WO2024058020A1 - ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置 - Google Patents

ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置 Download PDF

Info

Publication number
WO2024058020A1
WO2024058020A1 PCT/JP2023/032489 JP2023032489W WO2024058020A1 WO 2024058020 A1 WO2024058020 A1 WO 2024058020A1 JP 2023032489 W JP2023032489 W JP 2023032489W WO 2024058020 A1 WO2024058020 A1 WO 2024058020A1
Authority
WO
WIPO (PCT)
Prior art keywords
block copolymer
ionic
polymer
group
polymer electrolyte
Prior art date
Application number
PCT/JP2023/032489
Other languages
English (en)
French (fr)
Inventor
和歩 村上
大輔 出原
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Publication of WO2024058020A1 publication Critical patent/WO2024058020A1/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G65/00Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule
    • C08G65/34Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives
    • C08G65/38Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols
    • C08G65/40Macromolecular compounds obtained by reactions forming an ether link in the main chain of the macromolecule from hydroxy compounds or their metallic derivatives derived from phenols from phenols (I) and other compounds (II), e.g. OH-Ar-OH + X-Ar-X, where X is halogen atom, i.e. leaving group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G81/00Macromolecular compounds obtained by interreacting polymers in the absence of monomers, e.g. block polymers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B1/00Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors
    • H01B1/06Conductors or conductive bodies characterised by the conductive materials; Selection of materials as conductors mainly consisting of other non-metallic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • H01M8/1016Fuel cells with solid electrolytes characterised by the electrolyte material
    • H01M8/1018Polymeric electrolyte materials

