JP2022155328A - Classification method of ruthenium and iridium - Google Patents

Classification method of ruthenium and iridium Download PDF

Info

Publication number
JP2022155328A
JP2022155328A JP2021058769A JP2021058769A JP2022155328A JP 2022155328 A JP2022155328 A JP 2022155328A JP 2021058769 A JP2021058769 A JP 2021058769A JP 2021058769 A JP2021058769 A JP 2021058769A JP 2022155328 A JP2022155328 A JP 2022155328A
Authority
JP
Japan
Prior art keywords
iridium
ruthenium
hydrochloric acid
acid solution
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2021058769A
Other languages
Japanese (ja)
Other versions
JP7498137B2 (en
Inventor
学 真鍋
Manabu Manabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JX Nippon Mining and Metals Corp
Original Assignee
JX Nippon Mining and Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JX Nippon Mining and Metals Corp filed Critical JX Nippon Mining and Metals Corp
Priority to JP2021058769A priority Critical patent/JP7498137B2/en
Publication of JP2022155328A publication Critical patent/JP2022155328A/en
Application granted granted Critical
Publication of JP7498137B2 publication Critical patent/JP7498137B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Landscapes

  • Manufacture And Refinement Of Metals (AREA)

Abstract

To provide a method for effectively classifying ruthenium and iridium from a hydrochloric acid acidic solution containing ruthenium and iridium.SOLUTION: A classification method of ruthenium and iridium includes: a step of adjusting an oxidation-reduction potential of a hydrochloric acid acidic solution containing ruthenium and iridium to less than 480 mV with silver/silver chloride electrode as a reference electrode; and steps of the following (1) and (2). Step (1): adjusting the hydrochloric acid acidic solution with the oxidation-reduction potential adjusted to 30 to 70°C and reacting with iron to sediment ruthenium. Step (2): heating the hydrochloric acid acidic solution to 75°C or higher, and adding a sodium thiosulfate salt or a thiosulfate ion-containing solution by 10 g/L or more in terms of sodium thiosulfate 5 hydrate to sediment iridium.SELECTED DRAWING: Figure 1

Description

本発明は、ルテニウム及びイリジウムの分別方法に係る。 The present invention relates to a method for separating ruthenium and iridium.

銅乾式製錬では銅精鉱を熔解し、転炉、精製炉で99%以上の粗銅とした後に電解精製工程において例えば純度99.99%以上の電気銅を生産する。近年では転炉においてリサイクル原料として電子部品由来の貴金属を含む金属屑が投入されており、銅以外の有価物は電解精製時にスライムとして沈殿する。 In copper pyrometallurgical refining, copper concentrate is melted, converted into blister copper of 99% or more in a converter and a refining furnace, and then refined copper having a purity of 99.99% or more is produced in an electrolytic refining process. In recent years, metal scraps containing precious metals derived from electronic components have been put into converters as recycled raw materials, and valuables other than copper precipitate as slime during electrolytic refining.

このスライムには貴金族類、希少金属、銅精鉱に含まれているセレンやテルルも同時に濃縮される。銅製錬副産物としてこれらの元素は個別に分離・回収される。 This slime is enriched with precious metals, rare metals, and selenium and tellurium contained in copper concentrates at the same time. These elements are separately separated and recovered as copper smelting by-products.

このスライムの処理には湿式製錬法が適用される場合が多い。例えば特許文献1においてはスライムを塩酸-過酸化水素により銀を回収し、溶解した金は溶媒抽出により回収した後に、その他の有価物を二酸化硫黄で順次還元回収する方法が開示されている。特許文献2には同様の方法で金銀を回収した後、二酸化硫黄で有価物を還元して沈殿せしめ、セレンのみを蒸留して除去して貴金属類を濃縮する方法が開示されている。 Hydrometallurgical methods are often applied to treat this slime. For example, Patent Document 1 discloses a method in which silver is recovered from slime by hydrochloric acid-hydrogen peroxide, dissolved gold is recovered by solvent extraction, and then other valuable substances are successively reduced and recovered with sulfur dioxide. Patent Document 2 discloses a method of recovering gold and silver by a similar method, then reducing and precipitating valuables with sulfur dioxide, distilling and removing only selenium, and concentrating precious metals.

貴金属を回収した後の溶液には希少金属イオン、テルル、セレンが含まれておりさらにこれら有価物を回収することが必要である。回収方法としては還元剤により生じた沈殿を回収する方法、溶液ごと銅精鉱に混合しドライヤーで乾燥させて製錬炉に繰り返す方法が知られている。 The solution after recovering precious metals contains rare metal ions, tellurium, and selenium, and it is necessary to recover these valuables. Known recovery methods include a method of recovering precipitates produced by a reducing agent, and a method of mixing the whole solution with copper concentrate, drying it with a dryer, and repeating it in a smelting furnace.

とりわけ特許文献1に示されている、二酸化硫黄により生じた沈殿を回収する方法は、コストや製造規模の面で利点が多い。加えて各元素が順次沈殿することから分離精製にも効果がある。 In particular, the method of recovering precipitates caused by sulfur dioxide, which is disclosed in Patent Document 1, has many advantages in terms of cost and production scale. In addition, since each element precipitates sequentially, it is also effective for separation and purification.

二酸化硫黄を用いて有価物を回収する方法では、溶解後に順次有価物を還元して回収することができる。初めに白金、パラジウムが沈殿する。次にセレンが還元を受ける。イリジウム、ルテニウムは酸化還元電位が比較的低いので還元を受け難く、最後まで溶液に残留する。イリジウムについては、特許文献3に記載されているように、溶媒抽出により分離、濃縮後に焼成して回収する方法が広く知られる。また、特許文献4には、イリジウムを含む有機溶媒にマグネシウム、アルミニウム、亜鉛、鉄、錫及び鉛から選ばれた卑金属及び鉱酸を添加し貴金属を還元させて沈殿させる方法が開示されている。 In the method of recovering valuables using sulfur dioxide, valuables can be recovered by sequentially reducing them after dissolution. Platinum and palladium precipitate first. Selenium then undergoes reduction. Iridium and ruthenium have relatively low oxidation-reduction potentials, so they are difficult to be reduced and remain in the solution until the end. As for iridium, as described in Patent Document 3, a method of separating by solvent extraction, concentrating, and then calcining and recovering is widely known. Patent Document 4 discloses a method of adding a base metal selected from magnesium, aluminum, zinc, iron, tin and lead and a mineral acid to an organic solvent containing iridium to reduce and precipitate the noble metal.

特開2001-316735号公報JP-A-2001-316735 特開2016-160479号公報JP 2016-160479 A 特開2004-332041号公報Japanese Patent Application Laid-Open No. 2004-332041 特開2002-115015号公報Japanese Patent Application Laid-Open No. 2002-115015

銅電解澱物溶解液中のイリジウム濃度は1~70mg/L程度である。イリジウムは高価な金属であるがこの程度の低濃度では溶媒抽出による製錬はコストに見合わない。他の金属との分離効率やストリップの効率も高くない。 The iridium concentration in the copper electrolytic precipitate solution is about 1 to 70 mg/L. Iridium is an expensive metal, but at concentrations this low, smelting by solvent extraction is not cost-effective. Separation efficiency from other metals and strip efficiency are not high either.

