JP2022167820A - 高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置 - Google Patents

高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置 Download PDF

Info

Publication number
JP2022167820A
JP2022167820A JP2022068034A JP2022068034A JP2022167820A JP 2022167820 A JP2022167820 A JP 2022167820A JP 2022068034 A JP2022068034 A JP 2022068034A JP 2022068034 A JP2022068034 A JP 2022068034A JP 2022167820 A JP2022167820 A JP 2022167820A
Authority
JP
Japan
Prior art keywords
electrolyte membrane
polymer electrolyte
ionic
group
oligomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2022068034A
Other languages
English (en)
Inventor
和歩 村上
Kazuho Murakami
一直 松井
Kazunao Matsui
毅 田中
Takeshi Tanaka
大輔 出原
Daisuke Izuhara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toray Industries Inc
Original Assignee
Toray Industries Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toray Industries Inc filed Critical Toray Industries Inc
Publication of JP2022167820A publication Critical patent/JP2022167820A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Landscapes

  • Fuel Cell (AREA)
  • Conductive Materials (AREA)
  • Polyethers (AREA)
  • Electrolytic Production Of Non-Metals, Compounds, Apparatuses Therefor (AREA)

Abstract

【課題】低加湿条件下においても優れたプロトン伝導性を有し、機械強度および化学的安定性にも優れた高分子電解質膜を実現すること。【解決手段】イオン性セグメントと、非イオン性セグメントと、をそれぞれ一個以上有するブロック共重合体を含む高分子電解質膜であって、前記ブロック共重合体が、イオン交換容量(meq/g)が2.0を超え3.1未満であり、前記高分子電解質膜が共連続相分離構造を有し、透過電子顕微鏡によって観察される前記共連続相分離構造の平均周期サイズ(nm)が110nm未満であり、前記共連続相分離構造の平均周期サイズ(nm)と前記イオン交換容量(meq/g)が平均周期サイズ(nm)/イオン交換容量(meq/g)≧21の関係を満たすことを特徴とする高分子電解質膜。【選択図】なし