Definitions

  • the present invention relates to a block copolymer, a polymer electrolyte material using the same, a molded polymer electrolyte, a polymer electrolyte membrane, an electrolyte membrane with a catalyst layer, a membrane electrode assembly, a polymer electrolyte fuel cell, and a water electrolyte type fuel cell.
  • hydrogen generators Regarding hydrogen generators.
  • a fuel cell is a type of power generation device that extracts electrical energy by electrochemically oxidizing a fuel such as hydrogen or methanol, and has recently attracted attention as a clean energy supply source.
  • polymer electrolyte fuel cells have a low standard operating temperature of around 100°C and a high energy density, so they are suitable for relatively small-scale distributed power generation facilities and power generation devices for mobile objects such as cars and ships. It is expected to have a wide range of applications.
  • Polymer electrolyte fuel cells are also attracting attention as a power source for small mobile devices and portable devices, and are also expected to be used as an alternative to secondary batteries such as nickel-hydrogen batteries and lithium-ion batteries in mobile phones and computers. ing.
  • a fuel cell is usually configured as a unit of a cell in which a membrane electrode assembly (MEA) is sandwiched between separators.
  • the MEA has catalyst layers arranged on both sides of an electrolyte membrane, and gas diffusion layers further arranged on both sides.
  • a pair of electrode layers is constituted by a catalyst layer and a gas diffusion layer placed on both sides of an electrolyte membrane, one of which is an anode electrode and the other is a cathode electrode.
  • the electrolyte membrane is mainly composed of a polymer electrolyte material.
  • the polymer electrolyte material is also used as a binder for the catalyst layer.
  • Patent Document 2 discloses an aromatic polyether sulfone using a segment having a number average molecular weight of 80,000 as an ionic segment.
  • the present invention provides a block copolymer that has excellent power generation performance even under low humidification conditions, excellent mechanical strength and physical durability, and excellent processability, and a block copolymer that has excellent processability.
  • the purpose is to realize a polymer electrolyte material using the following methods.
  • the present invention has the following configuration.
  • a block copolymer having one or more segments each containing an ionic group hereinafter referred to as "ionic segment" and one or more segments containing no ionic group (hereinafter referred to as "nonionic segment”).
  • the ionic segment has an aromatic hydrocarbon polymer having a number average molecular weight of more than 40,000 and 50,000 or less, the number average molecular weight of the ionic segment is Mn1, and the nonionic segment is A block copolymer that satisfies the relationship Mn3/(Mn1+Mn2)>1.5, where the number average molecular weight of the segment is Mn2 and the number average molecular weight of the block copolymer is Mn3.
  • the heat of crystallization of the block copolymer measured by differential scanning calorimetry is 0.1 J/g or more, or the crystallinity of the block copolymer measured by wide-angle X-ray diffraction. is 0.5% or more, the block copolymer according to [1].
  • Ar 1 to Ar 4 each independently represent a substituted or unsubstituted arylene group, and at least one of Ar 1 to Ar 4 has an ionic group.
  • Y 1 and Y 2 each independently represents a ketone group or a protecting group that can be derived from a ketone group. * represents a bond with general formula (S1) or another structural unit.
  • Y 1 and Y 2 each independently represent a ketone group or a protecting group that can be derived from a ketone group.
  • M 1 to M 4 each independently represent a hydrogen atom, a metal cation, or Represents an ammonium cation.
  • n 1 to n 4 are each independently 0 or 1, and at least one of n 1 to n 4 is 1.
  • * represents general formula (S2) or other structural unit )
  • Ar 5 to Ar 8 each independently represent an arylene group. However, none of Ar 5 to Ar 8 have an ionic group.
  • Y 3 and Y 4 each independently represent an arylene group. represents a ketone group or a protective group that can be derived from a ketone group. * represents a bond with general formula (S3) or another structural unit.
  • S3 general formula (S3)
  • S4 general formula (S4)
  • the block copolymer of the present invention exhibits excellent processability as a block copolymer by appropriately controlling the molecular weight of the segments forming the block, and has good physical durability as a polymer electrolyte material. At the same time, it is possible to achieve high power generation performance even under low humidification conditions.
  • having good mechanical strength and physical durability means having good dimensional stability
  • having good dimensional stability means having a small dry-wet dimensional change rate.
  • the dry-wet dimensional change rate can be measured by the method described in Examples.
  • the block copolymer of the present invention is a block copolymer having one or more ionic segments and one or more nonionic segments, wherein the ionic segments have a number average molecular weight of more than 40,000, 000 or less, the number average molecular weight of the ionic segment is Mn1, the number average molecular weight of the nonionic segment is Mn2, and the number average molecular weight of the block copolymer is Mn3.
  • the block copolymer satisfies the relationship of Mn3/(Mn1+Mn2)>1.5.
  • a segment is a partial structure in a block copolymer of a macromonomer used when synthesizing the block copolymer.
  • the block copolymer of the present invention contains nonionic segments as well as ionic segments.
  • the segment may contain a small amount of ionic group as long as it does not adversely affect the effects of the present invention.
  • not containing an ionic group and “nonionic” may be used interchangeably.
  • the ionic segment has an aromatic hydrocarbon polymer having a number average molecular weight of more than 40,000 and 50,000 or less
  • the ionic segment has an aromatic hydrocarbon polymer having a number average molecular weight of more than 40,000 and less than 50,000 It has the structure of a polymer, and the number average molecular weight of the ionic segment is more than 40,000 and less than 50,000.
  • the number average molecular weight and weight average molecular weight in the present invention are defined as standard polystyrene equivalent values measured using gel permeation chromatography (GPC), as described in the Examples below.
  • the number average molecular weight of the ionic segment before deprotection is defined as Mn1.
  • the number average molecular weight of the ionic segment precursor is defined as Mn1.
  • the number average molecular weight of the ionic segment after deprotection or the number average molecular weight of the ionic segment after conversion from the ionic segment precursor to the ionic segment is determined by the number average molecular weight of the ionic segment after being completely deprotected or completely converted from the precursor It can be calculated from the structural formulas before and after the converted one.
  • the number average molecular weight of the nonionic segment before deprotection and the number average molecular weight of the block copolymer before deprotection are Mn2 and Mn3, respectively. Define.
  • the polymer electrolyte material containing the block copolymer exhibits excellent power generation performance under low humidification conditions.
  • Mn1 is preferably over 42,000, more preferably 43,000 or more, still more preferably 44,000 or more, particularly preferably 45,000 or more.
  • Mn1 is 50,000 or less, the difficulty of synthesis is low, and there is no need for complicated steps such as precise adjustment of monomer charge amount, control of synthesis temperature, and sequential addition of monomers, and it is possible to perform general polycondensation. It can be easily synthesized by reaction or coupling reaction, and has excellent processability.
  • Mn2 As Mn2 increases, the crystallinity of the block copolymer improves, and the water resistance and physical durability improve, so Mn2 is preferably 7,000 or more, and preferably 9,000 or more. More preferred. Moreover, Mn2 is preferably 40,000 or less, more preferably 35,000 or less, particularly preferably 30,000 or less.
  • Mn3 is preferably 60,000 or more, more preferably 100,000 or more.
  • the upper limit is preferably 300,000 or less.
  • the block copolymer of the present invention satisfies the relationship Mn3/(Mn1+Mn2)>1.5, it is an advantageous phase for achieving both proton conductivity and mechanical strength in a polymer electrolyte material containing the block copolymer. Separation is formed, achieving both high power generation performance and durability under low humidification conditions. It is more preferable to satisfy the relationship Mn3/(Mn1+Mn2) ⁇ 1.7, and even more preferable to satisfy the relationship Mn3/(Mn1+Mn2) ⁇ 1.9.
  • the upper value of Mn3/(Mn1+Mn2) is preferably 10.0 or less, more preferably 8.0 or less, and even more preferably 5.0 or less.
  • the block copolymer of the present invention can achieve particularly high power generation performance and mechanical strength when the number average molecular weight of the ionic segment exceeds 40,000 and the above-mentioned relationship Mn3/(Mn1+Mn2)>1.5 is satisfied.
  • the block copolymer of the present invention preferably has crystallinity while having a phase-separated structure from the viewpoint of dimensional stability and mechanical strength.
  • dimensional stability and mechanical strength have a negative correlation with ion exchange capacity, but the polymer electrolyte material containing the block copolymer of the present invention is compared with block copolymers with similar ion exchange capacity. Then, by having crystallinity, high dimensional stability can be achieved.
  • having crystallinity means that the heat of crystallization of the block copolymer is 0.1 J/g or more as measured by differential scanning calorimetry, or that the block copolymer has a crystallization heat amount of 0.1 J/g or more as measured by differential scanning calorimetry, or It means that the crystallinity of the coalescence is 0.5% or more. That is, in the present invention, "having crystallinity" means that the polymer can be crystallized when the temperature is increased, that the polymer has crystallizable properties, or that the polymer has already been crystallized.
  • an amorphous polymer means that it is not a crystalline polymer or that it is a polymer in which crystallization does not substantially proceed. Therefore, even if the polymer is crystalline, if crystallization has not progressed sufficiently, the state of the polymer at that point may be in an amorphous state.
  • the block copolymer of the present invention contains an ionic segment having the structure of the aromatic hydrocarbon polymer.
  • Hydrocarbon type means a polymer other than perfluoro type
  • aromatic hydrocarbon type polymer is a polymer other than perfluoro type, and is a polymer mainly composed of aromatic rings.
  • the aromatic ring contained in the aromatic hydrocarbon polymer may include not only a hydrocarbon aromatic ring but also a heterocycle. Moreover, some aliphatic units may constitute the polymer together with the aromatic ring units.
  • aromatic hydrocarbon polymers include polysulfone, polyether sulfone, polyphenylene oxide, polyarylene ether polymer, polyphenylene sulfide, polyphenylene sulfide sulfone, polyparaphenylene, polyarylene polymer, polyarylene ketone, and polyether.
  • the aromatic hydrocarbon polymer is preferably an aromatic polyether polymer.
  • the aromatic polyether polymer refers to a polymer mainly composed of aromatic rings, which contains at least an ether bond in the repeating unit as a way of connecting the aromatic ring units.
  • Examples of the structure of the aromatic polyether polymer include aromatic polyether, aromatic polyether ketone, aromatic polyether ether ketone, aromatic polyether ketone ketone, aromatic polyether ether ketone ketone, and aromatic polyether. Examples include, but are not limited to, ketone ether ketone ketone, aromatic polyetherimide, aromatic polyether sulfone, and the like.
  • the aromatic polyether polymer is preferably an aromatic polyether ketone polymer or a polyether sulfone polymer from the viewpoint of chemical stability and cost, and has good mechanical strength, dimensional stability, and physical properties. From the viewpoint of durability, aromatic polyetherketone polymers are most preferred.
  • aromatic polyetherketone polymer refers to a polymer mainly composed of aromatic rings, in which the repeating unit contains at least an ether bond and a ketone bond as a way of connecting the aromatic ring units.
  • An aromatic polyether sulfone polymer refers to a polymer mainly composed of aromatic rings, which contains at least an ether bond and a sulfone bond as a way of connecting the aromatic ring units.
  • the method is not particularly limited as long as the desired molecular weight can be achieved, but there are methods of synthesizing segments by aromatic nucleophilic substitution reaction or coupling reaction, It is preferable to synthesize by aromatic nucleophilic substitution reaction because it is an easy process.
  • the ionic segment contains a structure represented by the following general formula (S1) from the viewpoints of dimensional stability, mechanical strength, and chemical stability.
  • Ar 1 to Ar 4 each independently represent a substituted or unsubstituted arylene group, and at least one of Ar 1 to Ar 4 has an ionic group.
  • Y 1 and Y 2 each independently represent a ketone group or a protecting group that can be derived from a ketone group.
  • * represents general formula (S1) or a bond with another structural unit.
  • the ionic segment may include a structure other than that represented by general formula (S1).
  • preferable aromatic rings as Ar 1 to Ar 4 include hydrocarbon arylene groups such as phenylene group, naphthylene group, biphenylene group, and fluorenediyl group, and heteroarylene groups such as pyridinediyl, quinoxalinediyl, and thiophenediyl. These include, but are not limited to.
  • the ionic group used in the block copolymer of the present invention is preferably a negatively charged atomic group, and preferably has proton exchange ability.
  • functional groups sulfonic acid groups, sulfonimide groups, sulfuric acid groups, phosphonic acid groups, phosphoric acid groups, and carboxylic acid groups as shown below are preferably used.
  • Such ionic groups include cases where the above functional groups (f1) to (f7) are salts.
  • Examples of cations that form such salts include any metal cation, NR 4 + (R is any organic group), and the like. There are no particular restrictions on the metal cation, but Na, K, and Li, which are inexpensive and can easily replace protons, are preferred.
  • Two or more types of these ionic groups can be contained in the block copolymer, and the combination is appropriately determined depending on the structure of the polymer. Among these, it is more preferable to have at least a sulfonic acid group, a sulfonimide group, or a sulfuric acid group from the viewpoint of high proton conductivity, and it is most preferable to have a sulfonic acid group from the viewpoint of raw material cost.
  • the structure represented by the general formula (S1) is preferably a structure represented by the following general formula (P1) from the viewpoint of dimensional stability and raw material availability.
  • a structure represented by general formula (S2) is more preferable from the viewpoint of raw material availability and polymerizability.
  • Y 1 and Y 2 each independently represent a ketone group or a protecting group that can be derived from a ketone group.
  • M 1 to M 4 each independently represent a hydrogen atom, a metal cation, or an ammonium cation.
  • n 1 to n 4 are each independently 0 or 1, and at least one of n 1 to n 4 is 1. * represents a bond with general formula (P1), (S2) or another structural unit.
  • the content of the structural unit represented by the general formula (S1) contained in the ionic segment is more preferably 20 mol% or more, further preferably 50 mol% or more, and most preferably 80 mol% or more.
  • Examples of the ionic monomer used to synthesize the above-mentioned ionic segment include aromatic active dihalide compounds.
  • a compound in which an ionic acid group is introduced into an aromatic active dihalide compound as the aromatic active dihalide compound used in the ionic segment allows precise control over chemical stability, manufacturing cost, and the amount of ionic groups. Preferable from this point of view.
  • Preferred specific examples of monomers having a sulfonic acid group as an ionic group include 3,3'-disulfonate-4,4'-dichlorodiphenyl sulfone and 3,3'-disulfonate-4,4'-difluorodiphenyl.
  • Sulfone, 3,3'-disulfonate-4,4'-dichlorodiphenylketone, 3,3'-disulfonate-4,4'-difluorodiphenylketone, 3,3'-disulfonate-4,4'-dichloro Examples include, but are not limited to, diphenylphenylphosphine oxide, 3,3'-disulfonate-4,4'-difluorodiphenylphenylphosphine oxide, and the like.
  • the most preferred ionic group is a sulfonic acid group, but the monomer having the above-mentioned ionic group may have other ionic groups.
  • 3,3'-disulfonate-4,4'-dichlorodiphenylketone, 3,3'-disulfonate- 4,4'-difluorodiphenyl ketone is more preferred, and 3,3'-disulfonate-4,4'-difluorodiphenyl ketone is most preferred from the viewpoint of polymerization activity.
  • an ionic segment synthesized using 3,3'-disulfonate-4,4'-dichlorodiphenyl ketone and 3,3'-disulfonate-4,4'-difluorodiphenyl ketone as a monomer having an ionic group. contains a structural unit represented by the following general formula (p1) and is preferably used.
  • the structure of the aromatic polyether polymer has superior hot water resistance than the sulfone group, and has excellent dimensional stability, mechanical strength, and physical properties under high temperature and high humidity conditions. It is more preferably used because it is an effective component for materials with excellent durability.
  • these sulfonic acid groups are preferably in the form of a salt with a monovalent cation species.
  • the monovalent cation species may include sodium, potassium, other metal species, various amines, etc., and is not limited to these.
  • These aromatic active dihalide compounds can be used alone, but it is also possible to use a plurality of aromatic active dihalide compounds in combination.
  • M 1 and M 2 represent hydrogen, a metal cation, an ammonium cation, and a1 and a2 represent integers of 1 to 4.
  • the structural unit represented by the general formula (p1) may be optionally substituted.
  • the aromatic active dihalide compound it is also possible to control the ionic group density by copolymerizing one having an ionic group and one not having an ionic group. However, from the viewpoint of ensuring continuity of the proton conduction path, it is more preferable not to copolymerize an aromatic active dihalide compound having no ionic group as the ionic segment.
  • aromatic active dihalide compounds having no ionic group include 4,4'-dichlorodiphenyl sulfone, 4,4'-difluorodiphenylsulfone, 4,4'-dichlorodiphenyl ketone, and 4,4'-dichlorodiphenyl sulfone.
  • Examples include '-difluorodiphenyl ketone, 4,4'-dichlorodiphenylphenylphosphine oxide, 4,4'-difluorodiphenylphenylphosphine oxide, 2,6-dichlorobenzonitrile, 2,6-difluorobenzonitrile and the like.
  • aromatic active dihalide compounds can be used alone, but it is also possible to use a plurality of aromatic active dihalide compounds in combination.
  • Polymer electrolyte materials synthesized using 4,4'-dichlorodiphenylketone and 4,4'-difluorodiphenylketone as aromatic active dihalide compounds further include a constituent moiety represented by the following general formula (p2). It is preferably used. This structural unit is preferably used because it becomes a component that imparts intermolecular cohesive force and crystallinity, resulting in a material that has excellent dimensional stability, mechanical strength, and physical durability under high temperature and high humidity conditions.
  • the structural unit represented by general formula (p2) may be optionally substituted, but does not contain an ionic group.
  • examples of the nonionic monomer used to synthesize the ionic segment include aromatic diphenol compounds, and particularly preferred are aromatic diphenol compounds having a protecting group as described below. The monomers used to synthesize the ionic segment have been described above.
  • Preferred examples of structures that may be included as ionic segments or as structural units constituting ionic segments in addition to the structure represented by general formula (S1) include the following general formulas (T1) and (T2). ) is the structure of an aromatic polyetherketone copolymer.
  • B represents a divalent organic group containing an aromatic ring.
  • M 5 and M 6 each independently represent a hydrogen atom, a metal cation or an ammonium cation.
  • ionic segments having a structure represented by general formula (P1) and structures represented by general formulas (T1) and (T2) are particularly preferred.
  • the amounts of the structural units represented by general formulas (P1), (T1), and (T2) are p1, t1, and t2, respectively, the total molar amount of t1 and t2 is 100 mol.
  • p1 is preferably 75 mol parts or more, more preferably 90 mol parts or more, and even more preferably 100 mol % or more.
  • the aromatic ring-containing divalent organic group B in general formulas (T1) and (T2) includes various divalent phenol compounds that can be used in the polymerization of aromatic polyether polymers by aromatic nucleophilic substitution reactions. Examples include residues of and those into which a sulfonic acid group has been introduced.
  • divalent organic group B containing an aromatic ring examples include groups represented by the following general formulas (X'-1) to (X'-6), but are not limited to these. do not have.
  • Nonionic segment In the block copolymer of the present invention, it is preferable that the nonionic segment contains the structure of an aromatic polyether polymer.
  • aromatic polyether polymers examples include aromatic polyether, aromatic polyether ketone, aromatic polyether ether ketone, aromatic polyether ketone ketone, aromatic polyether ether ketone ketone, and aromatic polyether ketone.
  • Etherketoneketone, aromatic polyetherimide, and aromatic polyether sulfone are known, but they are not limited to these structures.
  • Aromatic polyether polymers are polymers with repeating aromatic groups and ether bonds. It is sufficient if it is contained as a unit structure.
  • the nonionic segment constituting the block copolymer of the present invention contains a structure represented by the following general formula (S3).
  • Ar 5 to Ar 8 each independently represent an arylene group. However, none of Ar 5 to Ar 8 has an ionic group.
  • Y 3 and Y 4 each independently represent a ketone group or a protecting group that can be derived from a ketone group. * represents general formula (S3) or a bond with another structural unit.
  • preferable aromatic rings as Ar 5 to Ar 8 include hydrocarbon arylene groups such as phenylene group, naphthylene group, biphenylene group, and fluorenediyl group, and heteroarylene groups such as pyridinediyl, quinoxalinediyl, and thiophenediyl. These include, but are not limited to.
  • the nonionic segment constituting the block copolymer of the present invention contains a structure represented by the following formula (P2).
  • P2 a structure represented by the following formula
  • S4 a structural unit represented by the following formula (S4) from the viewpoint of mechanical strength due to crystallinity, dimensional stability, and physical durability.
  • Y 3 and Y 4 each independently represent a ketone group or a protecting group that can be derived from a ketone group. * represents a bond with general formulas (P2) and (S4) or other structural units.
  • the content of the structure represented by the general formula (S3) or (S4) contained in the nonionic segment is preferably larger, preferably 20 mol% or more, more preferably 50 mol% or more, More preferably 80 mol% or more.
  • the content is 20 mol% or more, the effects of the present invention on mechanical strength, dimensional stability, and physical durability due to crystallinity can be sufficiently obtained.
  • the block copolymer of the present invention has an ionic segment containing a constitutional unit represented by the above general formula (S1) and a nonionic segment containing a constitutional unit represented by the above general formula (S3). It is preferable to be composed of a block copolymer.
  • a nonionic segment is a segment that exhibits crystallinity when it contains a structural unit represented by general formula (S3).
  • Such a block copolymer containing a nonionic segment is produced by molding a block copolymer precursor in which a protecting group has been introduced into at least the nonionic segment, and then molding at least a portion of the protecting group contained in the molded product. It can be produced by deprotecting.
  • processability tends to be poorer than in random copolymers due to crystallization of the polymer that forms domains, so a protecting group is introduced into at least the nonionic segment to improve processability. It is preferable to introduce a protecting group into the ionic segment if the processability becomes poor.
  • the structural unit containing such a protecting group include those containing at least one selected from the following general formulas (P3) and (P4).
  • Ar 11 to Ar 14 are any divalent arylene groups
  • R 1 and R 2 are at least one group selected from H and an alkyl group
  • R 3 is any alkylene group.
  • the group E represents O or S, and each group may represent two or more types of groups.
  • the groups represented by formulas (P3) and (P4) may be optionally substituted.
  • E is O, that is, a method in which the ketone moiety is protected/deprotected with the ketal moiety. Most preferred.
  • R 1 and R 2 in general formula (P3) are preferably alkyl groups from the viewpoint of stability, still more preferably alkyl groups having 1 to 6 carbon atoms, and most preferably alkyl groups having 1 to 3 carbon atoms. It is the basis. Further, R 3 in the general formula (P4) is more preferably an alkylene group having 1 to 7 carbon atoms, most preferably an alkylene group having 1 to 4 carbon atoms, from the viewpoint of stability.
  • R 3 examples include -CH 2 CH 2 -, -CH(CH 3 )CH 2 -, -CH(CH 3 )CH(CH 3 )-, -C(CH 3 ) 2 CH 2 -, - C(CH 3 ) 2 CH(CH 3 )-, -C(CH 3 ) 2 O(CH 3 ) 2 -, -CH 2 CH 2 CH 2 -, -CH 2 C(CH 3 ) 2 CH 2 -, etc. Examples include, but are not limited to.
  • Preferred organic groups as Ar 11 to Ar 14 in the general formulas (P3) and (P4) are phenylene, naphthylene, or biphenylene. These may be optionally substituted.
  • Ar 13 and Ar 14 in the general formula (P4) are both phenylene groups, most preferably Ar 13 and Ar 14 from the viewpoint of solubility and ease of raw material availability. Both Ar 14 are p-phenylene groups.
  • a method for protecting the ketone site with a ketal includes a method of reacting a precursor compound having a ketone group with a monofunctional and/or difunctional alcohol in the presence of an acid catalyst.
  • a precursor compound having a ketone group with a monofunctional and/or difunctional alcohol in the presence of an acid catalyst.
  • an acid catalyst such as hydrogen bromide.
  • the alcohol is an aliphatic alcohol having 1 to 20 carbon atoms.
  • An improved method for producing ketal monomers consists of reacting the ketone precursor 4,4'-dihydroxybenzophenone with a difunctional alcohol in the presence of an alkyl orthoester and a solid catalyst.
  • the deprotection reaction can be carried out in the presence of water and acid under heterogeneous or uniform conditions, but from the viewpoint of mechanical strength, physical durability, and solvent resistance, it is preferable to carry out the deprotection reaction after forming into a film etc. More preferred is a method of acid treatment. Specifically, the formed film can be deprotected by immersing it in an aqueous hydrochloric acid solution or an aqueous sulfuric acid solution, and the concentration of the acid and the temperature of the aqueous solution can be selected as appropriate.
  • the weight ratio of the acidic aqueous solution to the polymer is preferably 1 to 100 times, but a larger amount of water can also be used.
  • the acid catalyst is preferably used at a concentration of 0.1 to 50% by weight of the water present. Suitable acid catalysts include strong mineral acids such as hydrochloric acid, nitric acid, fluorosulfonic acid, sulfuric acid, and the like, and strong organic acids such as p-toluenesulfonic acid, trifluoromethanesulfonic acid, and the like.
  • the amount of acid catalyst and excess water, reaction pressure, etc. can be appropriately selected depending on the film thickness of the polymer and the like.
  • the film is 50 ⁇ m thick, almost the entire amount can be easily deprotected by immersing it in an acidic aqueous solution such as 6N hydrochloric acid aqueous solution and heating it at 95°C for 1 to 48 hours. It is. Moreover, most of the protecting groups can be deprotected even by immersion in a 1N aqueous hydrochloric acid solution at 25° C. for 24 hours.
  • the conditions for deprotection are not limited to these, and deprotection may be performed using an acidic gas, an organic acid, etc., or by heat treatment.
  • the position of the protective group to be introduced should be in the aromatic ether polymer portion in order to improve processability. is more preferable.
  • aromatic polyether polymers containing structural units represented by the general formulas (P3) and (P4) can be expressed as aromatic diphenol compounds by the following general formulas (P3-1) and (P3-1), respectively. It is possible to synthesize the compound represented by (P4-1) by aromatic nucleophilic substitution reaction with an aromatic active dihalide compound.
  • the structural units represented by the general formulas (P3) and (P4) may be derived from either an aromatic diphenol compound or an aromatic active dihalide compound, but considering the reactivity of the monomer, aromatic diphenol compounds It is more preferable to use those derived from phenolic compounds.
  • Ar 11 to Ar 14 are any divalent arylene groups
  • R 1 and R 2 are at least one group selected from H and alkyl groups
  • R 3 represents any alkylene group
  • E represents O or S.
  • the compounds represented by general formula (P3-1) and general formula (P4-1) may be optionally substituted.
  • Preferred protecting groups have been described above.
  • block copolymer In the block copolymer of the present invention, two or more types of mutually incompatible segment chains, that is, a hydrophilic segment containing an ionic group and a hydrophobic segment not containing an ionic group, are linked to form one polymer. It forms a chain.
  • the effects of the invention can be fully obtained. This is considered to be because as the number average molecular weight of the ionic segments increases, the aggregation of the segments increases when forming a phase-separated structure, forming a phase-separated structure suitable for proton conduction.
  • the block copolymerization reaction proceeds appropriately and a high molecular weight block copolymer can be obtained, and the proton This is preferable because a phase-separated structure suitable for conduction can be formed.
  • the block copolymer of the present invention preferably contains a linker site that connects the ionic segment and the nonionic segment.
  • a linker is defined as a site that connects an ionic segment and a nonionic segment and has a chemical structure different from that of the ionic segment and the nonionic segment.
  • This linker connects different segments while suppressing randomization of the copolymer due to ether exchange reaction, segment cutting, and other side reactions that may occur during the synthesis of the copolymer. Therefore, by using a compound that provides such a linker as a raw material, a block copolymer can be obtained without lowering the molecular weight of each segment.
  • linker examples include decafluorobiphenyl, hexafluorobenzene, 4,4'-difluorodiphenylsulfone, 2,6-difluorobenzonitrile, etc., but in the present invention, the linker is limited to these. It's not a thing.
  • the ion exchange capacity of the block copolymer of the present invention is preferably 0.1 to 5 meq/g, more preferably 1.5 meq/g or more, and most preferably 2 meq/g from the viewpoint of the balance between proton conductivity and water resistance. g or more. Further, it is more preferably 3.5 meq/g or less, most preferably 3 meq/g or less.
  • the ion exchange capacity of the ionic segment is preferably high from the viewpoint of proton conductivity under low humidification conditions, preferably 2.5 meq/g or more, more preferably 3 meq/g or more, even more preferably 3. It is 5 meq/g or more. Further, it is preferably 6.5 meq/g or less, more preferably 5 meq/g or less, and even more preferably 4.5 meq/g or less.
  • the ion exchange capacity of the nonionic segment is preferably low from the viewpoint of hot water resistance, mechanical strength, dimensional stability, and physical durability, preferably 1 meq/g or less, more preferably 0.5 meq/g, and Preferably it is 0.1 meq/g or less.