一方、ルテニウムを蒸留回収するにはNaBrO3等の強力な酸化剤を使用する。酸化剤のコストも高く、本対象液のようなルテニウム濃度が50~200mg/L程度の希薄でかつ不純物の多い溶液からルテニウムを回収するには不向きな方法である。また四酸化ルテニウムは毒性が強く、過量の使用は安全性の面で問題がある。 On the other hand, to recover ruthenium by distillation, a strong oxidizing agent such as NaBrO 3 is used. The cost of the oxidizing agent is also high, and this method is not suitable for recovering ruthenium from a dilute solution with a ruthenium concentration of about 50 to 200 mg/L and containing many impurities, such as the subject solution. Also, ruthenium tetroxide is highly toxic, and its use in excess poses a safety problem.

亜鉛等の卑金属でセメンテーションする方法はイリジウムとルテニウムいずれにも有効な方法である。しかしながら、卑金属によるセメンテーションではイリジウムとルテニウムの分別回収は困難である。 Cementation with a base metal such as zinc is effective for both iridium and ruthenium. However, separate recovery of iridium and ruthenium is difficult with base metal cementation.

さらには、強酸条件下では水素が短時間に集中的に発生して吹きこぼれる、もしくは静電気等により発生した水素が爆発する問題がある。また、他にセメンテーションを受ける元素も混在するため反応効率が低い。銅製錬由来液にはヒ素も含まれており、卑金属を添加するとヒ素も沈殿する。 Furthermore, under strong acid conditions, hydrogen is generated intensively in a short period of time and is blown over, or the generated hydrogen explodes due to static electricity or the like. In addition, the reaction efficiency is low because other elements undergoing cementation are mixed. The liquid derived from copper smelting also contains arsenic, and arsenic also precipitates when base metals are added.

イリジウムやルテニウムはその水酸化物が沈殿することが知られている。しかしながら、同時に沈殿してしまい、分別回収はできない。一般的な問題として強酸を中和するのであれば、アルカリ試薬のコストが大きい。また、ナトリウムイオンやアルカリ土類金属イオンは酸性条件下でも水に難溶性の硫酸塩を沈殿する。過量のアルカリで中和した時にはこの難溶性硫酸塩が製造設備の配管内に沈着して閉塞を起こすことが予想される。 Iridium and ruthenium are known to precipitate their hydroxides. However, it precipitates at the same time and cannot be collected separately. As a general problem, the cost of alkaline reagents is high if strong acids are to be neutralized. In addition, sodium ions and alkaline earth metal ions precipitate sparingly water-soluble sulfates even under acidic conditions. When neutralized with an excessive amount of alkali, it is expected that this sparingly soluble sulfate deposits in the pipes of manufacturing equipment and clogs them.

強酸性溶液から安価に効率よく低濃度のイリジウムとルテニウム分別-沈殿回収する方法は知られていない。特にヒ素が共存する条件ではアルシンの発生懸念から取り得る手法は限定される。 A method for economically and efficiently fractionating and recovering low-concentration iridium and ruthenium from a strongly acidic solution by precipitation is not known. In particular, under conditions where arsenic coexists, possible methods are limited due to concerns about the generation of arsine.

本発明はこのような従来の事情を鑑み、ルテニウム及びイリジウムを含む塩酸酸性液からルテニウム及びイリジウムを効率的に分別する方法を提供する。対象液がヒ素も含むときには回収物へのヒ素の混入を抑制できる。特に銅製錬における電解精製工程で発生する電解澱物を酸化溶解して得られた塩酸酸性液は、本発明のルテニウム及びイリジウムを含む塩酸酸性液として好対象である。 In view of such conventional circumstances, the present invention provides a method for efficiently separating ruthenium and iridium from a hydrochloric acid acid solution containing ruthenium and iridium. When the target liquid also contains arsenic, it is possible to suppress contamination of the collected material with arsenic. In particular, the hydrochloric acid acid solution obtained by oxidizing and dissolving the electrolytic sediment generated in the electrolytic refining process in copper smelting is suitable as the hydrochloric acid acid solution containing ruthenium and iridium of the present invention.

上記課題は以下に特定される発明によって解決することができる。
[1]ルテニウム及びイリジウムを含む塩酸酸性液に対して、酸化還元電位を銀/塩化銀電極を基準電極として480mV未満に調整する工程と、下記(1)及び(2)の工程と、を有する、ルテニウム及びイリジウムの分別方法。
(1)前記酸化還元電位を調整した塩酸酸性液を30~70℃に調整し、鉄と反応させてルテニウムを沈殿させる工程、
(2)前記塩酸酸性液を75℃以上に加温し、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して10g/L以上になるよう添加してイリジウムを沈殿させる工程。
[2]前記塩酸酸性液の酸化還元電位を100mV以上に維持して前記(1)の工程を実施した後に、前記(2)の工程を実施する、[1]に記載のルテニウム及びイリジウムの分別方法。
[3]前記(1)の工程で使用する鉄は表面の一部が銅で被覆されており、銅の含有率が20~70質量%である、[1]または[2]に記載のルテニウム及びイリジウムの分別方法。
[4]前記塩酸酸性液は更にヒ素を含有し、前記(1)の工程では、鉄をルテニウムに対し5~10質量倍添加し、前記(2)の工程では、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加してイリジウムを回収した後の液にヒ素を残す、[1]~[3]のいずれかに記載のルテニウム及びイリジウムの分別方法。
[5]前記塩酸酸性液は更にヒ素を含有し、前記(2)の工程で得た沈殿を、アルカリ性溶液と混合してヒ素の一部もしくは全部を除去する、[1]~[4]のいずれかに記載のルテニウム及びイリジウムの分別方法。
The above problems can be solved by the inventions specified below.
[1] Adjusting the oxidation-reduction potential of a hydrochloric acid acid solution containing ruthenium and iridium to less than 480 mV using a silver/silver chloride electrode as a reference electrode, and the following steps (1) and (2). , a method for separating ruthenium and iridium.
(1) a step of adjusting the oxidation-reduction potential-adjusted hydrochloric acid acid solution to 30 to 70° C. and reacting it with iron to precipitate ruthenium;
(2) The hydrochloric acid solution is heated to 75° C. or higher, and a sodium thiosulfate salt or a solution containing thiosulfate ions is added so as to be 10 g/L or more in terms of sodium thiosulfate pentahydrate. precipitating.
[2] Separation of ruthenium and iridium according to [1], wherein the step (2) is performed after the step (1) is performed while the oxidation-reduction potential of the hydrochloric acid acid solution is maintained at 100 mV or more. Method.
[3] The ruthenium according to [1] or [2], wherein the iron used in the step (1) is partially coated with copper and has a copper content of 20 to 70% by mass. and a method for separating iridium.
[4] The hydrochloric acid solution further contains arsenic, and in the step (1), iron is added by 5 to 10 times the mass of ruthenium, and in the step (2), sodium thiosulfate or thiosulfate The method for separating ruthenium and iridium according to any one of [1] to [3], wherein arsenic is left in the liquid after adding the ion-containing solution and recovering the iridium.
[5] The acid solution of hydrochloric acid further contains arsenic, and the precipitate obtained in the step (2) is mixed with an alkaline solution to remove part or all of the arsenic. A method for separating ruthenium and iridium according to any one of the above.

