JP2022181768A - 光ファイバの製造方法および光ファイバの製造装置 - Google Patents

光ファイバの製造方法および光ファイバの製造装置 Download PDF

Info

Publication number
JP2022181768A
JP2022181768A JP2021088923A JP2021088923A JP2022181768A JP 2022181768 A JP2022181768 A JP 2022181768A JP 2021088923 A JP2021088923 A JP 2021088923A JP 2021088923 A JP2021088923 A JP 2021088923A JP 2022181768 A JP2022181768 A JP 2022181768A
Authority
JP
Japan
Prior art keywords
light
receiving section
optical fiber
coating
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021088923A
Other languages
English (en)
Inventor
克昭 井添
Katsuaki Izoe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2021088923A priority Critical patent/JP2022181768A/ja
Publication of JP2022181768A publication Critical patent/JP2022181768A/ja
Pending legal-status Critical Current

Links

Images

Abstract

【課題】画像処理によらずに異常の有無を判定する。【解決手段】コーティング装置を用いてベアファイバの周囲に液状の被覆層を設け、前記被覆層を硬化させる光ファイバの製造方法において、前記コーティング装置は、線引き方向に沿って並べられ、前記ベアファイバが挿通される挿通孔を有する隔壁によって区切られた、入光区画および受光区画を有し、前記入光区画の内側に向けて光を照射し、前記挿通孔を通って前記受光区画から検出された前記光の強度に基づいて、前記被覆層の異常につながる現象を検知する。【選択図】図1

