JP2022135221A - thermal switch - Google Patents

thermal switch Download PDF

Info

Publication number
JP2022135221A
JP2022135221A JP2021034883A JP2021034883A JP2022135221A JP 2022135221 A JP2022135221 A JP 2022135221A JP 2021034883 A JP2021034883 A JP 2021034883A JP 2021034883 A JP2021034883 A JP 2021034883A JP 2022135221 A JP2022135221 A JP 2022135221A
Authority
JP
Japan
Prior art keywords
thermal expansion
base material
expansion member
elastic
thermally conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021034883A
Other languages
Japanese (ja)
Inventor
成亮 高松
Naruaki Takamatsu
和孝 片山
Kazutaka Katayama
直樹 片山
Naoki Katayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Riko Co Ltd
Original Assignee
Sumitomo Riko Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Riko Co Ltd filed Critical Sumitomo Riko Co Ltd
Priority to JP2021034883A priority Critical patent/JP2022135221A/en
Publication of JP2022135221A publication Critical patent/JP2022135221A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Thermally Actuated Switches (AREA)
  • Secondary Cells (AREA)

Abstract

To provide a thermal switch superior in switching between the heat dissipation property and the heat retaining property by improving a material of an elastic thermal expansion member of which the volume reversibly changes accompanying the change in temperature.SOLUTION: A thermal switch comprises: a first base material; a second base material; and an elastic thermal expansion member interposed between the first and second base materials, connecting the first and second base materials as the expansion under a given temperature condition, and forming a heat transfer path from the first base material to the second base material. The elastic thermal expansion member is a crosslinked material of a composition containing (A) a crosslinkable elastomer, (B) a heat-conducting filler, and (C) a crosslinking agent. The elastic thermal expansion member has an average linear thermal expansion coefficient of 1×10-4/K to 10×10-4/K in a range of 0-100°C.SELECTED DRAWING: Figure 1

Description

本発明は、温度によって熱伝導性が変化する熱スイッチに関する。 The present invention relates to a thermal switch whose thermal conductivity changes with temperature.

ハイブリッド自動車や電気自動車には、複数のバッテリーセルを収容したバッテリーパックが搭載される。バッテリーパックでは、温度が低くなると内部抵抗が高くなることから、低温時には熱の上昇を促すため、断熱性が求められる。また、温度が高くなりすぎると電池の破損が懸念されるため、高温時には放熱性が求められる。 Hybrid vehicles and electric vehicles are equipped with a battery pack containing a plurality of battery cells. In battery packs, the lower the temperature, the higher the internal resistance, so heat insulation is required to promote heat rise at low temperatures. Also, if the temperature becomes too high, the battery may be damaged, so heat dissipation is required at high temperatures.

このような技術としては、第1保護層と第2保護層と熱膨張部材とが、接触する接続状態と接触しない非接続状態で、熱伝導性が異なる熱スイッチが開示されている。(特許文献1) As such a technique, a thermal switch is disclosed in which the thermal conductivity differs between the connected state where the first protective layer, the second protective layer and the thermal expansion member are in contact with each other and the non-connected state where they do not contact each other. (Patent Document 1)

国際公開第2014/156991International Publication No. 2014/156991

しかしながら、特許文献1では、熱膨張部材にセラミックスを使用しており、熱伝導率が高いことから、接続状態での放熱性は良いものの、平均線熱膨張係数が低いため、間隙の精度が要求されたり、温度変化による膨張変化が少ないため、温度変化に対して熱スイッチとしての応答性が良くなかったりする。また、間隙が0.1~100μmではセル自体の膨張収縮を吸収できない場合や非接続状態において十分な断熱がされない場合がある。更に、熱膨張部材と保護層が硬いことから、接続状態が不安定であるとともに熱膨張時に熱膨張部材がセルを破壊する可能性があるといった問題がある。 However, in Patent Document 1, ceramics are used for the thermal expansion member, and the thermal conductivity is high, so although the heat dissipation in the connected state is good, the average linear thermal expansion coefficient is low, so the accuracy of the gap is required. Also, since there is little expansion change due to temperature change, the responsiveness as a thermal switch to temperature change is not good. Also, if the gap is 0.1 to 100 μm, the expansion and contraction of the cell itself may not be absorbed, or sufficient heat insulation may not be provided in the non-connected state. Furthermore, since the thermal expansion member and the protective layer are hard, there is a problem that the connection state is unstable and the thermal expansion member may destroy the cells during thermal expansion.

