JP2022157884A - ロボットの制御方法、ロボットシステムおよびロボット制御プログラム - Google Patents

ロボットの制御方法、ロボットシステムおよびロボット制御プログラム Download PDF

Info

Publication number
JP2022157884A
JP2022157884A JP2021062362A JP2021062362A JP2022157884A JP 2022157884 A JP2022157884 A JP 2022157884A JP 2021062362 A JP2021062362 A JP 2021062362A JP 2021062362 A JP2021062362 A JP 2021062362A JP 2022157884 A JP2022157884 A JP 2022157884A
Authority
JP
Japan
Prior art keywords
robot
robot arm
arm
drive signal
height
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021062362A
Other languages
English (en)
Inventor
俊介 年光
Shunsuke Toshimitsu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2021062362A priority Critical patent/JP2022157884A/ja
Priority to CN202210319490.6A priority patent/CN115139294A/zh
Priority to US17/708,335 priority patent/US20220314451A1/en
Publication of JP2022157884A publication Critical patent/JP2022157884A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1692Calibration of manipulator
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1628Programme controls characterised by the control loop
    • B25J9/1633Programme controls characterised by the control loop compliant, force, torque control, e.g. combined with position control
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1602Programme controls characterised by the control system, structure, architecture
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/02Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type
    • B25J9/04Programme-controlled manipulators characterised by movement of the arms, e.g. cartesian coordinate type by rotating at least one arm, excluding the head movement itself, e.g. cylindrical coordinate type or polar coordinate type
    • B25J9/041Cylindrical coordinate type
    • B25J9/042Cylindrical coordinate type comprising an articulated arm
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/10Programme-controlled manipulators characterised by positioning means for manipulator elements
    • B25J9/12Programme-controlled manipulators characterised by positioning means for manipulator elements electric
    • B25J9/126Rotary actuators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1656Programme controls characterised by programming, planning systems for manipulators
    • B25J9/1664Programme controls characterised by programming, planning systems for manipulators characterised by motion, path, trajectory planning
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/30Nc systems
    • G05B2219/39Robotics, robotics to robotics hand
    • G05B2219/39195Control, avoid oscillation, vibration due to low rigidity

Abstract

【課題】簡単な方法で振動を抑制することができるロボットの制御方法、ロボットシステムおよびロボット制御プログラムを提供すること。【解決手段】基台と、前記基台に接続されるロボットアームと、前記ロボットアームを駆動するモーターを含む駆動部と、を有するロボットの制御方法であって、前記ロボットアームに設置されるエンドエフェクターの重量および前記エンドエフェクターの作業対象である対象物の重量に関する情報を含むウェイト情報を取得する第1ステップと、前記第1ステップで取得した前記ウェイト情報に基づいて、前記モーターを駆動する駆動信号から除去する周波数成分を決定する第2ステップと、前記第2ステップで決定した前記周波数成分を前記駆動信号から除去して補正駆動信号を生成する第3ステップと、を有することを特徴とするロボットの制御方法。【選択図】図3