本発明の実施形態によれば、ルテニウム及びイリジウムを含む塩酸酸性液からルテニウム及びイリジウムを効率的に分別する方法を提供することができる。 According to embodiments of the present invention, it is possible to provide a method for efficiently separating ruthenium and iridium from a hydrochloric acid acid solution containing ruthenium and iridium.

実験例2に係る酸化還元電位(ORP)とイリジウム濃度並びにルテニウム濃度の関係を示すグラフである。5 is a graph showing the relationship between oxidation-reduction potential (ORP), iridium concentration, and ruthenium concentration according to Experimental Example 2. FIG.

以下、本発明のルテニウム及びイリジウムの分別方法の実施形態について説明するが、本発明は、これに限定されて解釈されるものではなく、本発明の範囲を逸脱しない限りにおいて、当業者の知識に基づいて、種々の変更、修正、改良を加え得るものである。 Hereinafter, embodiments of the method for separating ruthenium and iridium of the present invention will be described. Based on this, various changes, modifications and improvements may be made.

<イリジウムの回収方法>
本発明の実施形態に係るルテニウム及びイリジウムの分別方法は、ルテニウム及びイリジウムを含む塩酸酸性液に対して、酸化還元電位を銀/塩化銀電極を基準電極として480mV未満に調整する工程と、下記(1)及び(2)の工程と、を有する、ルテニウム及びイリジウムの分別方法である。
(1)酸化還元電位を調整した塩酸酸性液を30~70℃に調整し、鉄と反応させてルテニウムを沈殿させる工程、
(2)塩酸酸性液を75℃以上に加温し、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して10g/L以上になるよう添加してイリジウムを沈殿させる工程。
<Method of collecting iridium>
A method for separating ruthenium and iridium according to an embodiment of the present invention includes the steps of adjusting the oxidation-reduction potential of a hydrochloric acid acid solution containing ruthenium and iridium to less than 480 mV using a silver/silver chloride electrode as a reference electrode, and the following ( A method for separating ruthenium and iridium, comprising steps 1) and (2).
(1) A step of adjusting the oxidation-reduction potential-adjusted hydrochloric acid acid solution to 30 to 70° C. and reacting it with iron to precipitate ruthenium;
(2) An acid solution of hydrochloric acid is heated to 75°C or higher, and a sodium thiosulfate salt or a solution containing thiosulfate ions is added so as to be 10 g/L or more in terms of sodium thiosulfate pentahydrate to add iridium. Precipitating process.

本発明の実施形態に係るルテニウム及びイリジウムの分別方法において、処理対象となるイリジウムを含む塩酸酸性液は、どのような処理を経て得られたものであってもよいが、特に、銅製錬における電解精製工程で発生する電解澱物を酸化溶解して得られた塩酸酸性液は、本発明のイリジウムを含む塩酸酸性液として好対象である。また、非鉄金属製錬、とりわけ銅製錬の電解精製工程で生じる電解澱物は白金族元素がその他希少元素と共に濃縮される。希少元素は単独で製錬されることはなく、他金属の副産物として回収されるか廃触媒等のリサイクル原料から分離される。したがって、本発明の実施形態に係るルテニウム及びイリジウムの分別方法は、廃棄物からのリサイクルにも適用することができる。すなわち、当該廃棄物の処理工程で生じた、ルテニウム及びイリジウムを含む塩酸酸性液を対象とすることができる。 In the method for separating ruthenium and iridium according to the embodiment of the present invention, the hydrochloric acid acid solution containing iridium to be treated may be obtained through any treatment, but in particular, electrolysis in copper smelting A hydrochloric acid solution obtained by oxidizing and dissolving an electrolytic sediment generated in a refining process is suitable as the iridium-containing hydrochloric acid solution of the present invention. In addition, platinum group elements are concentrated together with other rare elements in the electrolytic sediment produced in the electrorefining process of non-ferrous metal smelting, especially copper smelting. Rare elements are not smelted by themselves, but are recovered as by-products of other metals or separated from recycled raw materials such as spent catalysts. Therefore, the method for separating ruthenium and iridium according to embodiments of the present invention can also be applied to recycling from waste. That is, the object can be a hydrochloric acid acid solution containing ruthenium and iridium generated in the waste treatment process.

本発明の実施形態に係るルテニウム及びイリジウムの分別方法において、処理対象となるイリジウムを含む塩酸酸性液は、所定の工程を経て得られた塩酸酸性液である場合、ルテニウム及びイリジウム(Ir)以外に種々の金属元素を含んでいる。 In the method for separating ruthenium and iridium according to the embodiment of the present invention, when the hydrochloric acid acid liquid containing iridium to be treated is a hydrochloric acid acid liquid obtained through a predetermined process, other than ruthenium and iridium (Ir) Contains various metal elements.

イリジウムを含む塩酸酸性液は、例えば、アルカリ金属、アルカリ土類金属、アンチモン(Sb)、ビスマス(Bi)等を含んでもよい。これらは、後述のチオ硫酸イオンと反応しないことから、特段の処理が不要である。また、イリジウムを含む塩酸酸性液は、ヒ素(As)は、チオ硫酸イオンと比較的反応し難いものであり、含んでもよい。 The hydrochloric acid solution containing iridium may contain, for example, alkali metals, alkaline earth metals, antimony (Sb), bismuth (Bi), and the like. Since these do not react with thiosulfate ions, which will be described later, no special treatment is required. The iridium-containing hydrochloric acid solution may also contain arsenic (As), which is relatively difficult to react with thiosulfate ions.

セレン(Se)、テルル(Te)、銅(Cu)等は、イリジウムを含む塩酸酸性液に含まれていてもよいが、チオ硫酸イオンで還元されるため、詳しくは後述するが、事前にこれら金属の濃度を下げておく必要がある。 Selenium (Se), tellurium (Te), copper (Cu), and the like may be contained in the iridium-containing hydrochloric acid solution, but since they are reduced by thiosulfate ions, they are described in detail later. It is necessary to keep the metal concentration low.

鉄(Fe)は、2価であればチオ硫酸イオンと反応しないため、イリジウムを含む塩酸酸性液に含まれていてもよい。一方、3価であれば、チオ硫酸イオンと反応してしまうため、含まれていてもよいが、事前に2価に還元しておく必要がある。 Since iron (Fe) does not react with thiosulfate ions if it is divalent, it may be contained in the hydrochloric acid solution containing iridium. On the other hand, if it is trivalent, it reacts with thiosulfate ions, so it may be contained, but it is necessary to reduce it to divalent in advance.

