4に導入させることが可能で好ましい。打撃痕は、互いが一部または全てが重なるように複数回の打撃によって形成することが好ましい。また、本発明による作用効果は、ハンマーピーニングまたは超音波衝撃処理のいずれであっても得られる。 If the r portion is provided by grinder grinding or the like at the boundary between the toe 4 and the base material 1 before pressurizing the base material surface with the vibration terminal 5, the deformation of the base material surface does not reach the toe end 4 and is larger. It is preferable that compressive residual stress can be introduced into the toe 4. The hitting trace is preferably formed by hitting a plurality of times so that part or all of the hitting marks overlap each other. In addition, the function and effect of the present invention can be obtained by either hammer peening or ultrasonic impact treatment.
頂部の一部が扁平(直線部)で、その両側に打撃によるき裂発生を防止するため面取り部を有する振動端子(以下、先端形状Aの振動端子)と、先端部が半球状の振動端子(以下、先端形状Bの振動端子)を用いて、幅150mm×長さ300mm×板厚12mmの母材(SM400)に、ハンマーピーニング(空気圧約6kg/cm2、周波数90Hz、移動速度0.25mm/秒による)を振動端子を垂直に繰り返し打撃して行った(図8)。 A vibration terminal (hereinafter referred to as a vibration terminal having a tip shape A) having a chamfered portion to prevent a crack from being generated on both sides of the top part is flat (straight part), and a vibration terminal having a hemispherical tip part (Hereinafter referred to as a vibration terminal having a tip shape B), a hammer peening (air pressure of about 6 kg / cm 2 , frequency of 90 Hz, moving speed of 0.25 mm) on a base material (SM400) of width 150 mm × length 300 mm × plate thickness 12 mm Per second) by repeatedly striking the vibrating terminal vertically (FIG. 8).
試験片はX線による残留応力測定に供した。X線を用いた残留応力測定は、ビーム径1mmφで行った。図9に振動端子の形状と残留応力測定結果を示す。先端形状Aの振動端子は、残留応力が圧縮側となっている範囲が約4mmあるが、先端形状Bの振動端子では、残留応力が圧縮側となっている範囲が約1.5mmと狭くなっている。 The specimen was subjected to residual stress measurement by X-ray. Residual stress measurement using X-rays was performed with a beam diameter of 1 mmφ. FIG. 9 shows the shape of the vibration terminal and the measurement result of the residual stress. The tip shape A vibration terminal has a residual stress on the compression side of about 4 mm, but the tip shape B vibration terminal has a residual stress on the compression side of about 1.5 mm. ing.
次に、溶接継手を作成し、本発明法によりハンマーピーニングを施した後、疲労試験を実施した。図10は溶接継手の寸法形状及び打撃痕の測定位置を示し、(a)は上面図、(b)は側面図を示す。溶接継手は、280A−32V−25cpmの溶接条件にて2体を作製した。 Next, a welded joint was prepared, hammer peened by the method of the present invention, and then a fatigue test was performed. FIG. 10 shows the dimension and shape of the welded joint and the measurement position of the impact mark, where (a) shows a top view and (b) shows a side view. Two welded joints were produced under welding conditions of 280A-32V-25cpm.
各溶接継手に対して、先述の先端形状Aの振動端子を用いて、ハンマーピーニング(空気圧約6kg/cm2、周波数90Hz、移動速度0.25mm/秒による)を振動端子を垂直に繰り返し打撃して行い、打撃痕の寸法を測定した。 For each welded joint, hammer peening (with an air pressure of about 6 kg / cm 2 , a frequency of 90 Hz, and a moving speed of 0.25 mm / second) was repeatedly hit vertically on the vibration terminal using the vibration terminal having the tip shape A described above. The dimensions of the hitting marks were measured.
打撃痕の寸法は、図10(a)に示すように回し溶接部近傍の断面形状が得られる位置(長さ75mmのリブの長さ方向の端部の位置)で、溶接金属から母材にかけてレーザ変位計を用いて0.05mmピッチで測定した。 As shown in FIG. 10 (a), the size of the impact mark is rotated from the weld metal to the base metal at a position where the cross-sectional shape in the vicinity of the welded portion is obtained (position of the end portion in the length direction of the rib having a length of 75 mm). Measurements were made at a pitch of 0.05 mm using a laser displacement meter.
図11(a)、(b)に2体の各溶接継手で得られた溶接部の断面形状をそれぞれ示す。各溶接継手について,疲労試験(周波数3〜5Hz)を行った結果を図12に示す。先端形状Aの振動端子を使ったものは,溶接ままの継手(図中、比較例)に比べて疲労寿命の向上が見られた。 11 (a) and 11 (b) show the cross-sectional shapes of the welds obtained by the two welded joints. FIG. 12 shows the results of a fatigue test (frequency 3 to 5 Hz) for each welded joint. In the case of using the vibration terminal having the tip shape A, the fatigue life was improved as compared with the welded joint (comparative example in the figure).