Description

本発明は、高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置に関する。
燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子形燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、固体高分子形燃料電池は、小型移動機器や携帯機器の電源としても注目されており、携帯電話やパソコンにおける、ニッケル水素電池やリチウムイオン電池などの二次電池の代替用途としても期待されている。
燃料電池は、通常、膜電極複合体(Membrane Electrode Assembly:MEA)がセパレータによって挟まれたセルをユニットとして構成されている。MEAは、電解質膜の両面に触媒層を配置し、その両側にさらにガス拡散層を配置したものである。MEAにおいては、電解質膜を挟んで両側に配置された触媒層とガス拡散層とで一対の電極層が構成され、そのうちの一方がアノード電極であり、他方がカソード電極である。アノード電極に水素を含む燃料ガスが接触するとともに、カソード電極に空気が接触することにより電気化学反応によって電力が作り出される。電解質膜は高分子電解質材料を主として構成される。高分子電解質材料は触媒層のバインダーにも用いられる。
従来、高分子電解質材料としてフッ素系高分子電解質である“ナフィオン”(登録商標)(ケマーズ(株)製)が広く用いられてきた。一方で、“ナフィオン”(登録商標)に替わり得る、安価で、膜特性に優れた炭化水素系電解質材料の開発も近年活発化している。炭化水素系電解質材料は、低ガス透過性や耐熱性に優れており、芳香族ポリエーテルケトンや芳香族ポリエーテルスルホンを用いた電解質材料について特に活発に検討されてきた。しかしながら、従来の炭化水素系電解質材料は、高加湿条件下においてはフッ素系電解質材料と同等か、またはより優位なプロトン伝導性を示す一方で、低加湿条件下においてはプロトン伝導性が不十分であった。
低加湿条件下においても優れたプロトン伝導性を有し、かつ機械強度および化学的安定性に優れた炭化水素系高分子電解質材料として、イオン性基と含有するセグメント(以下、「イオン性セグメント」という)とイオン性基を含有しないセグメント(以下、「非イオン性セグメント」という)からなるブロック共重合体が提案されている(例えば、特許文献1~3参照)。
国際公開第2008/018487号 国際公開第2013/031675号 特開2006-278321号公報
しかしながら、特許文献1~3に記載の高分子電解質膜を用いてもなお、低加湿条件下におけるプロトン伝導性および機械強度の向上効果は完全でなく、産業上有用な高分子電解質膜としてはさらなる向上が望まれていた。
本発明は、かかる従来技術の背景を鑑み、低加湿条件下においても優れたプロトン伝導性を有し、機械強度や物理的耐久性にも優れた高分子電解質膜を実現することを目的とする。
本発明者らは、従来技術が上記課題を有していた原因が、高分子電解質膜中の相分離構造の形態が共連続相分離サイズでなく、プロトン伝導に最適でないこと、および相分離の周期サイズに対してイオン交換容量を抑えられておらず、相分離の周期サイズとイオン交換容量がプロトン伝導性と寸法安定性を両立できる適切な範囲でないこと、にあるのではないかと考えた。
そして、その仮説に基づいて検討した結果、以下の事項が見出された。
共連続相分離の周期サイズを拡大することで、低加湿条件下においても、大きなプロトン伝導チャネルを維持することができ、プロトン伝導性が向上する。
一方で、相分離の周期サイズを拡大するために、イオン交換容量を高くした場合、イオン交換容量の増加に伴い寸法安定性は低下し、機械強度や物理的耐久性は低下する。
つまり、プロトン伝導性と寸法安定性を両立するためには、共連続相分離の周期サイズに対してイオン交換容量を一定値以下に抑えつつ、共連続相分離の周期サイズを拡大する必要がある、ことを本発明者らは見出し、本発明に至った。
本発明は、次の構成を有する。
(1)イオン性基を含有するセグメント(以下「イオン性セグメント」という)と、イオン性基を含有しないセグメント(以下「非イオン性セグメント」という)と、をそれぞれ一個以上有するブロック共重合体を含む高分子電解質膜であって、前記ブロック共重合体が、イオン交換容量(meq/g)が2.0を超え3.1未満であり、前記高分子電解質膜が共連続相分離構造を有し、透過電子顕微鏡によって観察される前記共連続相分離構造の平均周期サイズ(nm)が110nm未満であり、前記共連続相分離構造の平均周期サイズ(nm)と前記イオン交換容量(meq/g)が平均周期サイズ(nm)/イオン交換容量(meq/g)≧21の関係を満たすことを特徴とする高分子電解質膜。
(2)示差走査熱量分析法によって測定される前記高分子電解質膜の結晶化熱量が0.1J/g以上である、または、広角X 線回折によって測定される前記高分子電解質膜の結晶化度が0.5%以上であることを特徴とする前記(1)に記載の高分子電解質膜。
(3)前記ブロック共重合体が芳香族炭化水素系共重合体であることを特徴とする前記(1)または(2)に記載の高分子電解質膜。
(4)前記芳香族炭化水素系共重合体が芳香族ポリエーテル系共重合体であることを特徴とする前記(3)に記載の高分子電解質膜。
(5)前記芳香族ポリエーテル系共重合体が芳香族ポリエーテルケトン系共重合体であることを特徴とする前記(4)に記載の高分子電解質膜。
(6)前記ブロック共重合体が、前記イオン性セグメントと前記非イオン性セグメントとの間を結合するリンカー部位を有することを特徴とする前記(1)~(5)のいずれかに記載の高分子電解質膜。
(7)前記イオン性セグメントが下記一般式(S1)で表される構造を含有することを特徴とする前記(1)~(6)のいずれかに記載の高分子電解質膜。
Figure 2022167820000001
(一般式(S1)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表し、Ar~Arのうち少なくとも1つはイオン性基を有する。YおよびYは、それぞれ独立に、ケトン基または、ケトン基に誘導され得る保護基を表す。*は、一般式(S1)または他の構成単位との結合を表す。)
(8)前記一般式(S1)で表される構造が下記一般式(S2)で表される構造であることを特徴とする前記(7)に記載の高分子電解質膜。
Figure 2022167820000002
( 一般式(S2)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。M~Mは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。n~nは、それぞれ独立に、0または1であり、n~nのうち少なくとも1つは1である。* は、一般式(S2)または他の構成単位との結合を表す。)
(9)前記非イオン性セグメントが下記一般式(S3)で表される構造を含有することを特徴とする前記(1)~(8)のいずれかに記載の高分子電解質膜。
Figure 2022167820000003
(一般式(S3)中、Ar~Arは、それぞれ独立に、アリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。* は、一般式(S3)または他の構成単位との結合を表す。)
(10)前記一般式(S3)で表される構造が下記一般式(S4)で表される構造であることを特徴とする前記(9)に記載の高分子電解質膜。
Figure 2022167820000004
(一般式(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S4)または他の構成単位との結合を表す。)
(11)前記(1)~(10)のいずれかに記載の高分子電解質膜を用いて構成されることを特徴とする触媒層付電解質膜。
(12)前記(1)~(10)のいずれかに記載の高分子電解質膜を用いて構成されることを特徴とする膜電極複合体。
(13)前記(1)~(10)のいずれかに記載の高分子電解質膜を用いて構成されることを特徴とする固体高分子燃料電池。
(14)前記(1)~(10)のいずれかに記載の高分子電解質膜を用いて構成されることを特徴とする水電解式水素発生装置。
本発明の高分子電解質膜は、低加湿条件下においても優れたプロトン伝導性を有し、機械強度や物理的耐久性にも優れる。
本発明において、機械強度や物理耐久性が良好であるとは、寸法安定性が良好であることを意味し、寸法安定性が良好であるとは乾湿寸法変化率が小さいことを意味する。乾湿寸法変化率は実施例に記載の方法で測定することができる。
図1は、高分子電解質材料における相分離構造の模式図である。
以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。
本発明の高分子電解質膜は、イオン性セグメントと、非イオン性セグメントとをそれぞれ一個以上有するブロック共重合体を含む。なお本発明において、非イオン性セグメントは本発明の効果に悪影響を及ぼさない範囲でイオン性基を少量含んでいても構わない。以下「イオン性基を含有しない」と「非イオン性」は同様の意味で用いる場合がある。本発明において、セグメントとはブロック共重合体を合成する際に用いるマクロモノマーの、ブロック共重合体中での部分構造である。
本発明の高分子電解質膜は、共連続相分離構造を有する。相分離構造は、イオン性セグメントと非イオン性セグメントの凝集状態およびその形状によって制御することができる。高分子電解質膜の相分離構造の形態例を図1に示す。相分離構造は、共連続(M1)、ラメラ(M2)、シリンダー(M3)、海島(M4)の4つに大きく分類される。本発明の高分子電解質膜は、(M1)の相分離構造を有する。
図1の(M1)~(M4)において、白色部の連続相(相1)がイオン性セグメントおよび非イオン性セグメントから選ばれる一方のセグメントにより形成され、グレー色部の連続相または分散相(相2)が他方のセグメントにより形成される。
上記相分離構造は、例えばアニュアル レビュー オブ フィジカル ケミストリ-(Annual Review of Physical Chemistry), 41, 1990, p.525等に記載がある。
イオン性セグメントと非イオン性セグメントの高次構造や形状を制御することで、低加湿および低温条件下においても優れたプロトン伝導性が実現可能となる。すなわち、高分子電解質膜が(M1)~(M4)の相分離構造を有することによって、連続したプロトン伝導チャネルの形成が可能となり、プロトン伝導性が向上する。
中でも、共連続構造を有する場合は、3次元的に連続したプロトン伝導チャネルが形成されるので、優れたプロトン伝導性を実現できる。また、非イオン性の疎水性セグメントも同様に3次元的に連続したドメインを形成するので、優れた燃料遮断性、耐溶剤性、寸法安定性、機械強度および物理的耐久性を有する。
上記のドメインとは、1本または複数のポリマー鎖において、類似するセグメントが凝集してできた塊のことを意味する。
高分子電解質膜が(M1)の相分離構造を有することは、以下の手法により確認でき、具体的には、所望とする像が観察される場合に、該構造を有すると定義する。その手法として、TEMトモグラフィー観察により得られた3次元図に対して、縦、横、高さの3方向から切り出したデジタルスライス3面図を比較する。例えば、イオン性セグメントと非イオン性セグメントとを有するブロック共重合体を含む高分子電解質膜において、その相分離構造が、(M1)の構造である場合、3面図すべてにおいて、イオン性セグメントを含む親水性ドメインと非イオン性セグメントを含む疎水性ドメインが、それぞれ入り組んだ連続相を形成する。
ここで連続相とは、巨視的に見て、個々のドメインが孤立せずに繋がっている相のことを意味するが、一部繋がっていない部分があってもかまわない。
一方、(M2)の構造である場合は、イオン性セグメントを含む親水性ドメインと非イオン性セグメントを含む疎水性ドメインが層状に連なった模様を示すため、(M1)とは区別でき、(M3)や(M4)の場合、少なくとも1面で前記ドメインのいずれかが連続相を形成しないので、(M1)とは区別できる。
相分離構造の観察において、イオン性セグメントと非イオン性セグメントの凝集状態やコントラストを明確にするために、例えば、高分子電解質膜を2重量%酢酸鉛水溶液中に2日間浸漬してイオン性基を鉛でイオン交換した後、透過型電子顕微鏡(TEM)およびTEMトモグラフィー観察に供することができる。
相分離構造は、透過型電子顕微鏡(TEM)以外にも、小角X線散乱(SAXS)、原子間力顕微鏡(AFM)等によって分析することが可能である。
本発明の高分子電解質膜に含まれる、ブロック共重合体のイオン交換容量は、プロトン伝導性と寸法安定性のバランスの点から、2.0meq/gを超え、3.1meq/g未満である。イオン交換容量が2.0meq/gを超えると、プロトン伝導性の観点から、本発明の効果を十分に得ることができる。イオン交換容量は、好ましくは2.1meq/g以上である。また、イオン交換容量が3.1meq/g未満のとき、寸法安定性の観点から、本発明の効果を十分に得ることができる。イオン交換容量は、寸法安定性の観点から2.8meq/g未満が好ましく、2.7meq/g未満がより好ましい。
イオン性セグメントのイオン交換容量は、低加湿条件下でのプロトン伝導性の点から、高いことが好ましく、その下方値は、好ましくは2.5meq/g以上、より好ましくは3meq/g以上、さらに好ましくは3.5meq/g以上である。また、その上方値は特に制限はないが、6.5meq/g以下が好ましく、5meq/g以下がより好ましく、さらに好ましいのは4.5meq/g以下である。
非イオン性セグメントのイオン交換容量は、耐熱水性、機械強度、寸法安定性、物理的耐久性の点から、低いことが好ましく、好ましくは1.0meq/g以下、より好ましくは0.5meq/g以下、さらに好ましくは0.1meq/g以下である。
ここで、イオン交換容量とは、ブロック共重合体、高分子電解質材料、および高分子電解質膜の単位乾燥重量当たりに導入されたイオン交換基のモル量である。イオン交換容量は、元素分析、中和滴定法等により測定が可能である。イオン交換基がスルホン酸基である場合、元素分析法を用い、S/C比から算出することもできるが、スルホン酸基以外の硫黄源を含む場合などは測定することが難しい。従って、本発明においては、イオン交換容量は、後述の中和滴定法により求めた値と定義する。
本発明の高分子電解質膜としては、TEMによる観察を行った場合に、共連続相分離構造が観察され、共連続相分離構造の平均周期サイズが、110nm未満である。上記平均周期サイズが110nm未満であると、機械強度や寸法安定性において、本発明の効果を十分達成することができる。機械強度や寸法安定性の観点から、平均周期サイズは100nm未満であるとより好ましい。また、平均周期サイズは、プロトン伝導性において本発明の効果をより強められる観点から、42nmより大きいことが好ましく、50nm以上がより好ましく、55nm以上がさらに好ましい。
なお本発明において周期サイズとは、イオン性セグメントが凝集して形成するドメインと非イオン性セグメントが凝集して形成するドメインの周期長のことであり、平均周期サイズとは、実施例に記載の方法で高速フーリエ変換(FFT)して算出されるドメインの周期長のことである。
本発明の高分子電解質膜は、共連続相分離構造の平均周期サイズ(nm)とイオン交換容量(meq/g)が、平均周期サイズ(nm)/イオン交換容量(meq/g)≧21の関係を満たす。平均周期サイズを拡大することで高いプロトン伝導性を達成することができる。一方で、平均周期サイズに対してイオン交換容量を一定値以下に抑えることで、高い寸法安定性を達成することができる。つまり、上記式の関係を満たすことで、低加湿条件下においても優れたプロトン伝導性を有し、機械強度および化学的安定性にも優れる高分子電解質膜となる。
プロトン伝導性と寸法安定性の観点から、平均周期サイズ(nm)/イオン交換容量(meq/g)≧22の関係を満たすことがより好ましく、平均周期サイズ(nm)/イオン交換容量(meq/g)≧23の関係を満たすことがより好ましい。一方、機械強度や寸法安定性をより良好に保つ観点から、平均周期サイズ(nm)/イオン交換容量(meq/g)≦52の関係を満たすことが好ましい。
平均周期サイズ(nm)/イオン交換容量(meq/g)≧21の関係を満たす高分子電解質膜を得る方法は特に限定されるものでないが、イオン交換容量を上げることなく、共連続相分離構造の周期サイズを拡大する方法として、(1)製膜時に温湿度条件、溶媒の乾燥速度を調整する方法、(2)ブロック共重合体の極性に合わせて、好ましい相分離サイズとなるよう製膜溶媒を適宜選択する方法、(3)ブロック共重合体を形成するイオン性セグメントと非イオン性セグメントの分子量、つまり分子鎖長を制御する方法などが挙げられる。
これらの中でも(3)の方法が好ましい。イオン性セグメントの分子鎖長は、共連続相分離構造において、プロトン伝導チャネルを形成する親水性ドメインサイズに影響する因子の1つである。親水性ドメインサイズを拡大する観点から、イオン性セグメントの数平均分子量Mn1は、45,000を超えることが好ましい。Mn1は、より好ましくは50,000超であり、さらに好ましくは60,000超であり、最も好ましくは80,000超である。Mn1の上限は、特に制限はないが、高分子電解質膜の高温高加湿化での寸法安定性をより高める観点から、150,000未満であることが好ましい。
非イオン性セグメントの分子鎖長は、結晶性や耐水性に寄与する疎水性ドメインサイズに影響する因子の1つである。非イオン性セグメントの数平均分子量Mn2は、10,000以上であることが好ましく、15,000以上であることがより好ましい。Mn2に、特に上限に制限はないが、重合性の観点から、50,000以下であることが好ましい。
Mn1を目的の分子量に調整する方法として、目的の分子量を達成できるならば方法は特に限定されないが、例えば、芳香族求核置換反応やカップリング反応により数平均分子量が目的の分子量のセグメントを合成する方法や、目的の数平均分子量よりも小さい数平均分子量を有する重合体を合成しておき、この重合体をセグメントの構成単位として、重合体間をリンカー(L1)によって連結する方法などが挙げられる。プロセス上の制約が小さいことから、重合体間をリンカーによって連結する方法が特に好ましい。リンカー(L1)の好適な具体例としては、デカフルオロビフェニル、ヘキサフルオロベンゼン、4,4’-ジフルオロジフェニルスルホン、2,6-ジフルオロベンゾニトリル等を挙げることができるが、本発明はこれらに限定されるものではない。