一例として、銅製錬の銅電解精製工程由来の電解澱物からの、ルテニウム及びイリジウムを含む塩酸酸性液の作製方法を示す。まず、銅製錬の銅電解精製工程由来の電解澱物から硫酸により銅を溶解して除く。次に、濃塩酸と過酸化水素水を添加して溶解し、固液分離してPLS(浸出貴液)を得る。塩化物浴である浸出貴液(PLS)には白金族元素、希少金属元素、カルコゲン元素、ヒ素、アンチモン等が分配する。 As an example, a method for producing a hydrochloric acid acid solution containing ruthenium and iridium from an electrolytic sediment derived from a copper electrorefining process in copper smelting will be described. First, copper is dissolved and removed with sulfuric acid from the electrolytic sediment derived from the copper electrorefining process of copper smelting. Next, concentrated hydrochloric acid and hydrogen peroxide water are added and dissolved, followed by solid-liquid separation to obtain PLS (precious leach liquor). Platinum group elements, rare metal elements, chalcogen elements, arsenic, antimony, etc. are distributed in the pregnant leach liquor (PLS), which is a chloride bath.

浸出貴液(PLS)を一度冷却し、鉛やアンチモンといった卑金属類の塩化物を沈殿分離する。その後に溶媒抽出により金を有機相に分離する。金の抽出剤はジブチルカルビトール(DBC)が広く使用されている。抽出液には、二酸化硫黄を吹き込むことで、白金やパラジウム等の貴金属とセレン、テルルを還元除去し、続いて固液分離することで、ルテニウム及びイリジウムを含む塩酸酸性液を作製することができる。 Precious leach liquor (PLS) is cooled once to precipitate and separate chlorides of base metals such as lead and antimony. The gold is then separated into the organic phase by solvent extraction. A widely used extractant for gold is dibutyl carbitol (DBC). Sulfur dioxide is blown into the extract to reduce and remove precious metals such as platinum and palladium, selenium, and tellurium, followed by solid-liquid separation to produce a hydrochloric acid solution containing ruthenium and iridium. .

本発明の実施形態に係るルテニウム及びイリジウムの分別方法では、ルテニウム及びイリジウムを含む塩酸酸性液に対して、二酸化硫黄、硫化水素、アルデヒド類等の還元剤を添加して酸化還元電位を銀/塩化銀電極を基準電極として480mV未満に調整する。これによって塩酸酸性液中に残る有価物としては、ルテニウム、イリジウム、アンチモン、ビスマス等が挙げられる。このうちルテニウムとイリジウムは付加価値が特に高く回収することが好ましい。還元後液には、ヒ素も0.5~3g/L含まれているが、ヒ素は有価物回収時には混入を抑制したい。ルテニウム及びイリジウムも元素別に回収する方が好ましい。 In the method for separating ruthenium and iridium according to the embodiment of the present invention, a reducing agent such as sulfur dioxide, hydrogen sulfide, and aldehydes is added to a hydrochloric acid acid solution containing ruthenium and iridium to reduce the oxidation-reduction potential to silver/chloride. Adjust the silver electrode to less than 480 mV as a reference electrode. Ruthenium, iridium, antimony, bismuth and the like can be cited as valuables remaining in the hydrochloric acid acid solution. Of these, ruthenium and iridium have particularly high added value and are preferably recovered. Although the post-reduction solution also contains 0.5 to 3 g/L of arsenic, it is desired to suppress the contamination of arsenic when recovering valuable materials. Ruthenium and iridium are also preferably recovered by element.

還元後液からルテニウムを回収するには、金属によるセメンテーションが効果的である。ただし、塩酸酸性液にヒ素が含まれるのでアルシンの発生を抑制するため酸化還元電位が銀/塩化銀を基準にして-380mV以上の金属である必要がある。ルテニウムのセメンテーション条件に合致する金属は、鉄、ニッケル、銅等が挙げられる。 Metal cementation is effective for recovering ruthenium from the post-reduction solution. However, since arsenic is contained in the hydrochloric acid solution, the metal should have an oxidation-reduction potential of -380 mV or more based on silver/silver chloride in order to suppress the generation of arsine. Metals that meet the cementation requirements of ruthenium include iron, nickel, copper, and the like.

ルテニウムのセメンテーションに使用する金属の中で次の金属は問題がある。銅はヒ素もヒ化銅として沈殿させてしまい、鉛はルテニウムと未反応の鉛が酸溶解せず混入してしまい、ニッケルは高コストになる。しかしながら、鉄は反応時に水素が瞬間的に多量発生する問題はあるものの、塩酸酸性液の温度を30~70℃に調整し、添加量をルテニウムの5~10質量倍にすれば大きな問題にはならない。さらには鉄を添加するとイリジウムは液温70℃以下ではセメンテーションを受け難いので元素毎の分別回収が可能になる。 Among the metals used for ruthenium cementation, the following metals are problematic. In the case of copper, arsenic is also precipitated as copper arsenide, and in the case of lead, ruthenium and unreacted lead are mixed in without acid dissolution, and the cost of nickel increases. However, iron has the problem that a large amount of hydrogen is instantaneously generated during the reaction, but if the temperature of the hydrochloric acid solution is adjusted to 30 to 70° C. and the amount added is 5 to 10 times the mass of ruthenium, it will not be a big problem. not. Furthermore, when iron is added, iridium is less susceptible to cementation at a liquid temperature of 70° C. or less, so separate recovery of each element becomes possible.

添加する鉄の上限は特に限定されないが、試薬の節約の観点から、塩酸酸性液におけるイリジウムに対し、400質量倍以下であることが好ましい。また、添加する鉄は、塩酸酸性液におけるイリジウムに対し、100~200質量倍であるのがより好ましい。 The upper limit of iron to be added is not particularly limited, but from the viewpoint of saving reagents, it is preferably 400 times by mass or less that of iridium in the hydrochloric acid acid solution. Further, the amount of iron to be added is more preferably 100 to 200 times the mass of iridium in the hydrochloric acid solution.

添加する鉄としては、鉄粉が、反応性が良く好適である。また、見かけ直径が数cmに及ぶ鉄粒でも代用され得る。鉄の形状は特に制限されず、粉状、粒状、礫状、塊状、板状、線状等いずれの形でもよく、鉄の品位は特に制限はない。 As iron to be added, iron powder is suitable because of its high reactivity. Alternatively, iron grains with an apparent diameter of several centimeters may be used. The shape of the iron is not particularly limited, and may be powdery, granular, gravel, lumpy, plate-like, linear, or the like, and the grade of the iron is not particularly limited.

もしくは鉄板、鉄塊を設置した反応器に塩酸酸性液を通液してもよい。この時、反応器はバッチ式でなく、鉄を投入した容器に連続通液するタイプの反応器が好ましい。しかしながら、操作性と反応性との両面から鉄粉が好適である。本発明において、「鉄粉」とは、粒径としてP80<0.2mmの鉄の粒子を指す。 Alternatively, a hydrochloric acid solution may be passed through a reactor in which an iron plate or an iron lump is installed. At this time, the reactor is not a batch type reactor, but a reactor of a type in which liquid is continuously passed through a vessel containing iron is preferred. However, iron powder is preferable in terms of both operability and reactivity. In the present invention, "iron powder" refers to iron particles having a particle size P80<0.2 mm.

