JP2022143521A - エンジン駆動型発電機 - Google Patents

エンジン駆動型発電機 Download PDF

Info

Publication number
JP2022143521A
JP2022143521A JP2021044073A JP2021044073A JP2022143521A JP 2022143521 A JP2022143521 A JP 2022143521A JP 2021044073 A JP2021044073 A JP 2021044073A JP 2021044073 A JP2021044073 A JP 2021044073A JP 2022143521 A JP2022143521 A JP 2022143521A
Authority
JP
Japan
Prior art keywords
engine
resistor
exhaust
cooling fan
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021044073A
Other languages
English (en)
Inventor
慎一郎 高橋
Shinichiro Takahashi
敦 渡部
Atsushi Watabe
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hokuetsu Industries Co Ltd
Original Assignee
Hokuetsu Industries Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hokuetsu Industries Co Ltd filed Critical Hokuetsu Industries Co Ltd
Priority to JP2021044073A priority Critical patent/JP2022143521A/ja
Publication of JP2022143521A publication Critical patent/JP2022143521A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exhaust Silencers (AREA)

Abstract

【課題】ヒートバランス性能を低下させることなく,エンジンの排気温度を上昇させる際に発電機本体に接続する抵抗器を防音箱内に形成された冷却風の流路内に配置する。【解決手段】エンジンの排気温度を上昇させる際に発電機本体70に接続される抵抗器20を,所定の間隔をあけて面平行に配置された複数枚の平板状の抵抗素子21の集合体として形成すると共に,前記各抵抗素子21の平面21aが,冷却ファン52で発生させた冷却風の流路14に対し平行を成すように,該冷却風の流路14に前記抵抗器20を配置する。これにより,抵抗器20によって冷却風の流れが妨げられることなく,ヒートバランス性能の低下を抑制しつつ,抵抗器20を冷却風の流路14に配置して冷却することができる。【選択図】図1