本発明は、このような実情に鑑みてなされたものであり、温度変化に伴いその体積が可逆的に変化する熱膨張部材の材料を改良することにより、放熱性と保温性の切り替えが優れた熱スイッチを提供することを課題とする。また、当該熱スイッチを有するバッテリーパックを提供することを課題とする。 The present invention has been made in view of such circumstances, and by improving the material of the thermal expansion member whose volume reversibly changes with temperature changes, it is possible to switch between heat dissipation and heat retention. The object is to provide a thermal switch. Another object of the present invention is to provide a battery pack having the thermal switch.

上記課題を解決するため、本発明の熱スイッチは熱膨張部材の材質を柔軟で平均線熱膨張係数の大きいエラストマーと熱伝導性フィラーとを有することで、上記課題を解決することができる。 In order to solve the above problems, the thermal switch of the present invention can solve the above problems by using an elastomer that is flexible and has a large average linear thermal expansion coefficient and a thermally conductive filler as the material of the thermal expansion member.

第一基材と、第二基材と、該第一基材と該第二基材との間に介在され、所定の温度条件下で膨張することにより、該第一基材および該第二基材とを接続し、該第一基材と第二基材の間の熱伝達経路を構成する弾性熱膨張部材と、を備える熱スイッチであって、
該弾性熱膨張部材は、熱硬化性エラストマーと、該熱硬化性エラストマー中に分散された熱伝導性フィラーと、を含み、
該弾性熱膨張部材は、0~100℃の平均線熱膨張係数が1×10-4/K~10×10-4/Kであることを特徴とする熱スイッチ。
It is interposed between the first base material, the second base material, and the first base material and the second base material, and expands under predetermined temperature conditions to form the first base material and the second base material. an elastic thermal expansion member connected to the base material and forming a heat transfer path between the first base material and the second base material,
the elastic thermal expansion member comprises a thermoset elastomer and a thermally conductive filler dispersed in the thermoset elastomer;
The thermal switch, wherein the elastic thermal expansion member has an average linear thermal expansion coefficient of 1×10 -4 /K to 10×10 -4 /K at 0 to 100°C.

本発明の熱スイッチは、常温時や低温時には弾性熱膨張部材が非接続状態となるため保温効果を有し、高温時には熱膨張によって弾性熱膨張部材が接続状態となるため、弾性熱膨張部材から伝熱し、放熱効果を有する熱スイッチとして作用する。 The thermal switch of the present invention has a heat retaining effect because the elastic thermal expansion member is in a non-connected state at room temperature or low temperature, and the elastic thermal expansion member is in a connected state due to thermal expansion at high temperature. It acts as a thermal switch that conducts heat and has a heat dissipation effect.

このように、弾性熱膨張部材に平均線熱膨張係数の大きな熱硬化性エラストマーと熱伝導性フィラーを使用することにより、本発明の熱スイッチは、温度変化に対する膨張変化が大きいため、温度変化に対する熱スイッチとしての応答性が高い。また、弾性熱膨張部材が柔軟であることから、相手材との接続状態が安定し、熱膨張時に相手材などを破壊することもない。 Thus, by using a thermosetting elastomer having a large average linear thermal expansion coefficient and a thermally conductive filler for the elastic thermal expansion member, the thermal switch of the present invention exhibits a large expansion change with respect to temperature change. High responsiveness as a thermal switch. In addition, since the elastic thermal expansion member is flexible, the connection state with the mating member is stable, and the mating member and the like are not destroyed during thermal expansion.

本発明の熱スイッチの実施形態1を示す模式的断面図である。1 is a schematic cross-sectional view showing Embodiment 1 of a thermal switch of the present invention; FIG. 本発明の熱スイッチの実施形態2を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing Embodiment 2 of the thermal switch of the present invention; 本発明の熱スイッチの実施形態3を示す模式的断面図である。FIG. 4 is a schematic cross-sectional view showing Embodiment 3 of the thermal switch of the present invention;

以下、本発明の熱スイッチの実施の形態について説明する。なお、本発明の熱スイッチは、以下の形態に限定されるものではなく、本発明の要旨を逸脱しない範囲において、当業者が行い得る変更、改良などを施した種々の形態にて実施することができる。 Embodiments of the thermal switch of the present invention are described below. It should be noted that the thermal switch of the present invention is not limited to the following forms, and can be implemented in various forms with modifications and improvements that can be made by those skilled in the art without departing from the gist of the present invention. can be done.