鉄は塩酸酸性液に接触すると水素が発生する。水素は爆発性があるという問題がある。さらに鉄として鉄粉を使用するならば、表面積が大きいため短時間に大量に水素が発生して溶液が吹きこぼれる問題もある。そのため、特に鉄粉を使用する時、その投入量は1~10g/Lとする。一度に投入せずに複数回に分けて投入してもよい。 When iron comes into contact with a hydrochloric acid solution, hydrogen is generated. Hydrogen has the problem of being explosive. Furthermore, if iron powder is used as iron, there is a problem that a large amount of hydrogen is generated in a short time due to its large surface area, causing the solution to boil over. Therefore, especially when iron powder is used, the input amount is set to 1 to 10 g/L. You may divide into multiple times and may throw in without throwing in at once.

水素発生による吹きこぼれや爆発の危険を避ける方法として、表面の一部が銅で被覆された鉄粉(銅被覆鉄)を使用することも可能である。原理的には鉄と酸溶液の接触が制限されて水素発生は抑制される。徐々に銅が溶解した後、表面に現れる鉄とルテニウムとが反応する。銅品位が高すぎるとイリジウムとの反応が悪くなるおそれがあるため、表面を銅で被覆した鉄の銅の含有量は、好ましくは70質量%以下、さらに好ましくは40質量%以下である。また、銅被覆鉄は銅の含有率が20~70質量%に調整したものを用いると、反応速度とルテニウム選択性の面で効果が高い。この時の反応温度は40℃~70℃に調整するとより効果が高い。温度が高すぎると選択性が低下する。反対に低すぎると反応が遅い。 As a method of avoiding the danger of boiling over and explosion due to hydrogen generation, it is also possible to use iron powder whose surface is partly coated with copper (copper-coated iron). In principle, contact between the iron and the acid solution is restricted to suppress hydrogen generation. After gradual copper dissolution, the iron and ruthenium appearing on the surface react. If the copper grade is too high, the reaction with iridium may deteriorate, so the copper content of the iron whose surface is coated with copper is preferably 70% by mass or less, more preferably 40% by mass or less. Further, when the copper-coated iron is adjusted to have a copper content of 20 to 70% by mass, it is highly effective in terms of reaction rate and ruthenium selectivity. If the reaction temperature at this time is adjusted to 40.degree. C. to 70.degree. If the temperature is too high, the selectivity will decrease. Conversely, if it is too low, the reaction will be slow.

塩酸酸性液の酸化還元電位を100mV以上に維持しながら、鉄と反応させてルテニウムを沈殿させた後に、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液によるイリジウムの沈殿反応を実施してもよい。塩酸酸性液の酸化還元電位を100mV以上に維持しながら、鉄と反応させてルテニウムを沈殿させることで、溶液中のイリジウムの濃度を維持することができる。このため、イリジウムとルテニウムの個別分離が可能となる。 After precipitating ruthenium by reaction with iron while maintaining the oxidation-reduction potential of the hydrochloric acid acid solution at 100 mV or more, the precipitation reaction of iridium with a sodium thiosulfate salt or a solution containing thiosulfate ions may be carried out. The concentration of iridium in the solution can be maintained by reacting with iron and precipitating ruthenium while maintaining the oxidation-reduction potential of the hydrochloric acid acid solution at 100 mV or more. Therefore, separate separation of iridium and ruthenium is possible.

先に鉄粉でルテニウムを回収しても、先にチオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液でイリジウムを回収しても効果はある。ただし、先にチオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液でイリジウムを回収する場合は、セメンテーションによるルテニウムの還元効率が著しく低下し、セメンテーション用の金属使用量が増加する。そのため、効率的にルテニウムとイリジウムを回収するには、先にルテニウムをセメンテーションで回収し、沈殿を分離後にチオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液によりイリジウムを沈殿させることが好ましい。 It is effective to recover ruthenium with iron powder first, or recover iridium with sodium thiosulfate or a solution containing thiosulfate ions first. However, when iridium is first recovered with a sodium thiosulfate salt or a solution containing thiosulfate ions, the efficiency of reducing ruthenium by cementation is significantly lowered, and the amount of metal used for cementation is increased. Therefore, in order to efficiently recover ruthenium and iridium, it is preferable to first recover ruthenium by cementation, and after separating the precipitate, precipitate iridium with sodium thiosulfate or a solution containing thiosulfate ions.

塩酸酸性液が更にヒ素を含有する場合、鉄をルテニウムに対し5~10質量倍添加してルテニウムを回収し、回収後の塩酸酸性液にチオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加してイリジウムを回収し、回収後液にヒ素を残すことができる。ここで、塩酸酸性液中でチオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液とヒ素が反応して硫化ヒ素を沈殿することが知られている。イリジウムの沈殿には硫化ヒ素の混入が避けられないが、硫化ヒ素は水酸化ナトリウム水溶液等のアルカリ性溶液に溶けやすく、これによって容易にヒ素の一部または全部を除くことが可能である。 When the hydrochloric acid solution further contains arsenic, ruthenium is recovered by adding iron 5 to 10 times the weight of ruthenium, and sodium thiosulfate or a solution containing thiosulfate ions is added to the recovered hydrochloric acid solution. Iridium can be recovered, leaving arsenic in the recovered solution. Here, it is known that arsenic reacts with a sodium thiosulfate salt or a solution containing thiosulfate ions in an acid solution of hydrochloric acid to precipitate arsenic sulfide. Arsenic sulfide is inevitably included in iridium precipitation, but arsenic sulfide is easily dissolved in an alkaline solution such as an aqueous sodium hydroxide solution, so that part or all of the arsenic can be easily removed.

チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液でイリジウムを沈殿させる工程では、塩酸酸性液を75℃以上に加温し、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して10g/L以上になるよう添加してイリジウムを沈殿させる。イリジウムは塩酸酸性液中に塩化物錯イオンとして残留しているため、当該塩酸酸性液からイリジウムを効率的に沈殿させるために、塩酸酸性液を75℃以上に加温してチオ硫酸イオンを添加して沈殿させる。 In the step of precipitating iridium with a sodium thiosulfate salt or a solution containing thiosulfate ions, the hydrochloric acid solution is heated to 75° C. or higher to convert the sodium thiosulfate salt or thiosulfate ion-containing solution into sodium thiosulfate pentahydrate. Iridium is precipitated by adding so that the converted amount becomes 10 g/L or more. Since iridium remains in the hydrochloric acid solution as a chloride complex ion, in order to efficiently precipitate iridium from the hydrochloric acid solution, the hydrochloric acid solution is heated to 75°C or higher and thiosulfate ions are added. to precipitate.

代表的なチオ硫酸イオン源としては、市販のチオ硫酸ナトリウム5水和物が挙げられる。チオ硫酸ナトリウム塩の固体で添加してもよいし、チオ硫酸イオン含有溶液で添加してもよい。チオ硫酸イオン源は、これら以外にも、亜硫酸と元素硫黄をアルカリ溶液中で加熱すれば得ることができるが、コストや取り扱い安さの面から、特に固体塩が有利である。特に、チオ硫酸ナトリウム5水和物は毒性も低く、チオ硫酸イオン源として最も好適である。 Representative sources of thiosulfate ions include commercially available sodium thiosulfate pentahydrate. It may be added as a solid sodium thiosulfate salt or as a solution containing thiosulfate ions. The thiosulfate ion source can also be obtained by heating sulfurous acid and elemental sulfur in an alkaline solution, but solid salts are particularly advantageous in terms of cost and ease of handling. In particular, sodium thiosulfate pentahydrate has low toxicity and is most suitable as a thiosulfate ion source.

