JP2022149231A - 半導体装置の製造方法 - Google Patents

半導体装置の製造方法 Download PDF

Info

Publication number
JP2022149231A
JP2022149231A JP2021051288A JP2021051288A JP2022149231A JP 2022149231 A JP2022149231 A JP 2022149231A JP 2021051288 A JP2021051288 A JP 2021051288A JP 2021051288 A JP2021051288 A JP 2021051288A JP 2022149231 A JP2022149231 A JP 2022149231A
Authority
JP
Japan
Prior art keywords
wafer
chip
grinding
manufacturing
semiconductor device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021051288A
Other languages
English (en)
Inventor
健智 中根
Taketomo Nakane
悦司 早川
Etsuji Hayakawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsumi Electric Co Ltd
Original Assignee
Mitsumi Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsumi Electric Co Ltd filed Critical Mitsumi Electric Co Ltd
Priority to JP2021051288A priority Critical patent/JP2022149231A/ja
Priority to CN202210261138.1A priority patent/CN115132568A/zh
Priority to KR1020220035138A priority patent/KR20220133790A/ko
Priority to US17/655,828 priority patent/US20220310399A1/en
Priority to EP22163912.3A priority patent/EP4064352A3/en
Publication of JP2022149231A publication Critical patent/JP2022149231A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Structures Or Materials For Encapsulating Or Coating Semiconductor Devices Or Solid State Devices (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Encapsulation Of And Coatings For Semiconductor Or Solid State Devices (AREA)
  • Dicing (AREA)
  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)

Abstract

Figure 2022149231000001
【課題】裏面研削の際のウェハの厚さのばらつきを抑制することができる半導体装置の製造方法を提供する。
【解決手段】半導体装置の製造方法は、複数のチップ領域が集合したデバイス領域と、前記デバイス領域の周囲の周辺領域とを備えたウェハを準備する工程と、前記ウェハの一方の面に保護層を形成する工程と、前記一方の面に前記保護層が形成された状態で、前記ウェハの他方の面を研削する工程と、を有し、前記ウェハを準備する工程は、前記一方の面に感光性レジスト膜を設ける工程と、前記感光性レジスト膜を露光する工程と、を有し、前記他方の面を研削する工程の後に、前記感光性レジスト膜を現像することにより、前記チップ領域毎に前記一方の面にピラーを形成する工程を有する。
【選択図】図19