<第一実施形態>
まず、本実施形態の熱スイッチ1の構成を説明する。図1の左側の図は熱硬化性エラストマー製の弾性熱膨張部材10の非接続状態にある熱スイッチ1を、図1の右側の図は熱硬化性エラストマー製の弾性熱膨張部材10の接続状態にある熱スイッチ1を示す。図1に示す通り、所定の温度未満においては、弾性熱膨張部材10と第二基材12とは、接触することなく間隙を有した状態である(非接続状態)。一方で、熱源により所定の温度以上に周辺温度が上昇すると、弾性熱膨張部材10と第二基材12とが、接続し、熱伝達経路を形成する(接続状態)。弾性熱膨張部材10は温度変化に伴いその体積が可逆的に変化する材料により形成されているため、周辺温度が所定温度未満に下がると、弾性熱膨張部材10の収縮により、弾性熱膨張部材10と第二基材12とが非接続状態になり、再度間隙を生じる。また、周辺温度を上昇させる熱源は第一基材側にあってもよいし、第二基材側にあってもよく、第一基材側および第二基材側双方にあってもよい。
<First Embodiment>
First, the configuration of the thermal switch 1 of this embodiment will be described. The figure on the left side of FIG. 1 shows the thermal switch 1 in a non-connected state of the elastic thermal expansion member 10 made of thermosetting elastomer, and the figure on the right side of FIG. 1 shows a thermal switch 1 at . As shown in FIG. 1, below a predetermined temperature, the elastic thermal expansion member 10 and the second base material 12 are in a state of having a gap without being in contact with each other (unconnected state). On the other hand, when the ambient temperature rises above a predetermined temperature due to the heat source, the elastic thermal expansion member 10 and the second base material 12 are connected to form a heat transfer path (connected state). Since the elastic thermal expansion member 10 is made of a material whose volume reversibly changes with changes in temperature, when the ambient temperature drops below a predetermined temperature, the elastic thermal expansion member 10 shrinks, causing the elastic thermal expansion member 10 to expand. and the second base material 12 are disconnected, and a gap is generated again. Also, the heat source for raising the ambient temperature may be on the first substrate side, on the second substrate side, or on both the first substrate side and the second substrate side.

間隙の大きさは、弾性熱膨張部材10と、第一基材11および第二基材12が、弾性熱膨張部材10の熱膨張によって接続し熱伝導が可能になるように、弾性熱膨張部材10の材料特性と使用環境との関連に応じて定められている。上記の要件を満たす範囲である限り、間隙の大きさは特に限定されるものではない。具体的には所定の温度が100℃で弾性熱膨張部材10の線熱膨張係数が4×10-4/Kで、弾性熱膨張部材の厚みが10mmである場合、常温(23℃)では弾性熱膨張部材10と、第二基材12との最短距離が0.3mm以下であると、100℃で弾性熱膨張部材10と第二基材12が接触し、放熱効果が作用する。また、弾性熱膨張部材10は第一基材11および第二基材12に沿った方向ばかりでなく、第一基材11および第2基材12に沿った方向に対して垂直方向にも周辺温度が上昇すると膨張する。そこで、弾性熱膨張部材10の第一基材11と第二基材12に接する面以外の四つの面に、熱膨張を規制する線熱膨張係数が小さい図示しない規制部材を設けることにより、第一基材11および第二基材12に沿った方向の弾性熱膨張部材10の熱膨張が、規制部材を設けない場合と比較して大きくなるため好ましい。 The size of the gap is such that the elastic thermal expansion member 10, the first base material 11 and the second base material 12 are connected by thermal expansion of the elastic thermal expansion member 10 and heat conduction is possible. It is determined according to the relationship between 10 material properties and the usage environment. The size of the gap is not particularly limited as long as it satisfies the above requirements. Specifically, when the predetermined temperature is 100° C., the linear thermal expansion coefficient of the elastic thermal expansion member 10 is 4×10 −4 /K, and the thickness of the elastic thermal expansion member is 10 mm, the elastic thermal expansion member 10 is elastic at room temperature (23° C.). When the shortest distance between the thermal expansion member 10 and the second base material 12 is 0.3 mm or less, the elastic thermal expansion member 10 and the second base material 12 come into contact with each other at 100° C., and the heat dissipation effect works. In addition, the elastic thermal expansion member 10 expands not only in the direction along the first base material 11 and the second base material 12, but also in the direction perpendicular to the direction along the first base material 11 and the second base material 12. It expands when the temperature rises. Therefore, on the four surfaces of the elastic thermal expansion member 10 other than the surface in contact with the first base material 11 and the second base material 12, a restriction member (not shown) having a small coefficient of linear thermal expansion for restricting thermal expansion is provided. This is preferable because the thermal expansion of the elastic thermal expansion member 10 in the direction along the first base member 11 and the second base member 12 is greater than when the restricting member is not provided.