イリジウムは塩酸酸性液中では塩化物錯体となっている。銅の殿物処理工程では二酸化硫黄で還元処理されているのでイリジウムの価数は三価以下であると想定される。チオ硫酸イオンは硫黄-硫黄結合が単結合であるとされており、硫黄元素上に負電荷が局在している。硫黄は軟らかい元素であり、上述のように、価数が三価以下のイリジウムも軟らかいイオンであるため、互いに親和性が高い。 Iridium forms a chloride complex in the acid solution of hydrochloric acid. In the copper precipitate treatment step, the iridium is assumed to have a valence of three or less because it is reduced with sulfur dioxide. A thiosulfate ion is considered to have a single sulfur-sulfur bond, and a negative charge is localized on the sulfur element. Sulfur is a soft element, and as described above, iridium, which has a valence of three or less, is also a soft ion, so they have a high affinity with each other.

塩酸酸性液は、75℃以上に加温し、チオ硫酸イオンを添加して沈殿させる。塩酸酸性液を75℃以上に加温した状態でチオ硫酸イオンを添加すると、沈殿反応が進み、イリジウムを効率的に沈殿させることができる。塩酸酸性液の加温温度が75℃未満であると、沈殿反応の速度が鈍化するおそれがある。塩酸酸性液の加温温度は、好ましくは80℃以上である。塩酸酸性液の加温温度の上限は特に限定されないが、100℃以下であってもよい。 The hydrochloric acid solution is heated to 75° C. or higher, and thiosulfate ions are added for precipitation. When thiosulfate ions are added to the hydrochloric acid solution heated to 75° C. or higher, the precipitation reaction proceeds and iridium can be precipitated efficiently. If the heating temperature of the hydrochloric acid solution is lower than 75°C, the speed of the precipitation reaction may slow down. The heating temperature of the hydrochloric acid solution is preferably 80° C. or higher. The upper limit of the heating temperature of the hydrochloric acid solution is not particularly limited, but may be 100° C. or lower.

チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液は、チオ硫酸ナトリウム5水和物に換算して10g/L以上になるように、イリジウムを含む塩酸酸性液に添加することが好ましい。チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して10g/L以上になるように添加することで、チオ硫酸イオンがより有効に機能し、沈殿反応がより良好に進む。チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液は、チオ硫酸ナトリウム5水和物に換算して15g/L以上になるように、イリジウムを含む塩酸酸性液に添加することがより好ましく、20g/L以上になるように、イリジウムを含む塩酸酸性液に添加することがより好ましい。また、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液は、多すぎると酸分解時に生じる硫黄が混入するおそれがあるため、チオ硫酸ナトリウム5水和物に換算して30g/L以下になるように、イリジウムを含む塩酸酸性液に添加することが好ましい。 The sodium thiosulfate salt or thiosulfate ion-containing solution is preferably added to the iridium-containing hydrochloric acid solution so that the amount is 10 g/L or more in terms of sodium thiosulfate pentahydrate. By adding a sodium thiosulfate salt or a solution containing thiosulfate ions in an amount of 10 g/L or more in terms of sodium thiosulfate pentahydrate, the thiosulfate ions function more effectively and the precipitation reaction becomes more efficient. proceed well. The sodium thiosulfate salt or thiosulfate ion-containing solution is added to the hydrochloric acid solution containing iridium in an amount of 15 g/L or more in terms of sodium thiosulfate pentahydrate, more preferably 20 g/L or more. It is more preferable to add to the hydrochloric acid solution containing iridium so that In addition, if the amount of sodium thiosulfate salt or thiosulfate ion-containing solution is too large, there is a risk of contamination with sulfur generated during acid decomposition. It is preferably added to a hydrochloric acid solution containing iridium.

チオ硫酸イオンは酸性条件下では硫黄と亜硫酸イオンに分解する平衡がある。さらには酸化性物質があればこれと反応するし、銅等の一部の遷移金属イオンは硫化物を作って沈殿する。そのため、予め二酸化硫黄によりその他の夾雑元素を沈殿させておくことが好ましい。その他の夾雑元素とは、例えばセレン及びテルルである。このような観点から、イリジウムを含む塩酸酸性液が、セレン及びテルルのうちの少なくとも一種を含む場合、イリジウムを含む塩酸酸性液に、予め二酸化硫黄または二酸化硫黄の水溶液を添加して、セレン及びテルルの合計濃度を100mg/L以下に調整しておくことが好ましい。そして、チオ硫酸ナトリウム塩またはチオ硫酸イオン含有溶液を、セレン及びテルルの合計濃度を調整したイリジウムを含む塩酸酸性液に添加することが好ましい。当該セレン及びテルルの合計濃度を予め50mg/L以下に調整しておくことがより好ましく、10mg/L以下に調整しておくことが更により好ましい。 Thiosulfate ions have an equilibrium to decompose into sulfur and sulfite ions under acidic conditions. Furthermore, if there is an oxidizing substance, it reacts with it, and some transition metal ions such as copper form sulfide and precipitate. Therefore, it is preferable to precipitate other contaminant elements with sulfur dioxide in advance. Other contaminants are, for example, selenium and tellurium. From this point of view, when the iridium-containing hydrochloric acid acid liquid contains at least one of selenium and tellurium, sulfur dioxide or an aqueous solution of sulfur dioxide is added in advance to the iridium-containing hydrochloric acid acid liquid to obtain selenium and tellurium. is preferably adjusted to 100 mg/L or less. Then, it is preferable to add the thiosulfate sodium salt or the thiosulfate ion-containing solution to the hydrochloric acid solution containing iridium with the total concentration of selenium and tellurium adjusted. It is more preferable to previously adjust the total concentration of selenium and tellurium to 50 mg/L or less, and even more preferably to 10 mg/L or less.

沈殿したイリジウム含有物は、固液分離後に公知の方法でイリジウムとその他夾雑物を分離する。例えば、酸化溶解後にイリジウムを溶媒抽出で分離回収する方法が挙げられる。この酸化溶解液では、イリジウムは十分濃縮されており、公知の溶媒抽出での回収が可能である。 The precipitated iridium-containing material is separated into iridium and other contaminants by a known method after solid-liquid separation. For example, there is a method of separating and recovering iridium by solvent extraction after oxidation and dissolution. In this oxidized solution, the iridium is sufficiently concentrated to allow recovery by known solvent extractions.

以下、実施例により本発明をさらに具体的に説明する。ただし、本発明はこれらに限定されるものではない。 EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these.