Description

本発明は、光ファイバの製造方法および光ファイバの製造装置に関する。
特許文献1には、光ファイバ(ベアファイバ)と被覆樹脂との接触部およびその近傍を撮像素子によって撮像し、得られた画像を画像処理装置によって処理し、その結果に基づいて気泡の混入などの異常が検出された場合にコーティング条件の調整を行う、光ファイバの製造方法が開示されている。
再公表WO97/12841号公報
画像に基づいて被覆層の異常を検出する方法においては、種々の課題が存在する。例えば、ベアファイバと被覆樹脂との接触部を明瞭に撮像することが求められる。そのためには、撮像素子のピント位置をベアファイバに正確に合わせる必要があるが、線引き中におけるベアファイバの位置は一定であるとは限らない。また、線引き速度が速くなるに従い、より高速で画像処理を行う必要が生じ、より高性能な画像処理装置が必要となってしまう。
本発明はこのような事情を考慮してなされ、画像処理によらずに被覆層の異常につながる現象を検知することが可能な光ファイバの製造装置および光ファイバの製造方法を提供することを目的とする。
上記課題を解決するために、本発明の一態様に係る光ファイバの製造方法は、コーティング装置を用いてベアファイバの周囲に液状の被覆層を設け、前記被覆層を硬化させる光ファイバの製造方法であって、前記コーティング装置は、線引き方向に沿って並べられ、前記ベアファイバが挿通される挿通孔を有する隔壁によって区切られた、入光区画および受光区画を有し、前記入光区画の内側に向けて光を照射し、前記挿通孔を通って前記受光区画から検出された前記光の強度に基づいて、前記被覆層の異常につながる現象を検知する。
また、本発明の一態様に係る光ファイバの製造装置は、ベアファイバの周囲に液状の被覆層を設けるコーティング装置と、前記被覆層を硬化させる硬化装置と、光源と、受光部と、チャート作成部と、を備え、前記コーティング装置は、線引き方向に沿って並べられ、前記ベアファイバが挿通される挿通孔を有する隔壁によって区切られた、入光区画および受光区画を有し、前記光源は、前記入光区画の内側に向けて光を照射し、前記受光部は、前記挿通孔を通って前記受光区画内に進入した前記光の強度を検出し、前記チャート作成部は、時間の経過に伴う前記光の強度の変化を表すチャートを作成する。
本発明の上記態様によれば、画像処理によらずに被覆層の異常につながる現象を検知することが可能となる。
本実施形態に係る光ファイバの製造装置の概略構成を示す図である。 本実施形態に係るコーティング装置の概略構成を示す図である。 液状樹脂に気泡が混入した場合のチャートの一例である。 本実施形態に係るコーティング装置において、被覆層同士の境界に乱れが生じた場合を示す図である。 被覆層同士の境界に乱れが生じた場合のチャートの一例である。 本実施形態に係るコーティング装置において、メニスカスが上昇した場合を示す図である。 メニスカスが上昇した場合のチャートの一例である。 変形例に係るコーティング装置の概略構成を示す図である。
以下、本実施形態の光ファイバの製造装置および光ファイバの製造方法について図面に基づいて説明する。
図1に示すように、光ファイバの製造装置(以下、単に製造装置100という)は、ヒータ1を有する紡糸炉(不図示)と、冷却装置2と、コーティング装置3と、被覆硬化装置4と、引き取り機5と、プーリ6と、巻取ボビン7と、を備えている。製造装置100は、光ファイバ母材101からベアファイバf1(図2参照)を線引きし、ベアファイバf1の周囲に、第1被覆層f2および第2被覆層f3を設けるように構成されている。
本実施形態では、ベアファイバf1、第1被覆層f2、および第2被覆層f3を合わせて、単に光ファイバFという。光ファイバFは、3層以上の被覆層を有してもよい。つまり、第2被覆層f3の周囲に、さらに別の被覆層が設けられてもよい。例えば、第2被覆層f3が着色層であってもよいし、第2被覆層f3の周囲に設けられた層が着色層であってもよい。
ヒータ1は、光ファイバ母材101を加熱して溶融させる。冷却装置2は、光ファイバ母材101から引き出されたベアファイバf1を冷却する。なお、冷却装置2を用いず、自然冷却によってベアファイバf1を冷却してもよい。光ファイバ母材101およびベアファイバf1は、例えば石英ガラス等により形成される。
コーティング装置3は、ベアファイバf1の周囲に、液状の第1被覆層f2および液状の第2被覆層f3をコーティングする(図2参照)。第1被覆層f2および第2被覆層f3の材質としては、例えばUV硬化型樹脂を採用できる。なお、第1被覆層f2および第2被覆層f3の材質はUV硬化型樹脂でなくてもよい。
被覆硬化装置4は、ベアファイバf1の周囲にコーティングされた第1被覆層f2および第2被覆層f3を硬化させる。例えば被覆層f2、f3がUV硬化型樹脂である場合、被覆硬化装置4は液状の被覆層f2、f3にUV光を照射して硬化させる。
引き取り機5は、例えば引取りキャプスタンであり、引き取り機5によって線引き速度が決定される。プーリ6は、光ファイバFの進行方向を変える。巻取ボビン7は、製造された光ファイバFを一時的に巻き取って保持する。
光ファイバFは、巻取ボビン7に巻き付けられた後、不良部を除外する工程にて、良品候補部が適宜切り割られる。良品候補部には、光学特性などの測定が実施される。測定の結果に基づき製品規格を満たした良品候補部は良品となり、製品として使用される。良品は、出荷用ボビンに再度巻かれてそのまま出荷され、あるいはケーブル化されてから出荷される。
図2に示すように、コーティング装置3は、第1コーティング部10と、第2コーティング部20と、を有している。第1コーティング部10は、ベアファイバf1の周囲に液状の第1被覆層f2をコーティングする。第2コーティング部20は、第1被覆層f2の周囲に液状の第2被覆層f3をコーティングする。第1コーティング部10は、第1被覆層f2となる液状の第1樹脂が溜められる第1区画S1を有する。第2コーティング部20は、第2被覆層f3となる液状の第2樹脂が溜められる第2区画S2を有する。