本発明の高分子電解質膜に含まれるブロック共重合体は、機械強度の観点から、炭化水素系共重合体であることが好ましい。本発明でいう炭化水素系共重合体とは、パーフルオロ系共重合体以外の共重合体のことを意味している。また、ブロック共重合体が芳香族炭化水素系共重合体であるとは、ブロック共重合体に含まれるイオン性セグメントと非イオン性セグメントとのうち少なくとも一方が芳香族炭化水素系ポリマーであることをいう。
本発明の高分子電解質膜に含まれるブロック共重合体は、結晶性および寸法安定性、機械強度の観点から、芳香族炭化水素系共重合体であることが好ましい。芳香族炭化水素系共重合体とは、主として芳香環から構成される共重合体である。
本発明において、芳香族炭化水素系共重合体に含まれる芳香環は、炭化水素系芳香環だけでなく、ヘテロ環を含んでいてもよい。また、芳香環ユニットと共に一部脂肪族系ユニットが共重合体を構成していてもよい。芳香族炭化水素系共重合体の構成要素であるポリマーの具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホンから選択される構造を芳香環とともに主鎖に有するポリマーが挙げられる。
これらの中でも、コスト、重合性の観点から、芳香族ポリエーテル系ポリマーが好ましい。すなわち、芳香族炭化水素系共重合体が芳香族ポリエーテル系共重合体であることが好ましい。
芳香族ポリエーテル系ポリマーとは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合が含まれているものをいう。芳香族ポリエーテル系ポリマーの構造として、例えば、芳香族ポリエーテル、芳香族ポリエーテルケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリエーテルケトンケトン、芳香族ポリエーテルエーテルケトンケトン、芳香族ポリエーテルケトンエーテルケトンケトン、芳香族ポリエーテルイミド、芳香族ポリエーテルスルホンなどが挙げられるが、これらに限定されない。
これらの中でも、化学的安定性とコストの点から、芳香族ポリエーテルケトン系ポリマー、ポリエーテルスルホン系ポリマーが好ましく、機械強度、寸法安定性、物理的耐久性の観点から、芳香族ポリエーテルケトン系ポリマーが最も好ましい。すなわち、芳香族炭化水素系共重合体が芳香族ポリエーテルケトン系共重合体であることが最も好ましい。
芳香族ポリエーテルケトン系ポリマーとは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合とケトン結合が含まれているものをいう。
芳香族ポリエーテルスルホン系ポリマーとは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合とスルホン結合が含まれているものをいう。
本発明の高分子電解質膜として、ブロック共重合体に含まれるイオン性セグメントが、下記一般式(S1)で表される構造を含有することが、機械強度、寸法安定性の観点から好ましい。
Figure 2022167820000005
一般式(S1)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表し、Ar~Arのうち少なくとも1つはイオン性基を有する。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S1)または他の構成単位との結合を表す。
ここで、Ar~Arとして好ましい芳香環は、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されるものではない。
本発明においてイオン性基は、負電荷を有する原子団が好ましく、プロトン交換能を有するものが好ましい。このような官能基としては、下記に示されるような、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。
Figure 2022167820000006
かかるイオン性基は、上記官能基(f1)~(f7)が塩となっている場合を含むものとする。このような塩を形成するカチオンとしては、任意の金属カチオン、NR (Rは任意の有機基)等を例として挙げることができる。金属カチオンには特に制限はないが、安価で、容易にプロトン置換可能なNa、K、Liが好ましい。
これらのイオン性基はブロック共重合体中に2種類以上含むことができ、イオン性基の組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、原料コストの点からスルホン酸基を有することが最も好ましい。
本発明に用いられるブロック共重合体としては、一般式(S1)で表される構造が、下記一般式(P1)で表される構造であることが、寸法安定性、原料入手性の点から好ましく、下記一般式(S2)で表される構造であることが、原料入手性と重合性の点からさらに好ましい。
Figure 2022167820000007
一般式(P1)及び(S2)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。M~Mは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。n~nは、それぞれ独立に、0または1であり、n~nのうち少なくとも1つは1である。*は一般式(P1)(S2)または他の構成単位との結合を表す。
さらに原料入手性と重合性の点からn=1、n=1、n=0、n=0またはn=0、n=0、n=1、n=1であることが最も好ましい。
イオン性セグメント中に含まれる一般式(S1)で表される構成単位の含有量としては、20モル%以上がより好ましく、50モル%以上がさらに好ましく、80モル%以上が最も好ましい。
上記のようなイオン性セグメントを合成するために用いられるイオン性モノマーとしては、例えば芳香族活性ジハライド化合物が挙げられる。
イオン性セグメント中に用いる芳香族活性ジハライド化合物として、芳香族活性ジハライド化合物にイオン酸基を導入した化合物を用いることは、化学的安定性、製造コスト、イオン性基の量を精密制御が可能な点から好ましい。イオン性基としてスルホン酸基を有するモノマーの好適な具体例としては、3,3'-ジスルホネート-4,4'-ジクロロジフェニルスルホン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルスルホン、3,3'-ジスルホネート-4,4'-ジクロロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジクロロジフェニルフェニルホスフィンオキシド、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルフェニルホスフィンオキシド等を挙げることができるが、これらに限定されるものではない。
プロトン伝導度および耐加水分解性の点からイオン性基としてはスルホン酸基が最も好ましいが、上記イオン性基を有するモノマーは他のイオン性基を有していても構わない。
上記したスルホン酸基を有するモノマーのなかでも化学的安定性と物理的耐久性の点から、3,3'-ジスルホネート-4,4'-ジクロロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトンがより好ましく、重合活性の点から3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトンが最も好ましい。
イオン性基を有するモノマーとして、3,3'-ジスルホネート-4,4'-ジクロロジフェニルケトン、3,3'-ジスルホネート-4,4'-ジフルオロジフェニルケトンを用いて合成したイオン性セグメントとしては、下記一般式(p1)で表される構成単位を含むものとなり、好ましく用いられる。該芳香族ポリエーテル系重合体は、ケトン基の有する高い結晶性の特性に加え、スルホン基よりも耐熱水性に優れる成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料に有効な成分となるのでさらに好ましく用いられる。これらのスルホン酸基は重合の際には、スルホン酸基が1価カチオン種との塩になっていることが好ましい。1価カチオン種としては、ナトリウム、カリウムや他の金属種や各種アミン類等でも良く、これらに制限される訳ではない。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
Figure 2022167820000008
(一般式(p1)中、MおよびMは水素、金属カチオン、アンモニウムカチオン、a1およびa2は1~4の整数を表す。一般式(p1)で表される構成単位は任意に置換されていてもよい。)
また、芳香族活性ジハライド化合物としては、イオン性基を有するものと持たないものを共重合することで、イオン性基密度を制御することも可能である。しかしながら、上記イオン性セグメントとしては、プロトン伝導パスの連続性確保の観点から、イオン性基を持たない芳香族活性ジハライド化合物を共重合しないことがより好ましい。
イオン性基を持たない芳香族活性ジハライド化合物のより好適な具体例としては、4,4'-ジクロロジフェニルスルホン、4,4'-ジフルオロジフェニルスルホン、4,4'-ジクロロジフェニルケトン、4,4'-ジフルオロジフェニルケトン、4,4'-ジクロロジフェニルフェニルホスフィンオキシド、4,4'-ジフルオロジフェニルフェニルホスフィンオキシド、2,6-ジクロロベンゾニトリル、2,6-ジフルオロベンゾニトリル等を挙げることができる。中でも4,4'-ジクロロジフェニルケトン、4,4'-ジフルオロジフェニルケトンが結晶性付与、機械強度や物理的耐久性、耐熱水性の点からより好ましく、重合活性の点から4,4'-ジフルオロジフェニルケトンが最も好ましい。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
芳香族活性ジハライド化合物として、4,4'-ジクロロジフェニルケトン、4,4'-ジフルオロジフェニルケトンを用いて合成した高分子電解質材料としては、下記一般式(p2)で表される構成部位をさらに含むものとなり、好ましく用いられる。該構成単位は分子間凝集力や結晶性を付与する成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料となるので好ましく用いられる。
Figure 2022167820000009
(一般式(p2)で表される構成単位は任意に置換されていてもよいが、イオン性基は含有しない。)
またイオン性セグメントを合成するために用いられる非イオン性モノマーとして、芳香族ジフェノール化合物が挙げられ、特に後述する保護基を有する芳香族ジフェノール化合物であることが好ましい。以上、イオン性セグメントを合成するために用いられるモノマーについて説明した。
本発明の高分子電解質膜として、ブロック共重合体に含まれる非イオン性セグメントが、下記一般式(S3)で表される構造を含有することが、機械強度、寸法安定性の観点から好ましい。
Figure 2022167820000010
一般式(S3)中、Ar~Arは、それぞれ独立に、アリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。
ここで、Ar~Arとして好ましい芳香環は、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されるものではない。
本発明のブロック共重合体としては、一般式(S3)で表される構造が下記式(P2)で表される構造を含有することが、原料入手性の点から好ましい。中でも、下記式(S4)で表される構成単位を含有することが、結晶性による機械強度、寸法安定性、物理的耐久性の点からさらに好ましい。
Figure 2022167820000011
一般式(P2)および(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(P2)および(S4)または他の構成単位との結合を表す。
非イオン性セグメント中に含まれる前記一般式(S3)または(P2)及び(S4)で表される構造の含有量としては、より多い方が好ましく、20モル%以上がより好ましく、50モル%以上がさらに好ましく、80モル%以上が最も好ましい。含有量が20モル%以上である場合には、結晶性による機械強度、寸法安定性、物理的耐久性に対する本発明の効果に優れる。
本発明に用いられるブロック共重合体は、上記一般式(S1)で表される構成単位を含有するイオン性セグメントと、上記一般式(S3)で表される構成単位を含有する非イオン性セグメントと、を有するブロック共重合体から構成されることが好ましい。
非イオン性セグメントは、一般式(S3)で表される構成単位を含有する場合、結晶性を示すセグメントである。このような非イオン性セグメントを含むブロック共重合体は、少なくとも非イオン性セグメントに保護基を導入したブロック共重合体前駆体を成型した後、成型体に含有される該保護基の少なくとも一部を脱保護せしめることにより製造することができる。ブロック共重合体では、ランダム共重合体よりも、ドメインを形成したポリマーの結晶化により、加工性が不良となる傾向があるので、少なくとも非イオン性セグメントに保護基を導入し、加工性を向上させることが好ましく、イオン性セグメントについても、加工性が不良となる場合には保護基を導入することが好ましい。
このような保護基を含む構成単位としては、例えば下記一般式(P3)および(P4)から選ばれる少なくとも1種を含有するものが好ましく挙げられる。
Figure 2022167820000012
(式(P3)および(P4)において、Ar11~Ar14は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表し、それぞれが2種類以上の基を表しても良い。式(P3)および(P4)で表される基は任意に置換されていてもよい。)
なかでも、化合物の臭いや反応性、安定性等の点で、前記一般式(P3)および(P4)において、EがOである、すなわち、ケトン部位をケタール部位で保護/脱保護する方法が最も好ましい。
一般式(P3)中のRおよびRとしては、安定性の点でアルキル基であることがより好ましく、さらに好ましくは炭素数1~6のアルキル基、最も好ましく炭素数1~3のアルキル基である。また、一般式(P4)中のRとしては、安定性の点で炭素数1~7のアルキレン基であることがより好ましく、最も好ましくは炭素数1~4のアルキレン基である。Rの具体例としては、-CHCH-、-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-C(CHCH(CH)-、-C(CHO(CH-、-CHCHCH-、-CHC(CHCH-等が挙げられるが、これらに限定されるものではない。
前記一般式(P3)および(P4)中のAr11~Ar14として好ましい有機基は、フェニレン基、ナフチレン基、またはビフェニレン基である。これらは任意に置換されていてもよい。芳香族ポリエーテル系重合体としては、溶解性および原料入手の容易さから、前記一般式(P4)中のAr13およびAr14が共にフェニレン基であることがより好ましく、最も好ましくはAr13およびAr14が共にp-フェニレン基である。
ここで、ケトン部位をケタールで保護する方法としては、ケトン基を有する前駆体化合物を、酸触媒存在下で1官能および/または2官能アルコールと反応させる方法が挙げられる。例えば、ケトン前駆体の4,4’-ジヒドロキシベンゾフェノンと1官能および/または2官能アルコール、脂肪族又は芳香族炭化水素などの溶媒中で臭化水素などの酸触媒の存在下で反応させることによって製造できる。アルコールは炭素数1~20の脂肪族アルコールである。
ケタールモノマーを製造するための改良法は、ケトン前駆体の4,4’-ジヒドロキシベンゾフェノンと2官能アルコールをアルキルオルトエステル及び固体触媒の存在下に反応させることからなる。
ケタールで保護したケトン部位の少なくとも一部を脱保護せしめ、ケトン部位とする方法は特に限定されるものではない。前記脱保護反応は、不均一又は均一条件下に水及び酸の存在下において行うことが可能であるが、機械強度、物理的耐久性、耐溶剤性の観点からは、膜等に成型した後で酸処理する方法がより好ましい。具体的には、成型された膜を塩酸水溶液や硫酸水溶液中に浸漬することにより脱保護することが可能であり、酸の濃度や水溶液の温度については適宜選択することができる。
ポリマーに対して必要な酸性水溶液の重量比は、好ましくは1~100倍であるけれども更に大量の水を使用することもできる。酸触媒は好ましくは存在する水の0.1~50重量%の濃度において使用する。好適な酸触媒としては塩酸、硝酸、フルオロスルホン酸、硫酸などのような強鉱酸、及びp-トルエンスルホン酸、トリフルオロメタンルスホン酸などのような強有機酸が挙げられる。ポリマーの膜厚等に応じて、酸触媒及び過剰水の量、反応圧力などは適宜選択できる。
例えば、膜厚50μmの膜であれば、6N塩酸水溶液に例示されるような酸性水溶液中に浸漬し、95℃で1~48時間加熱することにより、容易にほぼ全量を脱保護することが可能である。また、25℃の1N塩酸水溶液に24時間浸漬しても、大部分の保護基を脱保護することは可能である。ただし、脱保護の条件としてはこれらに限定される物ではなく、酸性ガスや有機酸等で脱保護したり、熱処理によって脱保護しても構わない。
芳香族ポリエーテル系重合体が直接結合等のエーテル結合以外の結合様式を含む場合においても、加工性向上の点から、導入される保護基の位置としては芳香族エーテル系重合体部分であることがより好ましい。
具体的には、例えば前記一般式(P3)および(P4)で表される構成単位を含有する芳香族ポリエーテル系重合体は、芳香族ジフェノール化合物としてそれぞれ下記一般式(P3-1)および(P4-1)で表される化合物を使用し、芳香族活性ジハライド化合物との芳香族求核置換反応により合成することが可能である。前記一般式(P3)および(P4)で表される構成単位が芳香族ジフェノール化合物、芳香族活性ジハライド化合物のどちら側由来でも構わないが、モノマーの反応性を考慮して芳香族ジフェノール化合物由来を使用する方がより好ましい。
Figure 2022167820000013
(一般式(P3-1)および(P4-1)において、Ar11~Ar14は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表す。一般式(P3-1)および一般式(P4-1)で表される化合物は任意に置換されていてもよい。以上、好ましい保護基について説明した。
本発明の高分子電解質膜に含まれるブロック共重合体は、イオン性セグメントと非イオン性セグメントとの間を連結するリンカー部位を1個以上含有することが好ましい。本発明において、リンカーとは、イオン性セグメントと非イオン性セグメントとの間を連結する部位であって、イオン性セグメントや非イオン性セグメントとは異なる化学構造を有する部位と定義する。このリンカーは、先のリンカー(L1)と区別するために、リンカー(L2)ということがある。