Description

本開示は、半導体装置の製造方法に関する。
半導体装置を製造する際には、ウェハの一方の面に素子を形成した後、ウェハを所定の厚さにするために他方の面を研削している。この研削は裏面研削(Back Grinding)とよばれている。
特開2000-173961号公報 特開2004-22899号公報 特開2017-69276号公報 特開2014-154815号公報 特許第5877663号公報
従来の方法では、裏面研削の際にウェハの厚さにばらつきが生じることがある。
本開示の目的は、裏面研削の際のウェハの厚さのばらつきを抑制することができる半導体装置の製造方法を提供することにある。
本開示の一形態に係る半導体装置の製造方法は、複数のチップ領域が集合したデバイス領域と、前記デバイス領域の周囲の周辺領域とを備えたウェハを準備する工程と、前記ウェハの一方の面に保護層を形成する工程と、前記一方の面に前記保護層が形成された状態で、前記ウェハの他方の面を研削する工程と、を有し、前記ウェハを準備する工程は、前記一方の面に感光性レジスト膜を設ける工程と、前記感光性レジスト膜を露光する工程と、を有し、前記他方の面を研削する工程の後に、前記感光性レジスト膜を現像することにより、前記チップ領域毎に前記一方の面にピラーを形成する工程を有する。
本開示によれば、裏面研削の際のウェハの厚さのばらつきを抑制することができる。
ピラーを備えた半導体チップを形成する場合の裏面研削を示す図である。 半導体装置の構成を示す断面図である。 モールド樹脂を除去した状態における半導体装置を示す平面図である。 第1実施形態におけるセンサチップの製造方法を示すフローチャート(その1)である。 第1実施形態におけるセンサチップの製造方法を示すフローチャート(その2)である。 第1実施形態におけるセンサチップの製造方法を示す平面図(その1)である。 第1実施形態におけるセンサチップの製造方法を示す平面図(その2)である。 第1実施形態におけるセンサチップの製造方法を示す断面図(その1)である。 第1実施形態におけるセンサチップの製造方法を示す断面図(その2)である。 第1実施形態におけるセンサチップの製造方法を示す断面図(その3)である。 第1実施形態におけるセンサチップの製造方法を示す断面図(その4)である。 第1実施形態に係る半導体装置の製造方法を示す断面図(その1)である。 第1実施形態に係る半導体装置の製造方法を示す断面図(その2)である。 第1実施形態に係る半導体装置の製造方法を示す断面図(その3)である。 第1実施形態に係る半導体装置の製造方法を示す断面図(その4)である。 センサチップが厚くなりすぎた場合の問題の一例を示す断面図である。 センサチップが薄くなりすぎた場合の問題の一例を示す断面図である。 裏面研削後のウェハの厚さの測定を示す図(その1)である。 第2実施形態におけるセンサチップの製造方法を示すフローチャートである。 裏面研削後のウェハの厚さの測定を示す図(その2)である。
以下、本開示の実施形態について添付の図面を参照しながら具体的に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複した説明を省くことがある。
(本開示の経緯)
半導体装置の製造プロセスでは、複数のチップ領域を備えたウェハに、不純物領域、電極、配線等を形成した後、ウェハを切断して複数の半導体チップを形成する。半導体チップは用途に応じて種々の形態を有し、ピラーを備えた半導体チップもある。ピラーの材料及び用途も種々であり、例えば、導電性のピラーの例としては、半導体チップの外部電極として用いられることもあるが、ピラーの別の用途として、例えば、モールド樹脂の形成の際に犠牲層として用いられることがある。具体的には、湿度検出部を備えたセンサチップを封止するモールド樹脂を形成する際に、湿度検出部を覆うように犠牲層としてピラーを形成しておき、モールド樹脂の形成後にピラーを除去することで、湿度検出部を露出する開口部をモールド樹脂に形成する。
本願発明者らは、このようなピラーを備えた半導体チップを含む半導体装置を製造する場合に、裏面研削の際にウェハの厚さにばらつきが生じやすいことを見出した。本願発明者は、更に、下記のような機構により、ウェハの厚さにばらつきが生じることを知見した。以下、この知見について説明する。
ピラーを備えた半導体チップを形成する場合、切断前のウェハは、ピラーが形成された複数のチップ領域が集合したデバイス領域と、その周囲の周辺領域とを有する。また、ウェハの裏面研削は、ウェハの表面に裏面研削用の保護テープ(以下、「BG(バックグラインド)テープ」ということがある。)を貼り付け、ステージに固定した状態で行われる。
図1は、ピラーを備えた半導体チップを形成する場合の裏面研削を示す図である。ウェハ100は一方の面(表面100A)に複数のピラー110を備え、ウェハ100の表面100Aにピラー110を覆うようにBGテープ120を貼り付ける。そして、BGテープ120をステージ130側に向けて、ウェハ100をステージ130に固定し、研削装置140を用いてウェハ100の他方の面(裏面100B)を研削する。ピラー110は、表面100Aに垂直なZ方向に高さを有する。なお、Z方向に垂直で、かつ互いに直交するX方向及びY方向は表面100Aに平行な方向である。
ウェハ100は、ピラー110を有する複数のチップ領域が集合したデバイス領域101と、その周囲の周辺領域102とを有する。ピラー110のZ方向の寸法が大きくなるほど、BGテープ120はピラー110間の隙間に入りこみにくくなり、図1に示すように、デバイス領域101ではBGテープ120がステージ130に接触するものの、周辺領域102ではBGテープ120がステージ130に接触せず、BGテープ120とステージ130との間の隙間が生じることがある。裏面研削は研削装置140をウェハ100に押し付けて行われるが、隙間が生じていると、隙間の部分でウェハ100が撓む。ウェハ100に撓みが生じると、加圧のエネルギーの一部が撓みに消費されてしまう。このため、デバイス領域101の裏面研削においても、周辺領域102に近い部分ほど、研削装置140からウェハ100に作用する圧力が低下しやすく、裏面研削の際にウェハ100の厚さにばらつきが生じてしまう。また、隣り合う2つのピラー110の間のXY平面内での距離が小さくなった場合にも、同様に、裏面研削の際にウェハ100の厚さにばらつきが生じてしまう。
本願発明者は、このような機構で生じるウェハの厚さのばらつきを抑制すべく鋭意検討を行った結果、下記の実施形態に想到した。
(第1実施形態)
まず、第1実施形態により製造する半導体装置について説明する。この半導体装置は、例えば湿度検出部を備えた湿度検出装置である。製造方法の詳細は後述するが、樹脂封止を行う際に湿度検出部の上に犠牲層となるピラーを設けておき、樹脂封止の後にピラーを除去することで、湿度検出部を露出する開口部をモールド樹脂に形成する。図2は、半導体装置の構成を示す断面図である。