Description

本発明は、ロボットの制御方法、ロボットシステムおよびロボット制御プログラムに関するものである。
近年、工場では人件費の高騰や人材不足により、各種ロボットやそのロボット周辺機器によって、人手で行われてきた作業の自動化が加速している。各種ロボットとしては、例えば特許文献1に示すようなロボットが知られている。
特許文献1のロボットでは、アームの振動を低減するために、以下のような動作を行う。まず、アームに設けられたエンドエフェクターを叩いて振動させて、その振動を測定する。次いで、測定結果に基づいてアームの固有振動数を算出する。そして、算出した固有振動数に基づいて、アームを動作するためのトルク制御信号から、特定の周波数成分を除去してトルク制御信号を補正する。
この補正したトルク制御信号でアームを駆動することにより、アームに生じる振動を低減することができる。
特開2001-293638号公報
しかしながら、特許文献1のロボットでは、固有振動数を特定するためにハンマーで叩く作業や振動を計測する計測装置の準備が必要となり手間であった。
本発明のロボットの制御方法は、基台と、前記基台に接続されるロボットアームと、前記ロボットアームを駆動するモーターを含む駆動部と、を有するロボットの制御方法であって、
前記ロボットアームの動作中、または、前記ロボットアームの停止中の、前記ロボットアームの先端の高さに関する高さ情報を取得する第1ステップと、
前記第1ステップで取得した前記高さ情報に基づいて、前記モーターを駆動する駆動信号から除去する周波数成分を決定する第2ステップと、
前記第2ステップで決定した前記周波数成分を前記駆動信号から除去して補正駆動信号を生成する第3ステップと、を有することを特徴とする。
本発明のロボットシステムは、基台と、
前記基台に接続されるロボットアームと、
前記ロボットアームを駆動するモーターを含む駆動部と、
前記ロボットアームの作動を制御する制御部と、を備え、
前記制御部は、
前記ロボットアームの動作中、または、前記ロボットアームの停止中の、前記ロボットアームの先端の高さに関する高さ情報を取得する取得部と、
前記取得部が取得した前記高さ情報に基づいて、前記駆動信号から除去する周波数成分を決定し、決定した前記周波数成分を前記駆動信号から除去して補正駆動信号を生成する補正信号生成部と、を有することを特徴とする。
本発明のロボット制御プログラムは、基台と、前記基台に接続されるロボットアームと、前記ロボットアームを駆動するモーターを含む駆動部と、を有するロボットを制御するための制御プログラムであって、
前記ロボットアームの動作中、または、前記ロボットアームの停止中の、前記ロボットアームの先端の高さに関する高さ情報を取得する第1ステップと、
前記第1ステップで取
得した前記高さ情報に基づいて、前記モーターを駆動する駆動信号から除去する周波数成分を決定する第2ステップと、
前記第2ステップで決定した前記周波数成分を前記駆動信号から除去して補正駆動信号を生成する第3ステップと、を実行するためのものであることを特徴とする。
本発明のロボットシステムの概略構成図である。 図1に示すロボットシステムのブロック図である。 図1に示す制御装置のブロック図である。 調整部が参照するテーブルの一例を示す図である。 調整部が参照するテーブルの一例を示す図である。 調整部が参照するテーブルの一例を示す図である。 調整部が参照するテーブルの一例を示す図である。 図1に示すロボットの、ロボットアームの重心とエンドエフェクターの重心との位置関係を示す側面図である。 図1に示すロボットの、ロボットアームの重心とエンドエフェクターの重心との位置関係を示す側面図である。 図1に示すロボットアームの全体形状を示す図である。 図1に示すロボットアームの全体形状を示す図である。 図1に示すロボットアームの動作経路を説明するための図である。 本発明のロボットの制御方法を説明するためのフローチャートである。
以下、本発明のロボットの制御方法、ロボットシステムおよびロボット制御プログラムを添付図面に示す好適な実施形態に基づいて詳細に説明する。
<第1実施形態>
図1は、本発明のロボットシステムの概略構成図である。図2は、図1に示すロボットシステムのブロック図である。図3は、図1に示す制御装置のブロック図である。図4~図7は、それぞれ、調整部が参照するテーブルの一例を示す図である。図8および図9は、それぞれ、図1に示すロボットの、ロボットアームの重心とエンドエフェクターの重心との位置関係を示す側面図である。図10および図11は、図1に示すロボットアームの全体形状を示す図である。図12は、図1に示すロボットアームの動作経路を説明するための図である。図13は、本発明のロボットの制御方法を説明するためのフローチャートである。
また、図1では、説明の便宜上、互いに直交する3軸として、x軸、y軸およびz軸を図示している。また、以下では、x軸に平行な方向を「x軸方向」とも言い、y軸に平行な方向を「y軸方向」とも言い、z軸に平行な方向を「z軸方向」とも言う。また、図1中のz軸方向、すなわち、上下方向を「鉛直方向」とし、x軸方向およびy軸方向、すなわち、左右方向を「水平方向」とする。また、各軸において、先端側を「+側」と言い、基端側を「-側」と言う。
図1および図2に示すロボットシステム100は、例えば、電子部品および電子機器等の作業対象である対象物(以下、「ワーク」と言う)の保持、搬送、組立ておよび検査等の作業で用いられる装置である。ロボットシステム100は、ロボット2と、ロボット2の作動を制御する制御装置8と、ロボット2に対して動作プログラムを教示する教示装置3と、力検出部5と、エンドエフェクター7とを備える。また、ロボット2、制御装置8および教示装置3のそれぞれは、有線または無線により通信可能とされ、その通信は、インターネットのようなネットワークを介してなされてもよい。
まず、ロボット2について説明する。
ロボット2は、図示の構成では、水平多関節ロボット、すなわち、スカラロボットである。ただし、この構成に限定されず、ロボット2は、垂直6軸ロボットのような多関節ロボットであってもよい。図1に示すように、ロボット2は、基台21と、基台21に接続されるロボットアーム20と、オペレーターからの所定の操作を受け付ける受付部4と、を有する。
基台21は、ロボットアーム20を支持する部分である。基台21には、後述する制御装置8が内蔵されている。また、基台21の任意の部分には、ロボット座標系の原点が設定されている。なお、図1に示すx軸、y軸およびz軸は、ロボット座標系の軸である。
ロボットアーム20は、第1アーム22と、第2アーム23と、作業ヘッドである第3アーム24と、を備えている。また、基台21と第1アーム22との連結部分、第1アーム22と第2アーム23との連結部分および第2アーム23と第3アーム24との連結部分を関節とも言う。
なお、ロボット2は、図示の構成に限定されず、アームの数は、1つまたは2つであってもよく、4つ以上であってもよい。
また、ロボット2は、第1アーム22を基台21に対して回転させる駆動部25と、第2アーム23を第1アーム22に対して回転させる駆動部26と、第3アーム24のシャフト241を第2アーム23に対して回転させるu駆動部27と、シャフト241を第2アーム23に対してz軸方向に移動させるz駆動部28と、を備えている。
図1および図2に示すように、駆動部25は、第1アーム22の筐体220内に内蔵されており、駆動力を発生するモーター251と、ブレーキ252と、モーター251の駆動力を減速する図示しない減速機と、モーター251または減速機の回転軸の回転角度を検出するエンコーダー253とを有している。
駆動部26は、第2アーム23の筐体230に内蔵されており、駆動力を発生するモーター261と、ブレーキ262と、モーター261の駆動力を減速する図示しない減速機と、モーター261または減速機の回転軸の回転角度を検出するエンコーダー263とを有している。
u駆動部27は、第2アーム23の筐体230に内蔵されており、駆動力を発生するモーター271と、ブレーキ272と、モーター271の駆動力を減速する図示しない減速機と、モーター271または減速機の回転軸の回転角度を検出するエンコーダー273とを有している。