このリンカー(L2)は、エーテル交換反応による共重合体のランダム化、セグメント切断、その他共重合体の合成時に生じうる副反応などを抑制しながら、異なるセグメントを連結する。そのため、このようなリンカーを与えるような化合物を原料として用いることで、それぞれのセグメントの分子量を下げることなく、ブロック共重合体を得ることができる。
リンカー(L2)の好適な具体例としては、デカフルオロビフェニル、ヘキサフルオロベンゼン、4,4’-ジフルオロジフェニルスルホン、2,6-ジフルオロベンゾニトリル等を挙げることができるが、本発明において、これらに限定されるものではない。
本発明の高分子電解質膜は、相分離構造を有しながら、結晶性を有することが、寸法安定性や機械強度の観点から好ましい。一般に、寸法安定性や機械強度は、イオン交換容量に負の相関となるが、本発明の高分子電解質膜は、同程度のイオン交換容量をもつ高分子電解質膜で比較すると、結晶性を有することで、高い寸法安定性を実現することができる。
結晶性の有無は、示差走査熱量分析法(DSC)あるいは広角X線回折によって確認することができる。ここで結晶性を有するとは、示差走査熱量分析法によって測定されるブロック共重合体の結晶化熱量が0.1J/g以上であるか、または、広角X線回折によって測定されるブロック共重合体の結晶化度が0.5%以上であることを指す。つまり本発明において、「結晶性を有する」とは、ポリマーが昇温すると結晶化されうること、結晶化可能な性質を有すること、および既に結晶化していること、のいずれかを意味する。また、非晶性ポリマーとは、結晶性ポリマーではないこと、または実質的に結晶化が進行しないポリマーであることを意味する。従って、結晶性ポリマーであっても、結晶化が十分に進行していない場合には、その時点でのポリマーの状態としては非晶状態である場合がある。
本発明の高分子電解質膜は、ケタール等の保護基を有する段階で、溶液状態より製膜する方法あるいは溶融状態より製膜する方法等が可能である。前者では、たとえば、該高分子電解質材料をN-メチル-2-ピロリドン等の溶媒に溶解し、その溶液をガラス板等の上に流延塗布し、溶媒を除去することにより製膜する方法が例示できる。
製膜に用いる溶媒としては、ブロック共重合体を溶解し、その後に除去し得るものであればよく、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、Nメチル-2ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ-ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロパノールなどのアルコール系溶媒、水およびこれらの混合物が好適に用いられるが、非プロトン性極性溶媒が最も溶解性が高く好ましい。また、イオン性セグメントの溶解性を高めるために、18-クラウン-6などのクラウンエーテルを添加することも好適である。
必要な固形分濃度に調製したポリマー溶液を常圧の濾過もしくは加圧濾過などに供し、高分子電解質溶液中に存在する異物を除去することは強靱な膜を得るために好ましい方法である。ここで用いる濾材は特に限定されるものではないが、ガラスフィルターや金属性フィルターが好適である。該濾過で、ポリマー溶液が通過する最小のフィルターの孔径は、1μm以下が好ましい。
本発明に用いるブロック共重合体を高分子電解質膜へ転化する方法としては、例えば、該ブロック共重合体から構成される膜を上記手法により作製後、保護基で保護した部位の少なくとも一部を脱保護するものである。例えば、保護基としてケタール部位を有する場合、ケタールで保護したケトン部位の少なくとも一部を脱保護し、ケトン部位とする。この方法によれば、溶解性に乏しいブロック共重合体の溶液製膜が可能となり、プロトン伝導性と寸法安定性、機械強度、物理的耐久性を両立することができる。
また、含まれるイオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成した状態で電解質膜を成型した後に、当該アルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換する工程を行っても良い。この工程は、成型後の膜を酸性水溶液と接触させる工程であることが好ましく、特に成型後の膜を酸性水溶液に浸漬する工程であることがより好ましい。この工程においては、酸性水溶液中のプロトンがイオン性基とイオン結合している陽イオンと置換されるとともに、残留している水溶性の不純物や、残存モノマー、溶媒、残存塩などが同時に除去される。
酸性水溶液は特に限定されないが、硫酸、塩酸、硝酸、酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、リン酸、クエン酸などを用いることが好ましい。酸性水溶液の温度や濃度等も適宜決定すべきであるが、生産性の観点から0℃以上80℃以下の温度で、3質量%以上、30質量%以下の硫酸水溶液を使用することが好ましい。
本発明における高分子電解質膜の膜厚としては、実用に耐える膜の機械強度、物理的耐久性を得るには1μm以上がより好ましく、膜抵抗の低減つまり発電性能の向上のためには2000μm以下が好ましい。膜厚のさらに好ましい範囲は3μm以上200μm以下である。膜厚は、溶液濃度あるいは基板上への塗布厚により制御することができる。
また、本発明における高分子電解質膜は、通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、酸化防止剤あるいは離型剤等の添加剤を、本発明の目的に反しない範囲内で含有していてもよい。
また、本発明の高分子電解質膜には、前述の諸特性に悪影響をおよぼさない範囲内で機械的強度、熱安定性、加工性などの向上を目的に、各種ポリマー、エラストマー、フィラー、微粒子、各種添加剤などを含有していてもよい。高分子電解質膜を、また、微多孔膜、不織布、メッシュ等で補強しても良い。
本発明の高分子電解質膜は、種々の用途に適用可能である。例えば、人工皮膚などの医療用途、ろ過用途、耐塩素性逆浸透膜などのイオン交換樹脂用途、各種構造材用途、電気化学用途、加湿膜、防曇膜、帯電防止膜、脱酸素膜、太陽電池用膜、ガスバリアー膜に適用可能である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、固体高分子形燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置、電気化学式水素ポンプ、水電解式水素発生装置が挙げられる。
固体高分子形燃料電池、電気化学式水素ポンプ、および水電解式水素発生装置において、高分子電解質膜は、両面に触媒層、電極基材及びセパレータが順次積層された構造体で使用される。このうち、電解質膜の両面に触媒層を積層させたもの(即ち触媒層/電解質膜/触媒層の層構成のもの)は触媒層付電解質膜(CCM)と称され、さらに電解質膜の両面に触媒層及びガス拡散基材を順次積層させたもの(即ち、ガス拡散基材/触媒層/電解質膜/触媒層/ガス拡散基材の層構成のもの)は、膜電極複合体(MEA)と称されている。本発明の高分子電解質膜は、こうしたCCMおよびMEAを構成する高分子電解質膜として特に好適に用いられる。
(1)ポリマーの分子量
ポリマーの数平均分子量、重量平均分子量をGPCにより測定した。紫外検出器と示差屈折計の一体型装置として東ソー(株)製HLC-8022GPCを、またガードカラムとして、東ソー(株)製TSKgelGuardColumnSuperH-H(内径4.6mm、長さ3.5cm)を用い、GPCカラムとして東ソー(株)製TSKgelSuperHM-H(内径6.0mm、長さ15cm)2本を用い、N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)にて、サンプル濃度0.1wt%、流量0.2mL/min、温度40℃、測定波長265nmで測定し、標準ポリスチレン換算により数平均分子量、重量平均分子量を求めた。
(2)イオン交換容量(IEC)
以下の1]~4]に示す中和滴定法により測定した。測定は3回実施し、その平均値を取った。
1]プロトン置換し、純水で十分に洗浄したブロック共重合体の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求めた。
2]ブロック共重合体に5wt%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換した。
3]0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とした。
4]IECは下記式により求めた。
IEC(meq/g)=〔水酸化ナトリウム水溶液の濃度(mmol/mL)×滴下量(mL)〕/試料の乾燥重量(g)。
(3)乾湿寸法変化率
膜状の試料片を3mm×20mmの大きさで採取し、温湿度調整機能付炉を有する熱機械分析装置TMA/SS6100((株)日立ハイテクサイエンス製)のサンプルホルダーに試料の長辺が測定方向となるように設置した。炉内で、23℃、50%RHで試料を1時間定常化し、この試料片の長さをゼロ点とした。炉内温度を23℃で固定し、30分かけて30%RH(乾燥条件)に湿度調整し、20分間ホールドした。次に30分かけて90%RH(加湿条件)に湿度調整した。この乾湿サイクル(30%RH-90%RH)を1サイクルとして、10サイクル目の30%RHの寸法変化率(%)と90%RHの寸法変化率(%)の差を、乾湿寸法変化率(%)とした。
乾湿寸法変化率は、7.0%以下が好ましく、6.5%以下がより好ましく、6.0%以下が特に好ましい。
(4)透過型電子顕微鏡(TEM)による相分離構造の観察
染色剤として2重量%酢酸鉛水溶液中に試料片を浸漬させ、25℃下で72時間放置した。染色処理された試料を取りだし、エポキシ樹脂で包埋した。ウルトラミクロトームを用いて室温下で薄片80nmを切削し、得られた薄片をCuグリッド上に回収しTEM観察に供した。観察は加速電圧100kVで実施し、撮影は、写真倍率として×20,000、×40,000になるように撮影を実施した。機器としては、HT7700((株)日立ハイテク製)を使用した。また、TEM像を高速フーリエ変換(FFT)して、得られたリング状のFFTパターンからTD方向の空間周波数を測長し、そこから相分離の平均周期長を算出した。空間周波数は、画像の中心からリングの厚み中心までの距離を測長した。FFTおよび測長はDigitalMicrograph(Gatan社製)を使用した。
(5)透過型電子顕微鏡(TEM)トモグラフィーによる相分離構造の観察
上記(4)記載の方法にて作成した薄片試料を、コロジオン膜上にマウントし、以下の条件に従って観察を実施した。
装置: 電界放出型電子顕微鏡(HRTEM)日本電子(株)製JEM 2100F
画像取得: DigitalMicrograph(Gatan社製)
システム: マーカー法
加速電圧: 200kV
撮影倍率: 30,000倍
傾斜角度: +60°~-62°
再構成解像度: 0 .71nm/pixel。
3次元再構成処理は、マーカー法を適用した。3次元再構成を実施する際の位置合わせマーカーとして、コロジオン膜上に付与したAuコロイド粒子を用いた。マーカーを基準として、+61°から-62° の範囲で、試料を1°毎に傾斜しTEM像を撮影する連続傾斜像シリーズより取得した計124枚のTEM像を基にCT再構成処理を実施、3次元相分離構造を観察した。
(6)プロトン伝導度
セルの白金電極上にイソプロパノールベースのカーボンペースト(イーエムジャパン(株)製 G7711)を塗布し、18mm×6mmにカットされた拡散層電極(E-TEK社製 ELAT GDL 140-HT)を貼り付けた。セルの電極間に30mm×8mmにカットした電解質膜を配置し、セルを1MPaで締結してMTS740のチャンバー内に格納した。電解質膜の膜厚方向のプロトン抵抗はMTS740膜抵抗測定システム(Scribner社製)で評価した。MTS740は温度制御したチャンバー内にセルを格納し、加湿器を通してチャンバー内にマスフローコントローラーで空気ガスを供給した。セルには周波数応答アナライザーPSM1735(Newtons4th社製)が接続されており、交流信号を1MHzから1KHzに掃引することにより抵抗を求めることができる。
MTS740とPSM1735はパソコンに接続されソフトウェアでコントロールすることができる。チャンバーの温度を80℃に設定した後、90%RHの空気ガスを供給し1時間保持し電解質膜を十分湿潤させた。その後、20%RHの空気を供給し乾燥させ、30%RHの空気を供給し30分保持し抵抗を測定した。このとき周波数は1MHzから1KHzまで掃引した。その後、80%RHの空気を供給し30分保持し同様に抵抗を測定した。測定した抵抗のデータからCole-Coleプロットを作成した。1MHz付近の周波数帯はセルとPSM1735を接続するケーブルのインダクタンス成分の影響を受けるため、その影響が少ない200kHzの実軸の値を抵抗値(Ω)とした。30%RHの空気を供給した際のプロトン伝導度を低加湿プロトン伝導度、80%RHの空気を供給した際のプロトン伝導度を高加湿プロトン伝導度として、測定した抵抗値を用いて以下の式より、プロトン伝導度を算出した。
プロトン伝導度(mS/cm)=1/(抵抗値(Ω)×アクティブエリア(cm)/試料厚(cm))。
低加湿プロトン伝導度は、0.90mS/cm以上が好ましく、1.00mS/cm以上がより好ましく、1.10mS/cm以上が特に好ましい。高加湿プロトン伝導度は、9.50mS/cm以上が好ましく、11.00mS/cm以上がより好ましく、12.00mS/cm以上が特に好ましい。
(7)示差走査熱量分析法(DSC)による結晶化熱量測定
検体となる高分子電解質膜10mgを、DSC装置内において、110℃で3時間予備乾燥した後、検体をDSC装置から出さずに、以下の条件にて200℃まで昇温させ、昇温段階の温度変調示差走査熱量分析を行った。
DSC装置:DSC7000X((株)日立ハイテク製)
測定温度範囲:30℃~200℃
温度制御:交流温度制御
昇温速度:2℃/min
振幅:±3℃
印加周波数:0.02Hz
試料パン:アルミニウム製クリンプパン
測定、予備乾燥雰囲気:窒素100mL/min
予備乾燥:110℃、3時間。
(8)広角X線回折(XRD)による結晶化度測定
検体となる高分子電解質膜を回折計にセットし、以下の条件にてX 線回折測定を行った。
X線回折装置:ブルカー社製D8 ADVANCE
X線:Cu-Kα
X線出力:40kV-40mA
光学系: 集中法光学系
スキャン速度:2θ=2/min
スキャン方法:2θ-θ
スキャン範囲:2θ=5~60°
スリット:発散スリット-1/2°、受光スリット-0.15mm散乱スリット-1/2°
結晶化度はプロファイルフィッティングを行うことにより各成分の分離を行い、各成分
の回折角と積分強度を求め、得られた結晶質ピークと非晶質ハローの積分強度を用いて下
記の計算式から結晶化度を算出した。
結晶化度(%)= 全ての結晶質ピークの積分強度の和/全ての結晶質ピークと非晶質ハローの積分強度の和×100。
以下の合成例1~3において、得られた化合物の構造はH-NMRで確認した。純度はキャピラリー電気泳動(有機物)およびイオンクロマトグラフィー(無機物)で定量分析した。
合成例1(下記式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成)
攪拌器、温度計及び留出管を備えた500mlフラスコに、4,4’-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸一水和物0.50gを仕込み、溶液とした。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温し、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで120℃に保った。この反応液を室温まで冷却した後、反応液を酢酸エチルで希釈した。有機層を5%炭酸カリウム水溶液100mlで洗浄し分液した後、溶媒を留去した。残留物にジクロロメタン80mlを加え結晶を析出させ、これを濾過し、乾燥して、2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。純度は99.9%であった。
Figure 2022167820000014
合成例2(下記式(G2)で表されるジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩(NaCl)200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.3%であった。
Figure 2022167820000015
合成例3(下記式(G3)で表される3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホンの合成)
4,4-ジフルオロジフェニルスルホン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホンを得た。純度は99.3%であった。
Figure 2022167820000016
実施例1
(下記一般式(G4)で表される非イオン性オリゴマーa1の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、合成例1で得たK-DHBP25.83g(100mmol)および4,4’-ジフルオロベンゾフェノン21.38g(アルドリッチ試薬、98mmol)を入れた。装置内を窒素置換した後、N-メチルピロリドン(NMP)300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で3時間重合を行った。多量のメタノールに再沈殿精製を行い、非イオン性オリゴマーa1の末端ヒドロキシ体を得た。この非イオン性オリゴマーa1の末端ヒドロキシ体の数平均分子量は20,000であった。 攪拌器、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、上記非イオン性オリゴマーa1の末端ヒドロキシ体を20.0g(1mmol)を入れた。装置内を窒素置換した後、NMP100mL、トルエン30mLを加え、100℃で脱水した後、昇温してトルエンを除去した。さらに、ヘキサフルオロベンゼン1.1g(アルドリッチ試薬、6mmol)を入れ、105℃で12時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G4)で示される非イオン性オリゴマーa1(末端:フルオロ基)を得た。この非イオン性オリゴマーa1の数平均分子量は21,000であった。
Figure 2022167820000017