コーティング装置3には、液状の第1樹脂および液状の第2樹脂を供給するための複数の供給路(不図示)が接続されている。各供給路から、所定の温度に調整された液状の第1樹脂および液状の第2樹脂が、各区画S1、S2に供給される。
第1区画S1は、第1カラー11、ニップル12、および隔壁13によって形成されている。第2区画S2は、第2カラー21、隔壁13、およびダイス22によって形成されている。第1カラー11および第2カラー21は筒状である。第1カラー11の上端部にニップル12が配置され、第1カラー11の下端部に隔壁13が配置されている。第2カラー21は第1カラー11および隔壁13の下方に位置している。ダイス22は第2カラー21の下端部に位置している。
ニップル12には、コーティング装置3の内部にベアファイバf1を導入するための導入孔12aが形成されている。隔壁13は、線引き方向(図2の上下方向)において、第1区画S1と第2区画S2とを区切っている。隔壁13には、ベアファイバf1を挿通するための挿通孔13aが形成されている。ベアファイバf1が、第1区画S1を通過することで、ベアファイバf1の周囲に液状の第1被覆層f2がコーティングされる。第1被覆層f2の外径は、挿通孔13aの内径等によって定まる。第1区画S1内の液状の第1樹脂と空気との境界には、メニスカスMが形成される。メニスカスは曲面状である。メニスカスの形状は、線引き速度や液状の第1樹脂の粘度等により定まる。また、第1樹脂の粘度は、第1樹脂の材質および温度により定まる。例えば、第1区画S1に供給される第1樹脂の温度が高いほど、第1樹脂の粘度が小さくなり、メニスカスの下端が上方(導入孔12aに近い側)に位置する。
ダイス22には、光ファイバFの出口となる出口孔22aが形成されている。第1被覆層f2がコーティングされた状態のベアファイバf1が、第2区画S2を通過することで、第1被覆層f2の周囲に液状の第2被覆層f3がコーティングされる。第2被覆層f3の外径は、出口孔22aの内径等によって定まる。
図2に示すように、本実施形態の製造装置100は、光源41と、変調器42と、受光部43と、復調器44と、チャート作成部45と、制御部46と、を備えている。図2の例では、光源41が第1コーティング部10に配置され、受光部43が第2コーティング部20に配置されている。しかしながら、この位置関係は逆であってもよい。つまり、光源41が第2コーティング部20に配置され、受光部43が第1コーティング部10に配置されてもよい。本明細書では、第1区画S1および第2区画S2のうち、光源41の光が照射される方を「入光区画」といい、他方を「受光区画」という。図2では第1区画S1が入光区画であり第2区画S2が受光区画である。ただし、上記の通り、第1区画S1が受光区画であり第2区画S2が入光区画であってもよい。
第1カラー11には、光を透過する第1窓部11aが設けられている。第2カラー21には、光を透過する第2窓部21aが設けられている。図2の例では、光源41が出射した光は、第1窓部11aを透過して第1区画S1内に照射される。第1区画S1内で光は乱反射するため、光源41が出射した光の一部は、挿通孔13aを通って第2区画S2内に進入する。また、第2区画S2内でも光が乱反射するため、光の一部は第2窓部21aを透過して受光部43によって受光される。
光源41としては、例えばLD(Laser Diode)またはLED(Light Emitting Diode)を用いることができる。ノイズとなる光から、光源41が出射した光を識別しやすくするために、光源41は単色光を出射することが好ましい。ノイズとなる光としては、例えば室内光や被覆硬化装置4が発する光等が挙げられる。光源41が出射する光の波長としては、被覆層f2、f3となる樹脂の硬化に寄与しにくい波長を選択することが好ましい。
受光部43としては、光源41が出射し、挿通孔13aを通って受光区画に進入した光の強度を検出可能な任意の素子を用いることができる。受光部43の具体例としては、PD(PhotoDiode)、CCD(Charge Coupled Device)、光電子倍増管、サーモパイル等が挙げられる。
変調器42は、光源41に電気的に接続されている。変調器42は、光源41が出射する光を変調する。変調の具体例としては、例えば光源41が発する光の周波数や振幅などを一定周期で変化させることが挙げられる。ただし、その他の方式の変調を行ってもよい。
復調器44は、受光部43に電気的に接続されている。復調器44としては、受光部43が受光した光の情報(振幅、周波数等)から、光源41によって出射された光の情報を抽出可能な任意の素子を用いることができる。復調器44の具体例としては、ロックインアンプが挙げられる。
上記のような変調器42および復調器44を用いることで、受光部43による検出結果から、室内光等のノイズの影響を取り除くことができる。
なお、光源41が出射する光を単色光とし、当該単色光以外の帯域の光を遮断するカラーフィルターを第2窓部21a等に設けることで、室内光などのノイズの影響を抑制することが可能である。したがって、変調器42および復調器44は無くてもよい。
チャート作成部45は、少なくとも受光部43に電気的に接続されている。チャート作成部45は、光源41が出射し、挿通孔13aを通って受光部43に入射した光の情報に基づいて、チャートを作成する。本明細書における「チャート」とは、例えば図3に示すように、横軸を時間(T)とし、縦軸を光の強度(P)とするデータ(光の強度の時系列データ群)若しくは描画されたグラフである。