Description

本発明は,発電機本体の駆動源であるディーゼルエンジンの排気路中に排気ガス後処理装置を設けたエンジン駆動型発電機に関し,より詳細には,前記排気ガス後処理装置に導入する排気ガス温度を上昇させる際に,エンジンに負荷をかけるために発電機本体に接続する抵抗器を搭載したエンジン駆動型発電機に関する。
エンジン駆動型発電機では,発電機本体の駆動源であるエンジンとして一般にディーゼルエンジンが採用されているが,ディーゼルエンジンはその構造上,燃焼時にガソリンエンジンと比べて多くの粒子状物質(particulate matter:以下「PM」という。)や窒素酸化物(以下「NOX」という)を排気ガスと共に排出する。
このPMやNOXは大気汚染や健康被害の原因となることから,排出ガス規制によりディーゼルエンジンが排出するPMやNOXには規制値(単位出力当りの質量[g/kWh])が定められている。
この排出規制に対応するために,ディーゼルエンジンの排気路中には,酸化触媒(Diesel Oxidation Catalyst:以下「DOC」という)や,このDOCに,更にディーゼルパティキュレートフィルタ(Diesel Particulate Filter:以下「DPF」という。)や尿素SCR(選択的触媒還元:Selective Catalytic Reduction)装置のいずれか,又は双方を組み合わせて成る排気ガス後処理装置が設けられており,これによりPMやNOXの排出量の低減が図られている。
このうちのDOCは,排気ガスの熱によりDOCの温度が活性温度以上に上昇するとNO2を生成し,このNO2を酸化剤としてPMを燃焼させて除去する。
また,DPFは,前述のDOCの二次側に配置され,排気ガス中に残るPMを捕集して排気ガス中より除去する。
更に,尿素SCR装置は,DOCを通過した後の排気ガスに尿素水を噴霧して加水分解によりアンモニア(NH3)を生成すると共に,尿素水噴霧後の排気ガスをSCR触媒に導入して,生成したアンモニアでNOXを還元して無害な窒素(N2)と水(H2O)に分解する。
なお,尿素SCR装置には,通常,SCR触媒の下流に還元反応で残ったアンモニアを窒素と水に分解するDOCを更に備える。
このように,エンジン駆動型発電機のエンジンの排気路中には,前述したDOCや,このDOCと共に,DPF及び/又は尿素SCR装置を備えた排気ガス後処理装置を設け,排気ガス中のPMやNOXが除去される。しかし,このような排気ガス後処理装置を備えたエンジン駆動型発電機であっても,エンジンが低負荷の運転状態で運転される等して,排気ガス温度が低い状態に維持されると,以下のような問題が生じる。
エンジンの排気ガス温度がDOCの活性化温度を下回った状態で運転されると,NO2が生成されず,DOCによるPMの燃焼が行われず,排気ガス中のPM量を減少させることができない。
そのため,このような運転状態が長時間維持されると,DOCの二次側にDPFを設けた排気ガス後処理装置では,DPFに対するPMの堆積が進行してDPFが目詰まりを起こすという更なる問題が発生する。
また,DOCの二次側に尿素SCR装置を設けた構成では,排気ガス温度がDOCの活性化温度を下回った状態で運転されていると,DOCで燃焼できなかったPM等の未燃焼有機物がSCR触媒に堆積すると共に,SCR触媒に導入される排気ガス温度も上昇されない結果,SCR触媒におけるNOXの還元が十分に行われずにSCR触媒にアンモニア由来の不純物が付着してNOXの還元性能が低下する。
特にエンジンから排気ガス後処理装置までの配管が長くなると,排気ガス後処理装置に到達する排気ガス温度が低くなることから,このようなPMの燃焼不良やDPFに対するPMの堆積,SCR触媒の性能低下が更に生じやすくなる。
そのため,前述したDOCや,DOCと共にDPF及び/又は尿素SCR装置を備えた排気ガス後処理装置を有するエンジン駆動型発電機では,排気ガス温度が所定の低い温度となっている場合,エンジンが所定時間低負荷状態で連続して運転された場合,DPFに対するPMの堆積量が一定量以上となった場合,及び,エンジン駆動型発電機の所定積算稼働時間毎等に,排気ガス温度を上昇させて,排気ガス後処理装置内のDOCの温度を活性温度以上に上昇させることで,PMを含む排気ガス中の未燃焼有機物の燃焼を促進させ,及び/又は,このような未燃焼有機物の燃焼に伴う更なる排気ガス温度の上昇によって,DPFに堆積したPMを強制的に燃焼させるDPFの再生(強制再生)や,SCR触媒のクリーニング(性能回復)が行われる。
このような排気ガス温度の上昇を得るために,エンジン駆動型発電機に「ダミー負荷」などと呼ばれる電気負荷を搭載しておき,この電気負荷を発電機本体に接続して発電機本体に該電気負荷の消費電力に応じた電力を発電させることで,エンジンにかかる負荷(エンジンの出力)を増大させて排気ガスの温度を上昇させることが行われている。
このようなエンジン駆動型発電機の構成として,エンジン駆動型発電機に既に搭載されている機器を前述の電気負荷とするものとして,後掲の特許文献1では,エンジンの冷却水を加温する電気ヒータを前述の電気負荷とし,DPFの再生時にこの電気ヒータを発電機本体に接続する構成を採用する(特許文献1参照)。
また,エンジンの排気温度を上昇させる際に使用する専用の抵抗器を前述の電気負荷として搭載したエンジン駆動型発電機も提案されており,このような抵抗器として,図5に示すように,円柱状の芯材121aの外周に抵抗線121bを螺旋状に巻いた巻き線型の抵抗素子121を,矩形枠状のフレーム122に複数本,並べて取り付けることにより構成された抵抗器120を搭載したエンジン駆動型発電機100も提案されている(特許文献2の図2,図3参照)。