z駆動部28は、第2アーム23の筐体230に内蔵されており、駆動力を発生するモーター281と、ブレーキ282と、モーター281の駆動力を減速する図示しない減速機と、モーター281または減速機の回転軸の回転角度を検出するエンコーダー283とを有している。
モーター251、モーター261、モーター271およびモーター281としては、例えば、ACサーボモーター、DCサーボモーター等のサーボモーターを用いることができる。また、減速機としては、例えば、遊星ギア型の減速機、波動歯車装置等を用いることができる。
ブレーキ252、ブレーキ262、ブレーキ272およびブレーキ282は、ロボットアーム20を減速させる機能を有する。具体的には、ブレーキ252は、第1アーム22の動作速度を減速させ、ブレーキ262は、第2アーム23の動作速度を減速させ、ブレーキ272は、第3アーム24のu軸方向の動作速度を減速させ、ブレーキ282は、第3アーム24のz軸方向の動作速度を減速させる。
制御装置8が、通電条件を変更することによりブレーキ252、ブレーキ262、ブレーキ272およびブレーキ282が作動してロボットアーム20の各部位をそれぞれ減速させる。ブレーキ252、ブレーキ262、ブレーキ272およびブレーキ282は、制御装置8によって、モーター251、モーター261、モーター271およびモーター281とは独立して制御される。
ブレーキ252、ブレーキ262、ブレーキ272およびブレーキ282としては、電磁ブレーキ、機械式ブレーキ、油圧式ブレーキ、空圧式ブレーキ等が挙げられる。
また、図2に示すように、エンコーダー253、エンコーダー263、エンコーダー273およびエンコーダー283は、ロボットアーム20の位置を検出する位置検出部である。エンコーダー253、エンコーダー263、エンコーダー273およびエンコーダー283は、制御装置8とそれぞれ電気的に接続されている。エンコーダー253、エンコーダー263、エンコーダー273およびエンコーダー283は、検出した回転角度に関する情報を制御装置8に電気信号として送信する。これにより、制御装置8は、受信した回転角度に関する情報に基づいて、ロボットアーム20の作動を制御することができる。
このような駆動部25、駆動部26、u駆動部27およびz駆動部28は、それぞれ、対応する図示しないモータードライバーに接続されており、モータードライバーを介して制御装置8により制御される。
基台21は、例えば、図示しない床面にボルト等によって固定されている。基台21の上端部には第1アーム22が連結されている。第1アーム22は、基台21に対して鉛直方向に沿う第1軸O1回りに回転可能となっている。第1アーム22を回転させる駆動部25が駆動すると、第1アーム22が基台21に対して第1軸O1回りに水平面内で回転する。また、エンコーダー253により、基台21に対する第1アーム22の回転量が検出できるようになっている。
また、第1アーム22の先端部には、第2アーム23が連結されている。第2アーム23は、第1アーム22に対して鉛直方向に沿う第2軸O2回りに回転可能となっている。第1軸O1の軸方向と第2軸O2の軸方向とは同一である。すなわち、第2軸O2は、第1軸O1と平行である。第2アーム23を回転させる駆動部26が駆動すると、第2アーム23が第1アーム22に対して第2軸O2回りに水平面内で回転する。また、エンコーダー263により、第1アーム22に対する第2アーム23の駆動量、具体的には、回転量が検出できるようになっている。
また、第2アーム23の先端部には、第3アーム24が設置、支持されている。第3アーム24は、シャフト241を有している。シャフト241は、第2アーム23に対して、鉛直方向に沿う第3軸O3回りに回転可能であり、かつ、上下方向に移動可能となっている。このシャフト241は、ロボットアーム20の最も先端のアームである。
シャフト241を回転させるu駆動部27が駆動すると、シャフト241は、z軸回りに回転する。また、エンコーダー273により、第2アーム23に対するシャフト241の回転量が検出できるようになっている。
また、シャフト241をz軸方向に移動させるz駆動部28が駆動すると、シャフト241は、上下方向、すなわち、z軸方向に移動する。また、エンコーダー283により、第2アーム23に対するシャフト241のz軸方向の移動量が検出できるようになっている。
また、ロボット2では、シャフト241の先端を制御点TCPとし、この制御点TCPを原点とした先端座標系が設定されている。この先端座標系は、前述したロボット座標系とキャリブレーションが済んでおり、先端座標系での位置をロボット座標系に変換することができる。これにより、制御点TCPの位置を、ロボット座標系で特定することができる。
また、シャフト241の下端部には、各種のエンドエフェクター7が着脱可能に連結される。エンドエフェクター7は、図示の構成では、ワークを把持するハンドである。ただし、この構成に限定されず、例えば、吸引、吸着によりワークを把持するハンドであってもよく、ドライバー、レンチ等の工具であってもよく、スプレー等の塗布具であってもよい。
なお、エンドエフェクター7は、本実施形態では、ロボット2の構成要素になっていないが、エンドエフェクター7の一部または全部がロボット2の構成要素になっていてもよい。
図1に示すように、力検出部5は、ロボット2に加わる力、すなわち、ロボットアーム20および基台21に加わる力を検出するものである。力検出部5は、本実施形態では、基台21の下方、すなわち、-z軸側に設けられており、基台21を下方から支持している。
なお、力検出部5の設置位置は、上記に限定されず、例えば、シャフト241の下端部や、各関節部分であってもよい。
力検出部5は、例えば、水晶等の圧電体で構成され、外力を受けると電荷を出力する複数の素子を有する構成とすることができる。また、制御装置8は、この電荷量に応じて、ロボットアーム20が受けた外力に関する値に変換することができる。また、このような圧電体であると、設置する向きに応じて、外力を受けた際に電荷を発生させることができる向きを調整可能である。
また、受付部4は、オペレーターの所定の操作を受け付ける部位である。受付部4は、図示はしないが教示ボタンを有している。この教示ボタンは、直接教示を行う場合に用いることができる。教示ボタンは、メカニカルボタンであってもよく、タッチ式のエレクトリックボタンであってもよい。また、教示ボタンの周囲には、機能が異なる他のボタンが設置されていてもよい。
次に、教示装置3について説明する。
図2に示すように、教示装置3は、ロボット2に対して動作プログラムを指定する機能を有する。具体的には、教示装置3は、ロボットアーム20の位置、姿勢を制御装置8に入力する。
図2に示すように、教示装置3は、CPU(Central Processing Unit)31と、記憶部32と、通信部33と、表示部34とを有する。教示装置3としては、特に限定されず、例えば、タブレット、パソコン、スマートフォン等が挙げられる。
CPU31は、記憶部32に記憶されている各種プログラム等を読み出し、実行する。CPU31で生成された信号は、通信部33を介してロボット2の制御装置8に送信される。これにより、ロボットアーム20が所定の作業を所定の条件で実行することができる。
記憶部32は、CPU31が実行可能な各種プログラム等を保存する。記憶部32としては、例えば、RAM(Random Access Memory)等の揮発性メモリー、ROM(Read Only Memory)等の不揮発性メモリー、着脱式の外部記憶装置等が挙げられる。
通信部33は、例えば有線LAN(Local Area Network)、無線LAN等の外部インターフェースを用いて制御装置8との間で信号の送受信を行う。
表示部34は、各種ディスプレイで構成されている。本実施形態では、一例としてタッチパネル式、すなわち、表示部34が表示機能と入力操作機能とを備える構成として説明する。
ただし、このような構成に限定されず、別途、入力操作部を備える構成であってもよい。この場合、入力操作部は、例えば、マウス、キーボード等が挙げられる。また、タッチパネルと、マウス、キーボード等を併用する構成であってもよい。
次に、制御装置8について説明する。
図1に示すように、制御装置8は、本実施形態では、基台21に内蔵されている。また、図2に示すように、制御装置8は、ロボット2の駆動を制御する機能を有し、前述したロボット2の各部と電気的に接続されている。なお、これに限定されず、制御装置8はロボット2と別体で構成されていてもよい。