(下記式(G5)で表されるイオン性オリゴマーa2の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.64g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.91g(50mmol)、4,4’-ビフェノール9.31g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.60g(98.5mmol)および18-クラウン-6を26.40g(和光純薬100mmol)入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で6時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G5)で示されるイオン性オリゴマーa2(末端:ヒドロキシ基)を得た。このイオン性オリゴマーa2の数平均分子量は45,000であった。なお、式(G5)において、Mは、水素原子、NaまたはKを表す。
Figure 2022167820000018
(下記式(G6)で表されるイオン性オリゴマーa2’の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム0.56g(アルドリッチ試薬、400mmol)およびイオン性オリゴマーa2を49.0g入れた。装置内を窒素置換した後、NMP500mLを加え、60℃で内容物を溶解させた後に、ヘキサフルオロベンゼン/NMP溶液(1wt%)を19.8g加えた。80℃で18時間反応を行い、式(G6)で示されるイオン性オリゴマーa2’(末端:OM)を含むNMP溶液を得た。このイオン性オリゴマーa2’の数平均分子量は90,000であった。なお、式(G6)において、Mは、水素原子、NaまたはKを表す。
Figure 2022167820000019
(イオン性セグメントとしてオリゴマーa2’、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b1の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2000mL SUS製重合装置に、イオン性オリゴマーa2’を49.0gおよび非イオン性オリゴマーa1を7.65g入れ、オリゴマーの総仕込み量が7wt%となるようにNMPを加えて、105℃で24時間反応を行った。多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、多量のイソプロピルアルコールで精製を行い、ブロック共重合体b1を得た。このブロック共重合体b1の数平均分子量は170,000であり、重量平均分子量は410,000であった。
得られたブロック共重合体b1を溶解させた20重量%NMP溶液を、ガラス繊維フィルターにより加圧ろ過した後、ガラス基板上に流延塗布し、100℃にて4時間乾燥し、膜状成型体を得た。この成型体を10質量%硫酸水溶液に80℃で24時間浸漬して、プロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜A(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は15.8J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
実施例2
(イオン性セグメントしてオリゴマーa2’、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b2の合成)
非イオン性オリゴマーa1の使用量を5.4gとしたこと以外は実施例1と同様にして、ブロック共重合体b2を得た。このブロック共重合体b2の数平均分子量は180,000であり、重量平均分子量は430,000であった。
ブロック共重合体b1に代えてブロック共重合体b2を用いた以外は実施例1と同様の方法で、高分子電解質膜B(膜厚11μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は13.2J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
実施例3
(式(G4)で表される非イオン性オリゴマーa3の合成)
4,4’-ジフルオロベンゾフェノンの使用量を21.45gとしたこと以外はオリゴマーa1の末端ヒドロキシ体の合成と同様にして、オリゴマーa3の末端ヒドロキシ体を得た。このオリゴマーa3の末端ヒドロキシ体の数平均分子量は25,000であった。
オリゴマーa1の末端ヒドロキシ体の代わりにオリゴマーa3の末端ヒドロキシ体25.0gを用いたこと以外はオリゴマーa1の合成と同様にして、式(G4)で示される非イオン性オリゴマーa3(末端:フルオロ基)を得た。この非イオン性オリゴマーa3の数平均分子量は26,000であった。
(イオン性セグメントとしてオリゴマーa2’、非イオン性セグメントとしてオリゴマーa3を含有するブロック共重合体b3の合成)
非イオン性オリゴマーa1(7.65g)に代えて非イオン性オリゴマーa3(12.3g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b3を得た。このブロック共重合体b3の数平均分子量は160,000であり、重量平均分子量は390,000であった。
ブロック共重合体b1に代えてブロック共重合体b3を用いた以外は実施例1と同様の方法で、高分子電解質膜C(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は22.1J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
実施例4
(式(G5)で表されるイオン性オリゴマーa4の合成)
ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの使用量を41.38g(98.0mmol)としたこと以外はイオン性オリゴマーa2の合成と同様にして、イオン性オリゴマーa4を得た。このイオン性オリゴマーa4の数平均分子量は35,000であった。
(一般式(G6)で表されるイオン性オリゴマーa4’の合成)
イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa4(37.16g)を用い、NMPの使用量を400mLとし、ヘキサフルオロベンゼン/NMP溶液(1wt%)の使用量を15.3gとしたこと以外はイオン性オリゴマーa2’の合成と同様にして、式(G6)で示されるイオン性オリゴマーa4’(末端:OM)を含むNMP溶液を得た。このオリゴマーa4’の数平均分子量は70,000であった。
(イオン性セグメントとしてオリゴマーa4’、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b4の合成)
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、イオン性オリゴマーa2’(49.0g)の代わりにイオン性オリゴマーa4’(37.16g)を用い、非イオン性オリゴマーa1の使用量を5.80gとしたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b4を得た。このブロック共重合体b4の数平均分子量は190,000であり、重量平均分子量は440,000であった。
ブロック共重合体b1に代えてブロック共重合体b4を用いた以外は実施例1と同様の方法で、高分子電解質膜D(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は16.6J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
実施例5
(一般式(G4)で表される非イオン性オリゴマーa5の合成)
4,4’-ジフルオロベンゾフェノンの使用量を21.27gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa5の末端ヒドロキシ体を得た。この非イオン性オリゴマーa5の末端ヒドロキシ体の数平均分子量は16,000であった。
非イオン性オリゴマーa1の末端ヒドロキシ体20.0gの代わりに非イオン性オリゴマーa5の末端ヒドロキシ体16.0gを用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、式(G4)で示される非イオン性オリゴマーa5(末端:フルオロ基)を得た。この非イオン性オリゴマーa5の数平均分子量は17,000であった。
(式(G5)で表されるイオン性オリゴマーa6の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.64g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.91g(50mmol)および4,4’-ビフェノール9.31g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.85g(99.1mmol)、を入れた。装置内を窒素置換した後、ジメチルスルホキシド(DMSO)300mL、トルエン100mLを加え、133℃で脱水後、昇温してトルエンを除去し、150℃で2時間重合し、155℃に昇温しさらに1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、式(G5)で示されるイオン性オリゴマーa6(末端:ヒドロキシ基)を得た。このイオン性オリゴマーa6の数平均分子量は56,000であった。
(イオン性セグメントとしてオリゴマーa6、非イオン性セグメントとしてオリゴマーa5を含有するブロック共重合体b5の合成)
イオン性オリゴマーa2’(49.0g)の代わりにイオン性オリゴマーa6(32.79g)を用い、非イオン性オリゴマーa1(7.65g)の代わりに非イオン性オリゴマーa5(8.19g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b5を得た。このブロック共重合体b5の数平均分子量は、140,000、重量平均分子量は360,000であった。
ブロック共重合体b1に代えてブロック共重合体b5を用いた以外は実施例1と同様の方法で、高分子電解質膜E(膜厚12μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は21.1J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
実施例6
(一般式(G7)で表される非イオン性オリゴマーa7の合成)
4,4’-ジフルオロベンゾフェノンの代わりに、4,4-ジフルオロジフェニルスルホン23.65gを用いたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa7の末端ヒドロキシ体を得た。この非イオン性オリゴマーa7の末端ヒドロキシ体数平均分子量は10,000であった。
非イオン性オリゴマーa1の末端ヒドロキシ体(20.0g)の代わりに非イオン性オリゴマーa7の末端ヒドロキシ体(10.0g)を用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、式(G7)で示される非イオン性オリゴマーa7(末端フルオロ基)を得た。この非イオン性オリゴマーa7の数平均分子量は、11,000であった。
Figure 2022167820000020
(式(G8)で表されるイオン性基オリゴマーa8の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、前記合成例1で得たK-DHBP12.9g(50mmol)および4,4’-ビフェノール9.3g(アルドリッチ試薬、50mmol)、合成例3で得た3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホン45.12g(99.1mmol)を入れた。装置内を窒素置換した後、DMSO300mL、トルエン100mLを加え、130℃で脱水後、昇温してトルエンを除去し、155℃で3時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、式(G8)で示されるイオン性オリゴマーa8(末端ヒドロキシ基)を得た。このイオン性オリゴマーa8の数平均分子量は57,000であった。
Figure 2022167820000021
(イオン性セグメントとしてオリゴマーa8、非イオン性セグメントとしてオリゴマーa7を含有するブロック共重合体b6の合成)
イオン性オリゴマーa2’(49.0g)の代わりにイオン性オリゴマーa8(65.82g)を用い、非イオン性オリゴマーa1(7.65g)の代わりに非イオン性オリゴマーa7(10.28g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b10を得た。このブロック共重合体b6の数平均分子量は110,000であり、重量平均分子量は280,000であった。
ブロック共重合体b1に代えてブロック共重合体b6を用いた以外は実施例1と同様の方法で、高分子電解質膜F(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められなかった(結晶化熱量0J/g)。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
実施例7
(下記一般式(G9)で表されるイオン性オリゴマー前駆体a9の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、乾燥したN,N-ジメチルアセトアミド(DMAc)200mlと、3-(2,5-ジクロロベンゾイル)ベンゼンスルホン酸ネオペンチル16.9g(42mmol)、4-クロロフェノール0.09g(0.7mmol)を入れて、窒素雰囲気下で、80℃で2時間撹拌した。その後、ビス(1,5-シクロオクタジエン)ニッケル30g(109mmol)を入れて、4時間撹拌した。乾燥したDMAc300mLで希釈し、アセトンを1L注ぎ、凝固した後に、80℃で真空乾燥し、下記式(G9)で示されるイオン性オリゴマー前駆体a9(末端:ヒドロキシ基)を得た。数平均分子量は22,000であった。
Figure 2022167820000022
(下記式(G10)で表されるイオン性オリゴマー前駆体a9’の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム0.56g(アルドリッチ試薬、400mmol)およびイオン性オリゴマーa10を11.1g入れた。装置内を窒素置換した後、乾燥したDMAc200mLを加え、60℃で内容物を溶解させた後に、ヘキサフルオロベンゼン/DMAc溶液(1wt%)を30.6g加えた。80℃で24時間反応を行い、下記式(G10)で示されるイオン性オリゴマー前駆体a9’(末端:OM)を含むDMAc溶液を得た。イオン性オリゴマー前駆体a9’の数平均分子量は67,000であった。なお、式(G10)において、Mは、水素原子、NaまたはKを表す。
Figure 2022167820000023
(下記一般式(G11)で表される非イオン性オリゴマーa10の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、乾燥したNMP200ml、2,5-ジクロロベンゾフェノン10.08g(40mmol)および4-クロロフェノール0.12g(0.9mmol)を入れて、窒素雰囲気下で、80℃で2時間撹拌した。さらにビス(1,5-シクロオクタジエン)ニッケル30g(109mmol)を入れて、4時間撹拌した。乾燥したNMP300mLで希釈し、10wt%塩酸水溶液1Lに沈殿したあと、80℃で真空乾燥し、下記式(G11)で示される非イオン性オリゴマーa10の末端ヒドロキシ体を得た。数平均分子量は9,000であった。
非イオン性オリゴマーa1の末端ヒドロキシ体(20.0g)の代わりに非イオン性オリゴマーa10の末端ヒドロキシ体(9.0g(1mmol))を用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、下記式(G11)で示される非イオン性オリゴマーa10(末端フルオロ基)を得た。この非イオン性オリゴマーa10の数平均分子量は10,000であった。
Figure 2022167820000024
(イオン性セグメントとしてイオン性オリゴマーa9’’、非イオン性セグメントとしてオリゴマーa10を含有するブロック共重合体b7の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、イオン性オリゴマー前駆体a9’を11.1gおよび非イオン性オリゴマーa10を5.71g入れ、オリゴマーの総仕込み量が7wt%となるようにDMAcを加えて、105℃で24時間反応を行った。重合反応溶液をDMAc500mLで希釈し、30分撹拌し、セライトを濾過助剤に用い、濾過した。
濾液をエバポレーターで濃縮し、残留物に臭化リチウム21.9g(0.253mol)を加え、内温110℃で7時間、窒素雰囲気下で反応させた。反応後、室温まで冷却し、アセトン3Lに注ぎ、凝固した。凝固物を濾集、風乾後、ミキサーで粉砕し、1N塩酸1500mLで攪拌しながら洗浄を行った。濾過後、生成物は洗浄液のpHが5以上となるまで、イオン交換水で洗浄した。その後、80℃で一晩乾燥し、下記式(G12)で表されるイオン性オリゴマーa9’’を有するブロック共重合体b7を得た。式(G12)の構造式及び数平均分子量から、イオン性オリゴマーa9’’の数平均分子量は53,000と計算される。ブロック共重合体b7の数平均分子量は90,000であり、重量平均分子量は210,000であった。なお、式(G12)において、*は、非イオン性セグメントとの結合を表す。
Figure 2022167820000025
ブロック共重合体b7を、0.1g/gとなるようにNMP/メタノール=30/70(質量%)からなる溶媒に溶解させた。ガラス繊維フィルターにより加圧ろ過した後、ガラス基板上に流延塗布し、100℃にて4時間乾燥し、膜状成型体を得た。この成型体を10質量%硫酸水溶液に80℃で24時間浸漬した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜G(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められなかった。また、広角X線回折で結晶質ピークは認められ、その結晶化度は10.4%であった。
比較例1
(一般式(G4)で表される非イオン性オリゴマーa11の合成)
4,4’-ジフルオロベンゾフェノンの使用量を20.84gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa11の末端ヒドロキシ体を得た。この非イオン性オリゴマーa9の末端ヒドロキシ体の数平均分子量は9,000であった。