このように,発電機本体に電気ヒータや抵抗器を接続すると,電気ヒータや抵抗器120は通電に伴って発熱する。
このような発熱が生じた場合であっても,前掲の特許文献1に記載のエンジン駆動型発電機のように,エンジンの冷却水を加温する電気ヒータを電気負荷とする構成では,電気ヒータが発した熱はエンジンの冷却水と熱交換されてラジエータで放熱されることから,発熱に対する対策を講じる必要はない。
しかし,特許文献2のように,エンジンの排気温度を上昇させるために使用する専用の抵抗器120を設けた構成では,この抵抗器120を冷却するための構成の採用が必要となる。
そのため,前掲の特許文献2では,図6に示すように,エンジン150の冷却ファン152から防音箱110のトップパネル112dに設けた排風口113に至る冷却風の流路114のいずれかの位置に,前述の抵抗器120を,抵抗素子121の並置面Pが冷却風の流路114に対して直交するように配置する構成を採用する(特許文献2の図2参照)。
なお,図6中の符号130は,エンジン駆動型発電機100の防音箱110の天板に設けた前述の排風口113の上部を覆う排風ダクト130である。
特開2016-104974号公報 特開2016- 17486号公報
前掲の特許文献2のエンジン駆動型発電機100の構成では,前述したように複数の抵抗素子121の並置面Pが冷却風の流路114と直交するように配置されていることで,全ての抵抗素子121に略均等に冷却風を当てて冷却することができる。
しかし,このような構造の抵抗器120を設ける場合,防音箱110内を流れる冷却風は抵抗器120を通過する際に大きな抵抗を受けることとなり,冷却風の流路114を通過して排風口113を介して機外に排出される冷却風の流量(排風量)が減少する。
そのため,前述した構造の抵抗器120を冷却風の流路114中に配置すれば,防音箱110内に収容された機器の冷却性が悪化し,エンジン駆動型発電機100のヒートバランス性能を低下させてしまうこととなる。
そこで本発明は,上記従来技術における欠点を解消するために成されたもので,排気ガス後処理装置を備えたエンジン駆動型発電機において,排気ガス後処理装置に設けたDOCの活性化や,DPFの再生,SCR触媒のクリーニング等を行う際にエンジンの排気ガス温度を上昇させるために発電機本体に接続する抵抗器を,前述した冷却風の流路中に配置する構成を採用した場合であっても,冷却風の流路を通過する冷却風量の減少,従って,ヒートバランス性能の低下を抑制しつつ,しかも,抵抗器自体も好適に冷却することができる,エンジン駆動型発電機を提供することを目的とする。
以下に,課題を解決するための手段を,発明を実施するための形態で使用する符号と共に記載する。この符号は,特許請求の範囲の記載と,発明を実施するための形態の記載との対応を明らかにするためのものであり,言うまでもなく,本発明の技術的範囲の解釈に制限的に用いられるものではない。
上記目的を達成するために,本発明のエンジン駆動型発電機1は,
ディーゼルエンジンであるエンジン50と,前記エンジン50により駆動される発電機本体70と,前記エンジン50の排気路に設けられた排気ガス後処理装置82と,前記排気ガス後処理装置82に導入する排気ガス温度を上昇させる際に前記発電機本体70に接続される抵抗器20を備えるエンジン駆動型発電機1において,
前記抵抗器20を,所定の間隔をあけて面平行に配置された複数枚の平板状の抵抗素子21の集合体として形成すると共に,
前記各抵抗素子21の平面21aが,冷却ファン52で発生させた冷却風の流路14に対し平行を成すように,前記冷却風の流路14に前記抵抗器20を配置したことを特徴とする(請求項1)。
上記構成のエンジン駆動型発電機1において,
前記冷却ファン52を,防音箱10内に,該冷却ファン52の吹き出し方向BDが水平方向となるよう配置すると共に,該冷却ファン52からの冷却風を導入すると共に前記防音箱10の天板(トップパネル12d)に設けた排風口13を介して機外と連通する排風室10bを前記防音箱10内に設け,前記冷却ファン52から前記排風口13に至る前記冷却風の流路14を形成すると共に,
前記抵抗器20を,前記排風口13の下方に,前記各抵抗素子21の平面21aが前記冷却ファン52の前記吹き出し方向BDと平行な垂直面を成すように収容する構成とすることができる(請求項2:図1及び図2参照)。
また,上記構成に代えて,
前記冷却ファン52を,防音箱10内に,該冷却ファン52の吹き出し方向BDが水平方向となるよう配置すると共に,該冷却ファン52からの冷却風を導入する排風室10bを前記防音箱10内に設け,該排風室10bを画成する防音箱10の側壁のうち,前記冷却ファン52の吹き出し方向BD前方の側壁(リヤパネル12b)の上端から所定高さの範囲に,上向きに開口する吹出口31を有すると共に,前記排風室10bを前記冷却ファン52の前記吹き出し方向BDに延長する排風ダクト30を設け,前記冷却ファン52から前記排風ダクト30の前記吹出口31に至る前記冷却風の流路14を形成すると共に,
前記抵抗器20を前記排風ダクト30内に,前記各抵抗素子21の平面21aが前記冷却ファン52の前記吹き出し方向BDと平行な垂直面を成すように収容するものとしても良い(請求項3:図3及び図4参照)。
以上で説明した本発明の構成により,本発明のエンジン駆動型発電機1では,以下の顕著な効果を得ることができた。