  • the ion exchange capacity is the molar amount of ion exchange groups introduced per unit dry weight of the block copolymer, polymer electrolyte material, and polymer electrolyte membrane. Ion exchange capacity can be measured by elemental analysis, neutralization titration, etc. When the ion exchange group is a sulfonic acid group, it can be calculated from the S/C ratio using elemental analysis, but it is difficult to measure when it contains a sulfur source other than the sulfonic acid group. Therefore, in the present invention, the ion exchange capacity is defined as a value determined by the neutralization titration method described below.
  • the block copolymer of the present invention preferably has a phase-separated structure, particularly preferably a co-continuous phase-separated structure.
  • a phase-separated structure it means that the phase-separated structure can be confirmed when a molded article obtained by molding the block copolymer into a film shape is observed with a transmission electron microscope (TEM). do.
  • TEM transmission electron microscope
  • a phase-separated structure can be formed by controlling the aggregation state and shape of ionic segments and nonionic segments.
  • Forms of the phase-separated structure include a cylinder structure, a sea-island structure, a lamella structure, and a co-continuous structure.
  • the block copolymer has a co-continuous structure as a molded article, three-dimensionally continuous proton conduction channels are formed, so that excellent proton conductivity can be achieved.
  • the nonionic hydrophobic segments similarly form three-dimensionally continuous domains, they have excellent fuel barrier properties, solvent resistance, dimensional stability, mechanical strength, and physical durability.
  • the block copolymer of the present invention is preferably one in which a phase separation structure is observed when observed using a TEM at a magnification of 50,000 times, and the average periodic size measured by image processing is 8 nm or more and 300 nm or less.
  • the average period size is more preferably 10 nm or more and 200 nm or less, most preferably 15 nm or more and 150 nm or less.
  • the periodic size means the periodic length of a domain formed by aggregation of ionic segments and a domain formed by aggregation of nonionic segments.
  • Each segment used in the present invention is preferably synthesized by an aromatic nucleophilic substitution reaction because it is an easy process.
  • the aromatic nucleophilic substitution reaction is a method in which a monomer mixture of a dihalide compound and a diol compound is reacted in the presence of a basic compound. Polymerization can be carried out at a temperature range of 0 to 350°C, preferably at a temperature of 50 to 250°C.
  • the reaction can be carried out without a solvent, it is preferably carried out in a solvent.
  • Usable solvents include N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethylsulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone, hexamethylphosphontriamide, etc. Examples include aprotic polar solvents, but the present invention is not limited thereto, and any solvent may be used as long as it can be used as a stable solvent in the aromatic nucleophilic substitution reaction. These organic solvents may be used alone or as a mixture of two or more.
  • Basic compounds include sodium hydroxide, potassium hydroxide, sodium carbonate, potassium carbonate, sodium hydrogen carbonate, potassium hydrogen carbonate, etc., but are limited to these as long as they can convert diols into an active phenoxide structure. It can be used without any restrictions. Further, in order to increase the nucleophilicity of phenoxide, it is also suitable to add a crown ether such as 18-crown-6. Crown ethers can be preferably used because they may coordinate with the sodium ion or potassium ion of the sulfonic acid group to improve the solubility of the sulfonate portion of the monomer or polymer in organic solvents.
  • water may be produced as a by-product.
  • toluene or the like may be present in the reaction system to remove water from the system as an azeotrope.
  • a water absorbing agent such as a molecular sieve can also be used.
  • the block copolymer of the present invention can be produced by synthesizing a block copolymer precursor and then deprotecting at least a portion of the protecting groups contained in the precursor.
  • the method for producing the block copolymer and block copolymer precursor of the present invention preferably includes at least the following steps (1) and (2). By incorporating these processes, it is possible to achieve improved mechanical strength and durability by increasing the molecular weight, and by alternately introducing both segments, it has excellent low humidification proton conductivity with a strictly controlled phase separation structure and domain size. A block copolymer can be obtained.
  • segment represented by the general formula (S1) in which both ends are -OM groups and the segments represented by the general formula (S2) in which both ends are -OM groups are, respectively.
  • examples include segments having structures represented by the following formulas (H3-1) and (H3-2).
  • the structures obtained by reacting the segments of the structures represented by the formulas (H3-1) and (H3-2) with the halide linkers are, for example, the structures of the following formulas (H3-3) and (H3-4), respectively. ) can be mentioned.
  • the present invention is not limited to these.
  • N 1 , N 2 , N 3 and N 4 each independently represent an integer of 1 to 200.
  • the halogen atom is shown as F
  • the terminal -OM group is shown as -OK group
  • the alkali metals are shown as Na and K, but these are used without limitation. Is possible.
  • these formulas are included to aid the reader's understanding, and do not necessarily accurately represent the chemical structure, exact composition, arrangement, position, number, molecular weight, etc. of the polymer components of the polymer. However, it is not limited to these.
  • the polymer electrolyte material of the present invention is characterized by containing the block copolymer.
  • the block copolymer of the present invention is suitable as a polymer electrolyte material, and can be processed into a polymer electrolyte molded body using this polymer electrolyte material.
  • the form of the molded object is not particularly limited, examples thereof include a binder for an electrode catalyst layer, fibers, membranes, rods, and the like. Among them, membranes and binders are preferred, and membranes are particularly preferred.
  • the polymer electrolyte membrane of the present invention is characterized by using a polymer electrolyte material containing the block copolymer.
  • the block copolymer of the present invention When forming the block copolymer of the present invention into a film, it is possible to form a film from a solution state or from a molten state at the stage where it has a protective group such as a ketal.
  • the polymer electrolyte material is dissolved in a solvent such as N-methyl-2-pyrrolidone, the solution is cast onto a glass plate, etc., and the solvent is removed to form a film.
  • a solvent such as N-methyl-2-pyrrolidone
  • the solvent used for film formation may be any solvent that can dissolve the block copolymer and then remove it, such as N,N-dimethylacetamide, N,N-dimethylformamide, N-methyl-2-pyrrolidone, dimethyl Aprotic polar solvents such as sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone and hexamethylphosphontriamide, ester solvents such as ⁇ -butyrolactone and butyl acetate, carbonate solvents such as ethylene carbonate and propylene carbonate.
  • N,N-dimethylacetamide such as N,N-dimethylformamide, N-methyl-2-pyrrolidone
  • dimethyl Aprotic polar solvents such as sulfoxide, sulfolane, 1,3-dimethyl-2-imidazolidinone and hexamethylphosphontriamide
  • ester solvents such as ⁇ -butyrolactone and butyl acetate
  • alkylene glycol monoalkyl ethers such as ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, propylene glycol monomethyl ether, and propylene glycol monoethyl ether, alcoholic solvents such as isopropanol, water, and mixtures thereof are preferably used.
  • Aprotic polar solvents have the highest solubility and are preferred. It is also suitable to add a crown ether such as 18-crown-6 to increase the solubility of the ionic segment.
  • the selection of the solvent is important for the phase separation structure, and an aprotic polar solvent and a less polar solvent are mixed. It is also a suitable method to use
  • a preferred method for obtaining a tough membrane is to subject a polymer solution prepared to the required solid concentration to normal pressure filtration or pressure filtration to remove foreign substances present in the polymer electrolyte solution.
  • the filter medium used here is not particularly limited, but glass filters and metal filters are suitable.
  • the minimum pore size of the filter through which the polymer solution passes is preferably 1 ⁇ m or less.
  • a method for converting the block copolymer of the present invention into a polymer electrolyte membrane for example, after producing a membrane composed of the block copolymer by the above method, at least a portion of the site protected with a protecting group is removed. It is something to protect. For example, when having a ketal moiety as a protecting group, at least a part of the ketone moiety protected with the ketal is deprotected to become a ketone moiety. According to this method, solution casting of a block copolymer with poor solubility is possible, and it is possible to achieve both proton conductivity, mechanical strength, and physical durability.
  • a step of exchanging the alkali metal or alkaline earth metal cations with protons is performed. You can go.
  • This step is preferably a step in which the formed film is brought into contact with an acidic aqueous solution, and particularly preferably a step in which the formed film is immersed in an acidic aqueous solution.
  • protons in the acidic aqueous solution are replaced with cations that are ionically bonded to ionic groups, and remaining water-soluble impurities, residual monomers, solvents, residual salts, etc. are removed at the same time.
  • the acidic aqueous solution is not particularly limited, but it is preferable to use sulfuric acid, hydrochloric acid, nitric acid, acetic acid, trifluoromethanesulfonic acid, methanesulfonic acid, phosphoric acid, citric acid, or the like.
  • the temperature, concentration, etc. of the acidic aqueous solution should be determined appropriately, but from the viewpoint of productivity, it is preferable to use a sulfuric acid aqueous solution of 3% by mass or more and 30% by mass or less at a temperature of 0° C. or higher and 80° C. or lower.
  • the thickness of the polymer electrolyte membrane in the present invention is preferably 1 ⁇ m or more in order to obtain mechanical strength and physical durability of the membrane that can withstand practical use, and 2 ⁇ m or more in order to reduce membrane resistance, that is, improve power generation performance. 000 ⁇ m or less is preferable. A more preferable range of film thickness is 3 ⁇ m or more and 200 ⁇ m or less.
  • the film thickness can be controlled by the solution concentration or the coating thickness on the substrate.
  • the polymer electrolyte membrane of the present invention does not contain additives such as crystallization nucleating agents, plasticizers, stabilizers, antioxidants, or mold release agents that are used in ordinary polymer compounds, contrary to the purpose of the present invention. It may be contained within the range where it is not.
  • the polymer electrolyte membrane made of the block copolymer obtained by the present invention can be used for the purpose of improving mechanical strength, thermal stability, processability, etc. within a range that does not adversely affect the above-mentioned properties.
  • the polymer electrolyte membrane may be reinforced with a microporous membrane, nonwoven fabric, mesh, or the like.
  • the block copolymer of the present invention can be applied to various uses as a polymer electrolyte material, such as a molded polymer electrolyte or a polymer electrolyte membrane.
  • a polymer electrolyte material such as a molded polymer electrolyte or a polymer electrolyte membrane.
  • medical applications such as artificial skin, filtration applications, ion exchange resin applications such as chlorine-resistant reverse osmosis membranes, various structural material applications, electrochemical applications, humidifying membranes, anti-fog membranes, antistatic membranes, oxygen scavenging membranes, solar Applicable to battery membranes and gas barrier membranes.
  • electrochemical applications include polymer electrolyte fuel cells, redox flow batteries, water electrolysis devices, chloralkali electrolysis devices, electrochemical hydrogen pumps, and water electrolysis hydrogen generation devices.
  • polymer electrolyte membranes are used in structures in which catalyst layers, electrode base materials, and separators are sequentially laminated on both sides.
  • a membrane in which catalyst layers are laminated on both sides of an electrolyte membrane i.e., a layered structure of catalyst layer/electrolyte membrane/catalyst layer
  • CCM catalyst layered electrolyte membrane
  • a structure in which a catalyst layer and a gas diffusion substrate are sequentially laminated i.e., a layered structure of gas diffusion substrate/catalyst layer/electrolyte membrane/catalyst layer/gas diffusion substrate
  • MEA membrane electrode assembly
  • the block copolymer of the present invention is particularly suitably used as a polymer electrolyte membrane constituting such CCM and MEA.
  • the electrolyte membrane with a catalyst layer of the present invention is characterized in that it is constructed using the polymer electrolyte membrane made of the polymer electrolyte material containing the block copolymer.
  • the membrane electrode assembly of the present invention is characterized in that it is constructed using the polymer electrolyte membrane made of the polymer electrolyte material containing the block copolymer.
  • the solid polymer fuel cell of the present invention is characterized in that it is constructed using the polymer electrolyte membrane made of the polymer electrolyte material containing the block copolymer.
  • the water electrolysis type hydrogen generator of the present invention is characterized in that it is constructed using the polymer electrolyte membrane made of the polymer electrolyte material containing the block copolymer.
  • Molecular weight of polymer The number average molecular weight and weight average molecular weight of the polymer were measured by GPC.
  • HLC-8022GPC manufactured by Tosoh Corporation was used as an integrated device of an ultraviolet absorption detector and a differential refractive index detector, and TSKgelGuardColumnSuperH-H (inner diameter 4.6 mm, length 3.5 cm) manufactured by Tosoh Corporation was used as a guard column.
  • TSKgelSuperHM-H inner diameter 6.0 mm, length 15 cm
  • N-methyl-2-pyrrolidone solvent N-methyl containing 10 mmol/L of lithium bromide
  • IEC Ion exchange capacity
  • the electrolyte membrane (specimen) was cut into a rectangle of 3 mm x 20 mm to prepare a sample piece. Place the sample piece in the sample holder of a thermomechanical analyzer TMA/SS6100 (manufactured by Hitachi High-Tech Science Co., Ltd.), which has a furnace with a temperature and humidity adjustment function, with the long side facing the measurement direction, and apply a stress of 20 mN. Set. The sample was stabilized in a furnace at 23° C. and 50% RH for 1 hour, and the length of this sample piece was taken as the zero point.
  • TMA/SS6100 manufactured by Hitachi High-Tech Science Co., Ltd.
  • the temperature inside the furnace was fixed at 23° C., the humidity was adjusted to 30% RH (drying conditions) over 30 minutes, and the temperature was held for 20 minutes. Next, the humidity was adjusted to 90% RH (humidified conditions) over 30 minutes.
  • This dry/wet cycle (30%RH-90%RH) is regarded as one cycle, and the difference between the dimensional change rate (%) at 30%RH and the dimensional change rate (%) at 90%RH in the 10th cycle is calculated as the dry/wet dimensional change rate. (%).
  • TEM transmission electron microscopy
  • the marker method was applied to the three-dimensional reconstruction process.
  • Au colloidal particles provided on the collodion film were used as alignment markers when performing three-dimensional reconstruction.
  • CT reconstruction processing was performed based on a total of 124 TEM images obtained from a continuous tilt image series in which the sample was tilted in 1° increments in the range of +61° to -62° with the marker as a reference. , a three-dimensional phase-separated structure was observed.
  • a catalyst layered electrolyte membrane (CCM) and a membrane electrode assembly (MEA) were produced in the following manner.
  • the MEA was set in a JARI standard cell "Ex-1" (electrode area 25 cm 2 ) manufactured by Eiwa Co., Ltd. to form a power generation evaluation module. Hydrogen gas was supplied as a fuel gas to the anode electrode, and air was supplied as an oxidizing gas to the cathode electrode. Power generation was evaluated under the following conditions, and the current was swept from 0 A/cm 2 to 1.2 A/cm 2 until the voltage became 0.2 V or less.
  • the voltage at a current density of 1.2 A/cm 2 was read and evaluated.
  • Electronic load device Electronic load device “PLZ664WA” manufactured by Kikusui Electronics Co., Ltd.
  • Cell temperature 60°C Relative humidity of supply gas (hydrogen gas and air): 40% RH (low humidification condition), 80% RH (high humidification condition)
  • Gas utilization rate 70% of stoichiometry for anode, 40% of stoichiometry for cathode.
  • the internal temperature was gradually raised to 120°C and maintained at 120°C until the distillation of methyl formate, methanol, and trimethyl orthoformate completely stopped.
  • the reaction solution was diluted with ethyl acetate.
  • the organic layer was washed with 100 mL of a 5% aqueous potassium carbonate solution and separated, and then the solvent was distilled off.
  • 80 mL of dichloromethane was added to the residue to precipitate crystals, which were filtered and dried to obtain 52.0 g of 2,2-bis(4-hydroxyphenyl)-1,3-dioxolane. Purity was 99.9%.
  • Synthesis Example 2 (Synthesis of disodium-3,3'-disulfonate-4,4'-difluorobenzophenone represented by the following formula (G2)) 109.1 g of 4,4'-difluorobenzophenone (Aldrich reagent) was reacted in 150 mL of fuming sulfuric acid (50% SO 3 ) (Wako Pure Chemical Industries) at 100° C. for 10 hours. Thereafter, it was poured little by little into a large amount of water, neutralized with NaOH, and then 200 g of common salt (NaCl) was added to precipitate the composite. The obtained precipitate was filtered and recrystallized from an aqueous ethanol solution to obtain disodium-3,3'-disulfonate-4,4'-difluorobenzophenone. Purity was 99.3%.
  • Example 1 Synthesis of nonionic oligomer a1 represented by the following general formula (G4)
  • G4 Synthesis of nonionic oligomer a1 represented by the following general formula (G4)
  • NMP N-methylpyrrolidone
  • toluene 100 mL
  • polymerization was carried out at 170°C for 3 hours.
  • Reprecipitation purification was performed in a large amount of methanol to obtain a terminal hydroxyl form of nonionic oligomer a1.
  • the number average molecular weight of the terminal hydroxyl group of this nonionic oligomer a1 was 9,000.
  • ionic oligomer a2 (terminal: hydroxy group) represented by the following formula (G5) was obtained.
  • the number average molecular weight of this ionic oligomer a2 was 45,000.
  • M represents a hydrogen atom, Na or K.
  • Block copolymer b1 had a number average molecular weight of 160,000 and a weight average molecular weight of 400,000.
  • a 20% by weight NMP solution in which the obtained block copolymer b1 was dissolved was filtered under pressure through a glass fiber filter, then cast and coated on a glass substrate, dried at 100°C for 4 hours, and formed into a film. I got a body. This molded body was immersed in a 10% by mass sulfuric acid aqueous solution at 80°C for 24 hours to carry out proton substitution and deprotection reactions, and then thoroughly washed by immersing it in a large excess amount of pure water for 24 hours. A film thickness of 10 ⁇ m) was obtained.
  • Example 2 (Synthesis of block copolymer b2 containing oligomer a2 as an ionic segment and oligomer a1 as a nonionic segment) Block copolymer b2 was obtained in the same manner as in the synthesis of block copolymer b1, except that the reaction time of ionic oligomer a2 and nonionic oligomer a1 was changed to 32 hours. This block copolymer b2 had a number average molecular weight of 190,000 and a weight average molecular weight of 440,000.
  • Polymer electrolyte membrane B (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b2 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 15.6 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Example 3 (Synthesis of block copolymer b3 containing oligomer a2 as an ionic segment and oligomer a1 as a nonionic segment) Block copolymer b3 was obtained in the same manner as in the synthesis of block copolymer b1, except that the reaction time of ionic oligomer a2 and nonionic oligomer a1 was changed to 16 hours. This block copolymer b3 had a number average molecular weight of 120,000 and a weight average molecular weight of 340,000.
  • a polymer electrolyte membrane C (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b3 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 13.3 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Example 4 (Synthesis of nonionic oligomer a3 represented by formula (G4))
  • the terminal hydroxy form of oligomer a3 was obtained in the same manner as the synthesis of the terminal hydroxy form of oligomer a1, except that the amount of 4,4'-difluorobenzophenone used was 20.51 g.
  • the number average molecular weight of the terminal hydroxyl form of this oligomer a3 was 7,000.
  • the nonionic oligomer a3 (terminus: fluoro group) represented by formula (G4) was synthesized in the same manner as the synthesis of oligomer a1, except that 7.0 g of the terminal hydroxyl form of oligomer a3 was used instead of the terminal hydroxyl form of oligomer a1. ) was obtained. The number average molecular weight of this nonionic oligomer a3 was 8,000.
  • Block copolymer b4 (Synthesis of block copolymer b4 containing oligomer a2 as an ionic segment and oligomer a3 as a nonionic segment) Block copolymer b4 was obtained in the same manner as the synthesis of block copolymer b1, except that nonionic oligomer a3 (7.65 g) was used in place of nonionic oligomer a1 (12.3 g). This block copolymer b4 had a number average molecular weight of 160,000 and a weight average molecular weight of 400,000.
  • a polymer electrolyte membrane D (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b4 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 6.7 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Example 5 (Synthesis of nonionic oligomer a4 represented by formula (G4))
  • the terminal hydroxy form of oligomer a4 was obtained in the same manner as the synthesis of the terminal hydroxy form of oligomer a1, except that the amount of 4,4'-difluorobenzophenone used was 20.99 g.
  • the number average molecular weight of the terminal hydroxyl form of this oligomer a4 was 11,000.
  • a nonionic oligomer a4 (terminal: fluoro group) represented by formula (G4) was synthesized in the same manner as the synthesis of oligomer a1, except that 11.0 g of the terminal hydroxyl form of oligomer a4 was used instead of the terminal hydroxyl form of oligomer a1. ) was obtained. The number average molecular weight of this nonionic oligomer a3 was 12,000.
  • Block copolymer b5 (Synthesis of block copolymer b5 containing oligomer a5 as an ionic segment and oligomer a4 as a nonionic segment) Block copolymer b5 was obtained in the same manner as the synthesis of block copolymer b1, except that nonionic oligomer a4 (12.3 g) was used in place of nonionic oligomer a1 (12.3 g). This block copolymer b5 had a number average molecular weight of 160,000 and a weight average molecular weight of 400,000.
  • a polymer electrolyte membrane E (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b5 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the crystallization heat amount was 15.8 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Example 6 (Synthesis of block copolymer b6 containing oligomer a5 as an ionic segment and oligomer a1 as a nonionic segment) Ionic oligomer a5 (49.0 g) was used instead of ionic oligomer a2 (49.0 g), and nonionic oligomer a1 (7.65 g) was used instead of nonionic oligomer a1 (12.3 g).
  • Block copolymer b6 was obtained in the same manner as the synthesis of block copolymer b1 except for the above. This block copolymer b6 had a number average molecular weight of 160,000 and a weight average molecular weight of 400,000.
  • a polymer electrolyte membrane F (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b6 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the crystallization heat amount was 7.2 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Example 7 (Synthesis of ionic oligomer a6 represented by formula (G5)) Ionic oligomer a6 was synthesized in the same manner as the synthesis of ionic oligomer a2, except that the amount of disodium-3,3'-disulfonate-4,4'-difluorobenzophenone used was 41.50 g (98.3 mmol). Obtained. The number average molecular weight of this ionic oligomer a6 was 43,000.
  • Block copolymer b7 (Synthesis of block copolymer b7 containing oligomer a6 as an ionic segment and oligomer a3 as a nonionic segment) Ionic oligomer a6 (49.0 g) was used instead of ionic oligomer a2 (49.0 g), and nonionic oligomer a3 (12.3 g) was used instead of nonionic oligomer a1 (12.3 g).
  • Block copolymer b7 was obtained in the same manner as the synthesis of block copolymer b1 except for the above. This block copolymer b7 had a number average molecular weight of 160,000 and a weight average molecular weight of 400,000.
  • Polymer electrolyte membrane G (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1 except that block copolymer b7 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 12.9 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Example 8 (Synthesis of nonionic oligomer a7 represented by the following formula (G6))
  • the terminal of nonionic oligomer a10 was synthesized in the same manner as in the synthesis of the terminal hydroxyl form of nonionic oligomer a1, except that 23.21 g of 4,4-difluorodiphenylsulfone was used instead of 4,4'-difluorobenzophenone.
  • the hydroxy form was obtained.
  • the number average molecular weight of the terminal hydroxyl form of this nonionic oligomer a10 was 7,000.
  • Synthesis of the nonionic oligomer a1 was carried out in the same manner as in the synthesis of the nonionic oligomer a1, except that the terminal hydroxyl form of the nonionic oligomer a7 (7.0 g) was used instead of the terminal hydroxyl form of the nonionic oligomer a1, and was synthesized by the formula (G6).
  • a nonionic oligomer a7 (terminal fluoro group) was obtained.
  • the number average molecular weight of this nonionic oligomer a7 was 8,000.
  • Block copolymer b8 (Synthesis of block copolymer b8 containing oligomer a8 as an ionic segment and oligomer a7 as a nonionic segment) Ionic oligomer a8 (49.0 g) was used instead of ionic oligomer a2 (49.0 g), and nonionic oligomer a7 (12.3 g) was used instead of nonionic oligomer a1 (12.3 g).
  • Block copolymer b8 was obtained in the same manner as the synthesis of block copolymer b1 except for the above. This block copolymer b8 had a number average molecular weight of 160,000 and a weight average molecular weight of 410,000.
  • a polymer electrolyte membrane H (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b8 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase. No crystallization peak was observed by DSC. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Comparative example 1 Synthesis of ionic oligomer a9 represented by formula (G5)
  • Ionic oligomer a9 was synthesized in the same manner as the synthesis of ionic oligomer a2, except that the amount of disodium-3,3'-disulfonate-4,4'-difluorobenzophenone used was 41.38 g (98.0 mmol). Obtained. The number average molecular weight of this ionic oligomer a9 was 38,000.
  • Block copolymer b9 (Synthesis of block copolymer b9 containing oligomer a9 as an ionic segment and oligomer a1 as a nonionic segment) Block copolymer b9 was obtained in the same manner as the synthesis of block copolymer b1, except that ionic oligomer a9 (49.0 g) was used in place of ionic oligomer a2 (49.0 g). This block copolymer b9 had a number average molecular weight of 160,000 and a weight average molecular weight of 400,000.
  • a polymer electrolyte membrane I (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b9 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 15.1 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Comparative example 2 Synthesis of block copolymer b10 containing oligomer a9 as an ionic segment and oligomer a3 as a nonionic segment
  • Ionic oligomer a9 49.0 g
  • nonionic oligomer a3 7.65 g
  • Block copolymer b10 was obtained in the same manner as the synthesis of block copolymer b1 except for the above. This block copolymer b10 had a number average molecular weight of 160,000 and a weight average molecular weight of 420,000.
  • a polymer electrolyte membrane J (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b10 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the crystallization heat amount was 7.0 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Comparative example 3 Synthesis of ionic oligomer a10 represented by formula (G5)
  • Ionic oligomer a10 was synthesized in the same manner as the synthesis of ionic oligomer a2, except that the amount of disodium-3,3'-disulfonate-4,4'-difluorobenzophenone used was 41.34 g (97.9 mmol). Obtained. The number average molecular weight of this ionic oligomer a10 was 35,000.
  • Block copolymer b11 (Synthesis of block copolymer b11 containing oligomer a10 as an ionic segment and oligomer a3 as a nonionic segment) Ionic oligomer a10 (49.0 g) was used instead of ionic oligomer a2 (49.0 g), and nonionic oligomer a3 (12.3 g) was used instead of nonionic oligomer a1 (12.3 g).
  • Block copolymer b11 was obtained in the same manner as the synthesis of block copolymer b1 except for the above. This block copolymer b11 had a number average molecular weight of 160,000 and a weight average molecular weight of 400,000.
  • a polymer electrolyte membrane K (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b11 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing an ionic group and the hydrophobic domain not containing an ionic group formed a continuous phase.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 13.1 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • Comparative example 4 (Synthesis of block copolymer b12 containing oligomer a2 as an ionic segment and oligomer a1 as a nonionic segment) 49.0 g of ionic oligomer A2 and 12.3 g of nonionic oligomer A1 were placed in a 2000 mL SUS polymerization apparatus equipped with a stirrer, nitrogen inlet tube, and Dean-Stark trap, and the total amount of oligomers charged was 5 wt%. NMP was added as described above, and the reaction was carried out at 95°C for 14 hours.
  • Block copolymer b12 had a number average molecular weight of 70,000 and a weight average molecular weight of 220,000.
  • a polymer electrolyte membrane L (film thickness: 10 ⁇ m) was obtained in the same manner as in Example 1, except that block copolymer b12 was used instead of block copolymer b1.
  • a co-continuous phase separation structure was confirmed by TEM and TEM tomography observation, and both the hydrophilic domain containing ionic groups and the hydrophobic domain not containing ionic groups formed a continuous phase, but some parts were continuous.
  • a non-uniform structure was observed.
  • a crystallization peak was observed by DSC, and the heat of crystallization was 10.3 J/g. Furthermore, no crystalline peak was observed in wide-angle X-ray diffraction (crystallinity 0%). The results are shown in Table 1.
  • the block copolymer of the present invention can be applied to various uses as a polymer electrolyte material, such as a molded polymer electrolyte or a polymer electrolyte membrane.
  • a polymer electrolyte material such as a molded polymer electrolyte or a polymer electrolyte membrane.
  • medical applications such as artificial skin, filtration applications, ion exchange resin applications such as chlorine-resistant reverse osmosis membranes, various structural material applications, electrochemical applications, humidifying membranes, anti-fog membranes, antistatic membranes, oxygen scavenging membranes, solar Applicable to battery membranes and gas barrier membranes.
  • it can be preferably used for various electrochemical applications.
  • Examples of electrochemical applications include polymer electrolyte fuel cells, redox flow batteries, water electrolysis devices, chloralkali electrolysis devices, electrochemical hydrogen pumps, and water electrolysis hydrogen generation devices.
  • the block copolymer of the present invention is particularly suitably used as a polymer electrolyte membrane constituting a CCM and an MEA in a polymer electrolyte fuel cell or a water electrolysis type hydrogen generator.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)