ここで、ロボットアーム20が作業中に一時停止したり、作業を終えて停止したりした際、ロボットアーム20には、振動が発生する。この振動は、作業の精度、作業時間に影響するため、極力低減することが好ましい。より具体的には、振動が収まるまでの時間は、極力短いことが好ましい。なお、以下では、振動が収まるまでの時間を短くすることを、「振動を抑制する」と言う。
振動を抑制するために、ロボットシステム100では、モーター251、モーター261、モーター271およびモーター281を駆動する駆動信号から、特定の周波数成分を除去して補正駆動信号を生成する。
振動の強弱は、エンドエフェクター7の重量や、停止しているときのロボットアーム20の姿勢や、制御点TCPの位置、これまで辿ってきた経路、その経路での速度、加速度等の諸条件により決まる。
駆動信号からどの周波数成分を除去して補正駆動信号を生成するかを決定するためには、これらの条件を加味して決定することが好ましい。これらのうち、ロボットアーム20の動作中、または、ロボットアーム20の停止中の、ロボットアーム20の先端の高さに関する高さ情報は、特に振動抑制に影響を及ぼしやすいため、本発明では、高さ情報に基づいて補正駆動信号を生成する。ロボットアーム20の先端の高さとは、本実施形態では、ロボットアーム20に設定された制御点TCPの、ロボット座標系におけるz軸座標のことを言う。以下、詳細に説明する。
図3に示すように、制御装置8は、本発明のロボットの制御方法を実行するものであり、モーション処理部8Aと、サーボ処理部8Bと、記憶部8Cと、通信部8Dと、を有する。モーション処理部8Aと、サーボ処理部8Bとは、それぞれ、少なくとも1つのプロセッサーで構成される。
記憶部8Cは、モーション処理部8Aおよびサーボ処理部8Bが実行可能な各種プログラムや、本発明のロボット制御プログラム等の各種プログラムや、後述するテーブル等が記憶されている。記憶部8Cとしては、例えば、RAM(Random Access Memory)等の揮発性メモリー、ROM(Read Only Memory)等の不揮発性メモリー、着脱式の外部記憶装置等が挙げられる。通信部8Dは、例えば有線LAN(Local Area Network)、無線LAN等の外部インターフェースを用いてロボット2の各部および教示装置3との間でそれぞれ信号の送受信を行う。
モーション処理部8Aは、位置指令生成部81と、調整部82と、を有する。
位置指令生成部81は、ユーザーが入力した動作プログラムに基づいて、エンドエフェクター7が位置すべき目標位置、目標位置までの速度、加速度を表す位置指令信号を生成する。なお、ユーザーは、教示装置3等の入力装置を用いて動作プログラムを入力することができる。
調整部82は、ユーザーから入力された情報に基づいて、フィルター処理部85で除去する周波数成分を決定する。このことに関しては、後述する。
サーボ処理部8Bは、位置制御部83と、速度制御部84と、フィルター処理部85と、電流制御部86と、を有する。
位置制御部83は、位置指令生成部81が生成した目標位置、目標位置までの速度、加速度の情報を受信し、これらの情報と、力検出部5の検出結果と、に基づいて、各モーター251、モーター261、モーター271およびモーター281の速度制御信号を生成し、出力する。
速度制御部84は、位置制御部83から速度制御信号を受信する。また、速度制御部84は、位置制御部83から受信した速度制御信号と、エンコーダー253、エンコーダー263、エンコーダー273およびエンコーダー283の検出結果と、に基づいて、トルク制御信号(以下、「駆動信号」とも言う)を生成し、フィルター処理部85に出力する。
フィルター処理部85は、帯域除去フィルターを用いて、速度制御部84から受信したトルク制御信号から特定の周波数成分を除去することにより、新たなトルク制御信号(以下、「補正駆動信号」とも言う)を生成し、電流制御部86に出力する。本明細書中の「除去」とは、特定の周波数成分を0にすることはもちろん、低減することも含む。フィルター処理部85は、調整部82が出力した信号に基づいて、帯域除去フィルターで用いる係数、すなわち、帯域除去フィルターを用いて除去する周波数成分を決定する。
電流制御部86は、フィルター処理部85からトルク制御信号を受信するとともに、図示しないサーボアンプからモーター251、モーター261、モーター271およびモーター281に供給する電流の電流量を表すフィードバック信号を受信する。電流制御部86は、フィルター処理部85から受信したトルク制御信号と、図示しないサーボアンプから受信したフィードバック信号とに基づいて、モーター251、モーター261、モーター271およびモーター281に供給する電流の電流量を決定し、モーター251、モーター261、モーター271およびモーター281を駆動する。
ここで、ロボットシステム100では、ユーザーが、高さ情報を入力可能となっている。例えば、ユーザーが、教示装置4を用いて、動作経路に関する情報を入力することにより、制御点TCPが通過する軌道に関する情報を取得することができる。なお、ここでは、高さ情報は、制御点TCPが最終目標位置に位置しているときの高さとして説明する。
停止した際の制御点TCPの高さが、例えば、図8に示すような位置のときと、図9に示すような位置のときとでは、振動が収まるまでの時間が異なる。一般的には、制御点TCPの高さが低ければ低いほど、振動が収まるまでの時間が長くなる傾向を示す。図示の構成では、高さC2のときの方が、高さC1のときよりも振動が収まるまでの時間が長くなる傾向を示す。
したがって、ロボットアーム20の所定の姿勢における制御点TCPの高さ、すなわち、z軸方向の位置を加味して補正駆動信号を生成することにより振動を抑制することができる。具体的には、調整部82は、高さ情報に基づいて、モーター251、モーター261、モーター271およびモーター281を駆動する駆動信号から除去する周波数成分を決定する。具体的には、調整部82は、図4に示すテーブルT1を参照して除去する周波数成分を決定する。テーブルT1は、高さ情報と周波数成分との関係を示すものであり、予め実験的に求められたものである。なお、テーブルT1に代えて、高さ情報と周波数成分との関係を示す検量線に基づいて除去する周波数成分を決定する構成であってもよい。
図4に示すように、例えば、高さ情報がC1であった場合、除去する周波数成分がF1である。そして、調整部82は、F1に対応する信号をフィルター処理部85に出力する。そして、上述したような処理を経て、補正駆動信号を得ることができる。このような補正駆動信号でモーター251、モーター261、モーター271およびモーター281を駆動することにより、除去した周波数成分でロボットアーム20やエンドエフェクター7等の共振が抑制され、振動が収まるまでの時間を短くすることができる。
次に、ロボットアーム20が、図12に示すような動作を行う場合について説明する。なお、図12では、制御点TCPの軌道を図示している。図12に示す動作は、上昇動作を行い、水平動作を行い、下降動作を行う動作である。上昇動作は、上昇動作開始位置P1から上昇動作終了位置P2まで行われる。水平動作は、上昇動作終了位置P2から下降動作開始位置P3まで行われる。下降動作は、下降動作開始位置P3から下降動作終了位置P4まで行われる。
上記では、下降動作終了位置P4における制御点TCPの高さに基づいて、除去する周波数成分を決定する構成について説明したが、諸条件によっては、水平方向の振動を抑制するために、上昇動作開始位置P1または下降動作開始位置P3における制御点TCPの高さに基づいて除去する周波数成分を決定した方がよい場合がある。具体的には、下記条件1、下記条件2および下記条件3のうちのいずれも満足しない場合、上昇動作開始位置P1における制御点TCPの高さに基づいて、除去する周波数成分を決定する。
下記条件1、下記条件2および下記条件3のうちの少なくとも1つを満足する場合、下降動作開始位置P3における制御点TCPの高さに基づいて除去する周波数成分を決定し、下記条件1、下記条件2および下記条件3のうちのいずれも満足しない場合、動作開始位置P1における制御点TCPの高さに基づいて除去する周波数成分を決定する。
条件1:下降動作開始位置P3と、下降動作を終了する下降動作終了位置P4との距離が所定距離以上離れている。