抵抗器20を,所定の間隔をあけて面平行に配置された複数枚の平板状の抵抗素子21の集合体として形成すると共に,前記各抵抗素子21の平面21aが,冷却ファン52で発生させた冷却風の流路14に対し平行な向きとなるように,前記冷却風の流路14に前記抵抗器20を配置したことで,抵抗器20によって冷却風の流れが妨げられることなく,冷却風の流路14を通過する冷却風の流量減少を抑制することができた。
その結果,エンジン駆動型発電機1のヒートバランス性能の低下を抑制しつつ,抵抗器20を冷却風の流路14に配置して好適に冷却することができた。
しかも,抵抗器20を構成する各抵抗素子21を平板状としたことで,抵抗素子21の表面積を大きくとることができ,抵抗器20自体の冷却効率についても向上させることができた。
このような抵抗器20を配置する前述の冷却風の流路14が,冷却ファン52から排風室10bを介して防音箱10の天板(トップパネル12d)に設けた排風口13に至り形成されている構成では,冷却風の流路14は,排風室10bにおいて図1中に破線の矢印で示すように水平方向から垂直方向へとその向きを変化させるものとなるため,乱流が生じるなどして冷却風の抜けが悪くなる。
しかし,前述した抵抗器20の各抵抗素子21の平面21aが冷却ファン52の吹き出し方向BDと平行な垂直面を成すように,前記抵抗器20を前記排風口13の下方に収容した構成では,抵抗器20が整流板として機能することで排風室10b内に抵抗器20を設けない構成に比較して,抵抗器20を設けた場合の方が,排風口13を介して機外に排出される冷却風量(排風量)を増大させることができ,エンジン駆動型発電機1のヒートバランス性能を向上させることができた。
更に,排風室10bを画成する防音箱10の側壁のうち,前記冷却ファン52の吹き出し方向BD前方の側壁(リヤパネル12b)の上端から所定の高さの範囲に排風ダクト30を設け,この排風ダクト30内に抵抗器20を収容した構成では,排風室10b内に収容できない大型の抵抗器20であっても排風量の減少を抑制しつつ搭載可能である。
特に,排風室10bの天板の排風口13を設ける構成と共に排風ダクト30を設ける構成を採用することで,このような排風ダクト30や抵抗器20を設けない構成に比較して機外に排出される冷却風量(排風量)を大幅に増大させることが可能となる。
しかも,抵抗器20を取り付けた排風ダクト30を予め準備しておくことで,エンジン駆動型発電機1に対する抵抗器20の組み付けが容易となり,例えば抵抗器20を備えた排風ダクト30をオプション品等としてエンジン駆動型発電機1に後付けで容易に取り付けることが可能となる。
更に,本発明の構成では,前述したように排風室10bを冷却ファン52の吹き出し方向BD(防音箱10の後方)に延長するように排風ダクト30を設けているため,図6を参照して説明した従来のエンジン駆動型発電機100のように上方に突出する排風ダクト130を設けた場合に比較して,エンジン駆動型発電機1の全高を低く抑えることができた。
その結果,エンジン駆動型発電機1をトラックの荷台などに搭載して運搬する際に,例えばトンネルや橋梁下等の高さ制限のある場所を走行する際に排風ダクト30をぶつけて破損させることを防止できた。
本発明のエンジン駆動型発電機の側面図。 本発明のエンジン駆動型発電機の要部斜視図。 本発明のエンジン駆動型発電機の変更例を示す側面図。 本発明のエンジン駆動型発電機の変更例を示す要部斜視図。 排気ガス温度上昇用の抵抗器(従来)の(A)は正面図,(B)は側面図。 エンジン駆動型発電機(従来)の要部側面図。
以下に,添付図面を参照しながら本発明のエンジン駆動型発電機について説明する。
図1中の符号1は,本発明のエンジン駆動型発電機であり,このエンジン駆動型発電機1は,基台11と防音ケース12によって構成された防音箱10内に構成機器を収容した,パッケージ型のエンジン駆動型発電機1として構成されている。
防音箱10を構成する前述の基台11は,エンジン駆動型発電機1の構成機器を搭載するためのもので,この基台11上に,エンジン(水冷式のディーゼルエンジン)50や,前記エンジン50によって駆動される発電機本体70等,その他の構成機器が搭載されている。
エンジン駆動型発電機1の構成機器を載置した基台11上を覆う前述の防音ケース12は,フロントパネル12a,リヤパネル12b,サイドパネル12cからなる側壁と,これらの側壁によって囲まれた空間の上部を覆う天板を成すトップパネル12dによって構成された箱型を成し,この防音ケース12で基台11上を覆うことで,前述のようにエンジン駆動型発電機1がパッケージ化されている。
防音箱10内の空間は,垂直方向に立設された仕切壁15によってエンジン室10aと排風室10bの2室に仕切られており,このうちのエンジン室10aにはエンジン50,該エンジン50に設けられたラジエータ51,前記ラジエータ51に対し冷却風を吹き付ける冷却ファン52,及び該エンジン50によって駆動される発電機本体70が収容されている。
一方,仕切壁15によって仕切られた他方の室である排風室10b内には,エンジンの排気路に設けられた排気ガス後処理装置82が収容されていると共に,前述したDOCの活性化や,DPFの再生,SCR触媒のクリーニング等に際して排気ガス後処理装置82に導入する排気ガス温度を上昇させる際に発電機本体70に接続される,抵抗器20が収容されている。