Abstract

イオン性基を含有するセグメント(以下「イオン性セグメント」という)と、イオン性基を含有しないセグメント(以下「非イオン性セグメント」という)と、をそれぞれ一個以上有するブロック共重合体であって、前記イオン性セグメントが、数平均分子量が40,000を超え50,000以下である芳香族炭化水素系重合体を有し、前記イオン性セグメントの数平均分子量をMn1、前記非イオン性セグメントの数平均分子量をMn2、前記ブロック共重合体の数平均分子量をMn3とするとき、Mn3/(Mn1+Mn2)>1.5の関係を満たす、ブロック共重合体。 低加湿条件下においても優れたプロトン伝導性を有し、機械強度や物理耐久性にも優れ、なおかつプロセス性にも優れたブロック共重合体およびそれを用いた高分子電解質材料を提供する。

Description

ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
 本発明は、ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置に関する。
 燃料電池は、水素、メタノールなどの燃料を電気化学的に酸化することによって電気エネルギーを取り出す一種の発電装置であり、近年、クリーンなエネルギー供給源として注目されている。なかでも固体高分子形燃料電池は、標準的な作動温度が100℃前後と低く、かつ、エネルギー密度が高いことから、比較的小規模の分散型発電施設、自動車や船舶など移動体の発電装置として幅広い応用が期待されている。また、固体高分子形燃料電池は、小型移動機器や携帯機器の電源としても注目されており、携帯電話やパソコンにおける、ニッケル水素電池やリチウムイオン電池などの二次電池の代替用途としても期待されている。
 燃料電池は、通常、膜電極複合体(Membrane Electrode Assembly:MEA)がセパレータによって挟まれたセルをユニットとして構成されている。MEAは、電解質膜の両面に触媒層を配置し、その両側にさらにガス拡散層を配置したものである。MEAにおいては、電解質膜を挟んで両側に配置された触媒層とガス拡散層とで一対の電極層が構成され、そのうちの一方がアノード電極であり、他方がカソード電極である。アノード電極に水素を含む燃料ガスが接触するとともに、カソード電極に空気が接触することにより電気化学反応によって電力が作り出される。電解質膜は高分子電解質材料を主として構成される。高分子電解質材料は触媒層のバインダーにも用いられる。
 従来、高分子電解質材料としてフッ素系高分子電解質である“ナフィオン”(登録商標)(ケマーズ(株)製)が広く用いられてきた。一方で、“ナフィオン”(登録商標)に替わり得る、安価で、膜特性に優れた炭化水素系電解質材料の開発も近年活発化している。炭化水素系電解質材料は、低ガス透過性や耐熱性に優れており、芳香族ポリエーテルケトンや芳香族ポリエーテルスルホンを用いた電解質材料について特に活発に検討されてきた。しかしながら、従来の炭化水素系電解質材料は、高加湿条件下においてはフッ素系電解質材料と同等か、またはより優位な発電性能を示す一方で、低加湿条件下においては発電性能が不十分であった。
 低加湿条件下においても優れた発電性能を有し、かつ機械強度および化学的安定性に優れた炭化水素系高分子電解質材料として、イオン性基と含有するセグメント(以下、「イオン性セグメント」という)とイオン性基を含有しないセグメント(以下、「非イオン性セグメント」という)からなるブロック共重合体が提案されている(例えば、特許文献1~2参照)。特に、特許文献2において、イオン性セグメントとして数平均分子量80,000のセグメントを用いた芳香族ポリエーテルスルホンが開示されている。
国際公開第2013/002274号 特開2007-109638号公報
 しかしながら、特許文献1~2に記載のブロック共重合体を用いてもなお、低加湿条件下における発電性能および機械強度の向上効果は完全でなく、産業上有用なブロック共重合体およびそれを用いた高分子電解質材料としてはさらなる向上が望まれていた。
 本発明は、かかる従来技術の背景を鑑み、低加湿条件下においても優れた発電性能を有し、機械強度や物理耐久性にも優れ、なおかつプロセス性にも優れたブロック共重合体およびそれを用いた高分子電解質材料を実現することを目的とする。
 本発明者らは、上記課題に対して、鋭意検討した結果、イオン性基を含有するセグメントおよびイオン性基を含有しないセグメントの分子鎖長を適切に調節することで、低加湿条件下における発電性能が向上し、プロセス性にも優れるブロック共重合体となることを見出した。
 本発明は、次の構成を有する。
[1]イオン性基を含有するセグメント(以下「イオン性セグメント」という)と、イオン性基を含有しないセグメント(以下「非イオン性セグメント」という)と、をそれぞれ一個以上有するブロック共重合体であって、前記イオン性セグメントが、数平均分子量が40,000を超え50,000以下である芳香族炭化水素系重合体を有し、前記イオン性セグメントの数平均分子量をMn1、前記非イオン性セグメントの数平均分子量をMn2、前記ブロック共重合体の数平均分子量をMn3とするとき、Mn3/(Mn1+Mn2)>1.5の関係を満たす、ブロック共重合体。
[2]示差走査熱量分析法によって測定される前記ブロック共重合体の結晶化熱量が0.1J/g以上であるか、または広角X線回折によって測定される前記ブロック共重合体の結晶化度が0.5%以上である[1]に記載のブロック共重合体。
[3]前記芳香族炭化水素系重合体が芳香族ポリエーテル系重合体である[1]または[2]に記載のブロック共重合体。
[4]前記芳香族ポリエーテル系重合体が芳香族ポリエーテルケトン系重合体である[3]に記載のブロック共重合体。
[5]前記ブロック共重合体が、前記イオン性セグメントと前記非イオン性セグメントとの間を結合するリンカー部位を有する[1]~[4]のいずれかに記載のブロック共重合体。
[6]2<Mn1/Mn2<7の関係にある[1]~[5]のいずれかに記載のブロック共重合体。
[7]前記イオン性セグメントが下記一般式(S1)で表される構造を含有する[1]~[6]のいずれかに記載のブロック共重合体。
Figure JPOXMLDOC01-appb-C000005
(一般式(S1)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表し、Ar~Arのうち少なくとも1つはイオン性基を有する。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S1)または他の構成単位との結合を表す。)
[8]前記一般式(S1)で表される構造が下記一般式(S2)で表される構造である[7]に記載のブロック共重合体。
Figure JPOXMLDOC01-appb-C000006
(一般式(S2)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。M~Mは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。n~nは、それぞれ独立に、0または1であり、n~nのうち少なくとも1つは1である。*は、一般式(S2)または他の構成単位との結合を表す。)
[9]前記非イオン性セグメントが芳香族ポリエーテル系重合体を含有する[1]~[8]のいずれかに記載のブロック共重合体。
[10]前記芳香族ポリエーテル系重合体が芳香族ポリエーテルケトン系重合体である[9]に記載のブロック共重合体。
[11]前記非イオン性セグメントが下記一般式(S3)で表される構造を含有する[1]~[9]のいずれかに記載のブロック共重合体。
Figure JPOXMLDOC01-appb-C000007
(一般式(S3)中、Ar~Arは、それぞれ独立に、アリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。)
[12]前記一般式(S3)で表される構造が下記一般式(S4)で表される構造である[11]に記載のブロック重合体。
Figure JPOXMLDOC01-appb-C000008
(一般式(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S4)または他の構成単位との結合を表す。)
[13]共連続相分離構造を有する[1]~[12]のいずれかに記載のブロック共重合体。
[14][1]~[13]のいずれかに記載のブロック共重合体を含む高分子電解質材料。
[15][14]に記載の高分子電解質材料を含む高分子電解質成型体。
[16][14]に記載の高分子電解質材料を用いてなる高分子電解質膜。
[17][16]に記載の高分子電解質膜を用いて構成される触媒層付電解質膜。
[18][16]に記載の高分子電解質膜を用いて構成される膜電極複合体。
[19][16]に記載の高分子電解質膜を用いて構成される固体高分子燃料電池。
[20][16]に記載の高分子電解質膜を用いて構成される水電解式水素発生装置。
 本発明のブロック共重合体は、ブロックを形成するセグメントの分子量を適切に制御することにより、ブロック共重合体として優れたプロセス性を示し、高分子電解質材料として、良好な物理的耐久性を有しながら、低加湿条件下を含む高い発電性能を両立させることができる。
 本発明において、機械強度や物理耐久性が良好であるとは、寸法安定性が良好であることを意味し、寸法安定性が良好であるとは乾湿寸法変化率が小さいことを意味する。乾湿寸法変化率は実施例に記載の方法で測定することができる。
 以下、本発明の実施の形態について詳細に説明するが、本発明は以下の実施の形態に限定されるものではなく、目的や用途に応じて種々に変更して実施することができる。
 [ブロック共重合体]
 本発明のブロック共重合体は、イオン性セグメントと、非イオン性セグメントと、をそれぞれ一個以上有するブロック共重合体であって、上記イオン性セグメントが、数平均分子量が40,000を超え50,000以下である芳香族炭化水素系重合体を有し、上記イオン性セグメントの数平均分子量をMn1、前記非イオン性セグメントの数平均分子量をMn2、上記ブロック共重合体の数平均分子量をMn3とするとき、Mn3/(Mn1+Mn2)>1.5の関係を満たす、ブロック共重合体である。
 本発明において、セグメントとは、ブロック共重合体を合成する際に用いるマクロモノマーの、ブロック共重合体中での部分構造である。本発明のブロック共重合体は、イオン性セグメントとともに、非イオン性セグメントを含有する。なお本発明において、非イオン性セグメントと記載するが、当該セグメントは本発明の効果に悪影響を及ぼさない範囲でイオン性基を少量含んでいても構わない。以下、「イオン性基を含有しないこと」と、「非イオン性」は同様の意味で用いる場合がある。
 なお、「上記イオン性セグメントが、数平均分子量が40,000を超え50,000以下である芳香族炭化水素系重合体を有し、」とは、「上記イオン性セグメントが、芳香族炭化水素系重合体の構造を有し、上記イオン性セグメントの数平均分子量が40,000を超え50,000以下であり、」と同義である。
 本発明における数平均分子量、重量平均分子量とは、後述の実施例に記載されるように、ゲルパーミエーションクロマトグラフィー(GPC)を用いて測定される、標準ポリスチレン換算値と定義される。
 イオン性セグメントに保護基が含まれる場合、脱保護前のイオン性セグメントの数平均分子量をMn1と定義する。またイオン性セグメントの前駆体を用いて、ブロック共重合を行う場合、イオン性セグメント前駆体の数平均分子量をMn1と定義する。脱保護後のイオン性セグメントの数平均分子量や、イオン性セグメント前駆体からイオン性セグメントに変換した後の当該イオン性セグメントの数平均分子量は、完全に脱保護された、または前駆体から完全に変換されたものとして、前後の構造式から、計算することができる。
 非イオン性セグメント、ブロック共重合体にそれぞれ保護基が含まれる場合、脱保護前の非イオン性セグメントの数平均分子量、脱保護前のブロック共重合体の数平均分子量を、それぞれMn2、Mn3と定義する。
 Mn1が40,000を超える場合、ブロック共重合体を含む高分子電解質材料は、低加湿条件下において優れた発電性能を発現する。
 一般に、発電性能はプロトン伝導性と相関する。プロトン伝導性は、イオン交換容量に正の相関となるが、本発明のブロック共重合体を含む高分子電解質材料は、同程度のイオン交換容量をもつブロック共重合体で比較すると、Mn1が40,000を超える場合、高いプロトン伝導性を示す。Mn1は、好ましくは42,000超であり、より好ましくは43,000以上であり、さらに好ましくは44,000以上であり、特に好ましくは45,000以上である。Mn1が50,000以下であると、合成の難易度が低く、精密なモノマー仕込み量の調整や合成温度の制御や、逐次的なモノマーの追加など煩雑な工程が必要なく、一般的な重縮合反応やカップリング反応で容易に合成でき、プロセス性に優れる。
 Mn2の増加に伴い、ブロック共重合体の結晶性が向上し、耐水性、物理的耐久性が向上するため、Mn2が、7,000以上であることが好ましく、9,000以上であることがより好ましい。また、Mn2は、40,000以下が好ましく、35,000以下がより好ましく、30,000以下が特に好ましい。
 Mn3の増加に伴い、ブロック重合体の機械強度が向上するため、Mn3が、60,000以上であることが好ましく、100,000以上であることがより好ましい。上限は、300,000以下が好ましい。
 本発明のブロック共重合体は、Mn3/(Mn1+Mn2)>1.5の関係を満たす場合、ブロック共重合体を含む高分子電解質材料において、プロトン伝導性と機械強度を両立するのに有利な相分離が形成され、低加湿条件下における高い発電性能と耐久性を両立できる。Mn3/(Mn1+Mn2)≧1.7の関係を満たすことがより好ましく、Mn3/(Mn1+Mn2)≧1.9関係を満たすことがさらに好ましい。Mn3/(Mn1+Mn2)の上方値は、10.0以下であることが好ましく、8.0以下であることがより好ましく、5.0以下であることがさらに好ましい。
 本発明のブロック共重合体は、イオン性セグメントの数平均分子量が40,000を超え、かつ、上記のMn3/(Mn1+Mn2)>1.5の関係を満たすとき、特に高い発電性能と機械強度を達成することができる。
 本発明のブロック共重合体は、相分離構造を有しながら、結晶性を有することが、寸法安定性や機械強度の観点から好ましい。一般に、寸法安定性や機械強度は、イオン交換容量に負の相関となるが、本発明のブロック共重合体を含む高分子電解質材料は、同程度のイオン交換容量をもつブロック共重合体で比較すると、結晶性を有することで、高い寸法安定性を実現することができる。
 結晶性の有無は、示差走査熱量分析法(DSC)あるいは広角X線回折によって確認することができる。ここで結晶性を有するとは、示差走査熱量分析法によって測定されるブロック共重合体の結晶化熱量が0.1J/g以上であるか、または、広角X線回折によって測定されるブロック共重合体の結晶化度が0.5%以上であることを指す。つまり、本発明において「結晶性を有する」とは、ポリマーが昇温すると結晶化されうること、結晶化可能な性質を有すること、および既に結晶化していること、のいずれかを意味する。また、非晶性ポリマーとは、結晶性ポリマーではないこと、または実質的に結晶化が進行しないポリマーであることを意味する。従って、結晶性ポリマーであっても、結晶化が十分に進行していない場合には、その時点でのポリマーの状態としては非晶状態である場合がある。
 [イオン性セグメント]
 本発明のブロック共重合体は、前記芳香族炭化水素系重合体の構造を有するイオン性セグメントを含有する。炭化水素系とは、パーフルオロ系以外であることを意味し、芳香族炭化水素系重合体とは、パーフルオロ系以外の重合体であって、主として芳香環から構成される重合体である。
 本発明において、前記芳香族炭化水素系重合体に含まれる芳香環は、炭化水素系芳香環だけでなく、ヘテロ環を含んでいてもよい。また、芳香環ユニットと共に一部脂肪族系ユニットがポリマーを構成していてもよい。芳香族炭化水素系重合体の具体例としては、ポリスルホン、ポリエーテルスルホン、ポリフェニレンオキシド、ポリアリーレンエーテル系ポリマー、ポリフェニレンスルフィド、ポリフェニレンスルフィドスルホン、ポリパラフェニレン、ポリアリーレン系ポリマー、ポリアリーレンケトン、ポリエーテルケトン、ポリアリーレンホスフィンホキシド、ポリエーテルホスフィンホキシド、ポリベンゾオキサゾール、ポリベンゾチアゾール、ポリベンゾイミダゾール、ポリアミド、ポリイミド、ポリエーテルイミド、ポリイミドスルホンから選択される構造を芳香環とともに主鎖に有するポリマーが挙げられる。この中でも、コスト、重合性の観点から、前記芳香族炭化水素系重合体は、芳香族ポリエーテル系重合体であることが好ましい。
 芳香族ポリエーテル系重合体とは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合が含まれているものをいう。芳香族ポリエーテル系重合体の構造として、例えば、芳香族ポリエーテル、芳香族ポリエーテルケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリエーテルケトンケトン、芳香族ポリエーテルエーテルケトンケトン、芳香族ポリエーテルケトンエーテルケトンケトン、芳香族ポリエーテルイミド、芳香族ポリエーテルスルホンなどが挙げられるが、これらに限定されない。前記芳香族ポリエーテル系重合体は、化学的安定性とコストの点から、芳香族ポリエーテルケトン系重合体、ポリエーテルスルホン系重合体であることが好ましく、機械強度、寸法安定性、物理的耐久性の観点から、芳香族ポリエーテルケトン系重合体であることが最も好ましい。
 芳香族ポリエーテルケトン系重合体とは、主として芳香環から構成される重合体において、繰り返し単位中に、芳香環ユニットが連結する様式として少なくともエーテル結合とケトン結合が含まれているものをいう。
 芳香族ポリエーテルスルホン系重合体とは、主として芳香環から構成される重合体において、芳香環ユニットが連結する様式として少なくともエーテル結合とスルホン結合が含まれているものをいう。
 Mn1を40,000超50,000以下に調整する方法として、目的の分子量を達成できるならば方法は特に限定されないが、芳香族求核置換反応やカップリング反応によりセグメントを合成する方法があり、芳香族求核置換反応によって合成することが、プロセス上容易であることから好ましい。
 本発明のブロック共重合体は、前記イオン性セグメントが、下記一般式(S1)で表される構造を含有することが寸法安定性、機械強度、化学的安定性の観点から、好ましい。
Figure JPOXMLDOC01-appb-C000009
 一般式(S1)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表し、Ar~Arのうち少なくとも1つはイオン性基を有する。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S1)または他の構成単位との結合を表す。またイオン性セグメントは、一般式(S1)で表される構造以外を含んでいても良い。
 ここで、Ar~Arとして好ましい芳香環は、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されるものではない。
 本発明のブロック共重合体に使用されるイオン性基は、負電荷を有する原子団が好ましく、プロトン交換能を有するものが好ましい。このような官能基としては、下記に示されるような、スルホン酸基、スルホンイミド基、硫酸基、ホスホン酸基、リン酸基、カルボン酸基が好ましく用いられる。
Figure JPOXMLDOC01-appb-C000010
 かかるイオン性基は、上記官能基(f1)~(f7)が塩となっている場合を含むものとする。このような塩を形成するカチオンとしては、任意の金属カチオン、NR (Rは任意の有機基)等を例として挙げることができる。金属カチオンには特に制限はないが、安価で、容易にプロトン置換可能なNa、K、Liが好ましい。
 これらのイオン性基はブロック共重合体中に2種類以上含むことができ、組み合わせはポリマーの構造などにより適宜決められる。中でも、高プロトン伝導度の点から少なくともスルホン酸基、スルホンイミド基、硫酸基を有することがより好ましく、原料コストの点からスルホン酸基を有することが最も好ましい。
 本発明のブロック共重合体は、一般式(S1)で表される構造が、下記一般式(P1)で表される構造であることが、寸法安定性、原料入手性の点から好ましく、下記一般式(S2)で表される構造であることが、原料入手性と重合性の点からさらに好ましい。
Figure JPOXMLDOC01-appb-C000011
 一般式(P1)及び(S2)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。M~Mは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。n~nは、それぞれ独立に、0または1であり、n~nのうち少なくとも1つは1である。*は一般式(P1)、(S2)または他の構成単位との結合を表す。
 さらに原料入手性と重合性の点からn=1、n=1、n=0、n=0またはn=0、n=0、n=1、n=1であることが最も好ましい。
 イオン性セグメント中に含まれる一般式(S1)で表される構成単位の含有量としては、20モル%以上がより好ましく、50モル%以上がさらに好ましく、80モル%以上が最も好ましい。
 上記のようなイオン性セグメントを合成するために用いられるイオン性モノマーとしては、例えば芳香族活性ジハライド化合物が挙げられる。
 イオン性セグメント中に用いる芳香族活性ジハライド化合物として、芳香族活性ジハライド化合物にイオン酸基を導入した化合物を用いることは、化学的安定性、製造コスト、イオン性基の量を精密制御が可能な点から好ましい。イオン性基としてスルホン酸基を有するモノマーの好適な具体例としては、3,3’-ジスルホネート-4,4’-ジクロロジフェニルスルホン、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルスルホン、3,3’-ジスルホネート-4,4’-ジクロロジフェニルケトン、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルケトン、3,3’-ジスルホネート-4,4’-ジクロロジフェニルフェニルホスフィンオキシド、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルフェニルホスフィンオキシド等を挙げることができるが、これらに限定されるものではない。
 プロトン伝導度および耐加水分解性の点からイオン性基としてはスルホン酸基が最も好ましいが、上記イオン性基を有するモノマーは他のイオン性基を有していても構わない。
 上記したスルホン酸基を有するモノマーのなかでも、化学的安定性と物理的耐久性の点から、3,3’-ジスルホネート-4,4’-ジクロロジフェニルケトン、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルケトンがより好ましく、重合活性の点から3,3’-ジスルホネート-4,4’-ジフルオロジフェニルケトンが最も好ましい。   
 
 イオン性基を有するモノマーとして、3,3’-ジスルホネート-4,4’-ジクロロジフェニルケトン、3,3’-ジスルホネート-4,4’-ジフルオロジフェニルケトンを用いて合成したイオン性セグメントとしては、下記一般式(p1)で表される構成単位を含むものとなり、好ましく用いられる。該芳香族ポリエーテル系重合体の構造は、ケトン基の有する高い結晶性の特性に加え、スルホン基よりも耐熱水性に優れる成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料に有効な成分となるのでさらに好ましく用いられる。これらのスルホン酸基は重合の際には、スルホン酸基が1価カチオン種との塩になっていることが好ましい。1価カチオン種としては、ナトリウム、カリウムや他の金属種や各種アミン類等でも良く、これらに制限される訳ではない。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
Figure JPOXMLDOC01-appb-C000012
(一般式(p1)中、MおよびMは水素、金属カチオン、アンモニウムカチオン、a1およびa2は1~4の整数を表す。一般式(p1)で表される構成単位は任意に置換されていてもよい。)
 また、芳香族活性ジハライド化合物としては、イオン性基を有するものと持たないものを共重合することで、イオン性基密度を制御することも可能である。しかしながら、上記イオン性セグメントとしては、プロトン伝導パスの連続性確保の観点から、イオン性基を持たない芳香族活性ジハライド化合物を共重合しないことがより好ましい。
 イオン性基を持たない芳香族活性ジハライド化合物のより好適な具体例としては、4,4’-ジクロロジフェニルスルホン、4,4’-ジフルオロジフェニルスルホン、4,4’-ジクロロジフェニルケトン、4,4’-ジフルオロジフェニルケトン、4,4’-ジクロロジフェニルフェニルホスフィンオキシド、4,4’-ジフルオロジフェニルフェニルホスフィンオキシド、2,6-ジクロロベンゾニトリル、2,6-ジフルオロベンゾニトリル等を挙げることができる。中でも4,4’-ジクロロジフェニルケトン、4,4’-ジフルオロジフェニルケトンが結晶性付与、機械強度や物理的耐久性、耐熱水性の点からより好ましく、重合活性の点から4,4’-ジフルオロジフェニルケトンが最も好ましい。これら芳香族活性ジハライド化合物は、単独で使用することができるが、複数の芳香族活性ジハライド化合物を併用することも可能である。
 芳香族活性ジハライド化合物として、4,4’-ジクロロジフェニルケトン、4,4’-ジフルオロジフェニルケトンを用いて合成した高分子電解質材料としては、下記一般式(p2)で表される構成部位をさらに含むものとなり、好ましく用いられる。該構成単位は分子間凝集力や結晶性を付与する成分となり、高温高湿度条件での寸法安定性、機械強度、物理的耐久性に優れた材料となるので好ましく用いられる。
Figure JPOXMLDOC01-appb-C000013
(一般式(p2)で表される構成単位は任意に置換されていてもよいが、イオン性基は含有しない。)
 またイオン性セグメントを合成するために用いられる非イオン性モノマーとして、芳香族ジフェノール化合物が挙げられ、特に後述する保護基を有する芳香族ジフェノール化合物であることが好ましい。以上、イオン性セグメントを合成するために用いられるモノマーについて説明した。
 イオン性セグメントとして、またはイオン性セグメントを構成する構成単位として、一般式(S1)で表される構造以外に含まれていても良い構造の好ましい例としては、下記一般式(T1)および(T2)で表される構造からなる芳香族ポリエーテルケトン系共重合体の構造が挙げられる。
Figure JPOXMLDOC01-appb-C000014
 一般式(T1)および(T2)中、Bは芳香環を含む2価の有機基を表す。MおよびMは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。
 この芳香族ポリエーテルケトン系共重合体において、一般式(T1)と(T2)で表される構成単位の組成比を変えることで、イオン交換容量を制御することが可能である。
 中でも、一般式(P1)で表される構造と、一般式(T1)および(T2)で表される構造とを有するイオン性セグメントが特に好ましい。このようなイオン性セグメントにおいて、一般式(P1)、(T1)および(T2)で表わされる構成単位の量を、それぞれp1、t1およびt2とするとき、t1とt2の合計モル量を100モル部として、p1が75モル部以上であることが好ましく、90モル部以上であることがより好ましく、100モル%である部以上であることがさらに好ましい。
 一般式(T1)および(T2)中の芳香環を含む2価の有機基Bとしては、芳香族求核置換反応による芳香族ポリエーテル系重合体の重合に用いることができる各種2価フェノール化合物の残基や、それにスルホン酸基が導入されたものを挙げることができる。
 芳香環を含む2価の有機基Bの好適な具体例としては、下記一般式(X’-1)~(X’-6)で示される基を例示できるが、これらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000015
 これらはイオン性基や芳香族基を有していてもよい。また、これらは必要に応じて併用することも可能である。なかでも、結晶性、寸法安定性、強靱性、化学的安定性の観点から、より好ましくは一般式(X’-1)~(X’-4)で示される基、最も好ましくは一般式(X’-2)および(X’-3)で示される基である。
[非イオン性セグメント]
 本発明のブロック共重合体は、前記非イオン性セグメントが芳香族ポリエーテル系重合体の構造を含有することが好ましい。芳香族ポリエーテル系重合体の構造として例えば、芳香族ポリエーテル、芳香族ポリエーテルケトン、芳香族ポリエーテルエーテルケトン、芳香族ポリエーテルケトンケトン、芳香族ポリエーテルエーテルケトンケトン、芳香族ポリエーテルケトンエーテルケトンケトン、芳香族ポリエーテルイミド、芳香族ポリエーテルスルホンが知られているが、これら構造に限定されるものでなく、芳香族ポリエーテル系重合体とは、芳香族基とエーテル結合を繰り返し単位の構造として含有していればよい。
 本発明のブロック共重合体を構成する前記非イオン性セグメントが有する前記芳香族ポリエーテル系重合体の構造が、芳香族ポリエーテルケトン系重合体の構造であることが機械強度、寸法安定性、物理的耐久性の観点からより好ましい。
 本発明のブロック共重合体を構成する前記非イオン性セグメントが、下記一般式(S3)で表される構造を含有することが寸法安定性、機械強度、化学的安定性の観点から、好ましい。
Figure JPOXMLDOC01-appb-C000016
 一般式(S3)中、Ar~Arは、それぞれ独立に、アリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。
 ここで、Ar~Arとして好ましい芳香環は、フェニレン基、ナフチレン基、ビフェニレン基、フルオレンジイル基などの炭化水素系アリーレン基、ピリジンジイル、キノキサリンジイル、チオフェンジイルなどのヘテロアリーレン基などが挙げられるが、これらに限定されるものではない。
 本発明のブロック共重合体を構成する前記非イオン性セグメントが、下記式(P2)で表される構造を含有することが、原料入手性の点から好ましい。中でも、下記式(S4)で表される構成単位を含有することが、結晶性による機械強度、寸法安定性、物理的耐久性の点からさらに好ましい。
Figure JPOXMLDOC01-appb-C000017
 一般式(P2)および(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(P2)および(S4)または他の構成単位との結合を表す。
 非イオン性セグメント中に含まれる前記一般式(S3)または(S4)で表される構造の含有量としては、より多い方が好ましく、20モル%以上が好ましく、50モル%以上がより好ましく、80モル%以上がさらに好ましい。含有量が20モル%以上である場合には、結晶性による機械強度、寸法安定性、物理的耐久性に対する本発明の効果を十分に得ることができる。
 本発明のブロック共重合体は、上記一般式(S1)で表される構成単位を含有するイオン性セグメントと、上記一般式(S3)で表される構成単位を含有する非イオン性セグメントを有するブロック共重合体と、から構成されることが好ましい。
 非イオン性セグメントは、一般式(S3)で表される構成単位を含有する場合、結晶性を示すセグメントである。このような非イオン性セグメントを含むブロック共重合体は、少なくとも非イオン性セグメントに保護基を導入したブロック共重合体前駆体を成型した後、成型体に含有される該保護基の少なくとも一部を脱保護せしめることにより製造することができる。ブロック共重合体では、ランダム共重合体よりも、ドメインを形成したポリマーの結晶化により、加工性が不良となる傾向があるので、少なくとも非イオン性セグメントに保護基を導入し、加工性を向上させることが好ましく、イオン性セグメントについても、加工性が不良となる場合には保護基を導入することが好ましい。
 このような保護基を含む構成単位としては、例えば下記一般式(P3)および(P4)から選ばれる少なくとも1種を含有するものが好ましく挙げられる。
Figure JPOXMLDOC01-appb-C000018
 式(P3)および(P4)において、Ar11~Ar14は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表し、それぞれが2種類以上の基を表しても良い。式(P3)および(P4)で表される基は任意に置換されていてもよい。
 なかでも、化合物の臭いや反応性、安定性等の点で、前記一般式(P3)および(P4)において、EがOである、すなわち、ケトン部位をケタール部位で保護/脱保護する方法が最も好ましい。
 一般式(P3)中のRおよびRとしては、安定性の点でアルキル基であることがより好ましく、さらに好ましくは炭素数1~6のアルキル基、最も好ましく炭素数1~3のアルキル基である。また、一般式(P4)中のRとしては、安定性の点で炭素数1~7のアルキレン基であることがより好ましく、最も好ましくは炭素数1~4のアルキレン基である。Rの具体例としては、-CHCH-、-CH(CH)CH-、-CH(CH)CH(CH)-、-C(CHCH-、-C(CHCH(CH)-、-C(CHO(CH-、-CHCHCH-、-CHC(CHCH-等が挙げられるが、これらに限定されるものではない。
 前記一般式(P3)および(P4)中のAr11~Ar14として好ましい有機基は、フェニレン基、ナフチレン基、またはビフェニレン基である。これらは任意に置換されていてもよい。芳香族ポリエーテル系重合体としては、溶解性および原料入手の容易さから、前記一般式(P4)中のAr13およびAr14が共にフェニレン基であることがより好ましく、最も好ましくはAr13およびAr14が共にp-フェニレン基である。
 ここで、ケトン部位をケタールで保護する方法としては、ケトン基を有する前駆体化合物を、酸触媒存在下で1官能および/または2官能アルコールと反応させる方法が挙げられる。例えば、ケトン前駆体の4,4’-ジヒドロキシベンゾフェノンと1官能および/または2官能アルコール、脂肪族又は芳香族炭化水素などの溶媒中で臭化水素などの酸触媒の存在下で反応させることによって製造できる。アルコールは炭素数1~20の脂肪族アルコールである。 
 ケタールモノマーを製造するための改良法は、ケトン前駆体の4,4’-ジヒドロキシベンゾフェノンと2官能アルコールをアルキルオルトエステル及び固体触媒の存在下に反応させることからなる。
 ケタールで保護したケトン部位の少なくとも一部を脱保護せしめ、ケトン部位とする方法は特に限定されるものではない。前記脱保護反応は、不均一又は均一条件下に水及び酸の存在下において行うことが可能であるが、機械強度、物理的耐久性、耐溶剤性の観点からは、膜等に成型した後で酸処理する方法がより好ましい。具体的には、成型された膜を塩酸水溶液や硫酸水溶液中に浸漬することにより脱保護することが可能であり、酸の濃度や水溶液の温度については適宜選択することができる。
 ポリマーに対して必要な酸性水溶液の重量比は、好ましくは1~100倍であるけれども、更に大量の水を使用することもできる。酸触媒は好ましくは存在する水の0.1~50重量%の濃度において使用する。好適な酸触媒としては塩酸、硝酸、フルオロスルホン酸、硫酸などのような強鉱酸、及びp-トルエンスルホン酸、トリフルオロメタンルスホン酸などのような強有機酸が挙げられる。ポリマーの膜厚等に応じて、酸触媒及び過剰水の量、反応圧力などは適宜選択できる。
 例えば、膜厚50μmの膜であれば、6N塩酸水溶液に例示されるような酸性水溶液中に浸漬し、95℃で1~48時間加熱することにより、容易にほぼ全量を脱保護することが可能である。また、25℃の1N塩酸水溶液に24時間浸漬しても、大部分の保護基を脱保護することは可能である。ただし、脱保護の条件としてはこれらに限定される物ではなく、酸性ガスや有機酸等で脱保護したり、熱処理によって脱保護しても構わない。
 芳香族ポリエーテル系重合体が直接結合等のエーテル結合以外の結合様式を含む場合においても、加工性向上の点から、導入される保護基の位置としては芳香族エーテル系重合体部分であることがより好ましい。
 具体的には、例えば前記一般式(P3)および(P4)で表される構成単位を含有する芳香族ポリエーテル系重合体は、芳香族ジフェノール化合物としてそれぞれ下記一般式(P3-1)および(P4-1)で表される化合物を使用し、芳香族活性ジハライド化合物との芳香族求核置換反応により合成することが可能である。前記一般式(P3)および(P4)で表される構成単位が芳香族ジフェノール化合物、芳香族活性ジハライド化合物のいずれに由来するものでも構わないが、モノマーの反応性を考慮して芳香族ジフェノール化合物に由来するものを使用する方がより好ましい。
Figure JPOXMLDOC01-appb-C000019
 一般式(P3-1)および(P4-1)において、Ar11~Ar14は任意の2価のアリーレン基、RおよびRはHおよびアルキル基から選ばれた少なくとも1種の基、Rは任意のアルキレン基、EはOまたはSを表す。一般式(P3-1)および一般式(P4-1)で表される化合物は任意に置換されていてもよい。以上、好ましい保護基について説明した。
[ブロック共重合体の詳細な説明]
 本発明のブロック共重合体は、2種類以上の互いに不相溶なセグメント鎖、すなわち、イオン性基を含有する親水性セグメントと、イオン性基を含有しない疎水性セグメントが連結され、1つのポリマー鎖を形成したものである。ブロック共重合体においては、化学的に異なるセグメント鎖間の反発から生じる短距離相互作用により、それぞれのセグメント鎖からなるナノまたはミクロドメインに相分離する。そして、セグメント鎖がお互いに共有結合していることから、長距離相互作用が生じ、その効果により、各ドメインが特定の秩序を持って配置せしめられる。各セグメント鎖からなるドメインが集合して作り出す高次構造は、ナノまたはミクロ相分離構造と呼ばれる。ここで、ドメインとは、1本または複数のポリマー鎖において、類似するセグメントが凝集してできた塊のことを意味する。高分子電解質膜のイオン伝導については、膜中におけるイオン伝導セグメントの空間配置、すなわち、ナノまたはミクロ相分離構造が重要になる。
 本発明のブロック共重合体において、イオン性セグメントの数平均分子量Mn1が40,000を超えることで、発明の効果を十分に得ることができる。これは、イオン性セグメントの数平均分子量の上昇に伴い、相分離構造を形成する際のセグメントの凝集性が高まり、プロトン伝導に適切な相分離構造を形成するためであると考えられる。 
 本発明のブロック共重合体は、Mn1とMn2について、2<Mn1/Mn2<7を満たすとき、ブロック共重合反応が適切に進行し、高分子量のブロック共重合体を得ることができること、およびプロトン伝導に適した相分離構造を形成することができることから、好ましい。
 ブロック共重合性、相分離構造の形成の観点から、さらに3≦Mn1/Mn2<7の関係を満たすことがより好ましい。
 本発明のブロック共重合体は、イオン性セグメントと非イオン性セグメントとの間を結合するリンカー部位を含有することが好ましい。本発明において、リンカーとは、イオン性セグメントと非イオン性セグメントとの間を連結する部位であって、イオン性セグメントや非イオン性セグメントとは異なる化学構造を有する部位と定義される。
 このリンカーは、エーテル交換反応による共重合体のランダム化、セグメント切断、その他共重合体の合成時に生じうる副反応などを抑制しながら、異なるセグメントを連結する。そのため、このようなリンカーを与えるような化合物を原料として用いることで、それぞれのセグメントの分子量を下げることなく、ブロック共重合体を得ることができる。
 リンカーの好適な具体例としては、デカフルオロビフェニル、ヘキサフルオロベンゼン、4,4’-ジフルオロジフェニルスルホン、2,6-ジフルオロベンゾニトリル等を挙げることができるが、本発明において、これらに限定されるものではない。
 本発明のブロック共重合体のイオン交換容量は、プロトン伝導性と耐水性のバランスの点から、0.1~5meq/gが好ましく、より好ましくは1.5meq/g以上、最も好ましくは2meq/g以上である。また、3.5meq/g以下がより好ましく、最も好ましくは3meq/g以下である。
 イオン性セグメントのイオン交換容量は、低加湿条件下でのプロトン伝導性の点から、高いことが好ましく、好ましくは2.5meq/g以上、より好ましくは、3meq/g以上、さらに好ましくは3.5meq/g以上である。また、6.5meq/g以下が好ましく、5meq/g以下がより好ましく、さらに好ましいのは4.5meq/g以下である。
 非イオン性セグメントのイオン交換容量は、耐熱水性、機械強度、寸法安定性、物理的耐久性の点から、低いことが好ましく、好ましくは1meq/g以下、より好ましくは0.5meq/g、さらに好ましくは0.1meq/g以下である。
 ここで、イオン交換容量とは、ブロック共重合体、高分子電解質材料、および高分子電解質膜の単位乾燥重量当たりに導入されたイオン交換基のモル量である。イオン交換容量は、元素分析、中和滴定法等により測定が可能である。イオン交換基がスルホン酸基である場合、元素分析法を用い、S/C比から算出することもできるが、スルホン酸基以外の硫黄源を含む場合などは測定することが難しい。従って、本発明においては、イオン交換容量は、後述の中和滴定法により求めた値と定義する。
 本発明のブロック共重合体は、相分離構造を有することが好ましく、共連続様相分離構造を有することが特に好ましい。本発明のブロック共重合体が、相分離構造を有するとは、ブロック共重合体を膜状に成形した成形体を透過型電子顕微鏡(TEM)で観察したときに相分離構造が確認できることを意味する。
 相分離構造は、イオン性セグメントと非イオン性セグメントの凝集状態およびその形状を制御することによって形成できる。相分離構造の形態として、シリンダー構造、海島構造、ラメラ構造や共連続構造が挙げられる。中でも、ブロック共重合体が成形体として、共連続構造を有する場合は、3次元的に連続したプロトン伝導チャネルが形成されるので、優れたプロトン伝導性を実現できる。また、非イオン性の疎水性セグメントも同様に3次元的に連続したドメインを形成するので、優れた燃料遮断性、耐溶剤性や寸法安定性、機械強度、物理的耐久性を有する。
 本発明のブロック共重合体は、TEMによる観察を5万倍で行った場合に、相分離構造が観察され、画像処理により計測した平均周期サイズが8nm以上、300nm以下であるものが好ましい。中でも、平均周期サイズが10nm以上、200nm以下がより好ましく、最も好ましくは15nm以上、150nm以下である。なお周期サイズとは、イオン性セグメントが凝集して形成するドメインと非イオン性セグメントが凝集して形成するドメインの周期長を意味する。
[ブロック共重合体の製造方法]
 イオン性セグメントと非イオン性セグメントからなるブロック共重合体の具体的な合成方法を例示する。ただし、本発明は、これらに限定されるものではない。
 本発明に用いられる各セグメントは、芳香族求核置換反応によって合成することが、プロセス上容易であることから好ましい。芳香族求核置換反応は、ジハライド化合物とジオール化合物のモノマー混合物を塩基性化合物の存在下で反応させる方法である。重合は、0~350℃の温度範囲で行うことができるが、50~250℃の温度であることが好ましい。
 反応は、無溶媒下で行うこともできるが、溶媒中で行うことが好ましい。使用できる溶媒としては、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、N-メチル-2-ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒などを挙げることができるが、これらに限定されることはなく、芳香族求核置換反応において安定な溶媒として使用できるものであればよい。これらの有機溶媒は、単独でも2種以上の混合物として使用されても良い。
 塩基性化合物としては、水酸化ナトリウム、水酸化カリウム、炭酸ナトリウム、炭酸カリウム、炭酸水素ナトリウム、炭酸水素カリウム等があげられるが、ジオール類を活性なフェノキシド構造にしうるものであれば、これらに限定されず使用することができる。また、フェノキシドの求核性を高めるために、18-クラウン-6などのクラウンエーテルを添加することも好適である。クラウンエーテル類は、スルホン酸基のナトリウムイオンやカリウムイオンに配位して有機溶媒に対するモノマーやポリマーのスルホン酸塩部の溶解性が向上する場合があり、好ましく使用できる。
 芳香族求核置換反応においては、副生物として水が生成する場合がある。この際は、重合溶媒とは関係なく、トルエンなどを反応系に共存させて共沸物として水を系外に除去することもできる。水を系外に除去する方法としては、モレキュラーシーブなどの吸水剤を使用することもできる。
 本発明のブロック共重合体は、ブロック共重合体前駆体を合成した後、前駆体に含有される保護基の少なくとも一部を脱保護させることにより製造することが出来る。本発明のブロック共重合体およびブロック共重合体前駆体の製造方法としては、少なくとも下記工程(1)~(2)を備えることが好ましい。これら工程を備えることにより、高分子量化による機械強度と耐久性の向上を達成でき、かつ、両セグメントの交互導入によって、相分離構造やドメインサイズが厳密に制御された低加湿プロトン伝導性に優れたブロック共重合体を得ることができる。
(1)両末端に-OM基(Mは、水素原子、金属カチオンまたはアンモニウムカチオンを表す。)を有するイオン性セグメントおよび両末端に-OM基を有する非イオン性セグメントのうちの一方のセグメントについて、そのセグメントの両末端の-OM基とリンカー化合物とを反応させて、そのセグメントの両末端にリンカー部位を導入する工程。
(2)(1)で合成したリンカー部位を導入したセグメントの両末端リンカー部位と、もう一方のセグメントの両末端の-OM基とを重合させることにより、イオン性セグメントと非イオン性セグメントとを有するブロック共重合体またはブロック共重合体前駆体を製造する工程。
 両末端とも-OM基であるような一般式(S1)で表されるセグメントと、両末端とも-OM基であるような一般式(S2)で表されるセグメントの具体例としては、それぞれ、下記式(H3-1)、(H3-2)で表される構造のセグメントが挙げられる。また、式(H3-1)、(H3-2)で表される構造のセグメントをそれぞれハライドリンカーと反応させた後の構造としては、例えば、それぞれ下記式(H3-3)、(H3-4)で表される構造が挙げられる。ただし、本発明はこれらに限定されるものではない。
Figure JPOXMLDOC01-appb-C000020
 式(H3-1)~(H3-4)において、N、N、N、Nはそれぞれ独立して1~200の整数を表す。
 式(H3-1)~(H3-4)において、ハロゲン原子はF、末端-OM基は-OK基、アルカリ金属はNaおよびKでそれぞれ示しているが、これらに限定されることなく使用することが可能である。また、これらの式は読み手の理解を助ける目的で挿入するものであり、ポリマーの重合成分の化学構造、正確な組成、並び方、スルホン酸基の位置、数、分子量などを必ずしも正確に表すわけではなく、これらに限定されるものでない。
 さらに、式(H3-1)~(H3-4)では、いずれのセグメントに対しても、保護基としてケタール基を導入したが、本発明においては、結晶性が高く溶解性が低い成分に保護基を導入すればよい。したがって、上記イオン性セグメントには必ずしも保護基が必要ではなく、物理的耐久性や寸法安定性の観点から、保護基がないものも好ましく使用できる。
[高分子電解質材料]
 本発明の高分子電解質材料は、前記ブロック共重合体を含むことを特徴とする。本発明のブロック共重合体の化学構造、セグメント鎖長、分子量、イオン交換容量などを適宜選択することにより、高分子電解質材料の加工性、ドメインサイズ、結晶性/非晶性、機械強度、プロトン伝導性などの諸特性を制御することが可能である。
[高分子電解質成形体]
 本発明のブロック共重合体は、高分子電解質材料として好適であり、この高分子電解質材料を用いてなる高分子電解質成形体に加工することができる。上記成形体としての形態は特に限定されるものではないが、例えば電極触媒層のバインダー、繊維、膜、棒などが挙げられる。中でも膜、バインダーが好ましく、膜が特に好ましい。
[高分子電解質膜]
 本発明の高分子電解質膜は、前記ブロック共重合体を含む高分子電解質材料を用いてなることを特徴とする。
 本発明のブロック共重合体を膜に成形する場合、ケタール等の保護基を有する段階で、溶液状態より製膜する方法あるいは溶融状態より製膜する方法等が可能である。前者では、たとえば、該高分子電解質材料をN-メチル-2-ピロリドン等の溶媒に溶解し、その溶液をガラス板等の上に流延塗布し、溶媒を除去することにより製膜する方法が例示できる。
 製膜に用いる溶媒としては、ブロック共重合体を溶解し、その後に除去し得るものであればよく、例えば、N,N-ジメチルアセトアミド、N,N-ジメチルホルムアミド、Nメチル-2ピロリドン、ジメチルスルホキシド、スルホラン、1,3-ジメチル-2-イミダゾリジノン、ヘキサメチルホスホントリアミド等の非プロトン性極性溶媒、γ-ブチロラクトン、酢酸ブチルなどのエステル系溶媒、エチレンカーボネート、プロピレンカーボネートなどのカーボネート系溶媒、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル等のアルキレングリコールモノアルキルエーテル、あるいはイソプロパノールなどのアルコール系溶媒、水およびこれらの混合物が好適に用いられるが、非プロトン性極性溶媒が最も溶解性が高く好ましい。また、イオン性セグメントの溶解性を高めるために、18-クラウン-6などのクラウンエーテルを添加することも好適である。
 また、本発明において、ブロック共重合体を使用して溶液製膜する場合には、溶媒の選択は相分離構造に対して重要であり、非プロトン性極性溶媒と極性の低い溶媒を混合して使用することも好適な方法である。
 必要な固形分濃度に調製したポリマー溶液を常圧の濾過もしくは加圧濾過などに供し、高分子電解質溶液中に存在する異物を除去することは強靱な膜を得るために好ましい方法である。ここで用いる濾材は特に限定されるものではないが、ガラスフィルターや金属性フィルターが好適である。該濾過で、ポリマー溶液が通過する最小のフィルターの孔径は、1μm以下が好ましい。
 本発明のブロック共重合体を高分子電解質膜へ転化する方法としては、例えば、該ブロック共重合体から構成される膜を上記手法により作製後、保護基で保護した部位の少なくとも一部を脱保護するものである。例えば、保護基としてケタール部位を有する場合、ケタールで保護したケトン部位の少なくとも一部を脱保護し、ケトン部位とする。この方法によれば、溶解性に乏しいブロック共重合体の溶液製膜が可能となり、プロトン伝導性と機械強度、物理的耐久性を両立することができる。
 また、含まれるイオン性基がアルカリ金属またはアルカリ土類金属の陽イオンと塩を形成した状態で電解質膜を成型した後に、当該アルカリ金属またはアルカリ土類金属の陽イオンをプロトンと交換する工程を行っても良い。この工程は、成型後の膜を酸性水溶液と接触させる工程であることが好ましく、特に成型後の膜を酸性水溶液に浸漬する工程であることがより好ましい。この工程においては、酸性水溶液中のプロトンがイオン性基とイオン結合している陽イオンと置換されるとともに、残留している水溶性の不純物や、残存モノマー、溶媒、残存塩などが同時に除去される。
 酸性水溶液は特に限定されないが、硫酸、塩酸、硝酸、酢酸、トリフルオロメタンスルホン酸、メタンスルホン酸、リン酸、クエン酸などを用いることが好ましい。酸性水溶液の温度や濃度等も適宜決定すべきであるが、生産性の観点から0℃以上80℃以下の温度で、3質量%以上、30質量%以下の硫酸水溶液を使用することが好ましい。
 本発明における高分子電解質膜の膜厚としては、実用に耐える膜の機械強度、物理的耐久性を得るには1μm以上がより好ましく、膜抵抗の低減つまり発電性能の向上のためには2,000μm以下が好ましい。膜厚のさらに好ましい範囲は3μm以上200μm以下である。膜厚は、溶液濃度あるいは基板上への塗布厚により制御することができる。
 また、本発明における高分子電解質膜は、通常の高分子化合物に使用される結晶化核剤、可塑剤、安定剤、酸化防止剤あるいは離型剤等の添加剤を、本発明の目的に反しない範囲内で含有していてもよい。
 また、本発明によって得られるブロック共重合体からなる高分子電解質膜は、前述の諸特性に悪影響をおよぼさない範囲内で、機械的強度、熱安定性、加工性などの向上を目的に、各種ポリマー、エラストマー、フィラー、微粒子、各種添加剤などを含有していてもよい。また、高分子電解質膜を、微多孔膜、不織布、メッシュ等で補強しても良い。
 本発明のブロック共重合体は、高分子電解質材料として、高分子電解質成型体、高分子電解質膜とすることで、種々の用途に適用可能である。例えば、人工皮膚などの医療用途、ろ過用途、耐塩素性逆浸透膜などのイオン交換樹脂用途、各種構造材用途、電気化学用途、加湿膜、防曇膜、帯電防止膜、脱酸素膜、太陽電池用膜、ガスバリアー膜に適用可能である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、固体高分子形燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置、電気化学式水素ポンプ、水電解式水素発生装置が挙げられる。
 固体高分子形燃料電池、電気化学式水素ポンプ、および水電解式水素発生装置において、高分子電解質膜は、両面に触媒層、電極基材及びセパレータが順次積層された構造体で使用される。このうち、電解質膜の両面に触媒層を積層させたもの(即ち触媒層/電解質膜/触媒層の層構成のもの)は触媒層付電解質膜(CCM)と称され、さらに電解質膜の両面に触媒層及びガス拡散基材を順次積層させたもの(即ち、ガス拡散基材/触媒層/電解質膜/触媒層/ガス拡散基材の層構成のもの)は、膜電極複合体(MEA)と称されている。本発明のブロック共重合体は、こうしたCCMおよびMEAを構成する高分子電解質膜として特に好適に用いられる。
 本発明の触媒層付電解質膜は、前記ブロック共重合体を含む高分子電解質材料を用いてなる前記高分子電解質膜を用いて構成されることを特徴とする。
 本発明の膜電極複合体は、前記ブロック共重合体を含む高分子電解質材料を用いてなる前記高分子電解質膜を用いて構成されることを特徴とする。
 本発明の固体高分子燃料電池は、前記ブロック共重合体を含む高分子電解質材料を用いてなる前記高分子電解質膜を用いて構成されることを特徴とする。
  本発明の水電解式水素発生装置は、前記ブロック共重合体を含む高分子電解質材料を用いてなる前記高分子電解質膜を用いて構成されることを特徴とする。
 (1)ポリマーの分子量
 ポリマーの数平均分子量、重量平均分子量をGPCにより測定した。紫外吸光検出器と示差屈折率検出器の一体型装置として東ソー(株)製HLC-8022GPCを、またガードカラムとして、東ソー(株)製TSKgelGuardColumnSuperH-H(内径4.6mm、長さ3.5cm)を用い、GPCカラムとして東ソー(株)製TSKgelSuperHM-H(内径6.0mm、長さ15cm)2本を用い、N-メチル-2-ピロリドン溶媒(臭化リチウムを10mmol/L含有するN-メチル-2-ピロリドン溶媒)にて、サンプル濃度0.1wt%、流量0.2mL/min、温度40℃、測定波長265nmで測定し、標準ポリスチレン換算により数平均分子量、重量平均分子量を求めた。
 (2)イオン交換容量(IEC)
 以下の1]~4]に示す中和滴定法により測定した。測定は3回実施し、その平均値を取った。
1]プロトン置換し、純水で十分に洗浄したブロック共重合体の水分を拭き取った後、100℃にて12時間以上真空乾燥し、乾燥重量を求めた。
2]ブロック共重合体に5wt%硫酸ナトリウム水溶液を50mL加え、12時間静置してイオン交換した。
3]0.01mol/L水酸化ナトリウム水溶液を用いて、生じた硫酸を滴定した。指示薬として市販の滴定用フェノールフタレイン溶液0.1w/v%を加え、薄い赤紫色になった点を終点とした。
4]IECは下記式により求めた。
IEC(meq/g)=〔水酸化ナトリウム水溶液の濃度(mmol/mL)×滴下量(mL)〕/試料の乾燥重量(g)。
 (3)乾湿寸法変化率
 電解質膜(検体)を3mm×20mmの長方形にカットして試料片とした。温湿度調整機能付炉を有する熱機械分析装置TMA/SS6100((株)日立ハイテクサイエンス製)のサンプルホルダーに上記試料片の長辺が測定方向となるように設置し、20mNの応力がかかるよう設定した。炉内で、23℃、50%RHで試料を1時間定常化し、この試料片の長さをゼロ点とした。炉内温度を23℃で固定し、30分かけて30%RH(乾燥条件)に湿度調整し、20分間ホールドした。次に30分かけて90%RH(加湿条件)に湿度調整した。この乾湿サイクル(30%RH-90%RH)を1サイクルとして、10サイクル目の30%RHの寸法変化率(%)と90%RHの寸法変化率(%)の差を、乾湿寸法変化率(%)とした。
 (4)透過型電子顕微鏡(TEM)による相分離構造の観察
 染色剤として2重量%酢酸鉛水溶液中に試料片を浸漬させ、25℃下で72時間放置した。染色処理された試料を取りだし、エポキシ樹脂で包埋した。ウルトラミクロトームを用いて室温下で薄片80nmを切削し、得られた薄片をCuグリッド上に回収しTEM観察に供した。観察は加速電圧100kVで実施し、撮影は、写真倍率として×20,000、×40,000になるように撮影を実施した。機器としては、HT7700((株)日立ハイテク製)を使用した。
 (5)透過型電子顕微鏡(TEM)トモグラフィーによる相分離構造の観察
 上記(4)記載の方法にて作成した薄片試料を、コロジオン膜上にマウントし、以下の条件に従って観察を実施した。
装置: 電界放出型電子顕微鏡(HRTEM)日本電子(株)製JEM 2100F
画像取得: DigitalMicrograph(Gatan社製)
システム: マーカー法
加速電圧: 200kV
撮影倍率: 30,000倍
傾斜角度: +60°~-62°
再構成解像度: 0 .71nm/pixel。
 3次元再構成処理は、マーカー法を適用した。3次元再構成を実施する際の位置合わせマーカーとして、コロジオン膜上に付与したAuコロイド粒子を用いた。マーカーを基準として、+61°から-62° の範囲で、試料を1°毎に傾斜しTEM像を撮影する連続傾斜像シリーズより取得した計124枚のTEM像を基にCT再構成処理を実施、3次元相分離構造を観察した。
 (6)発電性能の評価
 発電性能を評価するにあたり、下記の要領で触媒層付電解質膜(CCM)および膜電極接合体(MEA)を作製した。
 <CCMの作製> 
 電解質膜の一方の面に下記のアノード触媒デカール、他方の面にカソード触媒デカールを重ね合わせ、150℃、5MPaで3分間加熱プレスを行って接合した。その後、それぞれの触媒デカールのポリテトラフルオロエチレンフィルムを剥離して、CCMを得た。
 <アノード触媒デカールの作製>
  田中貴金属工業(株)製白金触媒担持炭素粒子TEC10E50E(白金担持率50質量%)10質量部と、フッ素系高分子電解質(ケマーズ(株)製“ナフィオン”(登録商標))固形分換算で5質量部とを、混合溶媒(水と1-プロピルアルコールとの質量比4:6)中でビーズミルを用いて分散して、固形分濃度が10質量%の触媒インク1を調製した。この触媒インク1を、市販のポリテトラフルオロエチレン製フィルムに塗布し乾燥して、アノード触媒デカールを作製した。触媒層の白金量は、0.4mg/cmであった。
 <カソード触媒デカールの作製>
 触媒層の白金量を0.7mg/cmに変更する以外は、アノード触媒デカールと同様にして作製した。
 <MEAの作製>
 市販のSGL社製ガス拡散層24BCHを、上記で作製したCCMの両面に重ね合わせ、160℃、4.5Maで5分間加熱プレスを行って、MEAを作製した。このMEAを用いて、以下の要領で発電性能を評価した。
 <発電性能の評価>
 MEAを英和(株)製のJARI標準セル“Ex-1”(電極面積25cm)にセットして発電評価用モジュールとした。アノード電極に燃料ガスとして水素ガスを供給し、カソード電極に酸化ガスとして空気を供給した。下記条件で発電評価を行い、電圧が0.2V以下になるまで0A/cmから1.2A/cmまで電流を掃引した。
 本発明では電流密度1.2A/cm時の電圧を読み取り評価した。
電子負荷装置:菊水電子工業(株)製 電子負荷装置“PLZ664WA”
セル温度:60℃
供給ガス(水素ガスおよび空気)の相対湿度:40%RH(低加湿条件)、80%RH(高加湿条件)
供給ガス(水素ガスおよび空気)の背圧:150kPa
ガス利用率:アノードは量論の70%、カソードは量論の40%。
 合成例1(下記式(G1)で表される2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン(K-DHBP)の合成)
 攪拌器、温度計及び留出管を備えた500mLフラスコに、4,4’-ジヒドロキシベンゾフェノン49.5g、エチレングリコール134g、オルトギ酸トリメチル96.9g及びp-トルエンスルホン酸一水和物0.50gを仕込み、溶液とした。その後78~82℃で2時間保温攪拌した。更に、内温を120℃まで徐々に昇温し、ギ酸メチル、メタノール、オルトギ酸トリメチルの留出が完全に止まるまで120℃に保った。この反応液を室温まで冷却した後、反応液を酢酸エチルで希釈した。有機層を5%炭酸カリウム水溶液100mLで洗浄し分液した後、溶媒を留去した。残留物にジクロロメタン80mLを加え結晶を析出させ、これを濾過し、乾燥して、2,2-ビス(4-ヒドロキシフェニル)-1,3-ジオキソラン52.0gを得た。純度は99.9%であった。
Figure JPOXMLDOC01-appb-C000021
 合成例2(下記式(G2)で表されるジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの合成)
 4,4’-ジフルオロベンゾフェノン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩(NaCl)200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンを得た。純度は99.3%であった。
Figure JPOXMLDOC01-appb-C000022
 合成例3(下記式(G3)で表される3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホンの合成)
 4,4-ジフルオロジフェニルスルホン109.1g(アルドリッチ試薬)を発煙硫酸(50%SO)150mL(和光純薬試薬)中、100℃で10時間反応させた。その後、多量の水中に少しずつ投入し、NaOHで中和した後、食塩200gを加え合成物を沈殿させた。得られた沈殿を濾別し、エタノール水溶液で再結晶し、3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホンを得た。純度は99.3%であった。
Figure JPOXMLDOC01-appb-C000023
 実施例1
 (下記一般式(G4)で表される非イオン性オリゴマーa1の合成)
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム16.59g(アルドリッチ試薬、120mmol)、合成例1で得たK-DHBP25.83g(100mmol)および4,4’-ジフルオロベンゾフェノン20.73g(アルドリッチ試薬、95mmol)を入れた。装置内を窒素置換した後、N-メチルピロリドン(NMP)300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で3時間重合を行った。多量のメタノールに再沈殿精製を行い、非イオン性オリゴマーa1の末端ヒドロキシ体を得た。この非イオン性オリゴマーa1の末端ヒドロキシ体数平均分子量は9,000であった。
 攪拌器、窒素導入管、Dean-Starkトラップを備えた500mL三口フラスコに、炭酸カリウム1.1g(アルドリッチ試薬、8mmol)、上記非イオン性オリゴマーa1の末端ヒドロキシ体を9.0g(1mmol)入れた。装置内を窒素置換した後、NMP100mL、トルエン30mLを加え、100℃で脱水した後、昇温してトルエンを除去した。さらに、ヘキサフルオロベンゼン1.1g(アルドリッチ試薬、6mmol)を入れ、105℃で12時間反応を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G4)で示される非イオン性オリゴマーa1(末端:フルオロ基)を得た。この非イオン性オリゴマーa1の数平均分子量は10,000であった。
Figure JPOXMLDOC01-appb-C000024
 (下記式(G5)で表されるイオン性オリゴマーa2の合成)
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.64g(アルドリッチ試薬、200mmol)、合成例1で得たK-DHBP12.91g(50mmol)、4,4’-ビフェノール9.31g(アルドリッチ試薬、50mmol)、合成例2で得たジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノン41.60g(98.5mmol)および18-クラウン-6を26.40g(和光純薬100mmol)入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、150℃で脱水した後、昇温してトルエンを除去し、170℃で6時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、下記式(G5)で示されるイオン性オリゴマーa2(末端:ヒドロキシ基)を得た。このイオン性オリゴマーa2の数平均分子量は45,000であった。なお、式(G5)において、Mは、水素原子、NaまたはKを表す。
Figure JPOXMLDOC01-appb-C000025
 (イオン性セグメントとしてオリゴマーa2、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b1の合成)
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2000mL SUS製重合装置に、イオン性オリゴマーa2 49.0gおよび非イオン性オリゴマーa1 12.3gを入れ、オリゴマーの総仕込み量が7wt%となるようにNMPを加えて、105℃で24時間反応を行った。多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、多量のイソプロピルアルコールで精製を行い、ブロック共重合体b1を得た。このブロック共重合体b1の数平均分子量は160,000であり、重量平均分子量は400,000であった。
 得られたブロック共重合体b1を溶解させた20重量%NMP溶液を、ガラス繊維フィルターにより加圧ろ過した後、ガラス基板上に流延塗布し、100℃にて4時間乾燥し、膜状成型体を得た。この成型体を10質量%硫酸水溶液に80℃で24時間浸漬して、プロトン置換、脱保護反応した後に、大過剰量の純水に24時間浸漬して充分洗浄し、高分子電解質膜A(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は14.8J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 実施例2
 (イオン性セグメントとしてオリゴマーa2、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b2の合成)
 イオン性オリゴマーa2と非イオン性オリゴマーa1の反応時間を32時間にしたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b2を得た。このブロック共重合体b2の数平均分子量は190,000であり、重量平均分子量は440,000であった。
 ブロック共重合体b1に代えてブロック共重合体b2を用いた以外は実施例1と同様の方法で、高分子電解質膜B(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は15.6J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 実施例3
 (イオン性セグメントとしてオリゴマーa2、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b3の合成)
 イオン性オリゴマーa2と非イオン性オリゴマーa1の反応時間を16時間にしたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b3を得た。このブロック共重合体b3の数平均分子量は120,000であり、重量平均分子量は340,000であった。
 ブロック共重合体b1に代えてブロック共重合体b3を用いた以外は実施例1と同様の方法で、高分子電解質膜C(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は13.3J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 実施例4
(式(G4)で表される非イオン性オリゴマーa3の合成)
 4,4’-ジフルオロベンゾフェノンの使用量を20.51gとしたこと以外はオリゴマーa1の末端ヒドロキシ体の合成と同様にして、オリゴマーa3の末端ヒドロキシ体を得た。このオリゴマーa3の末端ヒドロキシ体の数平均分子量は7,000であった。
 オリゴマーa1の末端ヒドロキシ体の代わりにオリゴマーa3の末端ヒドロキシ体7.0gを用いたこと以外はオリゴマーa1の合成と同様にして、式(G4)で示される非イオン性オリゴマーa3(末端:フルオロ基)を得た。この非イオン性オリゴマーa3の数平均分子量は8,000であった。
 (イオン性セグメントとしてオリゴマーa2、非イオン性セグメントとしてオリゴマーa3を含有するブロック共重合体b4の合成)
 非イオン性オリゴマーa1(12.3g)に代えて非イオン性オリゴマーa3(7.65g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b4を得た。このブロック共重合体b4の数平均分子量は160,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b1に代えてブロック共重合体b4を用いた以外は実施例1と同様の方法で、高分子電解質膜D(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は6.7J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 実施例5
 (式(G4)で表される非イオン性オリゴマーa4の合成)
 4,4’-ジフルオロベンゾフェノンの使用量を20.99gとしたこと以外はオリゴマーa1の末端ヒドロキシ体の合成と同様にして、オリゴマーa4の末端ヒドロキシ体を得た。このオリゴマーa4の末端ヒドロキシ体の数平均分子量は11,000であった。
 オリゴマーa1の末端ヒドロキシ体の代わりにオリゴマーa4の末端ヒドロキシ体11.0gを用いたこと以外はオリゴマーa1の合成と同様にして、式(G4)で示される非イオン性オリゴマーa4(末端:フルオロ基)を得た。この非イオン性オリゴマーa3の数平均分子量は12,000であった。
 (式(G5)で表されるイオン性オリゴマーa5の合成)
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの使用量を41.72g(98.8mmol)としたこと以外はイオン性オリゴマーa2の合成と同様にして、イオン性オリゴマーa5を得た。このイオン性オリゴマーa5の数平均分子量は48,000であった。
 (イオン性セグメントとしてオリゴマーa5、非イオン性セグメントとしてオリゴマーa4を含有するブロック共重合体b5の合成)
 非イオン性オリゴマーa1(12.3g)に代えて非イオン性オリゴマーa4(12.3g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b5を得た。このブロック共重合体b5の数平均分子量は160,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b1に代えてブロック共重合体b5を用いた以外は実施例1と同様の方法で、高分子電解質膜E(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は15.8J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 実施例6
 (イオン性セグメントとしてオリゴマーa5、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b6の合成)
 イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa5(49.0g)を用い、非イオン性オリゴマーa1(12.3g)に代えて非イオン性オリゴマーa1(7.65g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b6を得た。このブロック共重合体b6の数平均分子量は160,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b1に代えてブロック共重合体b6を用いた以外は実施例1と同様の方法で、高分子電解質膜F(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は7.2J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 実施例7
 (式(G5)で表されるイオン性オリゴマーa6の合成)
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの使用量を41.50g(98.3mmol)としたこと以外はイオン性オリゴマーa2の合成と同様にして、イオン性オリゴマーa6を得た。このイオン性オリゴマーa6の数平均分子量は43,000であった。
 (イオン性セグメントとしてオリゴマーa6、非イオン性セグメントとしてオリゴマーa3を含有するブロック共重合体b7の合成)
 イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa6(49.0g)を用い、非イオン性オリゴマーa1(12.3g)に代えて非イオン性オリゴマーa3(12.3g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b7を得た。このブロック共重合体b7の数平均分子量は160,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b1に代えてブロック共重合体b7を用いた以外は実施例1と同様の方法で、高分子電解質膜G(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は12.9J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 実施例8
 (下記式(G6)で表される非イオン性オリゴマーa7の合成)
 4,4’-ジフルオロベンゾフェノンの代わりに、4,4-ジフルオロジフェニルスルホン23.21gを用いたこと以外は非イオン性オリゴマーa1の末端ヒドロキシ体の合成と同様にして、非イオン性オリゴマーa10の末端ヒドロキシ体を得た。この非イオン性オリゴマーa10の末端ヒドロキシ体の数平均分子量は7,000であった。
 非イオン性オリゴマーa1の末端ヒドロキシ体の代わりに非イオン性オリゴマーa7の末端ヒドロキシ体(7.0g)を用いたこと以外は非イオン性オリゴマーa1の合成と同様にして、式(G6)で示される非イオン性オリゴマーa7(末端フルオロ基)を得た。この非イオン性オリゴマーa7の数平均分子量は、8,000であった。
Figure JPOXMLDOC01-appb-C000026
 (下記式(G7)で表されるイオン性オリゴマーa8の合成)
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2,000mLのSUS製重合装置に、炭酸カリウム27.6g(アルドリッチ試薬、200mmol)、前記合成例1で得たK-DHBP12.9g(50mmol)および4,4’-ビフェノール9.3g(アルドリッチ試薬、50mmol)、合成例3で得た3,3’-ジスルホン酸ナトリウム塩-4,4’-ジフルオロジフェニルスルホン44.66g(98.1mmol)を入れた。装置内を窒素置換した後、NMP300mL、トルエン100mLを加え、130℃で脱水後、昇温してトルエンを除去し、165℃で5時間重合を行った。多量のイソプロピルアルコールで再沈殿することで精製を行い、式(G10)で示されるイオン性オリゴマーa8(末端ヒドロキシ基)を得た。このイオン性オリゴマーa8の数平均分子量は42,000であった。
Figure JPOXMLDOC01-appb-C000027
 (イオン性セグメントとしてオリゴマーa8、非イオン性セグメントとしてオリゴマーa7を含有するブロック共重合体b8の合成)
 イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa8(49.0g)を用い、非イオン性オリゴマーa1(12.3g)に代えて非イオン性オリゴマーa7(12.3g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b8を得た。このブロック共重合体b8の数平均分子量は160,000であり、重量平均分子量は410,000であった。
 ブロック共重合体b1に代えてブロック共重合体b8を用いた以外は実施例1と同様の方法で、高分子電解質膜H(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められなかった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 比較例1
 (式(G5)で表されるイオン性オリゴマーa9の合成)
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの使用量を41.38g(98.0mmol)としたこと以外はイオン性オリゴマーa2の合成と同様にして、イオン性オリゴマーa9を得た。このイオン性オリゴマーa9の数平均分子量は38,000であった。
 (イオン性セグメントとしてオリゴマーa9、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b9の合成)
 イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa9(49.0g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b9を得た。このブロック共重合体b9の数平均分子量は160,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b1に代えてブロック共重合体b9を用いた以外は実施例1と同様の方法で、高分子電解質膜I(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は15.1J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 比較例2
 (イオン性セグメントとしてオリゴマーa9、非イオン性セグメントとしてオリゴマーa3を含有するブロック共重合体b10の合成)
 イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa9(49.0g)を用い、非イオン性オリゴマーa1(12.3g)に代えて非イオン性オリゴマーa3(7.65g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b10を得た。このブロック共重合体b10の数平均分子量は160,000であり、重量平均分子量は420,000であった。
 ブロック共重合体b1に代えてブロック共重合体b10を用いた以外は実施例1と同様の方法で、高分子電解質膜J(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は7.0J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 比較例3
 (式(G5)で表されるイオン性オリゴマーa10の合成)
 ジソジウム-3,3’-ジスルホネート-4,4’-ジフルオロベンゾフェノンの使用量を41.34g(97.9mmol)としたこと以外はイオン性オリゴマーa2の合成と同様にして、イオン性オリゴマーa10を得た。このイオン性オリゴマーa10の数平均分子量は35,000であった。
 (イオン性セグメントとしてオリゴマーa10、非イオン性セグメントとしてオリゴマーa3を含有するブロック共重合体b11の合成)
 イオン性オリゴマーa2(49.0g)に代えてイオン性オリゴマーa10(49.0g)を用い、非イオン性オリゴマーa1(12.3g)に代えて非イオン性オリゴマーa3(12.3g)を用いたこと以外はブロック共重合体b1の合成と同様にして、ブロック共重合体b11を得た。このブロック共重合体b11の数平均分子量は160,000であり、重量平均分子量は400,000であった。
 ブロック共重合体b1に代えてブロック共重合体b11を用いた以外は実施例1と同様の方法で、高分子電解質膜K(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していた。DSCにより、結晶化ピークが認められ、結晶化熱量は13.1J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
 比較例4
 (イオン性セグメントとしてオリゴマーa2、非イオン性セグメントとしてオリゴマーa1を含有するブロック共重合体b12の合成)
 攪拌器、窒素導入管、Dean-Starkトラップを備えた2000mL SUS製重合装置に、イオン性オリゴマーa2 49.0gおよび非イオン性オリゴマーa1 12.3gを入れ、オリゴマーの総仕込み量が5wt%となるようにNMPを加えて、95℃で14時間反応を行った。多量のイソプロピルアルコール/NMP混合液(重量比2/1)への再沈殿を行い、多量のイソプロピルアルコールで精製を行い、ブロック共重合体b1を得た。このブロック共重合体b12の数平均分子量は70,000であり、重量平均分子量は220,000であった。
 ブロック共重合体b1に代えてブロック共重合体b12を用いた以外は実施例1と同様の方法で、高分子電解質膜L(膜厚10μm)を得た。TEMおよびTEMトモグラフィー観察により、共連続様の相分離構造が確認でき、イオン性基を含有する親水性ドメイン、イオン性基を含有しない疎水性ドメインともに連続相を形成していたが、一部連続しておらず、不均一な構造が見られた。DSCにより、結晶化ピークが認められ、結晶化熱量は10.3J/gであった。また、広角X線回折で結晶質ピークは認められなかった(結晶化度0%)。表1に結果を示した。
Figure JPOXMLDOC01-appb-T000028
 本発明のブロック共重合体は、高分子電解質材料として、高分子電解質成型体、高分子電解質膜とすることで、種々の用途に適用可能である。例えば、人工皮膚などの医療用途、ろ過用途、耐塩素性逆浸透膜などのイオン交換樹脂用途、各種構造材用途、電気化学用途、加湿膜、防曇膜、帯電防止膜、脱酸素膜、太陽電池用膜、ガスバリアー膜に適用可能である。中でも種々の電気化学用途により好ましく利用できる。電気化学用途としては、例えば、固体高分子形燃料電池、レドックスフロー電池、水電解装置、クロロアルカリ電解装置、電気化学式水素ポンプ、水電解式水素発生装置が挙げられる。本発明のブロック共重合体は、CCMおよびMEAを構成する高分子電解質膜として、固体高分子形燃料電池や水電解式水素発生装置に特に好適に用いられる。

Claims (20)

  1.  イオン性基を含有するセグメント(以下「イオン性セグメント」という)と、イオン性基を含有しないセグメント(以下「非イオン性セグメント」という)と、をそれぞれ一個以上有するブロック共重合体であって、前記イオン性セグメントが、数平均分子量が40,000を超え50,000以下である芳香族炭化水素系重合体を有し、前記イオン性セグメントの数平均分子量をMn1、前記非イオン性セグメントの数平均分子量をMn2、前記ブロック共重合体の数平均分子量をMn3とするとき、Mn3/(Mn1+Mn2)>1.5の関係を満たす、ブロック共重合体。
  2.  示差走査熱量分析法によって測定される前記ブロック共重合体の結晶化熱量が0.1J/g以上であるか、または広角X線回折によって測定される前記ブロック共重合体の結晶化度が0.5%以上である請求項1に記載のブロック共重合体。
  3.  前記芳香族炭化水素系重合体が芳香族ポリエーテル系重合体である請求項1または2に記載のブロック共重合体。
  4.  前記芳香族ポリエーテル系重合体が芳香族ポリエーテルケトン系重合体である請求項3に記載のブロック共重合体。
  5.  前記ブロック共重合体が、前記イオン性セグメントと前記非イオン性セグメントとの間を結合するリンカー部位を有することを特徴とする請求項1または2に記載のブロック共重合体。
  6.  2<Mn1/Mn2<7の関係にある請求項1または2に記載のブロック共重合体。
  7.  前記イオン性セグメントが下記一般式(S1)で表される構造を含有する請求項1に記載のブロック共重合体。
    Figure JPOXMLDOC01-appb-C000001
    (一般式(S1)中、Ar~Arは、それぞれ独立に、置換または無置換のアリーレン基を表し、Ar~Arのうち少なくとも1つはイオン性基を有する。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S1)または他の構成単位との結合を表す。)
  8.  前記一般式(S1)で表される構造が下記一般式(S2)で表される構造である請求項7に記載のブロック共重合体。
    Figure JPOXMLDOC01-appb-C000002
    (一般式(S2)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。M~Mは、それぞれ独立に、水素原子、金属カチオンまたはアンモニウムカチオンを表す。n~nは、それぞれ独立に、0または1であり、n~nのうち少なくとも1つは1である。*は、一般式(S2)または他の構成単位との結合を表す。)
  9.  前記非イオン性セグメントが芳香族ポリエーテル系重合体を含有する請求項1または2のいずれかに記載のブロック共重合体。
  10.  前記芳香族ポリエーテル系重合体が芳香族ポリエーテルケトン系重合体である請求項9に記載のブロック共重合体。
  11.  前記非イオン性セグメントが下記一般式(S3)で表される構造を含有する請求項1に記載のブロック共重合体。
    Figure JPOXMLDOC01-appb-C000003
    (一般式(S3)中、Ar~Arは、それぞれ独立に、アリーレン基を表す。ただしAr~Arはいずれもイオン性基を有さない。YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S3)または他の構成単位との結合を表す。)
  12.  前記一般式(S3)で表される構造が下記一般式(S4)で表される構造である請求項11に記載のブロック重合体。
    Figure JPOXMLDOC01-appb-C000004
    (一般式(S4)中、YおよびYは、それぞれ独立に、ケトン基またはケトン基に誘導され得る保護基を表す。*は、一般式(S4)または他の構成単位との結合を表す。)
  13.  共連続相分離構造を有する請求項1に記載のブロック共重合体。
  14.  請求項1に記載のブロック共重合体を含む高分子電解質材料。
  15.  請求項14に記載の高分子電解質材料を含む高分子電解質成型体。
  16.  請求項14に記載の高分子電解質材料を用いてなる高分子電解質膜。
  17.  請求項16に記載の高分子電解質膜を用いて構成される触媒層付電解質膜。
  18.  請求項16に記載の高分子電解質膜を用いて構成される膜電極複合体。
  19.  請求項16に記載の高分子電解質膜を用いて構成される固体高分子燃料電池。
  20.  請求項16に記載の高分子電解質膜を用いて構成される水電解式水素発生装置。
PCT/JP2023/032489 2022-09-13 2023-09-06 ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置 WO2024058020A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022145023 2022-09-13
JP2022-145023 2022-09-13