非イオン性オリゴマーa1の末端ヒドロキシ体(20.0g)の代わりに非イオン性オリゴマーa11の末端ヒドロキシ体(9.0g)を用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、式(G4)で示される非イオン性オリゴマーa11(末端:フルオロ基)を得た。この非イオン性オリゴマーa11の数平均分子量は10,000であった。
(一般式(G5)で表されるイオン性オリゴマーa12の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.64g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.91g(50mmol)、4,4’-ビフェノール9.31g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.47g(98.2mmol)および18-クラウン-6を26.40g(和光純薬100mmol)入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で6時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、式(G5)で示されるイオン性オリゴマーa12(末端:ヒドロキシ基)を得た。このイオン性オリゴマーa12の数平均分子量は42,000であった。
(イオン性セグメントしてオリゴマーa12、非イオン性セグメントとしてオリゴマーa11を含有するブロック共重合体b8の合成)
イオン性オリゴマーa2’(49.0g)の代わりにイオン性基オリゴマーa12(43.57g)を用い、非イオン性オリゴマーa1(7.65g)の代わりに非イオン性オリゴマーa11(10.89g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b8を得た。このブロック共重合体b8の数平均分子量は140,000であり、重量平均分子量は400,000であった。
ブロック共重合体b1に代えてブロック共重合体b8を用いた以外は実施例1と同様の方法で、高分子電解質膜H(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は15.1J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
比較例2
(式(G4)で表される非イオン性オリゴマーa13の合成)
4,4’-ジフルオロベンゾフェノンの使用量を20.18gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa15の末端ヒドロキシ体を得た。この非イオン性オリゴマーa15の末端ヒドロキシ体の数平均分子量は5,000であった。
攪拌器、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム2.2g(アルドリッチ試薬、16mmol)および非イオン性オリゴマーa13の末端ヒドロキシ体を10.0g入れた。装置内を窒素置換した後、NMP100mL、トルエン30mLを加え、100℃で脱水後、昇温してトルエンを除去し、ヘキサフルオロベンゼン2.2g(アルドリッチ試薬、12mmol)を入れ、105℃で12時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、式(G4)で示される非イオン性オリゴマーa13(末端:フルオロ基)を得た。この非イオン性オリゴマーa13の数平均分子量は6,000であった。
(イオン性セグメントとしてオリゴマーa12、非イオン性セグメントとしてオリゴマーa13を含有するブロック共重合体b9の合成)
非イオン性オリゴマーa11(10.89g)の代わりに非イオン性オリゴマーa13(6.81g)を用いたこと以外はブロック共重合体b8の合成と同様にして、ブロック共重合体b9を得た。このブロック共重合体b9の数平均分子量は130,000であり、重量平均分子量は400,000であった。
ブロック共重合体b1に代えてブロック共重合体b9を用いた以外は実施例1と同様の方法で、高分子電解質膜I(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していたが、一部連続していない構造が見られた。DSCにより、結晶化ピークが認められ、結晶化熱量は6.4J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
比較例3
(式(G4)で表される非イオン性オリゴマーa14の合成)
4,4’-ジフルオロベンゾフェノンの使用量を19.99gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa14の末端ヒドロキシ体を得た。この非イオン性オリゴマーa14の末端ヒドロキシ体の数平均分子量は4,000であった。
非イオン性オリゴマーa13の末端ヒドロキシ体10.0gの代わりに非イオン性オリゴマーa14の末端ヒドロキシ体を8.0g用いたこと以外は非イオン性オリゴマーa13の合成と同様にして、式(G4)で示される非イオン性オリゴマーa14(末端:フルオロ基)を得た。この非イオン性オリゴマーa14の数平均分子量は5,000であった。
(イオン性セグメントとしてオリゴマーa12、非イオン性セグメントとしてオリゴマーa14を含有するブロック共重合体b10の合成)
非イオン性オリゴマーa13(6.81g)の代わりに非イオン性オリゴマーa14(4.84g)を用いたこと以外はブロック共重合体b9の合成と同様にして、ブロック共重合体b10を得た。このブロック共重合体b10の数平均分子量は130,000であり、重量平均分子量は400,000であった。
ブロック共重合体b1に代えてブロック共重合体b10を用いた以外は実施例1と同様の方法で、高分子電解質膜J(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していたが、一部連続していない構造が見られた。DSCにより、結晶化ピークが認められ、結晶化熱量は2.9J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
比較例4
(下記一般式(G8)で表されるイオン性オリゴマーa15の合成)
ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.60gの代わりに合成例3で得た3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホン44.94g(98.1mmol)を用いたこと以外はイオン性オリゴマーa2の合成と同様にして、式(G8)で示されるイオン性オリゴマーa15(末端ヒドロキシ基)を得た。このイオン性オリゴマーa15の数平均分子量は41,000であった。なお、式(G8)において、Mは、水素原子、NaまたはKを表す。
(イオン性セグメントとしてオリゴマーa15、非イオン性セグメントとしてオリゴマーa7を含有するブロック共重合体b11の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、イオン性オリゴマーa15を45.76gおよび非イオン性オリゴマーa7を8.93g入れ、オリゴマーの総仕込み量が7wt%となるようにNMPを加えて、105℃で24時間反応を行った。多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、多量のイソプロピルアルコールで精製を行い、ブロック共重合体b18を得た。このブロック共重合体b11の数平均分子量は120,000であり、重量平均分子量は290,000であった。
ブロック共重合体b1に代えてブロック共重合体b11を用いた以外は実施例1と同様の方法で、高分子電解質膜K(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められなかった(結晶化熱量0J/g)。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
比較例5
(下記一般式(G13)で表される非イオン性オリゴマーa16の合成)
K-DHBPの使用量を25.22g、4,4’-ジフルオロベンゾフェノンの使用量を21.82gとしたこと以外は、非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、式(G13)で示される非イオン性オリゴマーa16(末端:フルオロ基)を得た。このイオン性オリゴマーa16の数平均分子量は17,000であった。
Figure 2022167820000026
(イオン性セグメントとしてオリゴマーa12、非イオン性セグメントとしてオリゴマーa16を含有するブロック共重合体b12の合成)
攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、イオン性オリゴマーa12を43.57gおよび非イオン性オリゴマーa16を10.89g入れ、オリゴマーの総仕込み量が21wt%となるようにNMPを加えて、180℃で24時間反応を行った。多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、多量のイソプロピルアルコールで精製を行い、ブロック共重合体b12を得た。このブロック共重合体b12の数平均分子量は90,000であり、重量平均分子量は210,000であった。
ブロック共重合体b1に代えてブロック共重合体b12を用いた以外は実施例1と同様の方法で、高分子電解質膜L(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、海島様の相分離構造が確認できた。DSCにより、結晶化ピークが認められ、結晶化熱量は3.6J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
比較例6
(式(G4)で表される非イオン性オリゴマーa17の合成)
4,4’-ジフルオロベンゾフェノンの使用量を19.81gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa17の末端ヒドロキシ体を得た。この非イオン性オリゴマーa17の末端ヒドロキシ体の数平均分子量は3,000であった。
非イオン性オリゴマーa13の末端ヒドロキシ体10.0gの代わりに非イオン性オリゴマーa17の末端ヒドロキシ体を6.0g用いたこと以外は非イオン性オリゴマーa13の合成と同様にして、式(G4)で示される非イオン性オリゴマーa17(末端:フルオロ基)を得た。このイオン性オリゴマーa17の数平均分子量は4,000であった。
(イオン性セグメントとしてオリゴマーa12、非イオン性セグメントとしてオリゴマーa17を含有するブロック共重合体b13の合成)
非イオン性オリゴマーa13(6.81g)の代わりに非イオン性オリゴマーa17(3.63g)を用いたこと以外はブロック共重合体b9の合成と同様にして、ブロック共重合体b13を得た。このブロック共重合体b13の数平均分子量は90,000であり、重量平均分子量は220,000であった。
ブロック共重合体b1に代えてブロック共重合体b13を用いた以外は実施例1と同様の方法で、高分子電解質膜M(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していたが、一部連続していない構造が見られた。DSCにより、結晶化ピークが認められ、結晶化熱量は0.5J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
比較例7
(式(G4)で表される非イオン性オリゴマーa18の合成)
4,4’-ジフルオロベンゾフェノンの使用量を21.49gとしたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa18の末端ヒドロキシ体を得た。この非イオン性オリゴマーa18の末端ヒドロキシ体の数平均分子量は27,000であった。
オリゴマーa1の末端ヒドロキシ体の代わりにオリゴマーa18の末端ヒドロキシ体27.0gを用いたこと以外はオリゴマーa1の合成と同様にして、式(G4)で示される非イオン性オリゴマーa18(末端:フルオロ基)を得た。この非イオン性オリゴマーa18の数平均分子量は28,000であった。
(イオン性セグメントとしてオリゴマーa12、非イオン性セグメントとしてオリゴマーa18を含有するブロック共重合体b14の合成)
非イオン性オリゴマーa11(10.89g)の代わりに非イオン性オリゴマーa17(14.52g)を用いたこと以外ブロック共重合体b8の合成と同様にして、ブロック共重合体b13を得た。このブロック共重合体b14の数平均分子量は70,000であり、重量平均分子量は200,000であった。
得られたブロック共重合体b14を溶解させた20重量%NMP溶液は、溶解性が悪く、ゲル状不溶物が観察された。ガラス繊維フィルターにより加圧ろ過した。ガラス基板上に流延塗布し、100℃にて4時間乾燥し、膜状成型体を得たが、除去しきれなかったゲル状不溶物に由来すると考えられる欠点が見られた。10質量%硫酸水溶液に80℃で24時間浸漬して、プロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜N(膜厚13μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していたが、一部連続しておらず、不均一な構造が見られた。DSCにより、結晶化ピークが認められ、結晶化熱量は28.4J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
比較例8
(下記一般式(G14)で表される非イオン性オリゴマーa19の合成)
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1,000mL三口フラスコに、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、合成例1で得たK-DHBP25.8g(100mmol)および4,4’-ジフルオロベンゾフェノン21.4g(アルドリッチ試薬、98mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)300mL、トルエン100mL中で160℃にて脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のメタノールで再沈殿することで精製を行い、イオン性基を含有しないオリゴマーa19の末端ヒドロキシル基体を得た。数平均分子量は20,000であった。
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、イオン性基を含有しない前記オリゴマーa19の末端ヒドロキシル基体を40.0g(2mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)100mL、シクロヘキサン30mL中、100℃にて脱水後、昇温してシクロヘキサン除去し、ビス(4-フルオロフェニルスルホン)3.0g(アルドリッチ試薬、12mmol)を入れ、105℃で1時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G14)で示される非イオン性基オリゴマーa19(末端フルオロ基)を得た。数平均分子量は21,000であった。
Figure 2022167820000027
(上記一般式(G5)で表されるイオン性基オリゴマーa20の合成)
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた1,000mL三口フラスコに、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、前記合成例1で得たK-DHBP25.8g(100mmol)、合成例2で得たジソジウム 3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.4g(98mmol)、および18-クラウン-6 、17.9g(和光純薬82mmol)を入れ、窒素置換後、N-メチルピロリドン(NMP)300mL、トルエン100mL中、170℃にて脱水後、昇温してトルエン除去、180℃で1時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、上記式(G5)で示されるイオン性基を含有するオリゴマーa20の末端ヒドロキシル基体を得た。数平均分子量は33,000であった。
(イオン性セグメントとしてオリゴマーa20、非イオン性セグメントとしてオリゴマーa19を含有するブロック共重合体b15の合成)
かき混ぜ機、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム0.56g(アルドリッチ試薬、4mmol)、イオン性基を含有するオリゴマーa20の末端ヒドロキシル基体を33g(1mmol)入れ、窒素置換後、N-メチルピロリドン(NMP)100mL、シクロヘキサン30mL中、100℃で脱水後、昇温してシクロヘキサン除去し、イオン性基を含有しないオリゴマーa19(末端フルオロ基)21g(1mmol)を入れ、105℃で24時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、ブロック共重合体b15を得た。このブロック共重合体b15の数平均分子量は100,000であり、重量平均分子量は360,000であった。
ブロック共重合体b1に代えてブロック共重合体b15を用いた以外は実施例1と同様の方法で、高分子電解質膜O(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は25.1J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。
[測定結果]
実施例および比較例で得られた高分子電解質膜の測定結果を表1に示す。
Figure 2022167820000028
本発明の高分子電解質膜において、機械強度や物理的耐久性とプロトン伝導性とを比較的高いレベルで両立させるという観点から、乾湿寸法変化率が7.0%以下でかつ低加湿プロトン伝導度が0.90mS/cm以上、高加湿プロトン伝導度が9.50mS/cm以上であることが好ましく、乾湿寸法変化率が6.5%以下でかつ低加湿プロトン伝導度が1.00mS/cm以上、高加湿プロトン伝導度が11.00mS/cm以上であることがより好ましく、乾湿寸法変化率が6.0%以下でかつ低加湿プロトン伝導度が1.10mS/cm以上、高加湿プロトン伝導度が12.00mS/cm以上であることが特に好ましい。
1 相1
2 相2