防音箱10内を二室に仕切る前述の仕切壁15の中央部分には,エンジン室10aと排風室10bを連通する連通口16が形成されており(図2参照),エンジン室10a内に収容された前述のラジエータ51が,この連通口16に対向して配置されている(図1参照)。
そして,エンジン50の冷却ファン52が,その吹き出し方向BDをラジエータ51及び連通口16に向けて水平方向に冷却風を吹き出すことができるようにエンジン室10a内に設けられている。
上記防音箱10内の構成より,冷却ファン52が回転すると,エンジン室10aの形成位置における防音箱10の側壁に設けた吸気口17(図1参照)を介してエンジン室10a内に機外の空気が導入されると共に,導入された空気を冷却ファン52が冷却風として吹き出し方向BDに吹き出す。
冷却ファン52からの冷却風は,吹き出し方向BD前方にあるラジエータ51を通過する際にラジエータ51内の冷却水と熱交換された後,仕切壁15に設けた連通口16を介して排風室10bに至り,排風室10b内でその向きを垂直方向に変えて排風室10bの天板に設けられた排風口13を介して防音箱10外に排出される。
従って,エンジン駆動型発電機1の防音箱10内には,前述の冷却ファン52から排風口13に至り,冷却ファン52で発生した冷却風の流路14が形成されており,この冷却風の流路14中に前述の抵抗器20が配置される。
この抵抗器20は,図2に示すように,所定の間隔をあけて面平行に配置された複数枚の平板状の抵抗素子21の集合体として形成されている。
この抵抗器20を構成する個々の抵抗素子21は,平板状に形成されたものであればその構造は特に限定されず,各種構造のものを採用することができる。
抵抗素子21は,一例としてNi-Cr系,Fe-Cr-Al系,Fe-Cr-Al-Co系等の既知の金属発熱体や,炭化ケイ素に代表される非金属発熱体などの高抵抗値の抵抗材料を使用して形成することができ,このような金属製の抵抗材料,又は非金属製の抵抗材料を,直接,板状に成型して抵抗素子21としたものであって良い。
また,抵抗素子21は,絶縁性の放熱板等に金属製又は非金属製の抵抗材料を積層,挟持,封入する等して担持させた多層構造のものであっても良い。
更には,抵抗素子21は,板状の絶縁体の外周に抵抗線を巻き付けて形成した構造のものであっても良い。
このような板状の抵抗素子21は,図2に示すように,必要枚数,保持枠22等に,所定の間隔をあけて面平行に取り付けると共に,各抵抗素子21を相互に接続することで,この抵抗素子21の集合体によって,目的に応じた排気温度の上昇を得るために必要な所定の抵抗値を有する抵抗器20が形成される。
このように構成された抵抗器20は,前述の各抵抗素子21の平面21aが,前述の冷却風の流路14に対し平行を成すように,前述した冷却風の流路14内に配置される。
このように,各抵抗素子21の平面21aが冷却風の流路14に対し平行を成すように抵抗器20を配置することで,冷却風の流路14を流れる冷却風に与える流動抵抗を可及的に小さくすることができ,抵抗器20を冷却風の流路14中に設けた構成でありながら,エンジン駆動型発電機1のヒートバランス性能の低下を抑制することができるものとなっている。
図1及び図2に示すように,防音箱10のトップパネル12dに排風室10bと連通する排風口13を設けた構成例では,前述の抵抗器20を,各抵抗素子21の平面21aが冷却ファン52の吹き出し方向BDと平行な垂直面,図示の例では防音箱10の長手方向の側壁(サイドパネル12c)と平行な面を成すように,前述の排風口13の下方に取り付ける。
このように構成することで,図1に破線の矢印で示したように冷却ファン52が水平方向に吹き出した冷却風が排風室10b内で垂直方向に向きを変えるように冷却風の流路14が形成されている場合であっても,冷却風の流れに対し抵抗素子21の平面21aが常に平行な方向に向けることができる。
また,この図1及び図2に記載の構成では,排風室10b内に抵抗器20を配置しない構成に比較して,排風口13を介して機外に排出される冷却風の流量(排風量)を増大させることができることが確認されている。
下記の表1は,図1及び図2に示したエンジン駆動型発電機1の構成例において,排風室10b内に対する抵抗器20の配置の有無による排風量の変化(実測値)と,許容運転温度の変化を示したものである。
ここで,「許容運転温度」とは,エンジン駆動型発電機1を運転可能な周囲温度の上限値をいい,抵抗器20を設けた場合と設けていない場合のそれぞれにおいて測定した「エンジン冷却水温」及び「エンジン油温」の実測値に基づいて,次式に基づき算出した。
許容運転温度=許容運転外気温(40℃)+最小許容値
ここで「最小許容値」とは,「エンジン冷却水温の要求仕様値」から「エンジン冷却水温の実測値」を差し引いた値,又は,「エンジン油温の要求仕様値」から「エンジン油温の実測値」を差し引いた値のうちのいずれか小さい方の値である。
また,表1中の「効果」は,抵抗器20を設けていない状態における排風量と許容運転温度をそれぞれ100%とした際の,抵抗器を設けた状態における排風量と許容運転温度のそれぞれをパーセンテージで示したものである。
Figure 2022143521000002
図1及び図2に示したように排風室10b内に抵抗器20を設けた本発明のエンジン駆動型発電機1の構成では,抵抗器20を設けない場合に比較して,1分あたり26.7m3(1秒あたり445リットル)もの排風量の増大が得られることが確認されている。
このような排風量の大幅な増大は,平板状の抵抗素子21を所定の間隔をあけて複数枚,面平行に並べて配置した抵抗器20の構造が,冷却風の流れを整流する整流板として機能した結果得られたものと考えられる。