(実験例1)
銅製錬の銅電解精製工程由来の電解澱物から硫酸により銅を溶解して除いた。濃塩酸と60%過酸化水素水を添加して溶解し、固液分離してPLS(浸出貴液)を得た。PLSを6℃まで冷却して卑金属分を沈殿除去した。酸濃度を2N以上に調整しDBC(ジブチルカルビトール)とPLSを混合して金を抽出した。金抽出後のPLSを70℃に加温し、二酸化硫黄を吹き込んで貴金属とセレン、テルルを還元除去した。これを固液分離し、イリジウムを含む塩酸酸性液を得た。この時の酸化還元電位は450mVであった。
(Experimental example 1)
Copper was dissolved and removed with sulfuric acid from the electrolytic sediment derived from the copper electrorefining process of copper smelting. Concentrated hydrochloric acid and 60% aqueous hydrogen peroxide were added to dissolve the solution, followed by solid-liquid separation to obtain PLS (leaching solution). The PLS was cooled to 6° C. to precipitate and remove base metals. Gold was extracted by adjusting the acid concentration to 2N or more and mixing DBC (dibutyl carbitol) and PLS. The PLS after the gold extraction was heated to 70° C., and sulfur dioxide was blown into the PLS to reduce and remove the noble metals, selenium, and tellurium. This was subjected to solid-liquid separation to obtain a hydrochloric acid acid solution containing iridium. The oxidation-reduction potential at this time was 450 mV.

二酸化硫黄還元後液を200mL分取し、表1の条件1~6に示す各温度に加熱した。二酸化硫黄還元後液のイリジウム濃度は26mg/L、ルテニウム濃度は130mg/Lであった。二酸化硫黄還元後液はその他の元素としてヒ素を1.5g/L、セレンを6mg/L、テルルを18mg/L含有していた。表1に示す量の鉄粉(P80=150~200μm)、もしくはチオ硫酸ナトリウム5水和物を添加して攪拌した。
所定時間後に反応を停止し、沈殿を固液分離した。ろ過後、溶液の各種元素濃度を定量した。これを一段目還元と称す。
次に、ろ液を再度所定温度に加熱して表1の二段目還元に示される試薬を添加した。銅被覆鉄は常温の硫酸銅溶液に鉄粉を浸して洗浄して調製した。銅含有量が30質量%と60質量%の2種類を調製して使用した。
所定時間後に反応を停止し再度固液分離した。
試薬はすべて和光純薬工業社製の特級グレードを使用した。溶液中の元素濃度の定量は溶液2mLを分取して50mLに規正後、ICP-OES(セイコー社製SPS3100)により濃度を定量した。沈殿物の溶解液は100mLに規正してその濃度を決定した。評価結果を表2に示す。
200 mL of the post-reduction solution of sulfur dioxide was taken and heated to each temperature shown in conditions 1 to 6 in Table 1. The iridium concentration of the solution after sulfur dioxide reduction was 26 mg/L, and the ruthenium concentration was 130 mg/L. The solution after sulfur dioxide reduction contained 1.5 g/L of arsenic, 6 mg/L of selenium, and 18 mg/L of tellurium as other elements. An amount of iron powder (P80=150 to 200 μm) or sodium thiosulfate pentahydrate shown in Table 1 was added and stirred.
After a predetermined time, the reaction was stopped and the precipitate was solid-liquid separated. After filtration, the concentrations of various elements in the solution were quantified. This is called first-stage reduction.
Next, the filtrate was heated again to a predetermined temperature and the reagents shown in Table 1 for the second stage reduction were added. Copper-coated iron was prepared by immersing iron powder in a copper sulfate solution at room temperature and washing it. Two types with a copper content of 30% by mass and 60% by mass were prepared and used.
After a predetermined time, the reaction was stopped and solid-liquid separation was performed again.
All the reagents used were special grades manufactured by Wako Pure Chemical Industries, Ltd. 2 mL of the solution was aliquoted and adjusted to 50 mL, and then the concentration was quantified by ICP-OES (SPS3100 manufactured by Seiko). The precipitate solution was adjusted to 100 mL to determine its concentration. Table 2 shows the evaluation results.

Figure 2022155328000002
Figure 2022155328000002

Figure 2022155328000003
Figure 2022155328000003

表2の結果から、鉄粉もしくは銅被覆鉄を添加して、50~80℃に加温することでルテニウムを選択的に還元できることが分かる。その添加量は鉄に換算して0.2g以上、すなわちルテニウムの8質量倍以上で効果があり、10質量倍以上でさらに効果が高かった。 From the results in Table 2, it can be seen that ruthenium can be selectively reduced by adding iron powder or copper-coated iron and heating to 50 to 80°C. The addition amount of 0.2 g or more in terms of iron, that is, 8 times or more by mass of ruthenium is effective, and 10 times or more by mass of ruthenium is more effective.

ルテニウムを還元後、固液分離して溶液にチオ硫酸ナトリウムをチオ硫酸ナトリウム5水和物に換算して10g/L以上になるよう添加して75℃以上に加温すると、ヒ素の混入を抑制してイリジウムを沈殿させることができた。 After reducing the ruthenium, solid-liquid separation is performed, and sodium thiosulfate is added to the solution so that the amount of sodium thiosulfate pentahydrate is 10 g/L or more, and the solution is heated to 75°C or more to suppress arsenic contamination. was able to precipitate iridium.

実験例1の条件5と条件6に見られるように、チオ硫酸ナトリウムを先に添加してイリジウムを回収し、後から鉄粉を添加すると、ルテニウムに対する効果も残留イリジウムの回収効果も減殺される。 As seen in conditions 5 and 6 of Experimental Example 1, when sodium thiosulfate is added first to recover iridium and iron powder is added afterwards, both the effect on ruthenium and the effect on recovery of residual iridium are reduced. .

(実験例2)
実験例1と同じ方法で調整したイリジウム含有液を300mL分取し60℃に加熱した。イリジウム濃度は25mg/L、ルテニウム濃度は77mg/L、酸化還元電位は455mVであった。最初に鉄粉0.1gを添加した時を0分とし、鉄粉を15分ごとに0.1gずつ添加した。鉄粉を添加する直前に酸化還元電位を測定し、成分分析用のサンプルを2mL採取した。分析方法は実験例1に準じる。酸化還元電位(ORP)とイリジウム濃度並びにルテニウム濃度の関係を図1に示す。
(Experimental example 2)
300 mL of an iridium-containing liquid prepared in the same manner as in Experimental Example 1 was taken and heated to 60°C. The iridium concentration was 25 mg/L, the ruthenium concentration was 77 mg/L, and the redox potential was 455 mV. The time when 0.1 g of iron powder was first added was taken as 0 minute, and 0.1 g of iron powder was added every 15 minutes. The oxidation-reduction potential was measured immediately before adding the iron powder, and 2 mL of a sample for component analysis was collected. The analysis method conforms to Experimental Example 1. FIG. 1 shows the relationship between oxidation-reduction potential (ORP), iridium concentration, and ruthenium concentration.

反応中はルテニウムが液中に10mg/L以上残っていればイリジウムの濃度はほとんど変化せず、その時の酸化還元電位は90mV以上を維持していた。さらには溶液の酸化還元電位が100mV未満となった図1の経過時間30分~65分、120分以降の区間を除くと、部分的にも大きくイリジウムの濃度が低下することはなかった。このため、イリジウムの濃度を維持するためには、酸化還元電位を100mV以上に維持することが好ましいことがわかる。 During the reaction, if 10 mg/L or more of ruthenium remained in the liquid, the concentration of iridium hardly changed, and the oxidation-reduction potential at that time was maintained at 90 mV or more. Furthermore, the concentration of iridium did not decrease significantly even partially except for the sections from 30 minutes to 65 minutes and after 120 minutes in FIG. 1 where the oxidation-reduction potential of the solution was less than 100 mV. Therefore, in order to maintain the concentration of iridium, it is preferable to maintain the oxidation-reduction potential at 100 mV or more.