条件2:下降動作開始位置P3の高さが所定高さ以上である。
条件3:下降動作を終了する下降動作終了位置P4の高さが所定高さ以上である。
条件1は、下降動作を行う距離に関する規定である。下降動作を行う距離が比較的長い場合には、下降動作開始位置P3における制御点TCPの高さに基づいて除去する周波数成分を決定することが好ましい。これにより、水平成分の振動を抑制することができる駆動信号を生成することができる。
条件2は、下降動作開始位置P3の高さに関する規定である。下降動作開始位置P3の高さが比較的高い場合には、下降動作開始位置P3における制御点TCPの高さに基づいて除去する周波数成分を決定することが好ましい。これにより、水平成分の振動を抑制することができる駆動信号を生成することができる。
条件3は、下降動作終了位置P4の高さに関する規定である。下降動作終了位置P4の高さが比較的高い場合には、下降動作開始位置P3における制御点TCPの高さに基づいて除去する周波数成分を決定することが好ましい。これにより、水平成分の振動を抑制することができる駆動信号を生成することができる。
このように、動作の条件に応じて除去する周波数成分を決定する基準となる位置を選択することにより、より効果的に振動を抑制することができる。なお、「選択」とは、制御装置3自身が判断基準に基づいて選択する場合と、ユーザーが選択して入力した指示を受け付ける場合との双方を含む。
ここで、除去する周波数成分をF0としたとき、F0は、以下の式(1)で表すことができる。
F0=K1×W×Ew×J+K2×Ez×Z×J+K0×W×Z…(1)
式(1)中のK1、K2、K0は、それぞれ、ロボット固有の係数であり、実測値から算出することができる。また、式(1)中のJは、第2アーム23の第1アーム22に対する回転角度を示している。また、式(1)中のWは、ウェイト情報を示している。また、式(1)中のZは、制御点TCPのz軸方向の位置を示している。また、式(1)中のEwは、エンドエフェクター7とワークとの合計重量を示している。また、式(1)中のEzは、エンドエフェクター7とワークとを併せた重心位置を示している。
このようなことから、高さ情報に加えて、さらに、これらのうちの少なくとも1つを考慮して補正駆動信号を生成することが好ましい。
ロボットシステム100では、ユーザーがエンドエフェクター7の重量およびワークの重量に関する情報を、教示装置3を介して入力可能となっている。例えば、ユーザーがエンドエフェクター7の重量およびワークの重量を直接入力するように構成してもよいし、エンドエフェクター7の種類を入力することによって、調整部82が、入力結果と、エンドエフェクター7の重量との関係を示すテーブルに基づいて、エンドエフェクター7の重量を特定するように構成してもよい。また、ワークの重量についても同様にテーブルを用いて特定する構成にしてもよい。そして、調整部82は、エンドエフェクター7の重量およびワークの重量に関する情報(以下、「ウェイト情報」と言う)を加味して駆動信号から除去する周波数成分を決定する。
例えば、エンドエフェクター7の重量およびワークの重量が比較的重いW1である場合と、エンドエフェクター7の重量およびワークの重量が比較的重いW2である場合とでは、振動が収まるまでの時間が異なる。一般的には、エンドエフェクター7の重量およびワークの重量が重ければ重いほど、振動が収まるまでの時間が長くなる傾向を示す。このようなことを考慮して、図5に示すように、上述したようなテーブルT1を、ウェイト情報ごとに用意しておき、ウェイト情報に応じてこれらのいずれかを参照して補正駆動信号を生成することにより、さらに振動抑制の精度の高い補正駆動信号を生成することができる。
なお、エンドエフェクター7がワークを把持しない構成である場合、ワークの重量を0とし、ウェイト情報は、エンドエフェクター7の重量のみとなる。
また、ロボットアーム20の所定の姿勢における重心G1と、エンドエフェクター7の重心G2との位置関係を加味して補正駆動信号を生成することが好ましい。本実施形態での所定の姿勢とは、制御点TCPが目標位置で停止または一時停止している姿勢のことを言う。停止した際の重心G1と重心G2との位置関係が、図8に示すような位置関係A1のときと、図9に示すような位置関係A2のときとでは、振動が収まるまでの時間が異なる。これは、重心G1と重心G2との距離や、重心G1と重心G2とがどの方向にずれているかによって、ロボット2全体の固有振動特性が変わってくるからである。
このようなことから、図6に示すように、上述したようなテーブルT1を、重心G1と重心G2との位置関係ごとに用意しておき、位置関係に応じてこれらのいずれかを参照して補正駆動信号を生成することにより、さらに振動抑制の精度の高い補正駆動信号を生成することができる。
また、ロボットアーム20の所定の姿勢におけるロボットアーム20の全体形状を加味して補正駆動信号を生成することが好ましい。ロボットアーム20の全体形状は、モーター251、モーター261、モーター271およびモーター281の回転位置に基づいて決定する。特に、スカラロボットにおいては、モーター261の回転角度、すなわち、第1アーム22と第2アーム23とのなす角度が振動特性に対する影響が大きい。なお、ロボットアーム20の全体形状に関する情報は、ユーザーが入力した動作経路の情報に含まれている。このため、ユーザーが動作経路に関する情報を入力すると、制御装置8は、目標位置で停止または一時停止している姿勢を把握することができる。
停止した際のロボットアーム20の全体形状が、図10に示すような形状B1のときと、図11に示すような形状B2のときとでは、振動が収まるまでの時間が異なる。これは、主として、制御点TCPの位置とロボットアーム20の根元の距離に応じてロボット2全体の固有振動特性が変わってくるからである。
このようなことから、図7に示すように、上述したようなテーブルT1を、ロボットアーム20の全体形状ごと、特に、第1アーム22と第2アーム23とのなす角度ごとに用意しておき、これらのいずれかを参照して補正駆動信号を生成することにより、さらに振動抑制の精度の高い補正駆動信号を生成することができる。特に、このような制御は、例えば6軸ロボットのような垂直多関節ロボットに適応した場合、有効である。
なお、これらの要素を組み合わせて補正駆動信号を生成してもよい。また、各要素の関係を示す、多次元テーブルを用意しておいてもよい。
次に、本発明のロボットの制御方法の一例について、図13に示すフローチャートを参照しつつ説明する。
まず、ステップS101において、高さ情報を取得する。本ステップは、前述したように、ユーザーが教示装置3を用いて高さ情報等の各種情報を入力し、その情報を制御装置8が取得することにより行われる。このステップS101が第1ステップである。
次いで、ステップS102において、ステップS101で取得した高さ情報等の各種情報に基づいて、モーター251、モーター261、モーター271およびモーター281を駆動する駆動信号から除去する周波数成分を決定する。本ステップは、調整部82により実行される。また、本ステップは、前述したように、ステップS101において入力された情報に応じて、適宜テーブルが選択され、選択したテーブルを参照することにより実行される。このステップS102が、第2ステップである。
次いで、ステップS103において、ステップS102で決定した周波数成分を駆動信号から除去して補正駆動信号を生成する。本ステップは、前述したように、フィルター処理部85により実行される。このステップS103が、第3ステップである。
次いで、ステップS104において、ステップS103で生成した補正駆動信号に基づいてモーター251、モーター261、モーター271およびモーター281を駆動する。これにより、停止、または、一時停止時した際の振動が抑制され、作業を正確かつ迅速に行うことができる。このステップS104が、第4ステップである。