すなわち,抵抗器20が整流板として機能したことで,前述したように排風室10b内で冷却風が水平方向から垂直方向に向きを変えるように冷却風の流路14が形成されている場合であっても,乱流の発生が抑制されて冷却風の排出が円滑に行われたものと考えられる。
このようにして排風量が増大することで,防音箱10内が好適に冷却されることで,エンジン駆動型発電機1の許容運転温度についても,抵抗器20を設けない場合に比較して5.2℃(13%)も向上している。
なお,前述したように抵抗素子21を平板状としたことで,抵抗素子21の表面積も広くなることで抵抗素子21自体,放熱性の良いものとすることができ,抵抗器20自身も好適に冷却することができるものとなっている。
このように,本発明のエンジン駆動型発電機1の構成では,エンジンの排気温度を上昇させる際に発電機本体70に接続する抵抗器20を冷却風の流路14(排風室10b)に配置した構成でありながら,機外に排出される冷却風量(排風量)が減少することを抑制でき,特に図1及び図2に示した実施形態の構成では,排風量を増大させることができるものとなっており,エンジン駆動型発電機1のヒートバランス性能を維持又は向上させつつ,しかも,抵抗器20自体も好適に冷却することができるものとなっている。
以上,図1及び図2を参照して説明したエンジン駆動型発電機1では,エンジンの排気温度を上昇させる際に発電機本体70に接続される前述の抵抗器20を,防音箱10の排風室10b内に収容する構成について説明した。
これに対し,図3及び図4に示すエンジン駆動型発電機1では,排風室10bを画成する防音箱10の側壁のうち,冷却ファン52の吹き出し方向BD前方にある側壁であるリヤパネル12bの上端から所定高さの範囲を取り除き,この部分に,上向きに開口する吹出口31を有する排風ダクト30を取り付けて排風室10bを防音箱10の後方に延長している。
従って,この構成では,冷却ファン52で発生した冷却風は,排風室10bの天板に設けた排風口13を介して機外に排出されるだけでなく,排風ダクト30の吹出口31を介しても機外に排出されることで,図3中に破線の矢印で示すように冷却風の流路14が拡大されたものとなっている。
そして,この排風ダクト30内に,図2を参照して説明したと同様の構造を有する抵抗器20を,抵抗器20の各抵抗素子21の平面21aが,冷却ファン52の吹き出し方向BDと平行な垂直面,図示の構成では防音箱10のサイドパネル12cと平行な面となるように収容しており,このように構成することで,抵抗器20の抵抗素子21の平面21aを,排風ダクト30内を流れる冷却風の流れに対し平行を成すように配置している。
このように,図3及び図4を参照して説明したエンジン駆動型発電機1では,排風ダクト30内に抵抗器20を収容した構成としたことで,排風ダクト30を設けた分,冷却風の流路14が拡大されている。
しかも,抵抗器20は排風ダクト30内を流れる冷却風に対して整流効果を発揮することで,排風ダクト30内を通過する冷却風を円滑に排出できるものとなっている。
その結果,図3及び図4に示したエンジン駆動型発電機1の構成においても,冷却風の流路14中に抵抗器20を設けた構成でありながら排風量を減少させることなくむしろ増大させることができるものとなっており,エンジン駆動型発電機1のヒートバランス性能を維持,又は改善することができるものとなっている。
また,抵抗器20の抵抗素子21を平板状としたことで,抵抗器20自体も好適に冷却することができる点については図1及び図2を参照して説明したエンジン駆動型発電機1と同様である。
更に,図3及び図4に示したエンジン駆動型発電機1では,抵抗器20を防音箱10に取り付けた排風ダクト30内に設けたことで,排風室10b内に収容できない大型の抵抗器20であってもエンジン駆動型発電機1に搭載可能である。
また,抵抗器20を防音箱10に取り付けた排風ダクト30内に収容した構造としたことで,抵抗器20を取り付けた排風ダクト30を予め準備しておくことで,エンジン駆動型発電機1に対する抵抗器20の組み付けを容易に行うことができ,抵抗器20をオプション対応で取り付ける場合等においても容易に対応可能である。
しかも,前述した排風ダクト30を,防音箱10を後方に延長する方向に設けたことで,排風ダクト30を設けた構成でありながら,エンジン駆動型発電機1の全高を増加させることなくそのまま維持することができるものとなっている。
その結果,本実施形態のエンジン駆動型発電機1をトラックの荷台などに搭載して橋梁下やトンネルなどの高さ制限のある場所を通過する際に,排風ダクト30をぶつけて破損させてしまうことを防止できる。
1 エンジン駆動型発電機
10 防音箱
10a エンジン室
10b 排風室
11 基台
12 防音ケース
12a フロントパネル
12b リヤパネル
12c サイドパネル
12d トップパネル
13 排風口
14 冷却風の流路
15 仕切壁
16 連通口
17 吸気口
20 抵抗器
21 抵抗素子
21a 平面
22 保持枠
30 排風ダクト
31 吹出口
50 エンジン
51 ラジエータ
52 冷却ファン
70 発電機本体
82 排気ガス後処理装置
100 エンジン駆動型発電機
110 防音箱
112d トップパネル
113 排風口
114 冷却風の流路
120 抵抗器
121 抵抗素子
121a 芯材
121b 抵抗線
122 フレーム
130 排風ダクト
150 エンジン
151 ラジエータ
152 冷却ファン
P 並置面