Claims (14)

  1. イオン性基を含有するセグメント(以下「イオン性セグメント」という)と、イオン性基を含有しないセグメント(以下「非イオン性セグメント」という)と、をそれぞれ一個以上有するブロック共重合体を含む高分子電解質膜であって、前記ブロック共重合体が、イオン交換容量(meq/g)が2.0を超え3.1未満であり、前記高分子電解質膜が共連続相分離構造を有し、透過電子顕微鏡によって観察される前記共連続相分離構造の平均周期サイズ(nm)が110nm未満であり、前記共連続相分離構造の平均周期サイズ(nm)と前記イオン交換容量(meq/g)が平均周期サイズ(nm)/イオン交換容量(meq/g)≧21の関係を満たすことを特徴とする高分子電解質膜。
  2. 示差走査熱量分析法によって測定される前記高分子電解質膜の結晶化熱量が0.1J/g以上である、または、広角X線回折によって測定される前記高分子電解質膜の結晶化度が0.5%以上であることを特徴とする請求項1に記載の高分子電解質膜。
  3. 前記ブロック共重合体が芳香族炭化水素系共重合体であることを特徴とする請求項1または2に記載の高分子電解質膜。
  4. 前記芳香族炭化水素系共重合体が芳香族ポリエーテル系共重合体であることを特徴とする請求項3に記載の高分子電解質膜。
  5. 前記芳香族ポリエーテル系共重合体が芳香族ポリエーテルケトン系共重合体であることを特徴とする請求項4に記載の高分子電解質膜。
  6. 前記ブロック共重合体が、前記イオン性セグメントと前記非イオン性セグメントとの間を結合するリンカー部位を有することを特徴とする請求項1に記載の高分子電解質膜。
  7. 前記イオン性セグメントが下記一般式(S1)で表される構造を含有することを特徴とする請求項1に記載の高分子電解質膜。
    Figure 2022167820000029
    (一般式(S1)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表し、Ar~Arのうち少なくとも1つはイオン性基を有する。YおよびYは、それぞれ独立に、ケトン基または、ケトン基に誘導され得る保護基を表す。*は、一般式(S1)または他の構成単位との結合を表す。)
  8. 前記一般式(S1)で表される構造が下記一般式(S2)で表される構造であることを特徴とする請求項7に記載の高分子電解質膜。
    Figure 2022167820000030
    (一般式(S2)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。M~Mは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。n~nは、それぞれ独立に、0または1であり、n~nのうち少なくとも1つは1である。*は、一般式(S2)または他の構成単位との結合を表す。)
  9. 前記非イオン性セグメントが下記一般式(S3)で表される構造を含有することを特徴とする請求項1に記載の高分子電解質膜。
    Figure 2022167820000031
    (一般式(S3)中、Ar~Arは、それぞれ独立に、アリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。)
  10. 前記一般式(S3)で表される構造が下記一般式(S4)で表される構造であることを特徴とする請求項9に記載の高分子電解質膜。
    Figure 2022167820000032
    (一般式(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S4)または他の構成単位との結合を表す。)
  11. 請求項1に記載の高分子電解質膜を用いて構成されることを特徴とする触媒層付電解質膜。
  12. 請求項1に記載の高分子電解質膜を用いて構成されることを特徴とする膜電極複合体。
  13. 請求項1に記載の高分子電解質膜を用いて構成されることを特徴とする固体高分子燃料電池。
  14. 請求項1に記載の高分子電解質膜を用いて構成されることを特徴とする水電解式水素発生装置。
JP2022068034A 2021-04-22 2022-04-18 高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置 Pending JP2022167820A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021072384 2021-04-22
JP2021072384 2021-04-22