チャート作成部45は、電子データとしてチャートを作成してもよい。この場合、チャート作成部45としては、マイクロコントローラ、IC(Integrated Circuit)、LSI(Large-scale Integrated Circuit)、ASIC(Application Specific Integrated Circuit)などの集積回路を採用できる。また、チャート作成部45は、チャートをグラフ等として出力(例えば、紙へのプリントまたはモニタへの表示)してもよい。この場合、チャート作成部45はプリンタやモニタ等であってもよい。詳細は後述するが、本実施形態では、チャートを用いて被覆層f2、f3の異常につながる現象の発生を検知する。
制御部46は、被覆層f2、f3の異常につながる現象の発生を検知した場合に、コーティング条件の調整を行う。異常の種類としては、気泡の混入、被覆層f2、f3間の界面の乱れ、偏肉等が挙げられる。コーティング条件としては、例えば、区画S1、S2内の樹脂の圧力、区画S1、S2に供給される樹脂の温度、ベアファイバf1に対するコーティング装置3の傾き、コーティング装置3の水平方向の位置、ベアファイバf1の温度などが挙げられる。
コーティング装置3の傾きの調整は、例えばコーティング装置3をその中心軸線回りに所定の角度だけ回転させることで行ってもよい。ベアファイバf1の中心軸線とコーティング装置3の中心軸線とは微小に傾いているため、コーティング装置3をその中心軸線回りに回転させると、ベアファイバf1に対するコーティング装置3の傾きを変化させることができる。ベアファイバf1の温度の調整は、冷却装置2による冷却条件を調整することで行ってもよい。これらのコーティング条件の調整を行うため、制御部46は、コーティング装置3のアクチュエータ(不図示)や、冷却装置2等に、電気的に接続されていることが好ましい。
制御部46としては、マイクロコントローラ、IC、LSI、ASICなどの集積回路を採用できる。チャート作成部45と制御部46とが、一体となっていてもよい。例えば、チャート作成部45が電子データとしてチャートを作成する場合、制御部46の内部にチャート作成部45を組み込むことができる。
次に、以上のように構成された製造装置100の作用について説明する。
図2に示すように、第1区画S1または第2区画S2内の液状の樹脂に気泡Bが混入した場合を考える。光源41が出射した光は、入光区画(図2では第1区画S1)内で乱反射し、その一部は挿通孔13aを通って受光区画(図2では第2区画S2)に入射する。さらに、光は受光区画内で乱反射し、その一部が受光部43に入射する。受光部43により検出される、光源41が出射した光の強度は、異常がない場合には略一定となる。
しかしながら、区画S1、S2内に気泡Bが混入した場合、気泡Bの表面で光が屈折することなどにより、受光部43によって検出される光の強度が変化する。例えば図3のチャートでは、気泡Bの存在によって光の強度が瞬間的に大きくなり、ピークpが現れている。このようなピークpの有無を判定することで、区画S1、S2への気泡Bの混入の有無を判定できる。
区画S1、S2に気泡Bが混入しても、被覆層f2、f3に実際には異常が発生していない可能性がある。ただし、区画S1、S2に気泡Bが混入された場合には、そのコーティング条件を継続すると、被覆層f2、f3に異常が発生する蓋然性が高い。そこで本実施形態では、図3に示すようなピークpがチャートに現れた場合には被覆層f2、f3の異常につながる現象が発生したと判定し、コーティング条件の調整を行う。これにより、被覆層f2、f3の異常が発生した不良部が、連続的に製造されることを抑制できる。
次に、図4に示すように、第1被覆層f2と第2被覆層f3との間の界面に乱れDが生じた場合を考える。被覆層f2、f3の界面が正常な場合と、界面に乱れDが生じた場合とでは、界面で反射する光の進行方向が変化する。その結果、光源41が出射し、受光部43によって検出される光の強度Pの大きさも相違することとなる。本願発明者らが検討したところ、界面の乱れDが発生した場合には、図5のチャートに示すように、複数のピークpが短時間に連続して現れた。したがって、このようなチャートが現れた場合に、被覆層f2、f3の異常につながる現象(界面の乱れD)が発生したと判定することができる。
次に、図6に示すように、メニスカスMが適切な形状(例えば図2、図4)から変化した場合を考える。メニスカスMの形状が適切な状態から変化すると、メニスカスMにおいて反射する光の進行方向が変化する。その結果、光源41が出射し、受光部43によって検出される光の強度Pも変化する。本願発明者らが検討したところ、メニスカスMの形状が変化すると、図7のチャートに示すように、通常時よりも光の強度Pが連続的に大きい領域A1や、通常時よりも光の強度Pが連続的に小さい領域A2が現れた。したがって、このようなチャートが現れた場合に、メニスカスMが適切な形状から変化したと判定することができる。
メニスカスMの形状が適切でないと、被覆層f2、f3の偏肉につながる。そこで本実施形態では、メニスカスMの形状が適切でない場合に、被覆層f2、f3の異常につながる現象が発生したと判定し、コーティング条件の調整を行う。
図6に示すように、光がメニスカスMに直接照射される位置に光源41を配置した場合、受光部43によって検出される光の強度PとメニスカスMの形状との相関がより顕著になる。したがって、メニスカスMの形状の変化を、より精度よく検出することが可能になる。ただし、光源41の光がメニスカスMに直接照射されなくても、光が乱反射することで、一部の光が光源41からメニスカスMを経由して受光部43に到達する。そして、受光部43によって検出される光の強度PとメニスカスMの形状との間には相関関係が生じる。したがって、メニスカスMに光が直接照射する位置に光源41を配置することは必須ではない。