第1実施形態により製造する半導体装置10は、平面形状がほぼ矩形状であって、対向する2組の二辺の一方がX方向に平行であって、他方がY方向に平行である。X方向とY方向とは互いに直交する。また、半導体装置10は、X方向及びY方向に直交するZ方向に厚みを有する。なお、半導体装置10の平面形状は、矩形状に限られず、円形、楕円、多角形等であってもよい。
半導体装置10は、第1半導体チップとしてのセンサチップ20と、第2半導体チップとしてのASIC(Application Specific Integrated Circuit)チップ30と、モールド樹脂40と、リードフレーム60とを有する。
リードフレーム60は、ダイパッド61と、複数のリード端子62とを有する。リードフレーム60の厚さは、例えば100μm~200μmである。
ASICチップ30は、ダイパッド61上に第2DAF(Die Attach Film)45を介して積層されている。センサチップ20は、ASICチップ30上に第1DAF42を介して積層されている。すなわち、センサチップ20とASICチップ30とは、ASICチップ30がセンサチップ20を積載したスタック構造となっている。センサチップ20の厚さは、例えば200μm~400μmである。ASIC30の厚さは、例えば100μm~150μmである。第1DAF42及び第2DAF45の厚さは、例えば10μm~30μmである。
センサチップ20とASICチップ30とは、複数の第1ボンディングワイヤ43により電気的に接続されている。ASICチップ30と複数のリード端子62とは、複数の第2ボンディングワイヤ44により電気的に接続されている。
このように積層化されたセンサチップ20及びASICチップ30、複数の第1ボンディングワイヤ43、複数の第2ボンディングワイヤ44及びリードフレーム60は、封止部材としてのモールド樹脂40により封止されてパッケージ化されている。半導体装置10の下面には、ダイパッド61と、複数のリード端子62とが露出している。モールド樹脂40のセンサチップ20の上面より上の部分の厚さは、例えば50μm~500μmであり、好ましくは100μm~250μmである。半導体装置10の厚さは、例えば500μm~1000μmである。
リードフレーム60は、ニッケルや銅により形成されている。第1DAF42及び第2DAF45は、それぞれ樹脂とシリカなどの混合物からなる絶縁材料で形成されている。モールド樹脂40は、カーボンブラックやシリカなどの混合物を含むエポキシ樹脂等の遮光性を有する黒色系の樹脂である。
半導体装置10の上面側には、センサチップ20の一部をモールド樹脂40から露出させる開口部50が形成されている。例えば、開口部50の平面形状はほぼ矩形状であって、X方向に平行な二辺と、Y方向に平行な二辺とを有する。各辺の長さは400μm~600μmである。
図3は、モールド樹脂40を除去した状態における半導体装置10を示す平面図である。図3に示すように、センサチップ20とASICチップ30とは、それぞれ平面形状がほぼ矩形状であって、X方向に平行な二辺と、Y方向に平行な二辺とを有する。センサチップ20は、ASICチップ30より小さく、ASICチップ30の表面上に第1DAF42を介して積層されている。
センサチップ20には、開口部50から露出される領域に、湿度検出部21と、温度検出部(図示せず)と、加熱部(図示せず)とが設けられている。加熱部は、湿度検出部21の下面側に、湿度検出部21の形成領域を覆うように形成されている。すなわち、加熱部の面積は、湿度検出部21より大きい。このように、封止部材としてのモールド樹脂40は、湿度検出部21及び温度検出部を露出させた状態でセンサチップ20等を封止している。
また、センサチップ20の端部には、複数のボンディングパッド(以下、単に「パッド」ということがある)24が形成されている。パッド24は、例えばアルミニウムやアルミシリコン合金(AlSi)により形成されている。
ASICチップ30は、信号処理及び制御用の半導体チップであって、例えば、湿度計測処理部、温度計測処理部、加熱制御部及び故障判定部を含む。
また、ASICチップ30の表面においてセンサチップ20で覆われていない領域には、複数の第1パッド35と、複数の第2パッド36とが設けられている。第1パッド35及び第2パッド36は、例えばアルミニウムやアルミシリコン合金(AlSi)により形成されている。
第1パッド35は、第1ボンディングワイヤ43を介して、センサチップ20の対応するパッド24に接続されている。第2パッド36は、第2ボンディングワイヤ44を介して、対応するリード端子62に接続されている。リード端子62は、ASICチップ30の周囲に配置されている。
製造時において、ASICチップ30の実装位置は、リード端子62を基準として決定される。センサチップ20のASICチップ30上の実装位置は、ASICチップ30の位置又はリード端子62のいずれかを基準として決定される。
半導体装置10は、センサチップ20上における湿度検出部21及び温度検出部の形成許容領域25を有する。形成許容領域25は、実装時に、ASICチップ30、センサチップ20、及び金型の間に位置ずれが最も大きく発生した場合であっても、開口部50から確実に露出するように、開口部50の形成領域内に設定されている。湿度検出部21及び温度検出部は、形成許容領域25内に形成されていれば、上記位置ずれにかかわらず、開口部50から確実に露出する。
第1実施形態により製造する半導体装置10は、上記の構成を備える。
次に、第1実施形態に係る半導体装置の製造方法について説明する。ここでは、まず、センサチップ20を製造するプロセスについて説明する。図4~図5は、第1実施形態におけるセンサチップ20の製造方法を示すフローチャートである。図6~図7は、第1実施形態におけるセンサチップ20の製造方法を示す平面図である。図8~図11は、第1実施形態におけるセンサチップ20の製造方法を示す断面図である。
まず、図6(A)に示すように、複数のチップ領域209を備えたウェハ200を準備する(ステップS101)。ウェハ200は、複数のチップ領域209が集合したデバイス領域201と、その周囲の周辺領域202とを有する1個のチップ領域209から1個のセンサチップ20が得られる。各チップ領域209は、湿度検出部21、温度検出部、加熱部、電極、配線等をウェハ200の一方の面(表面200A)に含む。ウェハ200はオリエンテーションフラット208が形成されている。ウェハ200の厚さT0はセンサチップ20の厚さよりも大きく、例えば600μm~650μmである。ウェハ200の直径は、例えば6インチ(15.24cm)である。チップ領域209はほぼ矩形状の平面形状を有し、X方向に平行な二辺と、Y方向に平行な二辺とを有する。例えば、X方向に平行な二辺の長さは900μm~1100μmであり、Y方向に平行な二辺の長さは600μm~800μmである。ウェハ200の材料は、例えばシリコン(Si)、炭化シリコン(SiC)、窒化アルミニウム(AlN)、アルミナ(Al)、窒化ガリウム(GaN)、ヒ化ガリウム(GaAs)等である。