Claims (3)

  1. ディーゼルエンジンであるエンジンと,前記エンジンにより駆動される発電機本体と,前記エンジンの排気路に設けられた排気ガス後処理装置と,排気ガス後処理装置に導入する排気ガス温度を上昇させる際に前記発電機本体に接続される抵抗器を備えたエンジン駆動型発電機において,
    前記抵抗器を,所定の間隔をあけて面平行に配置された複数枚の平板状の抵抗素子の集合体として形成すると共に,
    前記各抵抗素子の平面が,冷却ファンで発生させた冷却風の流路に対し平行を成すように,前記冷却風の流路に前記抵抗器を配置したことを特徴とするエンジン駆動型発電機。
  2. 前記冷却ファンを,防音箱内に,該冷却ファンの吹き出し方向が水平方向となるよう配置すると共に,該冷却ファンからの冷却風を導入すると共に前記防音箱の天板に設けた排風口を介して機外と連通する排風室を前記防音箱内に設け,前記冷却ファンから前記排風口に至る前記冷却風の流路を形成すると共に,
    前記抵抗器を,前記排風口の下方に,前記各抵抗素子の平面が前記冷却ファンの前記吹き出し方向と平行な垂直面を成すように収容したことを特徴とする請求項1記載のエンジン駆動型発電機。
  3. 前記冷却ファンを,防音箱内に,該冷却ファンの吹き出し方向が水平方向となるよう配置すると共に,該冷却ファンからの冷却風を導入する排風室を前記防音箱内に設け,該排風室を画成する防音箱の側壁のうち,前記冷却ファンの吹き出し方向前方の側壁の上端から所定高さの範囲に,上向きに開口する吹出口を有すると共に,前記排風室を前記冷却ファンの前記吹き出し方向に延長する排風ダクトを設け,前記冷却ファンから前記排風ダクトの前記吹出口に至る前記冷却風の流路を形成すると共に,
    前記抵抗器を前記排風ダクト内に,前記各抵抗素子の平面が前記冷却ファンの前記吹き出し方向と平行な垂直面を成すように収容したことを特徴とする請求項1記載のエンジン駆動型発電機。