以上説明したように、本発明のロボットの制御方法は、基台21と、基台21に接続されるロボットアーム20と、ロボットアーム20を駆動するモーター251、モーター261、モーター271およびモーター281を含む駆動部25、駆動部26、u駆動部27およびz駆動部28と、を有するロボット2の制御方法である。また、本発明のロボットの制御方法は、ロボットアーム20の動作中、または、ロボットアーム20の停止中の、ロボットアーム20の先端、すなわち、制御点TCPの高さに関する高さ情報を取得する第1ステップと、第1ステップで取得した高さ情報に基づいて、モーター251、モーター261、モーター271およびモーター281を駆動する駆動信号から除去する周波数成分を決定する第2ステップと、第2ステップで決定した周波数成分を駆動信号から除去して補正駆動信号を生成する第3ステップと、を有する。このような補正駆動信号でロボット2を駆動することにより、停止または一時停止した際の振動を抑制することができ、作業を正確かつ迅速に行うことができる。特に、従来のようにハンマーでロボットアーム20を叩いて振動特性に関する情報を取得するという工程を省略することができ、簡単な方法で振動を抑制することができる。
なお、本実施形態では、教示装置3以外の入力装置を用いて各種情報を入力する構成であってもよい。
また、第2ステップでは、周波数成分と高さ情報との関係を示す検量線またはテーブルに基づいて周波数成分を決定する。これにより、簡単な処理で、除去する周波数成分を決定することができる。
また、ロボットアーム20は、ロボットアーム20の先端が上昇動作開始位置P1から上昇する上昇動作と、上昇動作後に、ロボットアーム20の先端が下降動作開始位置P3から下降する下降動作と、を実行するものである。そして、第2ステップの周波数成分の決定は、動作開始位置P1および下降動作開始位置P3のいずれかの位置におけるロボットアームの先端、すなわち、制御点TCPの高さに基づいて行われる。これにより、諸条件に応じて、水平成分の振動を抑制することができる駆動信号を生成することができる。
また、第2ステップの周波数成分の決定は、下記条件1、下記条件2および下記条件3のうちの少なくとも1つを満足する場合、下降動作開始位置P3におけるロボットアーム20の先端、すなわち、制御点TCPの高さに基づいて行われ、下記条件1、下記条件2および下記条件3のうちのいずれも満足しない場合、上昇動作開始位置P1における制御点TCPの高さに基づいて行われる。条件1:下降動作開始位置と、下降動作を終了する下降動作終了位置との距離が所定距離以上離れている。条件2:下降動作開始位置の高さが所定高さ以上である。条件3:下降動作を終了する下降動作終了位置の高さが所定高さ以上である。これにより、水平成分の振動を抑制することができる駆動信号を生成することができる。
また、第2ステップの前記周波数成分の決定は、さらに、ロボットアーム20に設置されるエンドエフェクター7の重量およびエンドエフェクター7の作業対象である対象物の重量に関する情報を含むウェイト情報に基づいて行われる。これにより、さらに振動抑制の精度の高い補正駆動信号を生成することができる。
また、ロボット2は、スカラロボットであり、ロボットアーム20は、基台21に接続される第1アーム22と、第1アーム22に接続される第2アーム23と、第2アーム23に接続される第3アーム24と、を有している。そして、第2ステップの周波数成分の決定は、さらに、ロボットアーム20の所定の姿勢における第1アーム22および第2アーム23のなす角度に基づいて行われる。これにより、さらに振動抑制の精度の高い補正駆動信号を生成することができる。
また、第3ステップでは、帯域除去フィルターを用いて、第2ステップで決定した周波数成分を駆動信号から除去して補正駆動信号を生成する。これにより、簡単な処理で補正駆動信号を生成することができる。
また、本発明のロボットの制御方法は、補正駆動信号に基づいて駆動部25、駆動部26、u駆動部27およびz駆動部28を駆動する第4ステップを有する。これにより、停止または一時停止した際の振動を抑制することができ、作業を正確かつ迅速に行うことができる。
また、本発明のロボット制御プログラムは、ロボットアーム20と、ロボットアーム20を駆動するモーター251、モーター261、モーター271およびモーター281を含む駆動部25、駆動部26、u駆動部27およびz駆動部28と、を有するロボット2を制御するための制御プログラムである。また、本発明のロボット制御プログラムは、ロボットアーム20の動作中、または、ロボットアーム20の停止中の、ロボットアーム20の先端、すなわち、制御点TCPの高さに関する高さ情報を取得する第1ステップと、第1ステップで取得した高さ情報に基づいて、モーター251、モーター261、モーター271およびモーター281を駆動する駆動信号から除去する周波数成分を決定する第2ステップと、第2ステップで決定した周波数成分を駆動信号から除去して補正駆動信号を生成する第3ステップと、を実行するためのものである。このようなロボット制御プログラムを実行して得られた補正駆動信号でロボット2を駆動することにより、停止または一時停止した際の振動を抑制することができ、作業を正確かつ迅速に行うことができる。特に、従来のようにハンマーでロボットアーム20を叩いて振動特性に関する情報を取得するという工程を省略することができ、簡単な方法で振動を抑制することができる。
なお、本発明のロボット制御プログラムは、記憶部32に記憶されたものであってもよいし、、記憶部8Cに記憶されたものであってもよいし、例えばCD-ROM等の記録媒体に格納されていてもよく、ネットワーク等を介して接続可能な記憶装置に記憶されたものであってもよい。
また、本発明のロボットシステムは、ロボットアーム20と、ロボットアーム20を駆動するモーター251、モーター261、モーター271およびモーター281を含む駆動部25、駆動部26、u駆動部27およびz駆動部28と、ロボットアーム20の作動を制御する制御部である制御装置8と、を備える。また、制御装置8は、ロボットアーム20の動作中、または、ロボットアーム20の停止中の、ロボットアーム20の先端、すなわち、制御点TCPの高さに関する高さ情報を取得する取得部である通信部8Dと、通信部8Dが取得した高さ情報に基づいて、駆動信号から除去する周波数成分を決定し、決定した周波数成分を駆動信号から除去して補正駆動信号を生成する補正信号生成部である調整部82およびフィルター処理部85と、を有する。このような補正駆動信号でロボット2を駆動することにより、停止または一時停止した際の振動を抑制することができ、作業を正確かつ迅速に行うことができる。特に、従来のようにハンマーでロボットアーム20を叩いて振動特性に関する情報を取得するという工程を省略することができ、簡単な方法で振動を抑制することができる。
以上、本発明のロボットの制御方法、ロボットシステムおよびロボット制御プログラムを図示の実施形態に基づいて説明したが、本発明は、これに限定されるものではなく、各部の構成は、同様の機能を有する任意の構成のものに置換することができる。また、ロボットの制御方法、ロボットシステムおよびロボット制御プログラムには、それぞれ他の任意の構成物、工程が付加されていてもよい。
また、前記実施形態では、制御装置8が補正駆動信号を生成する構成について説明したが、本発明ではこれに限定されず、教示装置3が補正駆動信号を生成する構成であってもよい。すなわち、「制御部」は、制御装置8であるととらえてもよく、教示装置3に内蔵されている制御部として捉えてもよい。
2…ロボット、3…教示装置、4…受付部、5…力検出部、7…エンドエフェクター、8…制御装置、8A…モーション処理部、8B…サーボ処理部、8C…記憶部、8D…通信部、20…ロボットアーム、21…基台、22…第1アーム、23…第2アーム、24…第3アーム、25…駆動部、26…駆動部、27…u駆動部、28…z駆動部、31…CPU、32…記憶部、33…通信部、34…表示部、81…位置指令生成部、82…調整部、83…位置制御部、84…速度制御部、85…フィルター処理部、86…電流制御部、100…ロボットシステム、220…筐体、230…筐体、241…シャフト、251…モーター、252…ブレーキ、253…エンコーダー、261…モーター、262…ブレーキ、263…エンコーダー、271…モーター、272…ブレーキ、273…エンコーダー、281…モーター、282…ブレーキ、283…エンコーダー、A1…位置関係、A2…位置関係、B1…形状、B2…形状、C1…高さ、C2…高さ、G1…重心、G2…重心、O1…第1軸、O2…第2軸、O3…第3軸、T1…テーブル、TCP…制御点、P1…位置、P2…位置、P3…位置、P4…位置