次に、ウェハ200に含まれる水分を除去するためのベークを行う(ステップS102)。例えば、ベークの温度は100℃~150℃であり、時間は1分間~3分間である。
次に、開口部50を形成する位置に犠牲層となるピラーを形成する工程に入る。まず、図8(A)に示すように、回転塗布により、ウェハ200の表面200Aにピラーを形成するための感光性レジスト膜211を形成する(ステップS103)。感光性レジスト膜211は、例えば300rpm~600rpmの回転速度で形成する。感光性レジスト膜211の厚さは、例えば50μm~100μmである。感光性レジスト膜211の形成後にウェハ200のエッジリンスを行う。感光性レジスト膜211のウェハ200裏面への周り込が大きい場合、必要に応じて、バックリンスも行う。
次に、感光性レジスト膜211のプリベークを行う(ステップS104)。例えば、プリベークの温度は100℃~150℃であり、時間は5分間~10分間である。このプリベークにより、感光性レジスト膜211に含まれる溶媒が除去される。
なお、本実施形態では、後にセンサチップ20となる領域の開口部50の周囲にワイヤーボンディングを行うため、ワイヤ高さを超える厚さの樹脂厚が必要であり、開口部50の高さも同等の高さにする必要がある。しかしながら、一度の塗布ではその高さを稼ぐことが困難であるため、図8(B)に示すように、再度回転塗布により、感光性レジスト膜211の上に感光性レジスト膜212を形成する(ステップS105)。感光性レジスト膜212は、例えば300rpm~600rpmの回転速度で形成する。感光性レジスト膜212の厚さは、例えば50μm~100μmであり、感光性レジスト膜211の厚さと合わせると、例えば100μm~200μmとなる。感光性レジスト膜212の形成後にウェハ200のエッジリンスを行う。
次に、感光性レジスト膜212のプリベークを行う(ステップS106)。例えば、プリベークの温度は100℃~150℃であり、時間は5分間~10分間である。このプリベークにより、感光性レジスト膜212に含まれる溶媒が除去される。
次に、ウェハ200のエッジリンスを行う(ステップS107)。ステップS106のプリベークの後にエッジリンスを行うことにより、ステップS105の感光性レジスト膜212の形成後のエッジリンスでは除去しきれなかった溶媒を除去できる。
次に、ウェハ200のプリベークを行う(ステップS108)。例えば、プリベークの温度は100℃~150℃であり、時間は5分間~10分間である。このプリベークにより、ステップS107のエッジリンスでウェハ200に付着した溶媒が除去される。
次に、感光性レジスト膜211及び212の露光を行う(ステップS109)。露光は、センサチップ20の上に形成される開口部50に対応するように行う。例えば、露光にはi線、g線又はh線を用いることができ、エネルギーは500mJ~550mJとする。
次に、感光性レジスト膜211及び212の現像を行う(ステップS110)。この結果、図6(B)及び図9(A)に示すように、感光性レジストのピラー210が各チップ領域209に形成される。例えば、ピラー210は正方形状の平面形状を有し、各辺の長さは400μm~600μmである。ピラー210の高さは、上記処理では100μm~200μmとしているが、例えば50μm~500μmの範囲で適宜設定可能である。
次に、ウェハ200の水洗及び乾燥を行う(ステップS111)。水洗には、例えば純水を用いる。乾燥には、例えばスピンドライヤーを用いる。例えば、回転速度は800rpm~1200rpmとし、時間は8分間~12分間とする。
次に、ウェハ200のハードベークを行う(ステップS112)。例えば、ハードベークの温度は150℃~200℃であり、時間は15分間~25分間である。このハードベークにより、ウェハ200に残存している水分及びピラー210に残存している溶媒が除去される。
このようにして、表面200Aに複数のピラー210を備えたウェハ200が得られる。複数のピラー210はデバイス領域201内に形成されている。
次に、ウェハ200の他方の面(裏面200B)にダイシングテープを貼り付け、加工装置に取り付ける(ステップS113)。加工装置としては、例えば株式会社ディスコのDFD6361を用いることができる。
次に、図7(A)及び図9(B)に示すように、周辺領域202内でウェハ200を環状に切断する(ステップS114)。この結果、周辺領域202がウェハ200の半径方向で二分される。切断後の外側の部分は除去される。この切断では、切断後のウェハ200の縁の接線が、オリエンテーションフラット208と一致するようにしてもよい。つまり、切断後のウェハ200の縁が、オリエンテーションフラット208上に位置するようにしてもよい。また、切断後のウェハ200の縁が、オリエンテーションフラット208よりもウェハ200の中心側に位置するようにしてもよい。
次に、ダイシングテープに紫外線を照射することで接着力を低下させ、ウェハ200を加工装置から取り出す(ステップS115)。この結果、図7(B)及び図10に示すように、周辺領域202の一部が除去されたウェハ200が得られる。
次に、ウェハ200の表面200Aに複数のピラー210の上から、複数のピラー210を覆うようにBGテープ220を貼り付ける(ステップS116)。この時、BGテープ220は、ウェハ200の全周にわたって周辺領域202に接触させる。BGテープ220と周辺領域202との間に隙間があると、裏面研削時に切削水がウェハ200の表面200Aに侵入するおそれがある。BGテープ220は、保護層の一例である。
次に、図11に示すように、BGテープ220をステージ230側に向けて、ウェハ200をステージ230に固定し、研削装置240を用いてウェハ200の裏面200Bを研削する(ステップS117)。この裏面研削は、研削装置240をウェハ200に押し付けながら行う。ウェハ200の研削後の厚さT1は、センサチップ20の厚さと同等であり、例えば200μm~400μmである。
ステップS114において周辺領域202の一部が除去されているため、ステップS117の裏面研削では、ウェハ200の撓みが抑制される。このため、研削装置240からウェハ200に作用する圧力が面内で略均一になる。従って、裏面200Bの研削後のウェハ200の厚さは優れた面内均一性を有する。