Claims (5)

ルテニウム及びイリジウムを含む塩酸酸性液に対して、酸化還元電位を銀/塩化銀電極を基準電極として480mV未満に調整する工程と、下記(1)及び(2)の工程と、を有する、ルテニウム及びイリジウムの分別方法。
(1)前記酸化還元電位を調整した塩酸酸性液を30~70℃に調整し、鉄と反応させてルテニウムを沈殿させる工程、
(2)前記塩酸酸性液を75℃以上に加温し、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を、チオ硫酸ナトリウム5水和物に換算して10g/L以上になるよう添加してイリジウムを沈殿させる工程。
Ruthenium and iridium, comprising a step of adjusting the oxidation-reduction potential of a hydrochloric acid acid solution containing ruthenium and iridium to less than 480 mV using a silver/silver chloride electrode as a reference electrode, and the following steps (1) and (2). Separation method of iridium.
(1) a step of adjusting the oxidation-reduction potential-adjusted hydrochloric acid acid solution to 30 to 70° C. and reacting it with iron to precipitate ruthenium;
(2) The hydrochloric acid solution is heated to 75° C. or higher, and a sodium thiosulfate salt or a solution containing thiosulfate ions is added so as to be 10 g/L or more in terms of sodium thiosulfate pentahydrate. precipitating.
前記塩酸酸性液の酸化還元電位を100mV以上に維持して前記(1)の工程を実施した後に、前記(2)の工程を実施する、請求項1に記載のルテニウム及びイリジウムの分別方法。 The method for separating ruthenium and iridium according to claim 1, wherein the step (2) is carried out after the step (1) is carried out while the oxidation-reduction potential of the hydrochloric acid acid solution is maintained at 100 mV or more. 前記(1)の工程で使用する鉄は表面の一部が銅で被覆されており、銅の含有率が20~70質量%である、請求項1または2に記載のルテニウム及びイリジウムの分別方法。 The method for separating ruthenium and iridium according to claim 1 or 2, wherein the iron used in the step (1) is partially coated with copper and has a copper content of 20 to 70% by mass. . 前記塩酸酸性液は更にヒ素を含有し、前記(1)の工程では、鉄をルテニウムに対し5~10質量倍添加し、前記(2)の工程では、チオ硫酸ナトリウム塩もしくはチオ硫酸イオン含有溶液を添加してイリジウムを回収した後の液にヒ素を残す、請求項1~3のいずれか一項に記載のルテニウム及びイリジウムの分別方法。 The hydrochloric acid solution further contains arsenic, and in the step (1), iron is added by 5 to 10 times the mass of ruthenium, and in the step (2), a solution containing sodium thiosulfate or thiosulfate ion is added. The method for separating ruthenium and iridium according to any one of claims 1 to 3, wherein arsenic is left in the liquid after the iridium is recovered by adding. 前記塩酸酸性液は更にヒ素を含有し、前記(2)の工程で得た沈殿を、アルカリ性溶液と混合してヒ素の一部もしくは全部を除去する、請求項1~4のいずれか一項に記載のルテニウム及びイリジウムの分別方法。 The acid solution of hydrochloric acid further contains arsenic, and the precipitate obtained in the step (2) is mixed with an alkaline solution to remove part or all of the arsenic. A method for separating ruthenium and iridium as described.
JP2021058769A 2021-03-30 2021-03-30 Method for separating ruthenium and iridium Active JP7498137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021058769A JP7498137B2 (en) 2021-03-30 2021-03-30 Method for separating ruthenium and iridium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021058769A JP7498137B2 (en) 2021-03-30 2021-03-30 Method for separating ruthenium and iridium

Publications (2)

Publication Number Publication Date
JP2022155328A true JP2022155328A (en) 2022-10-13
JP7498137B2 JP7498137B2 (en) 2024-06-11

Family

ID=83557671

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021058769A Active JP7498137B2 (en) 2021-03-30 2021-03-30 Method for separating ruthenium and iridium

Country Status (1)

Country Link
JP (1) JP7498137B2 (en)

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011184764A (en) 2010-03-10 2011-09-22 Mitsubishi Materials Corp Method for treating waste catalyst
JP2018044200A (en) 2016-09-13 2018-03-22 Jx金属株式会社 Method of treating metal-containing hydrochloric acidic liquid
JP6994983B2 (en) 2018-02-27 2022-01-14 Jx金属株式会社 How to recover ruthenium
JP6994984B2 (en) 2018-02-27 2022-01-14 Jx金属株式会社 How to recover ruthenium
JP7423467B2 (en) 2020-07-21 2024-01-29 Jx金属株式会社 Ruthenium recovery method
JP2022088124A (en) 2020-12-02 2022-06-14 Jx金属株式会社 Copper-coated iron powder, copper-coated iron powder producing method and ruthenium recovering method
JP7337209B2 (en) 2021-03-03 2023-09-01 Jx金属株式会社 Iridium recovery method

Also Published As

Publication number Publication date
JP7498137B2 (en) 2024-06-11

Similar Documents

Publication Publication Date Title
US8323377B2 (en) Recovery of metals from oxidised metalliferous materials
CA2598055C (en) Method for the recovery of gold from sulphide concentrate
US20140065037A1 (en) Treatment of indium gallium alloys and recovery of indium and gallium
JP3474526B2 (en) How to recover silver
JP5439997B2 (en) Method for recovering copper from copper-containing iron
AU2003261548A1 (en) Process for refining raw copper material containing copper sulfide mineral
JP6994983B2 (en) How to recover ruthenium
AU2004270530B2 (en) Method of separation/purification for high-purity silver chloride and process for producing high-purity silver by the same
ZA200501592B (en) Method for the recovery of metals using chloride leaching and extraction
JP7198079B2 (en) Method for treating acidic liquids containing precious metals, selenium and tellurium
US4662938A (en) Recovery of silver and gold
JP7337209B2 (en) Iridium recovery method
JP2008115429A (en) Method for recovering silver in hydrometallurgical copper refining process
EP1577408A1 (en) Method for separating platinum group element
JP7423467B2 (en) Ruthenium recovery method
EP0061468B1 (en) Recovery of silver from ores and concentrates
JP7247050B2 (en) Method for treating selenosulfuric acid solution
JP7498137B2 (en) Method for separating ruthenium and iridium
JP6994984B2 (en) How to recover ruthenium
JP7247049B2 (en) Method for treating selenosulfuric acid solution
JP7498138B2 (en) How to Collect Iridium
JP7423479B2 (en) Ruthenium recovery method
JP2019189891A (en) Method for separating selenium and tellurium from mixture containing selenium and tellurium
JP7325363B2 (en) Method for treating mixtures containing selenium and tellurium
JP2017218613A (en) Method of treating metal-containing acidic aqueous solution

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240226

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240402

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240422

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240507

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240530

R150 Certificate of patent or registration of utility model

Ref document number: 7498137

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150