Claims (10)

  1. 基台と、前記基台に接続されるロボットアームと、前記ロボットアームを駆動するモーターを含む駆動部と、を有するロボットの制御方法であって、
    前記ロボットアームの動作中、または、前記ロボットアームの停止中の、前記ロボットアームの先端の高さに関する高さ情報を取得する第1ステップと、
    前記第1ステップで取得した前記高さ情報に基づいて、前記モーターを駆動する駆動信号から除去する周波数成分を決定する第2ステップと、
    前記第2ステップで決定した前記周波数成分を前記駆動信号から除去して補正駆動信号を生成する第3ステップと、を有することを特徴とするロボットの制御方法。
  2. 前記第2ステップでは、前記周波数成分と前記高さ情報との関係を示す検量線またはテーブルに基づいて前記周波数成分を決定する請求項1に記載のロボットの制御方法。
  3. 前記ロボットアームは、前記ロボットアームの先端が動作開始位置から上昇する上昇動作と、前記上昇動作後に、前記ロボットアームの先端が下降動作開始位置から下降する下降動作と、を実行するものであり、
    前記第2ステップの前記周波数成分の決定は、前記動作開始位置および前記下降動作開始位置のいずれかを選択し、選択した位置における前記ロボットアームの先端の高さに基づいて行われる請求項1または2に記載のロボットの制御方法。
  4. 前記第2ステップでは、下記条件1、下記条件2および下記条件3のうちの少なくとも1つを満足する場合、前記下降動作開始位置における前記ロボットアームの先端の高さに基づいて、前記周波数成分を決定し、下記条件1、条件2および下記条件3のうちのいずれも満足しない場合、前記動作開始位置における前記ロボットアームの先端の高さに基づいて、前記周波数成分を決定する請求項3に記載のロボットの制御方法。
    条件1:前記下降動作開始位置と、前記下降動作を終了する下降動作終了位置との距離が所定距離以上離れている。
    条件2:前記下降動作開始位置の高さが所定の高さ以上である。
    条件3:前記下降動作終了位置の高さが所定の高さ以上である。
  5. 前記第2ステップの前記周波数成分の決定は、さらに、前記ロボットアームに設置されるエンドエフェクターの重量および前記エンドエフェクターの作業対象である対象物の重量に関する情報を含むウェイト情報に基づいて行われる請求項1ないし4のいずれか1項に記載のロボットの制御方法。
  6. 前記ロボットは、スカラロボットであり、
    前記ロボットアームは、第1アームと、前記第1アームに接続される第2アームと、前記第2アームに接続される第3アームと、を有しており、
    前記第2ステップの前記周波数成分の決定は、さらに、前記ロボットアームの所定の姿勢における前記第1アームおよび前記第2アームのなす角度に基づいて行われる請求項1ないし5のいずれか1項に記載のロボットの制御方法。
  7. 前記第3ステップでは、帯域除去フィルターを用いて、前記第2ステップで決定した前記周波数成分を前記駆動信号から除去して前記補正駆動信号を生成する請求項1ないし6のいずれか1項に記載のロボットの制御方法。
  8. 前記補正駆動信号に基づいて前記駆動部を駆動する第4ステップを有する請求項1ないし7のいずれか1項に記載のロボットの制御方法。
  9. ロボットアームと、
    前記ロボットアームを駆動するモーターを含む駆動部と、
    前記ロボットアームの作動を制御する制御部と、を備え、
    前記制御部は、
    前記ロボットアームの動作中、または、前記ロボットアームの停止中の、前記ロボットアームの先端の高さに関する高さ情報を取得する取得部と、
    前記取得部が取得した前記高さ情報に基づいて、前記駆動信号から除去する周波数成分を決定し、決定した前記周波数成分を前記駆動信号から除去して補正駆動信号を生成する補正信号生成部と、を有することを特徴とするロボットシステム。
  10. ロボットアームと、前記ロボットアームを駆動するモーターを含む駆動部と、を有するロボットを制御するための制御プログラムであって、
    前記ロボットアームの動作中、または、前記ロボットアームの停止中の、前記ロボットアームの先端の高さに関する高さ情報を取得する第1ステップと、
    前記第1ステップで取得した前記高さ情報に基づいて、前記モーターを駆動する駆動信号から除去する周波数成分を決定する第2ステップと、
    前記第2ステップで決定した前記周波数成分を前記駆動信号から除去して補正駆動信号を生成する第3ステップと、を実行するためのものであることを特徴とするロボット制御プログラム。
JP2021062362A 2021-03-31 2021-03-31 ロボットの制御方法、ロボットシステムおよびロボット制御プログラム Pending JP2022157884A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021062362A JP2022157884A (ja) 2021-03-31 2021-03-31 ロボットの制御方法、ロボットシステムおよびロボット制御プログラム
CN202210319490.6A CN115139294A (zh) 2021-03-31 2022-03-29 机器人的控制方法、机器人系统以及存储介质
US17/708,335 US20220314451A1 (en) 2021-03-31 2022-03-30 Method For Controlling Robot, Robot System, And Storage Medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021062362A JP2022157884A (ja) 2021-03-31 2021-03-31 ロボットの制御方法、ロボットシステムおよびロボット制御プログラム