1 母材
2 リブ
3 溶接ビード
4 止端
5 チッパー
6 打撃痕
7 疲労亀裂
DESCRIPTION OF SYMBOLS 1 Base material 2 Rib 3 Welding bead 4 Toe 5 Chipper 6 Scratch 7 Fatigue crack
Claims (4)
Priority Applications (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2011120006A JP5844551B2 (en) | 2010-05-31 | 2011-05-30 | Manufacturing method of welded joint |
PCT/JP2011/078223 WO2012164774A1 (en) | 2011-05-30 | 2011-11-30 | Welded joint |
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010124288 | 2010-05-31 | ||
JP2010124288 | 2010-05-31 | ||
JP2011120006A JP5844551B2 (en) | 2010-05-31 | 2011-05-30 | Manufacturing method of welded joint |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012011462A true JP2012011462A (en) | 2012-01-19 |
JP5844551B2 JP5844551B2 (en) | 2016-01-20 |
Family
ID=45598506
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2011120006A Active JP5844551B2 (en) | 2010-05-31 | 2011-05-30 | Manufacturing method of welded joint |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5844551B2 (en) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012228732A (en) * | 2011-04-14 | 2012-11-22 | Jfe Steel Corp | Impact tip, hammer peening method, and weld joint using same |
JP2013233590A (en) * | 2012-05-11 | 2013-11-21 | Jfe Steel Corp | Welded joint superior in fatigue characteristic |
JP2013233589A (en) * | 2012-05-11 | 2013-11-21 | Jfe Steel Corp | Peening method of welding part |
US11633811B2 (en) * | 2017-09-27 | 2023-04-25 | Jfe Steel Corporation | Method of peening lap fillet welded joint and welded structures |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010029897A (en) * | 2008-07-28 | 2010-02-12 | Nippon Steel Corp | Peening method and apparatus for improving fatigue characteristic of welded joint, peening apparatus for improving the fatigue characteristics and welded structure excellent in fatigue resistance |
-
2011
- 2011-05-30 JP JP2011120006A patent/JP5844551B2/en active Active
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2010029897A (en) * | 2008-07-28 | 2010-02-12 | Nippon Steel Corp | Peening method and apparatus for improving fatigue characteristic of welded joint, peening apparatus for improving the fatigue characteristics and welded structure excellent in fatigue resistance |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2012228732A (en) * | 2011-04-14 | 2012-11-22 | Jfe Steel Corp | Impact tip, hammer peening method, and weld joint using same |
JP2013233590A (en) * | 2012-05-11 | 2013-11-21 | Jfe Steel Corp | Welded joint superior in fatigue characteristic |
JP2013233589A (en) * | 2012-05-11 | 2013-11-21 | Jfe Steel Corp | Peening method of welding part |
US11633811B2 (en) * | 2017-09-27 | 2023-04-25 | Jfe Steel Corporation | Method of peening lap fillet welded joint and welded structures |
Also Published As
Publication number | Publication date |
---|---|
JP5844551B2 (en) | 2016-01-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2014014831A (en) | Fatigue strength improving method of weld zone and welded joint | |
JP5844551B2 (en) | Manufacturing method of welded joint | |
JP2011131260A (en) | Method for increasing fatigue strength of weld zone, and weld joint | |
WO2013081015A1 (en) | Method for minimizing fatigue damage in welded structure, tool for forming strike mark, and welded structure | |
JP4895407B2 (en) | Peening method and welded joint using it | |
JP5919986B2 (en) | Hammer peening treatment method and welded joint manufacturing method using the same | |
JP2013233590A (en) | Welded joint superior in fatigue characteristic | |
JP5898498B2 (en) | Method for improving fatigue strength of welded part and welded joint | |
JP5977077B2 (en) | Welding peening method | |
JP6495569B2 (en) | Tool for forming impact marks | |
JPWO2019064930A1 (en) | Peening method for lap fillet welded joint and welded structure | |
JP5327567B1 (en) | Peening method and welded joint | |
JP5599653B2 (en) | Welded joint | |
WO2012164774A1 (en) | Welded joint | |
JP5599652B2 (en) | Welded joint | |
JP6747416B2 (en) | Tool for forming impact mark and method for producing welded joint | |
JP5955752B2 (en) | Method for suppressing fatigue damage of welded structure and tool for forming hitting marks | |
JP2019155470A (en) | Method for peening processing of lap fillet-welded joint and weld structure | |
JP6699221B2 (en) | Test piece manufacturing method, test piece and stress corrosion cracking test method | |
JP6051817B2 (en) | Method for suppressing fatigue damage of welded structure, tool for forming impact mark used in the method, and welded structure | |
JP2013136094A (en) | Weld structure of steel | |
JP6339760B2 (en) | Method for suppressing fatigue damage of welded structure and tool for forming hitting marks | |
JP6017938B2 (en) | Method for suppressing fatigue damage of welded structure and tool for forming hitting marks | |
JP2013136092A (en) | Method for suppressing fatigue damage of welded structure | |
JP5252112B1 (en) | Peening construction method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
RD03 | Notification of appointment of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7423 Effective date: 20120321 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120327 |
|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20140115 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150428 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20150616 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20150825 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20151021 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20151117 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20151119 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5844551 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |