JP2022172569A - 弾性波デバイス、フィルタおよびマルチプレクサ - Google Patents

弾性波デバイス、フィルタおよびマルチプレクサ Download PDF

Info

Publication number
JP2022172569A
JP2022172569A JP2021078467A JP2021078467A JP2022172569A JP 2022172569 A JP2022172569 A JP 2022172569A JP 2021078467 A JP2021078467 A JP 2021078467A JP 2021078467 A JP2021078467 A JP 2021078467A JP 2022172569 A JP2022172569 A JP 2022172569A
Authority
JP
Japan
Prior art keywords
piezoelectric layer
region
layer
acoustic wave
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021078467A
Other languages
English (en)
Inventor
崇 五ノ井
Takashi Itsunoi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiyo Yuden Co Ltd
Original Assignee
Taiyo Yuden Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiyo Yuden Co Ltd filed Critical Taiyo Yuden Co Ltd
Priority to JP2021078467A priority Critical patent/JP2022172569A/ja
Publication of JP2022172569A publication Critical patent/JP2022172569A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Surface Acoustic Wave Elements And Circuit Networks Thereof (AREA)

Abstract

Figure 2022172569000001
【課題】特性の劣化を抑制する弾性波デバイス、フィルタ及びマルチプレクサを提供する。
【解決手段】弾性波デバイスは、圧電層14と、支持基板10と、絶縁層15と、第1櫛型電極と、第2櫛型電極とを備える。圧電層14は、第1領域50aにおける第1表面40aに対し第2領域50bにおける第2表面40bは傾斜し、第1領域50aと第2領域50bにおいて略均一な厚さを有する。支持基板10は、圧電層14に対し第1表面および第2表面と反対側に設けられ、第1領域50aにおける圧電層側の面に対し第2領域50bにおける圧電層側の面は傾斜しない。絶縁層15は、圧電層14と支持基板10との間に設けられ、第1領域50aにおける支持基板側の面は第2領域50bにおける支持基板側の面に対し傾斜しない。第1櫛型電極は、圧電層14の第1表面上に設けられている。第2櫛型電極は、圧電層14の第2表面上に設けられている。
【選択図】図2

Description

本発明は、弾性波デバイス、フィルタおよびマルチプレクサに関し、例えば一対の櫛型電極を有する弾性波デバイス、フィルタおよびマルチプレクサに関する。
スマートフォン等の通信機器に用いられる弾性波共振器として、弾性表面波共振器が知られている。弾性表面波共振器を形成する圧電層を支持基板に接合した場合に圧電層の厚さを弾性波の波長以下とすることが知られている。(例えば特許文献1)。圧電層と支持基板との間に設けられた温度補償膜の厚さと圧電層の厚さの合計を弾性波の波長の2倍以下とすることが知られている(例えば特許文献2)。圧電基板の平坦部と傾斜部とに各々一対の櫛型電極を設けることが知られている(例えば特許文献3)。
特開2017-34363号公報 特開2019-201345号公報 特開2010-103621号公報
特許文献3は、平坦部の一対の櫛型電極と傾斜部の一対の櫛型電極をそれぞれ好適な特性とすることができる。しかしながら、傾斜部における圧電層の厚さが均一でなくなるため、特性が劣化してしまう。
本発明は、上記課題に鑑みなされたものであり、特性の劣化を抑制することを目的とする。
本発明は、第1領域における第1表面に対し第2領域における第2表面が傾斜し、前記第1領域と前記第2領域において略均一な厚さを有する圧電層と、前記圧電層に対し前記第1表面および前記第2表面と反対側に設けられ、前記第1領域における前記圧電層側の面に対し前記第2領域における前記圧電層側の面は傾斜しない支持基板と、前記圧電層と前記支持基板との間に設けられた絶縁層と、前記第1表面上に設けられた一対の第1櫛型電極と、前記第2表面上に設けられた一対の第2櫛型電極と、を備える弾性波デバイスである。
上記構成において、前記圧電層は、回転YカットX伝搬タンタル酸リチウム基板または回転Yカットニオブ酸リチウム基板である構成とすることができる。
上記構成において、前記第1領域における前記圧電層のオイラー角は(0°、θ1、0°)であり、前記第2領域における前記圧電層のオイラー角は(0°、θ2、0°)であり、θ1とθ2とが異なる構成とすることができる。
上記構成において、前記絶縁層は、前記支持基板上に設けられた第1絶縁層と、前記第1絶縁層上に設けられ、前記第1領域および前記第2領域において略均一な厚さを有する第2絶縁層と、を備える構成とすることができる。
上記構成において、前記第2絶縁層は酸化シリコンを主成分とし、前記第1絶縁層を伝搬するバルク波の音速は前記第2絶縁層を伝搬するバルク波の音速より速い構成とすることができる。
上記構成において、前記圧電層と前記第2絶縁層の厚さの合計は、前記第1櫛型電極の電極指の平均ピッチの4倍以下かつ前記第2櫛型電極の電極指の平均ピッチの4倍以下である構成とすることができる。
本発明は、上記弾性波デバイスを含むフィルタである。
上記構成において、入力端子と、出力端子と、前記入力端子と前記出力端子との間に直列接続され、前記第1領域に設けられた直列共振器と、前記入力端子と前記出力端子との間の経路に一端が接続され、他端が接地され、前記第2領域に設けられた並列共振器と、を備える構成とすることができる。
上記構成において、前記第1領域における圧電層は、25°以上かつ55°以下回転YカットX伝搬タンタル酸リチウム層であり、前記第2領域における圧電層は、-15°以上かつ15°以下回転YカットX伝搬タンタル酸リチウム層である構成とすることができる。
本発明は、上記フィルタを備えるマルチプレクサである。
本発明によれば、特性の劣化を抑制することができる。
図1は、実施例1における弾性波デバイスの平面図である。 図2(a)から図2(c)は、それぞれ図1のA-A断面図、B-B断面図およびC-C断面図である。 図3(a)から図3(e)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その1)である。 図4(a)から図4(c)は、実施例1に係る弾性波デバイスの製造方法を示す断面図(その2)である。 図5(a)から図5(d)は、実施例1に係る弾性波デバイスの別の製造方法を示す断面図である。 図6は、実施例1の変形例1における弾性波デバイスの平面図である。 図7(a)から図7(c)は、それぞれ図6のA-A断面図、B-B断面図およびC-C断面図である。 図8(a)は、シミュレーションにおけるカット角θに対する共振周波数frおよび反共振周波数faにおけるTCVを示す図、図8(b)は、カット角θに対する共振周波数fr、反共振周波数faおよび電気機械結合係数kを示す図である。 図9(a)は、比較例1に係る弾性波デバイスの断面図、図9(b)は、実施例1の変形例2に係る弾性波デバイスの断面図である。 図10(a)および図10(b)は、実施例2に係るフィルタのそれぞれ回路図および平面図である。 図11は、実施例2の変形例1に係るデュプレクサの回路図である。
以下、図面を参照し本発明の実施例について説明する。
実施例1では弾性波共振器を有する弾性波デバイスを例に説明する。図1は、実施例1における弾性波デバイスの平面図である。図2(a)から図2(c)は、それぞれ図1のA-A断面図、B-B断面図およびC-C断面図である。電極指の配列方向をX方向、電極指の延伸方向をY方向、支持基板および圧電層の積層方向をZ方向とする。X方向、Y方向およびZ方向は、圧電層の結晶方位のX軸方向およびY軸方向とは必ずしも対応しない。圧電層が回転YカットX伝搬基板の場合、X方向は結晶方位のX軸方向となる。
図1から図2(c)に示すように、支持基板10上に圧電層14が設けられている。支持基板10と圧電層14との間に絶縁層15が設けられている。絶縁層15は、支持基板10と圧電層14の間に設けられた温度補償膜13と、温度補償膜13と支持基板10との間に設けられた境界層12と、を備える。平面視において領域50aと50bとが設けられている。領域50aおよび50bにおける圧電層14の上面40aおよび40bは支持基板10の上面43に対し傾斜する。また、領域50aにおける圧電層14の上面40aに対し領域50bにおける圧電層14の上面40bは傾斜する。領域50aにおける圧電層14の上面40aは+Y方向に行くにしたがい支持基板10の上面43から離れ、領域50bにおける圧電層14の上面40bは-Y方向に行くにしたがい支持基板10の上面43から離れる。領域50aおよび50bにおける圧電層14の厚さT4は略均一である。領域50aおける圧電層14の下面41aと領域50bにおける圧電層14の下面41bとは上面40aと40bに対応して傾斜している。
領域50aおよび50bにおける温度補償膜13の厚さT3は略均一である。領域50aおける温度補償膜13の下面42aに対し領域50bにおける温度補償膜の下面42bは傾斜する。領域50aにおける境界層12の下面に対し領域50bにおける境界層12の下面は傾斜せず略平坦である。これにより、境界層12の厚さT2は、温度補償膜13の下面42aおよび42bの傾斜に対応するように変化する。領域50aおよび50bにおける支持基板10の厚さT0は略均一である。
領域50aおよび50bにおける圧電層14上にそれぞれ弾性波共振器26aおよび26bが設けられている。弾性波共振器26aおよび26bはIDT22および反射器24を有する。反射器24はIDT22のX方向の両側に設けられている。IDT22および反射器24は、圧電層14上の金属膜16により形成される。
IDT22は、対向する一対の櫛型電極20を備える。櫛型電極20は、複数の電極指18と、複数の電極指18が接続されたバスバー19と、を備える。X方向からみて一対の櫛型電極20の電極指18が交差する領域が交差領域25である。交差領域25の長さが開口長である。一対の櫛型電極20は、交差領域25の少なくとも一部において電極指18が交互に設けられている。交差領域25において複数の電極指18が主に励振する弾性波は、主にX方向に伝搬する。一対の櫛型電極20のうち一方の櫛型電極20の電極指18のピッチがほぼ弾性波の波長λとなる。複数の電極指18のピッチ(電極指18の中心間のピッチ)をDとすると、一方の櫛型電極20の電極指18のピッチは電極指18の2本分のピッチDとなる。反射器24は、IDT22の電極指18が励振した弾性波(弾性表面波)を反射する。これにより弾性波はIDT22の交差領域25内に閉じ込められる。
圧電層14は、例えば単結晶タンタル酸リチウム(LiTaO)層または単結晶ニオブ酸リチウム(LiNbO)層であり、例えば回転YカットX伝搬タンタル酸リチウム層または回転YカットX伝搬ニオブ酸リチウム層である。
支持基板10は、例えばサファイア基板、アルミナ基板、シリコン基板、スピネル基板、水晶基板、石英基板または炭化シリコン基板である。サファイア基板は単結晶Al基板であり、アルミナ基板は多結晶または非晶質Al基板であり、シリコン基板は単結晶または多結晶のシリコン基板であり、スピルネ基板は多結晶または非晶質MgAl基板であり、水晶基板は単結晶SiO基板であり、石英基板は多結晶または非晶質SiO基板であり、炭化シリコン基板は多結晶または単結晶のSiC基板である。支持基板10のX方向の線膨張係数は圧電層14のX方向の線膨張係数より小さい。これにより、弾性波共振器の周波数温度依存性を小さくできる。また、支持基板10として例えば硬い材料および/または熱伝導率の高い材料を選択すると、支持基板10を伝搬するバルク波の音速は境界層12を伝搬するバルク波の音速より速くなる。支持基板10を伝搬するバルク波の音速は境界層12を伝搬するバルク波の音速より遅くてもよい。
温度補償膜13は、圧電層14の弾性定数の温度係数の符号と反対の符号の弾性定数の温度係数を有する。例えば圧電層14の弾性定数の温度係数は負であり、温度補償膜13の弾性定数の温度係数は正である。温度補償膜13は、酸化シリコン(SiO)を主成分とする絶縁膜であり、例えば無添加または弗素等の添加元素を含む酸化シリコン(SiO)膜であり、例えば多結晶相または非晶質層である。これにより、弾性波共振器の周波数温度係数を小さくできる。温度補償膜13が酸化シリコン膜の場合、温度補償膜13を伝搬するバルク波の音速は圧電層14を伝搬するバルクの音速より遅くなる。
温度補償膜13が温度補償の機能を有するためにはメイン応答の弾性波のエネルギーが温度補償膜13内にある程度存在することが求められる。弾性表面波のエネルギーが集中する範囲は弾性表面波の種類に依存するものの、典型的には弾性表面波のエネルギーは圧電層14の上面から2λ(λは弾性波の波長)の範囲に集中し、特に圧電層14の上面からλの範囲に集中する。そこで、圧電層14の厚さT4は、好ましくは2λ以下であり、より好ましくはλ以下であり、さらに好ましくは0.6λ以下である。
境界層12を伝搬するバルク波の音速は、温度補償膜13を伝搬するバルク波の音速より速い。これにより、圧電層14および温度補償膜13内にバルク波が閉じ込められる。さらに、境界層12を伝搬するバルク波の音速は、支持基板10を伝搬するバルク波の音速より遅い。境界層12は、例えば多結晶または非晶質であり、酸化アルミニウム膜、窒化シリコン膜、窒化アルミニウム膜またシリコン膜である。境界層12は異なる材料からなる複数の層が積層されていてもよい。
金属膜16は、例えばアルミニウム(Al)、銅(Cu)またはモリブデン(Mo)を主成分とする膜である。電極指18と圧電層14との間にチタン(Ti)膜またはクロム(Cr)膜等の密着膜が設けられていてもよい。密着膜は電極指18より薄い。電極指18を覆うように絶縁膜が設けられていてもよい。絶縁膜は保護膜または温度補償膜として機能する。
[実施例1の製造方法]
図3(a)から図4(c)は、実施例1に係る弾性波デバイスの製造方法を示す断面図である。図3(a)に示すように、圧電基板14aの上面にフォトレジスト等のマスク層を形成し、例えば化学エッチングまたはイオンミリングを行うことで、圧電基板14aの上面に傾斜の異なる上面40aおよび40bがそれぞれ領域50aおよび50bに形成される。化学エッチングまたはイオンミリングの条件を最適化することで、圧電基板14aの上面40aおよび40bは特定の結晶面となる。
図3(b)に示すように、圧電基板14aの下面にフォトレジスト等のマスク層を形成し、例えば化学エッチングまたはイオンミリングを行うことで、圧電基板14aの下面に傾斜の異なる下面41aおよび41bが形成される。このとき、上面40aの傾斜と下面41aの傾斜とが対応し、上面40bの傾斜と下面41bの傾斜が対応し、圧電基板14aの厚さは領域50aおよび50bにおいて製造誤差を許容する範囲で略均一となるようにする。
図3(c)に示すように、圧電基板14aの下面に温度補償膜13を形成する。温度補償膜13の形成には、例えばCVD(Chemical Vapor Deposition)法、真空蒸着法またはスパッタリング法を用いる。領域50aおよび50bにおける温度補償膜の厚さは製造誤差を許容する範囲で略均一であり、温度補償膜13の下面42aおよび42bの傾斜はそれぞれ圧電基板14aの下面41aおよび41bの傾斜に対応する。
図3(d)に示すように、」温度補償膜13の下面に境界層12を形成する。境界層12の形成には、例えばCVD法、真空蒸着法またはスパッタリング法を用いる。境界層12の下面43aおよび43bの傾斜はそれぞれ温度補償膜13の下面42aおよび42bの傾斜と対応する。
図3(e)に示すように、境界層12の下面を例えばCMP(Chemical Mechanical Polishing)法を用い研磨する。これにより、境界層12の下面は製造誤差を許容する範囲で略平坦になる。温度補償膜13と境界層12により絶縁層15が形成される。
図4(a)に示すように、境界層12の下面に支持基板10を接合する。接合には例えば表面活性化法を用いる。境界層12と支持基板10との間には境界層12と支持基板10を接合するための接合層が設けられていてもよい。支持基板10の上面および下面は製造誤差を許容する範囲で略平坦であり、支持基板10の厚さは製造誤差を許容する範囲で略均一である。
図4(b)に示すように、圧電基板14aの上面を研磨することで圧電基板14aを薄膜化し圧電層14を形成する。圧電層14の上面40aおよび40bの傾斜はそれぞれ圧電層14の下面41aおよび41bの傾斜にそれぞれ対応する、領域50aおよび50bにおける圧電層14の厚さは製造誤差を許容する範囲で略均一となる。圧電基板14aの上面40aおよび40bの研磨には例えばCMP法を用いる。CMPの条件を適宜設定することで、圧電基板14aの上面40aおよび40bの傾斜を保持した状態で圧電基板14aを薄膜化できる。
図4(c)に示すように、圧電層14の上面40aおよび40bにそれぞれ弾性波共振器26aおよび26bを形成する。弾性波共振器26aおよび26bは、金属膜16を真空蒸着法およびリフトオフ法を用いパターニングすることにより形成する。弾性波共振器26aおよび26bは、スパッタリング法およびエッチング法を用い形成してもよい。パターニング用のマスク層の形成には、フォトリソグラフィ法を用いてもよいが、フォーカスが合わせにくい場合には電子線露光技術を用いてもよい。以上により実施例1に係る弾性波デバイスが製造できる。
[実施例1の別の製造方法]
図5(a)から図5(d)は、実施例1に係る弾性波デバイスの別の製造方法を示す断面図である。図5(a)に示すように、図3(a)の工程において、圧電基板14aの下面(図5(a)では上面)にたがいに傾斜する下面41aおよび41bを形成する。下面41aおよび41bの形成方法は図3(a)における上面40aおよび40bの形成方法と同じである。圧電基板14aの下面(図5(a)では上面)に温度補償膜13を形成する。温度補償膜13の形成方法は図3(c)と同じである。図5(b)に示すように、温度補償膜13の下面に境界層12を形成する。境界層12の形成方法は図3(d)と同じである。
図5(c)に示すように、境界層12の下面を例えばCMP法を用い研磨することで、境界層12の下面を製造誤差を許容する範囲で略平坦面する。境界層12の下面の研磨方法は図3(e)と同じである。境界層12の下面に支持基板10を接合する。接合方法は図4(a)と同じである。図5(d)に示すように、圧電基板14aの上面を研磨することで圧電基板14aを薄膜化し圧電層14を形成する。圧電基板14aの薄膜化の方法は図4(b)と同じである。その後、図4(c)と同じように、圧電層14の上面40aおよび40b上に弾性波共振器26aおよび26bを形成する。
[実施例1の変形例1]
図6は、実施例1の変形例1における弾性波デバイスの平面図である。図7(a)から図7(c)は、それぞれ図6のA-A断面図、B-B断面図およびC-C断面図である。図6から図7(c)に示すように、領域50aにおける圧電層14の上面40aは支持基板10の上面43に対し傾斜している。領域50bにおける圧電層14の上面40bは支持基板10の上面43に対し傾斜していない。すなわち、領域50bにおける圧電層14の上面40bと支持基板10の上面30とは略平行である。領域50bにおける境界層12の厚さT2は略均一である。その他の構成は実施例1と同じであり説明を省略する。
[シミュレーション]
圧電層14としてタンタル酸リチウム基板を用い、回転Yカット角が変化したときの弾性波共振器の特性をシミュレーションした。シミュレーション条件は以下である。
弾性波の波長λ:5.0μm
圧電層14:厚さT4が0.4λの回転YカットX伝搬タンタル酸リチウム基板
温度補償膜13:厚さT3が0.4λの酸化シリコン(SiO)膜
境界層12:設けていない
支持基板10:サファイア基板
金属膜16:厚さが0.1λのアルミニウム膜
図8(a)は、シミュレーションにおけるカット角θに対する共振周波数frおよび反共振周波数faにおけるTCV(Temperature Coefficient of Velocity)を示す図、図8(b)は、カット角θに対する共振周波数fr、反共振周波数faおよび電気機械結合係数kを示す図である。TCVは、弾性波の速度の温度係数であり、共振周波数frおよび反共振周波数faのTCF(Temperature Coefficient of Frequency)に相当する。
図8(a)に示すように、θが0°~70°および130°~180°ではfrのTCVがfaのTCVより大きい。θが70°~130°ではfrとfaのTCVはほぼ同じである。図8(b)に示すように、θが120°~130°の範囲を除き反共振周波数faは共振周波数frより高い。θが40°付近でfaおよびfrは最も高く、θが130°付近でfaおよびfrは最も低い。電気機械結合係数kはθが20°において最も大きくθが120°において最も低い。
以上のシミュレーションのように、領域50a(第1領域)における圧電層14の上面40a(第1表面)に対し領域50b(第2領域)における圧電層14の上面40b(第2表面)は傾斜する。これにより、領域50aにおける上面40a上に設けられた一対の櫛型電極20(第1櫛型電極)を有する弾性波共振器26aの特性と、領域50bにおける上面40b上に設けられた一対の櫛型電極20(第2櫛型電極)を有する弾性波共振器26bの特性を異ならせることができる。
[比較例1]
圧電層14の厚さT4を変え、圧電層14の上面40aおよび40b(表面)を異なる傾斜とする比較例1について説明する。図9(a)は、比較例1に係る弾性波デバイスの断面図である。図9(a)に示すように、比較例1では、領域50aおよび50bにおいて境界層12の厚さT2は略均一であり、温度補償膜13の厚さT3は略均一である。圧電層14の厚さT4は上面40aおよび40bの傾斜に対応し変化する。圧電層14の厚さT4が弾性波共振器26a内および26b内において異なると特性が劣化してしまう。例えば特許文献1のように、圧電層14が厚くなると損失が増大しスプリアスが大きくなる。
実施例1によれば、領域50aおよび50bにおいて、圧電層14は、領域50aと50bにおいて略均一な厚さを有する。領域50aにおける支持基板10の上面(圧電層14側の面)に対し領域50bにおける支持基板10の上面は傾斜しない。これにより、圧電層14の厚さが均一なため弾性波共振器26aおよび26bの特性劣化を抑制できる。
略均一な厚さとは製造誤差を許容する程度に均一を意味し、例えば±10%程度の厚さのばらつきを許容する。すなわち、厚さの最大値をTmax、厚さの最小値をTminおよび厚さの平均値をTaveとすると、2(Tmax-Tmin)/(Tmax+Tmin)≦0.1を許容する。2(Tmax-Tmin)/(Tmax+Tmin)≦0.05が好ましい。第1面に対し第2面が傾斜しないとは、製造誤差程度に傾斜しないことを意味し、第1面に対する第2面の角度は例えば5°以下であり、1°以下である。また、第1面および第2面が凹凸面または粗面のときは、第1面および第2面を各々近似した平面が互いに傾斜していなければよい。
圧電層14の上面40aに対する上面40bの傾斜する角度は、弾性波共振器26aと26bの特性を異ならせる観点から、5°以上が好ましく、10°以上が好ましい。弾性波共振器26aと26bを製造する観点から、上面40aに対する上面40bの傾斜角は60°以下が好ましい。
圧電層14は、回転YカットX伝搬タンタル酸リチウム基板または回転Yカットニオブ酸リチウム基板である。この場合、領域50aにおける圧電層14のオイラー角は(0°、θ1、0°)であり、領域50bにおける圧電層14のオイラー角は(0°、θ2、0°)であり、θ1とθ2とが異なる。これにより、領域50aと50bの回転カット角が異なるため、弾性波共振器26aと26bの特性を異ならせることができる。
[実施例1の変形例2]
図9(b)は、実施例1の変形例2に係る弾性波デバイスの断面図である。図9(b)に示すように、実施例1の変形例2では、領域50aおよび50bにおいて、圧電層14の厚さT4は略均一であり、境界層12の厚さは略均一である。温度補償膜13の厚さT3は圧電層14の上面40aおよび40bの傾斜に対応し変化する。その他の構成は実施例1と同じであり説明を省略する。実施例1の変形例2のように、温度補償膜13の厚さT3を変えてもよい。
しかし、絶縁層15が、支持基板10上に設けられた境界層12(第1絶縁層)と、境界層12上に設けられた温度補償膜13(第2絶縁層)と、を備える場合、領域50a内および50b内において圧電層14に近い温度補償膜13の厚さT3が変化すると、弾性波共振器26aおよび26bの特性が劣化する。よって、実施例1のように、領域50aおよび50bにおいて、温度補償膜13は略均一な厚さを有することが好ましい。
温度補償膜13は、酸化シリコンを主成分とし、境界層12を伝搬するバルク波の音速は温度補償膜13を伝搬するバルク波の音速より速い。これにより、主モードの弾性波(弾性表面波、例えばSH(Shear Horizontal)波)は主に温度補償膜13と境界層12の間の界面において反射され、圧電層14と温度補償膜13に閉じ込められる。よって、弾性波共振器26aおよび26bの周波数温度特性を小さくし、かつ主モードの弾性波を圧電層14と温度補償膜13に閉じ込めることができ、損失を抑制できる。図2(a)、図2(b)、図7(a)および図7(b)のように、主モードの弾性波より速いバルク波等の弾性波46は、境界層12と支持基板10との界面で反射しIDT22に戻る。これにより、スプリアスとなる。図2(c)のように、圧電層14の上面40aおよび40bが支持基板10の上面に対し傾斜していると、弾性波46は、反射を繰り返すことで、弾性波共振器26aおよび26bの外に出てしまう。これによりスプリアスを抑制できる。図7(c)のように、実施例1の変形例1では、弾性波共振器26aでは、弾性波46は、反射を繰り返すことで、弾性波共振器26aの外に出てしまい、スプリアスを抑制できる。
圧電層14と温度補償膜13の厚さの合計T4+T3は、弾性波共振器26aおよび26bの櫛型電極20の電極指18の平均ピッチDの4倍(2λ)以下が好ましく、3倍(1.5λ)以下がより好ましく、2倍(1λ)以下がより好ましい。これにより、特許文献2のように周波数温度特性を小さくしかつ損失を抑制できる。圧電層14と温度補償膜13の厚さT4およびT3が薄いため、弾性波共振器26aおよび26b内において圧電層14および温度補償膜13の厚さT4およびT3が変化すると、温度特性および共振特性が劣化してしまう。よって、領域50aおよび50bにおいて、圧電層14の厚さT4を略均一とし、温度補償膜13の厚さT3を略均一とすることが好ましい。なお、電極指18の平均ピッチDは、IDT22のX方向の幅を電極指18の本数で除することで算出できる。
ここで、ある層がある成分を主成分とする、ある層はある成分以外に意図的または意図せず添加された不純物を含むことを許容し、ある層におけるある成分の原子濃度は例えば50原子%以上または80原子%以上である。例えば、温度補償膜13が酸化シリコンを主成分とするとは、温度補償膜13がフッ素等の不純物を含むことを許容し、温度補償膜13内の酸素濃度とシリコン濃度との合計は50原子%以上または80原子%以上であり、酸素濃度およびシリコン濃度は各々10原子%以上または20原子%以上である。また、境界層12が酸化アルミニウムを主成分とするとは、境界層12が不純物を含むことを許容し、境界層12内の酸素濃度とアルミニウム濃度との合計は50原子%以上または80原子%以上であり、酸素濃度およびアルミニウム濃度は各々10原子%以上または20原子%以上である。
境界層12が薄くなると主モードの弾性波が圧電層14および温度補償膜13に閉じ込められにくくなり、メイン応答が劣化する。この観点から、境界層12の厚さT2は電極指18の平均ピッチDの2.2倍(1.1λ)以上が好ましく、3.0倍(1.5λ)以上がより好ましい。境界層12を厚くすると、製造工程が増大および製造プロセスの難易度が上昇する。この観点から、境界層12の厚さT2は電極指18の平均ピッチDの10倍(5λ)以下が好ましく、8倍(4λ)以下がより好ましい。
バルク波を含む弾性波46を境界層12に通過させる観点から、温度補償膜13の厚さT3は、電極指18の平均ピッチDの1.5倍(0.75λ)以下が好ましく、1倍(0.5λ)以下がより好ましい。温度補償膜13の温度補償機能を発揮させる観点から、厚さT3は、電極指18の平均ピッチDの0.05倍(0.1λ)以上が好ましく、0.1倍(0.2λ)以上がより好ましい。
メイン応答の弾性波のエネルギーを温度補償膜13内に存在させる観点から、圧電層14の厚さT4は複数の電極指18の平均ピッチDの2倍(1λ)以下が好ましく、1倍(0.5λ)以下がより好ましい。圧電層14を機能させる観点から、圧電層14の厚さT4は複数の電極指18の平均ピッチDの0.05倍(0.1λ)以上が好ましく、0.1倍(0.2λ)以上がより好ましい。
温度補償膜13を伝搬するバルク波の音速は圧電層14を伝搬するバルク波の音速より速くてもよいが、弾性波が温度補償膜13内に存在しやすくなるため、温度補償膜13を伝搬するバルク波の音速は圧電層14を伝搬するバルク波の音速より遅いことが好ましい。これにより、温度補償膜13としてより機能することができる。温度補償膜13を伝搬するバルク波の音速は圧電層14を伝搬するバルク波の音速の0.99倍以下が好ましい。温度補償膜13を伝搬するバルク波の音速が遅すぎると、圧電層14内に弾性波が存在しにくくなる。よって、温度補償膜13を伝搬するバルク波の音速は圧電層14を伝搬するバルク波の音速の0.9倍以上が好ましい。
境界層12を伝搬するバルク波の音速は、温度補償膜13を伝搬するバルク波の音速の1.1倍以上が好ましく、1.2倍以上がより好ましい。また、境界層12を伝搬するバルク波の音速は圧電層14を伝搬するバルク波の音速より大きいことが好ましい。境界層12を伝搬するバルク波の音速が速すぎると、バルク波を含む弾性波46が境界層12と温度補償膜13との界面で反射されてしまう。この観点から境界層12を伝搬するバルク波の音速は温度補償膜13を伝搬するバルク波の音速の2.0倍以下が好ましく、1.5倍以下がより好ましい。
絶縁層15は、酸化シリコン層、窒化シリコン層または酸化アルミニウム層のように均一な材料からなる1層でもよい。
実施例2は、実施例1およびその変形例をフィルタに用いる例である。図10(a)および図10(b)は、実施例2に係るフィルタのそれぞれ回路図および平面図である。図10(a)に示すように、入力端子Tinと出力端子Toutとの間に、直列共振器S1~S3が直列接続されている。入力端子Tinと出力端子Toutとの間に、並列共振器P1およびP2が並列に接続されている。並列共振器P1およびP2の一端は入力端子Tinと出力端子Toutとの間の経路に接続され、他端はグランド端子Gndに接続され接地されている。
図10(b)に示すように、支持基板10および圧電層14上に弾性波共振器26a、26b、配線44が設けられている。弾性波共振器26aおよび26bは各々IDT22と反射器24を有している。配線44は弾性波共振器26aおよび26bを電気的に接続する。配線44は、金層、銅層またはアルミニウム層を含む金属層である。複数の弾性波共振器26aは、直列共振器S1~S3を含み、弾性波共振器26bは並列共振器P1およびP2を含む。配線44の一部は、入力端子Tin、出力端子Toutおよびグランド端子Gndを含む。
実施例2によれば、直列共振器S1~S3は領域50aに設けられ、並列共振器P1およびP2は領域50bに設けられている。これにより、図8(a)および図8(b)のように、直列共振器S1~S3と並列共振器P1およびP2とで、周波数温度係数を異ならせることができる。また、電極指18のピッチDが同じであっても、共振周波数frを異ならせることができ、かつ反共振周波数faを異ならせることができる。
圧電層14を回転YカットX伝搬タンタル酸リチウム基板とし、領域50aのカット角θを40°とし、領域50bのカット角θを0°とする。これにより、図8(b)のように、直列共振器S1~S3と並列共振器P1およびP2との電気機械結合係数kをほぼ同じにできる。図8(a)のように、カット角θが40°のとき、反共振周波数faのTCVは-34ppm/Kであり、共振周波数frのTCVは-18ppm/Kであり、差は16ppm/Kである。直列共振器S1~S3の反共振周波数faは通過帯域の高周波数端を形成し、並列共振器P1およびP2の低周波端を形成する。よって、faとfrのTCVの差が大きいと通過帯域幅の温度係数が大きくなってしまう。領域50aのカット角θを40°とし、領域50bのカット角θを0°とすると、直列共振器S1~S3の反共振周波数faのTCVは-34ppm/Kであり、並列共振器P1およびP2の共振周波数frのTCVは-24ppm/Kであり、差は9ppm/Kである。よって、通過帯域幅の温度係数を小さくできる。
また、図8(b)のように、カット角θが40°のとき、反共振周波数faは約790MHzであり、共振周波数frは約755MHzであり、差は約35MHzである。領域50aのカット角θを40°とし、領域50bのカット角θを0°とすると、直列共振器S1~S3の反共振周波数faは約790MHzであり、並列共振器P1およびP2の共振周波数frは訳712MHzであり、差は78MHzである。よって、直列共振器S1~S3の電極指18のピッチDと並列共振器P1およびP2のピッチDとをほぼ同じとしても通過帯域幅を確保できる。
領域50aにおける圧電層14は、25°以上かつ55°以下回転YカットX伝搬タンタル酸リチウム層であることが好ましく、30°以上かつ50°以下回転YカットX伝搬タンタル酸リチウム層であることがより好ましく、35°以上かつ45°以下回転YカットX伝搬タンタル酸リチウム層であることがさらに好ましい。領域50bにおける圧電層14は、-15°以上かつ15°以下回転YカットX伝搬タンタル酸リチウム層であることが好ましく、-10°以上かつ10°以下回転YカットX伝搬タンタル酸リチウム層であることがより好ましく、-5°以上かつ5°以下回転YカットX伝搬タンタル酸リチウム層であることがさらに好ましい。
直列共振器S1~S3および並列共振器P1およびP2の少なくとも1つに実施例1およびその変形例の弾性波共振器を用いてもよい。ラダー型フィルタの共振器の個数等は適宜設定できる。フィルタは、多重モード型フィルタでもよい。
[実施例2の変形例1]
図11は、実施例2の変形例1に係るデュプレクサの回路図である。図11に示すように、共通端子Antと送信端子Txとの間に送信フィルタ60が接続されている。共通端子Antと受信端子Rxとの間に受信フィルタ62が接続されている。送信フィルタ60は、送信端子Txから入力された高周波信号のうち送信帯域の信号を送信信号として共通端子Antに通過させ、他の周波数の信号を抑圧する。受信フィルタ62は、共通端子Antから入力された高周波信号のうち受信帯域の信号を受信信号として受信端子Rxに通過させ、他の周波数の信号を抑圧する。送信フィルタ60および受信フィルタ62の少なくとも一方を実施例2のフィルタとすることができる。
マルチプレクサとしてデュプレクサを例に説明したがトリプレクサまたはクワッドプレクサでもよい。
以上、本発明の実施例について詳述したが、本発明はかかる特定の実施例に限定されるものではなく、特許請求の範囲に記載された本発明の要旨の範囲内において、種々の変形・変更が可能である。
10 支持基板
12 境界層
13 温度補償膜
14 圧電層
15 絶縁層
16 金属膜
18 電極指
20 櫛型電極
22 IDT
25 交差領域
26a、26b 弾性波共振器
40a、40b 圧電層の上面
50a、50b 領域
60 送信フィルタ
62 受信フィルタ

Claims (10)

  1. 第1領域における第1表面に対し第2領域における第2表面が傾斜し、前記第1領域と前記第2領域において略均一な厚さを有する圧電層と、
    前記圧電層に対し前記第1表面および前記第2表面と反対側に設けられ、前記第1領域における前記圧電層側の面に対し前記第2領域における前記圧電層側の面は傾斜しない支持基板と、
    前記圧電層と前記支持基板との間に設けられた絶縁層と、
    前記第1表面上に設けられた一対の第1櫛型電極と、
    前記第2表面上に設けられた一対の第2櫛型電極と、
    を備える弾性波デバイス。
  2. 前記圧電層は、回転YカットX伝搬タンタル酸リチウム基板または回転Yカットニオブ酸リチウム基板である請求項1に記載の弾性波デバイス。
  3. 前記第1領域における前記圧電層のオイラー角は(0°、θ1、0°)であり、前記第2領域における前記圧電層のオイラー角は(0°、θ2、0°)であり、θ1とθ2とが異なる請求項2に記載の弾性波デバイス。
  4. 前記絶縁層は、前記支持基板上に設けられた第1絶縁層と、前記第1絶縁層上に設けられ、前記第1領域および前記第2領域において略均一な厚さを有する第2絶縁層と、を備える請求項1から3のいずれか一項に記載の弾性波デバイス。
  5. 前記第2絶縁層は酸化シリコンを主成分とし、
    前記第1絶縁層を伝搬するバルク波の音速は前記第2絶縁層を伝搬するバルク波の音速より速い請求項4に記載の弾性波デバイス。
  6. 前記圧電層と前記第2絶縁層の厚さの合計は、前記第1櫛型電極の電極指の平均ピッチの4倍以下かつ前記第2櫛型電極の電極指の平均ピッチの4倍以下である請求項4に記載の弾性波デバイス。
  7. 請求項1から6のいずれか一項に記載の弾性波デバイスを含むフィルタ。
  8. 入力端子と、
    出力端子と、
    前記入力端子と前記出力端子との間に直列接続され、前記第1領域に設けられた直列共振器と、
    前記入力端子と前記出力端子との間の経路に一端が接続され、他端が接地され、前記第2領域に設けられた並列共振器と、
    を備える請求項7に記載のフィルタ。
  9. 前記第1領域における圧電層は、25°以上かつ55°以下回転YカットX伝搬タンタル酸リチウム層であり、
    前記第2領域における圧電層は、-15°以上かつ15°以下回転YカットX伝搬タンタル酸リチウム層である請求項8記載のフィルタ。
  10. 請求項7から9のいずれか一項に記載のフィルタを備えるマルチプレクサ。
JP2021078467A 2021-05-06 2021-05-06 弾性波デバイス、フィルタおよびマルチプレクサ Pending JP2022172569A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021078467A JP2022172569A (ja) 2021-05-06 2021-05-06 弾性波デバイス、フィルタおよびマルチプレクサ