JP2021044073A 2021-03-17 2021-03-17 エンジン駆動型発電機 Pending JP2022143521A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021044073A JP2022143521A (ja) 2021-03-17 2021-03-17 エンジン駆動型発電機

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021044073A JP2022143521A (ja) 2021-03-17 2021-03-17 エンジン駆動型発電機

Publications (1)

Publication Number Publication Date
JP2022143521A true JP2022143521A (ja) 2022-10-03

Family

ID=83454853

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021044073A Pending JP2022143521A (ja) 2021-03-17 2021-03-17 エンジン駆動型発電機

Country Status (1)

Country Link
JP (1) JP2022143521A (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771498A (zh) * 2023-08-27 2023-09-19 江苏中奕和创智能科技有限公司 一种水冷消音式发电机组

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116771498A (zh) * 2023-08-27 2023-09-19 江苏中奕和创智能科技有限公司 一种水冷消音式发电机组
CN116771498B (zh) * 2023-08-27 2023-11-14 江苏中奕和创智能科技有限公司 一种水冷消音式发电机组

Similar Documents

Publication Publication Date Title
JP5522360B2 (ja) コンバイン
JP5534143B2 (ja) コンバイン
JP4943405B2 (ja) エンジン発電機
CN105765832B (zh) 具有多路冷却的发电系统
US6651773B1 (en) Exhaust sound attenuation and control system
CN100569549C (zh) 混合动力车辆结构
US7293408B2 (en) Exhaust gas treatment system and utility vehicle with an exhaust gas treatment system
JP5761402B2 (ja) コンバイン
US20100186388A1 (en) Mounting and cooling device for emissions system electronics
JP5328023B2 (ja) エンジン
JP2022143521A (ja) エンジン駆動型発電機
KR20140024861A (ko) 건설기계의 엔진용 배기가스 온도 저감장치
JP2010203393A (ja) エンジン装置
US5440083A (en) Exhaust muffler for internal combustion engine
JP2011106287A (ja) エンジン発電装置
ES2401240T3 (es) Procedimiento y dispositivo para la regeneración térmica de filtros de partículas en motores de combustión interna por medio de un quemador catalítico
JP2008106664A (ja) 内燃機関における排気浄化装置
JP3440724B2 (ja) 移動電源車
CN105443239A (zh) 静音发电机组风道
WO2020116108A1 (ja) 排気浄化装置
JP2016008574A (ja) エンジン
JP5910592B2 (ja) エンジンユニット
JP7028586B2 (ja) ディーゼルエンジンの排気ガス後処理方法及び排気管
JP4540449B2 (ja) 排気浄化装置
JP7351600B2 (ja) 機体および作業機械

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20240229