次に、BGテープ220に紫外線を照射することで接着力を低下させ、ウェハ200からBGテープ220を剥がす(ステップS118)。
次に、ウェハ200を複数のチップ領域209に個片化する(ステップS119)。
このようにして、複数のピラー210を備えたセンサチップ20が製造される。
次に、ピラー210を備えたセンサチップ20と、ASICチップ30とを用いて半導体装置10を製造するプロセスについて説明する。図12~図15は、半導体装置10の製造方法を示す断面図である。
まず、図12(A)に示すように、ダイパッド61及び複数のリード端子62を備えたリードフレーム60を準備し、ダイパッド61の上に、複数のASICチップ30を、第2DAF45を介して固着する。なお、実際には多数のASICチップ30がダイパッド61上に固着されるが、図12(A)では、簡略化のため、2つのセンサチップ20のみを示している。ASICチップ30は、センサチップ20とは別に製造しておく。
次に、図12(B)に示すように、各ASICチップ30の表面上に、ピラー210を備えたセンサチップ20を、第1DAF42を介して固着する。
次に、図13(A)に示すように、各ASICチップ30上の第2パッド36とリード端子62との間を第2ボンディングワイヤ44で接続し、各センサチップ20上のパッド24とASICチップ30上の第1パッド35との間を、第1ボンディングワイヤ43で接続する。以下、図13(A)に示す構成を、被成形品310ということがある。
次に、図13(B)に示すように、上型321と下型322とからなる金型320を用意し、下型322の上に被成形品310を載置する。金型320は、トランスファモールド法による樹脂封止用の金型である。上型321の内面に離型フィルム330が設けられている。離型フィルム330は、上型321の内面全体を覆う面積を有する。また、離型フィルム330は、樹脂成型時の加熱温度に耐え得る耐熱性と、モールド樹脂40及び金型320から容易に剥離することが可能な剥離性を有する。離型フィルム330は、例えば、ETFE(エチレン-テトラフロロエチレン)によって形成されている。
次に、図14(A)に示すように、上型321を、離型フィルム330を介して下型322に当接させる。このとき、下型322の上面と上型321の下面との間の距離L0は、半導体装置10の厚さに予め設定されている。
このように上型321と下型322とを離型フィルム330を介して閉じた状態として、金型320を加熱し、金型320の内部空間へ、矢印331で示すように供給路を介してモールド樹脂40を流し込む。これにより、センサチップ20、ASICチップ30、第1ボンディングワイヤ43、第2ボンディングワイヤ44及びリードフレーム60がモールド樹脂40で封止される。金型320の加熱温度は、例えば160℃~200℃とする。
モールド樹脂40が固化した後、図14(B)に示すように、上型321を下型322から分離する。そして、金型320から、モールド樹脂40により封止された、ピラー210を備えたセンサチップ20、ASICチップ30、第1ボンディングワイヤ43、第2ボンディングワイヤ44及びリードフレーム60を取り出す。更に、離型フィルム330をモールド樹脂40及びピラー210から剥離する。
次に、図15(A)に示すように、ピラー210を除去する。ピラー210は、例えばアッシングにより除去できる。ピラー210が配置されていた部分に開口部50が形成される。アッシング以外にも、ピラー210の材料により液剤を用いての除去も可能である。
そして、図15(B)に示すように、モールド樹脂40及びリードフレーム60を切断する。
このようにして、複数の半導体装置10が製造される。
本実施形態では、上述のように、ステップS114において周辺領域202の一部が除去されているため、ステップS117の裏面研削では、ウェハ200の撓みが抑制される。このため、研削装置240からウェハ200に作用する圧力が面内で略均一になる。従って、裏面200Bの研削後のウェハ200の厚さは優れた面内均一性を有する。
ここで、センサチップ20が厚くなりすぎた場合の問題の一例と、センサチップ20が薄くなりすぎた場合の問題の一例について説明する。図16は、センサチップ20が厚くなりすぎた場合の問題の一例を示す断面図であり、図17は、センサチップ20が薄くなりすぎた場合の問題の一例を示す断面図である。
上述のように、下型322の上面と上型321の下面との間の距離L0は、半導体装置10の厚さに予め設定されている。このため、センサチップ20が厚くなりすぎた場合は、図16に示すように、リードフレーム60の下面からピラー210の上面までの距離が過大となる。このため、上型321を下型322に当接させ、下型322の上面と上型321の下面との間を距離L0とすると、センサチップ20及びASICチップ30に大きな圧縮圧力が作用して、センサチップ20及びASICチップ30が破損するおそれがある。また、ピラー210が圧縮されて、第1ボンディングワイヤ43が離型フィルム330に接し、第1ボンディングワイヤ43がモールド樹脂40に封止されず、モールド樹脂40から露出するおそれもある。
また、センサチップ20が薄くなりすぎた場合には、図17に示すように、リードフレーム60の下面からピラー210の上面までの距離が過小となる。このため、上型321を下型322に当接させ、下型322の上面と上型321の下面との間を距離L0とすると、ピラー210の上面と上型321の下面との間に隙間が生じ得る。隙間が生じた場合、この隙間にもモールド樹脂40が入り込むため、後にピラー210を除去できず、開口部50を形成できないおそれがある。
本実施形態によれば、センサチップ20を所望の厚さで形成することができるため、上記の図16又は図17に示すような問題を回避することができる。
なお、感光性レジスト膜211及び212の材料は、例えばノボラック系樹脂、アクリル系樹脂又はポリイミド系樹脂である。つまり、ピラー210の材料は、例えばノボラック系樹脂、アクリル系樹脂又はポリイミド系樹脂である。また、液体のレジストの回転塗布に代えて、膜状のレジストの貼り付けを行ってもよい。
感光性レジスト膜211及び212からピラー210を構成しているが、1つの感光性レジスト膜で十分な高さのピラー210が形成される場合には、感光性レジスト膜211又は212を形成しなくてもよい。また、より高いピラー210を形成するために、3つ以上の感光性レジスト膜を形成してもよい。
ステップS114の切断後のウェハ200の縁と、複数のピラー210のうちでウェハ200の縁に最も近いピラー210との間の距離は、ピラー210の高さの1.0倍以上5.0倍以下であることが好ましく、1.2倍以上4.0倍以下であることがより好ましい。1.5倍以上3.0倍以下であることがより好ましい。この距離は、ピラー210の高さにもよるが、例えば50μm~1500μmである。この距離が大きいほど、裏面研削時のウェハ200の撓みが大きくなりやすく、厚さのばらつきを抑制する効果が小さくなるおそれがある。その一方で、この距離が小さいほど、BGテープ220を周辺領域202に密着させにくくなる。