Publications (1)

Publication Number Publication Date
JP2022167820A true JP2022167820A (ja) 2022-11-04

Family

ID=83852197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2022068034A Pending JP2022167820A (ja) 2021-04-22 2022-04-18 高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置

Country Status (2)

Country Link
JP (1) JP2022167820A (ja)
CN (1) CN117043996A (ja)

Also Published As

Publication number Publication date
CN117043996A (zh) 2023-11-10

Similar Documents

Publication Publication Date Title
US10026983B2 (en) Polymer electrolyte material, polymer electrolyte molded product using the polymer electrolyte material and method for manufacturing the polymer electrolyte molded product, membrane electrode composite, and solid polymer fuel cell
JP5338990B2 (ja) 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP7142807B1 (ja) 高分子電解質成形体、ならびにそれを用いた高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
WO2022201958A1 (ja) 高分子電解質膜、ブロック共重合体、高分子電解質材料、高分子電解質成型体、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
JP2022167820A (ja) 高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
WO2022202122A1 (ja) 高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置
JP7276600B2 (ja) ブロック共重合体およびその製造方法、高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池ならびに水電解式水素発生装置
US20240182639A1 (en) Polyelectrolyte molded body, and polyelectrolyte membrane, electrolyte membrane with catalyst layer, membrane electrode assembly, solid polymer-type fuel cell, and water electrolysis-style hydrogen production device in which said polyelectrolyte molded body is used
WO2024058020A1 (ja) ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
JP2024033206A (ja) 電解質膜、膜電極接合体および膜電極接合体を備えた燃燃料電池の運転方法
CN116997595A (zh) 嵌段共聚物和其制造方法、高分子电解质材料、高分子电解质成型体、高分子电解质膜、带催化剂层的电解质膜、膜电极复合体、固体高分子型燃料电池以及水电解式氢气产生装置
CN117098798A (zh) 高分子电解质材料、使用其的高分子电解质成型体、带有催化剂层的电解质膜、膜电极接合体、固体高分子燃料电池及水电解式氢气发生装置
US20240182638A1 (en) Block copolymer, production method therefor, polymeric electrolyte material, polymeric electrolyte molded article, polymeric electrolyte film,electrolyte film equipped with catalyst layer, membrane electrode composite, solid polymer fuel cell, and water electrolysis type hydrogen generating device