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021078467A JP2022172569A (ja) 2021-05-06 2021-05-06 弾性波デバイス、フィルタおよびマルチプレクサ

Publications (1)

Publication Number Publication Date
JP2022172569A true JP2022172569A (ja) 2022-11-17

Family

ID=84045883

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021078467A Pending JP2022172569A (ja) 2021-05-06 2021-05-06 弾性波デバイス、フィルタおよびマルチプレクサ

Country Status (1)

Country Link
JP (1) JP2022172569A (ja)

Similar Documents

Publication Publication Date Title
JP7169083B2 (ja) 弾性波デバイスおよびマルチプレクサ
JP4337816B2 (ja) 弾性境界波装置
US6933810B2 (en) Surface acoustic wave device with lithium tantalate on a sapphire substrate and filter using the same
US11336259B2 (en) Acoustic wave device, filter, and multiplexer
JP2019201345A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
US11722117B2 (en) Acoustic wave resonator, filter, multiplexer, and wafer
WO2020209190A1 (ja) 弾性波装置及びマルチプレクサ
JP2020182130A (ja) フィルタおよびマルチプレクサ
CN113454912B (zh) 弹性波装置
JPWO2019082806A1 (ja) 弾性波素子
JP7374629B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP2023060058A (ja) 弾性波共振器、フィルタおよびマルチプレクサ
JP2022176790A (ja) 弾性波デバイス、ウエハ、フィルタおよびマルチプレクサ
JP7403960B2 (ja) 弾性波デバイスおよびその製造方法、フィルタ並びにマルチプレクサ
JP2022176856A (ja) ラダー型フィルタおよびマルチプレクサ
JP2022172569A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7406305B2 (ja) 弾性波デバイスおよびその製造方法、フィルタ並びにマルチプレクサ
JP7261568B2 (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
CN114070257A (zh) 声波装置、滤波器及多路复用器
JP2022171054A (ja) 弾性波共振器、フィルタ、およびマルチプレクサ
US20220368307A1 (en) Acoustic wave device, filter, and multiplexer
JP2023124332A (ja) 弾性波デバイス、フィルタおよびマルチプレクサ
JP7355210B2 (ja) 弾性波装置
JP2023003555A (ja) 弾性波デバイス、フィルタ、マルチプレクサ、およびウエハ
JP2022178244A (ja) 弾性波デバイス、フィルタ、マルチプレクサ、および弾性波デバイスの製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240430