ピラー210の平面形状は矩形状に限定されず、他の多角形状、円形状又は楕円形状等であってもよい。
なお、ピラーの材料は感光性レジストに限定されない。例えば、ピラーの材料はセルロース等の非感光性の材料であってもよい。例えば、セルロースの溶媒としてアセトンを用い、セルロースのアセトン溶液をスピンコートにより塗布し、ベークによりアセトンを除去する。この塗布及びベークを繰り返すことで、所望の厚さを有するセルロースの膜を形成する。その後、一般的なノボラック系の感光性レジスト等の塗布、露光及び現像により、ピラーを形成する領域を覆い、他の領域を露出するレジストマスクを形成する。そして、セルロースの膜のレジストマスクから露出している部分を、アセトンにより除去するか、又は反応性イオンエッチング(Reactive Ion Etching:RIE)により除去する。その後、酢酸ブチルを用いてレジストマスクを除去する。このようにして、非感光性膜のピラーを形成することができる。
ここで、実測に基づき、第1実施形態の効果について、参考例と比較しながら説明する。
第1実施形態に倣う第1例では、ウェハの厚さを625μmとし、直径を6インチ(15.24cm)とした。また、ステップS114の切断では、ウェハの縁から3mmの部分で切断を行った。つまり、ウェハの直径を6mm小さくした。そして、ステップS117の裏面研削では、研削後のウェハの厚さの目標値Aを300μmとした。
参考例(第2例)では、ステップS114の切断を行わなかった。また、ステップS117の裏面研削では、研削後のウェハの厚さの目標値Bを464μmとした。他の条件は第1例と同様とした。
第1例及び第2例について、裏面研削後のウェハの厚さを測定した。この結果を図18に示す。図18において、横軸はウェハの中心を基準とした位置を示し、縦軸はウェハの厚さを示す。横軸の負の値は、正の方向に対して逆方向における位置を示す。
図18に示すように、第1例(■)では、ウェハの厚さは、目標値Aである300μmの±20μmの範囲内にあり、最大値と最小値との差はわずか26μmであった。これに対し、第2例(◆)では、ウェハの厚さは、目標値Bが464μmであるにもかかわらず、全体的に500μm程度以上であり、最大値と最小値との差は70μm程度と大きかった。
(第2実施形態)
第2実施形態について説明する。第2実施形態は、センサチップ20の製造方法の点で第1実施形態と相違する。図19は、第2実施形態におけるセンサチップ20の製造方法を示すフローチャートである。
第2実施形態では、第1実施形態と同様に、ステップS101~S109の処理を行う。
次に、ウェハ200の表面200Aに現像後の感光性レジスト膜211及び212の上から、感光性レジスト膜211及び212を覆うようにBGテープ220を貼り付ける(ステップS201)。
次に、BGテープ220をステージ230側に向けて、ウェハ200をステージ230に固定し、研削装置240を用いてウェハ200の裏面200Bを研削する(ステップS202)。この裏面研削は、研削装置240をウェハ200に押し付けながら行う。ウェハ200の研削後の厚さT1は、センサチップ20の厚さと同等であり、例えば200μm~400μmである。
次に、BGテープ220に紫外線を照射することで接着力を低下させ、ウェハ200からBGテープ220を剥がす(ステップS203)。
次に、感光性レジスト膜211及び212の現像を行う(ステップS204)。この結果、感光性レジストのピラー210が各チップ領域209に形成される。
次に、ウェハ200の水洗及び乾燥を行う(ステップS205)。水洗には、例えば純水を用いる。乾燥には、例えばスピンドライヤーを用いる。
次に、ウェハ200のハードベークを行う(ステップS206)。このハードベークにより、ウェハ200に残存している水分及びピラー210に残存している溶媒が除去される。
このようにして、表面200Aに複数のピラー210を備えたウェハ200が得られる。複数のピラー210はデバイス領域201内に形成されている。
次に、ウェハ200を複数のチップ領域209に個片化する(ステップS207)。
このようにして、複数のピラー210を備えたセンサチップ20が製造される。
他の構成は第1実施形態と同様である。
第2実施形態では、ステップS204でピラー210が形成される前に、ステップS202でウェハ200の裏面200Bを研削している。このため、BGテープ220とステージ230との間に、ピラー210に起因する隙間が形成されず、ウェハ200の撓みが抑制される。このため、研削装置240からウェハ200に作用する圧力が面内で略均一になる。従って、裏面200Bの研削後のウェハ200の厚さは優れた面内均一性を有する。
ここで、実測に基づき、第2実施形態の効果について、参考例と比較しながら説明する。
第2実施形態に倣う第3例では、ウェハの厚さを625μmとし、直径を6インチ(15.24cm)とした。また、ステップS202の裏面研削では、研削後のウェハの厚さの目標値Cを332μmとした。
参考例(第4例)では、露光(ステップS109)の後、BGテープの貼り付け、裏面研削及びBGテープの剥離(ステップS201~S203)の前に、現像、水洗、乾燥及びハードベーク(ステップS204~206)を行った。また、ステップS202の裏面研削では、研削後のウェハの厚さの目標値Dを464μmとした。他の条件は第3例と同様とした。
第3例及び第4例について、裏面研削後のウェハの厚さを測定した。この結果を図20に示す。図20において、横軸はウェハの中心を基準とした位置を示し、縦軸はウェハの厚さを示す。横軸の負の値は、正の方向に対して逆方向における位置を示す。
図20に示すように、第3例(■)では、ウェハの厚さの最大値と最小値との差はわずか18μmであった。これに対し、第4例(◆)では、ウェハの厚さの最大値と最小値との差は67μmと大きかった。
以上、好ましい実施の形態について説明したが、上述した実施の形態に制限されることはなく、特許請求の範囲に記載された範囲を逸脱することなく、上述した実施の形態に種々の変形及び置換を加えることができる。
10:半導体装置
20:センサチップ
30:ASICチップ
40:モールド樹脂
50:開口部
60:リードフレーム
200:ウェハ
200A:表面
200B:裏面
201:デバイス領域
202:周辺領域
209:チップ領域
210:ピラー
211、212:感光性レジスト膜
220:BGテープ
230:ステージ
240:研削装置

Claims (4)

  1. 複数のチップ領域が集合したデバイス領域と、前記デバイス領域の周囲の周辺領域とを備えたウェハを準備する工程と、
    前記ウェハの一方の面に保護層を形成する工程と、
    前記一方の面に前記保護層が形成された状態で、前記ウェハの他方の面を研削する工程と、
    を有し、
    前記ウェハを準備する工程は、
    前記一方の面に感光性レジスト膜を設ける工程と、
    前記感光性レジスト膜を露光する工程と、
    を有し、
    前記他方の面を研削する工程の後に、前記感光性レジスト膜を現像することにより、前記チップ領域毎に前記一方の面にピラーを形成する工程を有する半導体装置の製造方法。
  2. 前記ピラーを形成する工程の後に、
    前記ウェハを個片化して複数の半導体チップを形成する工程と、
    前記半導体チップを封止するモールド樹脂を、前記ピラーの一部が露出するように形成する工程と、
    前記ピラーを除去する工程と、
    を有する請求項1に記載の半導体装置の製造方法。
  3. 前記ピラーの材料は、ノボラック系樹脂、アクリル系樹脂又はポリイミド系樹脂である請求項1又は2に記載の半導体装置の製造方法。
  4. 前記ピラーの高さは、50μm~500μmである請求項1乃至3のいずれか1項に記載の半導体装置の製造方法。
JP2021051288A 2021-03-25 2021-03-25 半導体装置の製造方法 Pending JP2022149231A (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2021051288A JP2022149231A (ja) 2021-03-25 2021-03-25 半導体装置の製造方法
CN202210261138.1A CN115132568A (zh) 2021-03-25 2022-03-16 半导体装置的制造方法
KR1020220035138A KR20220133790A (ko) 2021-03-25 2022-03-22 반도체 장치의 제조 방법
US17/655,828 US20220310399A1 (en) 2021-03-25 2022-03-22 Method for manufacturing semiconductor device
EP22163912.3A EP4064352A3 (en) 2021-03-25 2022-03-23 Method for manufacturing semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021051288A JP2022149231A (ja) 2021-03-25 2021-03-25 半導体装置の製造方法