なお、チャートに基づく異常の判定は、制御部46が行ってもよいし、作業者が行ってもよい。制御部46が異常の判定を行う場合、その異常の種類に応じて、制御部46が自動的にコーティング条件の調整を行ってもよい。例えば、異常の種類が気泡Bの混入である場合には、第1区画S1に供給される樹脂の粘度を下げることで、気泡Bの混入を抑制できる可能性が高い。したがって、制御部46は、異常の種類が気泡Bの混入である場合に、第1区画S1に供給される樹脂の温度を上げるように構成されてもよい。同様に、作業者が異常の判定を行う場合、その異常の種類に応じて、作業者がコーティング条件の調整を行ってもよい。
以上説明したように、本実施形態における光ファイバの製造方法は、コーティング装置3を用いてベアファイバf1の周囲に液状の被覆層f2、f3を設け、被覆層f2、f3を硬化させる。コーティング装置3は、線引き方向に沿って並べられ、ベアファイバf1が挿通される挿通孔13aを有する隔壁13によって区切られた、入光区画(区画S1、S2のうちの一方)および受光区画(区画S1、S2のうちの他方)を有する。そして、入光区画の内側に向けて光を照射し、挿通孔13aを通って受光区画から検出された光の強度Pに基づいて、被覆層f2、f3の異常につながる現象を検知する。このような構成によれば、画像処理によらずに被覆層f2、f3の異常につながる現象を検知することが可能となる。
また、本実施形態では、被覆層f2、f3の異常につながる現象が検知されたとき、コーティング条件の調整を行う。この構成により、不良部が連続的に製造されてしまうことを抑制できる。
また、被覆層f2、f3の異常の種類を判定し、判定の結果に基づいてコーティング条件の調整を行ってもよい。
また、本実施形態では、変調器42によって所定の周期で変調された光を入光区画の内側に向けて照射する。この構成により、室内光などのノイズの影響を低減することができる。
また、本実施形態の光ファイバの製造装置100は、ベアファイバf1の周囲に液状の被覆層f2、f3を設けるコーティング装置3と、被覆層f2、f3を硬化させる硬化装置と、光源41と、受光部43と、チャート作成部45と、を備え、コーティング装置3は、線引き方向に沿って並べられ、ベアファイバf1が挿通される挿通孔13aを有する隔壁13によって区切られた、入光区画および受光区画を有し、光源41は、入光区画の内側に向けて光を照射し、受光部43は、挿通孔13aを通って受光区画内に進入した光の強度Pを検出し、チャート作成部45は、時間Tの経過に伴う光の強度Pの変化を表すチャートを作成する。このような構成によれば、画像処理によらずに被覆層f2、f3の異常につながる現象を検知することが可能となる。
また、図2等の例では、第1区画S1が入光区画であり、第2区画S2が受光区画である。つまり、入光区画が受光区画よりも線引き方向における上流側に位置する。ただし、入光区画は受光区画よりも線引き方向における下流側に位置してもよい。言い換えると、第2区画S2の内側に光を照射するように光源41を配置し、挿通孔13aを通って第1区画S1に進入した光の強度Pを検出するように受光部43を配置してもよい。
また、光源41が発する光は単色光であってもよい。この場合、受光部43が受光する光から、より容易に室内光等のノイズを除去することができる。
なお、本発明の技術的範囲は前記実施形態に限定されず、本発明の趣旨を逸脱しない範囲において種々の変更を加えることが可能である。
例えば、コーティング装置3の構造は適宜変更可能である。具体的には、第1カラー11および第2カラー21が一体となっていてもよい。また、コーティング装置3は、第2被覆層f3の周囲に他の被覆層をコーティングするための第3区画を有してもよい。この場合、第3区画は、第2区画S2の下流側に配置される。
また、図8に示すように、光源41および受光部43にそれぞれライトガイド41a、43aが接続されてもよい。ライトガイド41a、43aは、光ファイバ等の光を伝達する部材である。ライトガイド41a、43aを用いることで、光源41および受光部43の配置の自由度が高まる。また、コーティング装置3の姿勢や位置を変化させる場合に、光源41および受光部43の位置を固定したまま、ライトガイド41a、43aをコーティング装置3に追従させることも可能となる。ライトガイド41a、43aのうち、どちらか一方のみが設けられてもよい。
また、図8に示すように、製造装置100は、線引き方向において光源41とは異なる位置に配置された第2光源47と、線引き方向において受光部43とは異なる位置に配置された第2受光部48と、をさらに備えてもよい。第2光源47にライトガイド47aを接続し、第2受光部48にライトガイド48aを接続してもよい。光源41と第2光源47とで、例えば、光の波長が異なってもよい。あるいは、光源41と第2光源47とで、異なる変調を行って光を出射させてもよい。これらの場合、受光部43および第2受光部48が受光した光から、光源41から出射された光と第2光源47から出射された光とを識別することができる。なお、光源の数より受光部の数が少なくてもよい。複数の光源を線引き方向において異なった位置に配置することで、異常の判定精度の向上を図ったり、判定可能な異常の種類を増やしたりすることができる。
また、図2、4、6に示したチャート形状はあくまで一例である。コーティング装置3の構造に応じて、異常の種類とそれに対応するチャート形状とは変化し得る。本実施形態を実際の製造装置に適用する場合には、当該製造装置を用いて予備実験を行い、異常の種類とそれに対応するチャート形状との関係を把握することが好ましい。
その他、本発明の趣旨を逸脱しない範囲で、上記した実施形態における構成要素を周知の構成要素に置き換えることは適宜可能であり、また、上記した実施形態や変形例を適宜組み合わせてもよい。
3…コーティング装置 13…隔壁 13a…挿通孔 41…光源 41a…ライトガイド 43…受光部 45…チャート作成部 47…第2光源 48…第2受光部 100…製造装置 F…光ファイバ f1…ベアファイバ f2、f3…被覆層

Claims (10)

  1. コーティング装置を用いてベアファイバの周囲に液状の被覆層を設け、前記被覆層を硬化させる光ファイバの製造方法であって、
    前記コーティング装置は、線引き方向に沿って並べられ、前記ベアファイバが挿通される挿通孔を有する隔壁によって区切られた、入光区画および受光区画を有し、
    前記入光区画の内側に向けて光を照射し、
    前記挿通孔を通って前記受光区画から検出された前記光の強度に基づいて、前記被覆層の異常につながる現象を検知する、光ファイバの製造方法。
  2. 前記現象が検知されたとき、コーティング条件の調整を行う、請求項1に記載の光ファイバの製造方法。
  3. 前記被覆層の異常の種類を判定し、前記判定の結果に基づいてコーティング条件の調整を行う、請求項1または2に記載の光ファイバの製造方法。
  4. 所定の周期で変調された前記光を前記入光区画の内側に向けて照射する、請求項1から3のいずれか1項に記載の光ファイバの製造方法。
  5. ベアファイバの周囲に液状の被覆層を設けるコーティング装置と、
    前記被覆層を硬化させる硬化装置と、
    光源と、
    受光部と、
    チャート作成部と、を備え、
    前記コーティング装置は、線引き方向に沿って並べられ、前記ベアファイバが挿通される挿通孔を有する隔壁によって区切られた、入光区画および受光区画を有し、
    前記光源は、前記入光区画の内側に向けて光を照射し、
    前記受光部は、前記挿通孔を通って前記受光区画内に進入した前記光の強度を検出し、
    前記チャート作成部は、時間の経過に伴う前記光の強度の変化を表すチャートを作成する、光ファイバの製造装置。
  6. 前記入光区画は前記受光区画よりも前記線引き方向における上流側に位置する、請求項5に記載の光ファイバの製造装置。
  7. 前記入光区画は前記受光区画よりも前記線引き方向における下流側に位置する、請求項5に記載の光ファイバの製造装置。
  8. 前記光は単色光である、請求項5から7のいずれか1項に記載の光ファイバの製造装置。
  9. 前記光源および前記受光部の少なくとも一方にライトガイドが接続されている、請求項5から8のいずれか1項に記載の光ファイバの製造装置。
  10. 前記線引き方向において前記光源とは異なる位置に配置された第2光源をさらに備える、請求項5から9のいずれか1項に記載の光ファイバの製造装置。
JP2021088923A 2021-05-27 2021-05-27 光ファイバの製造方法および光ファイバの製造装置 Pending JP2022181768A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021088923A JP2022181768A (ja) 2021-05-27 2021-05-27 光ファイバの製造方法および光ファイバの製造装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021088923A JP2022181768A (ja) 2021-05-27 2021-05-27 光ファイバの製造方法および光ファイバの製造装置

Publications (1)

Publication Number Publication Date
JP2022181768A true JP2022181768A (ja) 2022-12-08

Family

ID=84328589

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021088923A Pending JP2022181768A (ja) 2021-05-27 2021-05-27 光ファイバの製造方法および光ファイバの製造装置

Country Status (1)

Country Link
JP (1) JP2022181768A (ja)

Similar Documents

Publication Publication Date Title
JP4844484B2 (ja) 光ファイバの製造方法及び製造装置
CN108885182B (zh) 光纤检查装置、光纤制造装置、光纤的检查方法及光纤的制造方法
JP2005283465A (ja) 光ファイバの欠陥検出装置及び方法並びにプラスチック光ファイバの製造装置
JP5695138B2 (ja) 間欠型光ファイバテープ心線の検査方法、製造方法および検査装置
US20200189958A1 (en) Manufacturing method of optical fiber
JP2022181768A (ja) 光ファイバの製造方法および光ファイバの製造装置
JP5251306B2 (ja) 光ファイバの製造方法及び製造装置
JP5017456B2 (ja) 空孔付き光ファイバの空孔径の測定方法、ならびに空孔付き光ファイバの製造方法
JP6241087B2 (ja) 糸条状態検出方法及び糸条状態検出装置
JP2000281379A (ja) 光ファイバの線引装置
CN205080069U (zh) 检测设备
JP2016085138A (ja) 被覆異常部検出方法および装置
US20240035924A1 (en) Inspection method for optical fiber, inspection device for optical fiber, and method for manufacturing optical fiber-wound bobbin
JP5549383B2 (ja) ガラス管の欠陥検査方法
US7116409B2 (en) Optical fiber for high-speed fiber-drawing process and coating concentricity monitor
CN115190872B (zh) 光纤的制造方法和光纤的制造装置
JP4300993B2 (ja) 光ファイバの製造方法
WO2022114182A1 (ja) 着色光ファイバ心線の製造方法及び製造装置
JPH08282920A (ja) 走行線状体における被覆層の異常検知装置ならびに異常検知方法
JP2005289764A (ja) 光ファイバの製造方法
JP7396158B2 (ja) 光ファイバの製造方法
KR100357620B1 (ko) 자외선 경화장치 감시 시스템
US11256027B2 (en) Optical fiber glass eccentricity measurement device and measurement method
US20230416140A1 (en) Method of manufacturing optical fiber and apparatus for manufacturing optical fiber
JP2022015238A (ja) 光ファイバの製造装置