Publications (1)

Publication Number Publication Date
WO2024058020A1 true WO2024058020A1 (ja) 2024-03-21

Family

ID=90274834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/032489 WO2024058020A1 (ja) 2022-09-13 2023-09-06 ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置

Country Status (1)

Country Link
WO (1) WO2024058020A1 (ja)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109638A (ja) * 2005-09-16 2007-04-26 Sumitomo Chemical Co Ltd 高分子電解質、並びに、これを用いた高分子電解質膜、膜−電極接合体及び燃料電池
WO2013031675A1 (ja) * 2011-08-29 2013-03-07 東レ株式会社 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP2013079367A (ja) * 2011-09-20 2013-05-02 Toray Ind Inc 芳香族スルホン酸エステル誘導体、スルホン酸エステル基含有ポリマー、それを用いた高分子電解質材料、それを用いた高分子電解質成型体、触媒層付き電解質膜および固体高分子型燃料電池
JP7142796B1 (ja) * 2021-03-23 2022-09-27 東レ株式会社 ブロック共重合体、ならびにそれを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007109638A (ja) * 2005-09-16 2007-04-26 Sumitomo Chemical Co Ltd 高分子電解質、並びに、これを用いた高分子電解質膜、膜−電極接合体及び燃料電池
WO2013031675A1 (ja) * 2011-08-29 2013-03-07 東レ株式会社 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP2013079367A (ja) * 2011-09-20 2013-05-02 Toray Ind Inc 芳香族スルホン酸エステル誘導体、スルホン酸エステル基含有ポリマー、それを用いた高分子電解質材料、それを用いた高分子電解質成型体、触媒層付き電解質膜および固体高分子型燃料電池
JP7142796B1 (ja) * 2021-03-23 2022-09-27 東レ株式会社 ブロック共重合体、ならびにそれを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置

Similar Documents

Publication Publication Date Title
JP5858129B2 (ja) 高分子電解質成型体の製造方法
JP5278618B2 (ja) 芳香族スルホン酸誘導体、スルホン酸基含有ポリマー、ブロック共重合体、高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
KR101911982B1 (ko) 블록 공중합체 및 그의 제조 방법, 및 이를 사용한 고분자 전해질 재료, 고분자 전해질 성형체 및 고체 고분자형 연료 전지
JP5338990B2 (ja) 高分子電解質膜、それを用いた膜電極複合体および固体高分子型燃料電池
JP5845762B2 (ja) スルホン酸基含有ポリマー、スルホン酸基含有芳香族化合物、ならびにそれを用いた高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
JP7142796B1 (ja) ブロック共重合体、ならびにそれを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
WO2024058020A1 (ja) ブロック共重合体、それを用いた高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
JP2013076064A (ja) 芳香族スルホンイミド誘導体、スルホンイミド基含有ポリマー、それを用いた高分子電解質材料、高分子電解質成型体および固体高分子型燃料電池
WO2022201958A1 (ja) 高分子電解質膜、ブロック共重合体、高分子電解質材料、高分子電解質成型体、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
JP7276600B2 (ja) ブロック共重合体およびその製造方法、高分子電解質材料、高分子電解質成型体、高分子電解質膜、触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池ならびに水電解式水素発生装置
WO2022202122A1 (ja) 高分子電解質材料、それを用いた高分子電解質成型体、触媒層付電解質膜、膜電極接合体、固体高分子燃料電池および水電解式水素発生装置
JP2022167820A (ja) 高分子電解質膜、ならびにそれを用いた触媒層付電解質膜、膜電極複合体、固体高分子型燃料電池および水電解式水素発生装置
US20240182639A1 (en) Polyelectrolyte molded body, and polyelectrolyte membrane, electrolyte membrane with catalyst layer, membrane electrode assembly, solid polymer-type fuel cell, and water electrolysis-style hydrogen production device in which said polyelectrolyte molded body is used
JP2024033206A (ja) 電解質膜、膜電極接合体および膜電極接合体を備えた燃燃料電池の運転方法
CN116997595A (zh) 嵌段共聚物和其制造方法、高分子电解质材料、高分子电解质成型体、高分子电解质膜、带催化剂层的电解质膜、膜电极复合体、固体高分子型燃料电池以及水电解式氢气产生装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23865375

Country of ref document: EP

Kind code of ref document: A1