Publications (1)

Publication Number Publication Date
JP2022149231A true JP2022149231A (ja) 2022-10-06

Family

ID=83462940

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021051288A Pending JP2022149231A (ja) 2021-03-25 2021-03-25 半導体装置の製造方法

Country Status (1)

Country Link
JP (1) JP2022149231A (ja)

Similar Documents

Publication Publication Date Title
JP4856328B2 (ja) 半導体装置の製造方法
US3978578A (en) Method for packaging semiconductor devices
TWI755652B (zh) 封裝方法、面板組件以及晶片封裝體
US9601531B2 (en) Wafer-level packaging structure for image sensors with packaging cover dike structures corresponding to scribe line regions
US9362173B2 (en) Method for chip package
JP2010238729A (ja) チップサイズパッケージ状の半導体チップ及び製造方法
JP2011204765A (ja) 半導体装置の製造方法及び半導体装置
TWI421956B (zh) 晶片尺寸封裝件及其製法
TWI601218B (zh) 具有高溫塗層之晶片封裝構造之製造方法
CN109860065B (zh) 一种扇出型封装方法
JP2022149230A (ja) 半導体装置の製造方法
JP5471064B2 (ja) 半導体装置の製造方法
TWI713849B (zh) 半導體製程及半導體結構
EP4067297A1 (en) Sensing device and method for manufacturing sensing device
JP2022149231A (ja) 半導体装置の製造方法
EP4064352A2 (en) Method for manufacturing semiconductor device
JP2003347471A (ja) 半導体装置及びその製造方法
JP2010225830A (ja) 半導体装置の製造方法
JPH08153833A (ja) 半導体装置の製造方法
US20220139700A1 (en) Semiconductor device and method making the same
CN109920765B (zh) 一种扇出型封装器件
CN109524479B (zh) 一种半导体芯片封装方法
JP2010062514A (ja) 粘着性保護層を有する半導体ウェハ
TW201628150A (zh) 半導體裝置
US9806034B1 (en) Semiconductor device with protected sidewalls and methods of manufacturing thereof