Publications (1)

Publication Number Publication Date
JP2022157884A true JP2022157884A (ja) 2022-10-14

Family

ID=83406230

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021062362A Pending JP2022157884A (ja) 2021-03-31 2021-03-31 ロボットの制御方法、ロボットシステムおよびロボット制御プログラム

Country Status (3)

Country Link
US (1) US20220314451A1 (ja)
JP (1) JP2022157884A (ja)
CN (1) CN115139294A (ja)

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5645564B2 (ja) * 2010-09-14 2014-12-24 キヤノン株式会社 センサ装置及びロボット装置
JP5682314B2 (ja) * 2011-01-06 2015-03-11 セイコーエプソン株式会社 ロボット
JP5916583B2 (ja) * 2012-10-19 2016-05-11 株式会社神戸製鋼所 多関節ロボットのウィービング制御装置
JP6700679B2 (ja) * 2015-06-04 2020-05-27 キヤノン株式会社 制御方法、物品の製造方法、ロボット装置、制御プログラム及び記録媒体
KR20240042157A (ko) * 2018-10-30 2024-04-01 무진 아이엔씨 자동화된 패키지 등록 시스템, 디바이스 및 방법
JP7336215B2 (ja) * 2019-03-08 2023-08-31 キヤノン株式会社 ロボットシステム、制御方法、物品の製造方法、プログラム、及び記録媒体

Also Published As

Publication number Publication date
US20220314451A1 (en) 2022-10-06
CN115139294A (zh) 2022-10-04

Similar Documents

Publication Publication Date Title
JP6008121B2 (ja) ロボットおよびロボット制御装置
JP5962340B2 (ja) ロボット
JP5327722B2 (ja) ロボットの負荷推定装置及び負荷推定方法
US9950427B2 (en) Robot, control apparatus, and robot system
US11161249B2 (en) Robot control apparatus and robot system
JP2016083713A (ja) ロボット制御方法、ロボット装置、プログラム、記録媒体及び組立部品の製造方法
US20180154520A1 (en) Control device, robot, and robot system
JP6697544B2 (ja) 最適化装置及びそれを備えた垂直型多関節ロボット
JP2022157884A (ja) ロボットの制御方法、ロボットシステムおよびロボット制御プログラム
JP2022011402A (ja) ロボットの制御方法およびロボットシステム
JP2022157883A (ja) ロボットの制御方法、ロボットシステムおよびロボット制御プログラム
JP2022157882A (ja) ロボットの制御方法、ロボットシステムおよびロボット制御プログラム
US11660742B2 (en) Teaching method and robot system
US20220134571A1 (en) Display Control Method, Display Program, And Robot System
JP7423943B2 (ja) 制御方法およびロボットシステム
JP2020097101A (ja) ロボット装置、ロボットシステム、ロボット装置の制御方法、ロボット装置を用いた物品の製造方法、制御プログラム及び記録媒体
CN114179077B (zh) 力控制参数调整方法、机器人系统及存储介质
JP2020157459A (ja) 制御方法およびロボットシステム
JP6036476B2 (ja) ロボット
CN114179076B (zh) 作业时间提示方法、力控制参数设定方法、机器人系统以及存储介质
JP2024044522A (ja) 算出方法および算出装置
JP2017164822A (ja) 制御装置、及びロボットシステム
JP2023111673A (ja) 把持装置、把持システム及び把持装置の滑り検出方法
JP2019217592A (ja) ロボット装置及びその制御方法、プログラム、記録媒体、物品の製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240222