<第二実施形態>
図2は、本発明の熱スイッチ1の第二実施形態を示す模式的な横断面図である。第一実施形態の熱スイッチ1との相違点は、弾性熱膨張部材10が連結部材13に固定され、弾性熱膨張部材10と、第一基材11及び第二基材12が所定温度未満では接触せず、連結部材13の一部または全部に断熱部材14を備える点である。この場合、所定の温度で弾性熱膨張部材10と、第一基材11及び第二基材とが接触する。また、断熱部材14を設けることによって、所定温度未満において第一基材11と第二基材12を確実に断熱する。ここでは所定温度未満では弾性熱膨張部材10と、第一基材11及び第二基材と接触しない例を挙げたが、所定温度未満で弾性熱膨張部材10と第一基材11と接触し、第二基材12と非接触であってもよいし、弾性熱膨張部材10と第二基材12と接触し、第一基材11と非接触であってもよい。
<Second embodiment>
FIG. 2 is a schematic cross-sectional view showing a second embodiment of the thermal switch 1 of the invention. The difference from the thermal switch 1 of the first embodiment is that the elastic thermal expansion member 10 is fixed to the connecting member 13, and the elastic thermal expansion member 10, the first base material 11 and the second base material 12 are heated below a predetermined temperature. The point is that the heat insulating member 14 is provided on a part or the whole of the connecting member 13 without contact. In this case, the elastic thermal expansion member 10, the first base material 11, and the second base material are brought into contact with each other at a predetermined temperature. Moreover, by providing the heat insulating member 14, the first base material 11 and the second base material 12 are reliably insulated at a temperature lower than a predetermined temperature. Although the elastic thermal expansion member 10 does not come into contact with the first base material 11 and the second base material below the predetermined temperature here, the elastic thermal expansion member 10 and the first base material 11 do not come into contact with each other below the predetermined temperature. , may be non-contact with the second base material 12 , or may be in contact with the elastic thermal expansion member 10 and the second base material 12 and not in contact with the first base material 11 .

<第三実施形態>
図3は、本発明の熱スイッチ1の第三実施形態を示す模式的な横断面図である。第一実施形態の熱スイッチ1との相違点は、第一実施形態の弾性熱膨張部材10が第一基材11と第二基材12の間に介在されていたが、本実施形態では弾性熱膨張部材10が第一基材11と第二基材12との側面に接触するように配置されている。このように第一基材11と第二基材12が対向する空間以外に弾性熱膨張部材10が配置されている場合であっても、接続状態では弾性熱膨張部材10が第一基材11と第二基材12との間の熱伝達経路を形成することになり、このような実施形態も、第一基材と第二基材との間に弾性熱膨張部材が介在されているという表現に含まれるものとする。
<Third embodiment>
FIG. 3 is a schematic cross-sectional view showing a third embodiment of the thermal switch 1 of the invention. The difference from the thermal switch 1 of the first embodiment is that the elastic thermal expansion member 10 of the first embodiment is interposed between the first base material 11 and the second base material 12. A thermal expansion member 10 is arranged so as to contact side surfaces of the first base material 11 and the second base material 12 . Even if the elastic thermal expansion member 10 is arranged in a space other than the space where the first base material 11 and the second base material 12 face each other in this manner, the elastic thermal expansion member 10 is positioned between the first base material 11 and the first base material 11 in the connected state. and the second substrate 12, and such an embodiment also has an elastic thermal expansion member interposed between the first and second substrates. shall be included in the expression.

弾性熱膨張部材は、温度変化に伴いその体積が可逆的に変化する材料であって、温度上昇が100℃変化した場合に、その寸法が1%以上増加する材料から形成されることが好ましい。寸法が1%未満であると、弾性熱膨張部材が実使用上スイッチとして機能しない可能性があり、温度変化に対する応答性が悪くなる。
弾性熱膨張部材が0℃から100℃に温度変化した場合の平均線熱膨張係数が、1×10-4/K~10×10-4/Kの範囲であることがより好ましい。0℃から100℃に温度変化した場合の平均線熱膨張係数が1×10-4/K未満であると、弾性熱膨張部材の寸法変化が小さすぎて、弾性熱膨張部材と、第一基材および第二基材との間の間隙を精度良くする必要があり、温度変化に対する応答性も悪くなる可能性がある。また、0℃から100℃に温度変化した場合の平均線熱膨張係数が10×10-4/Kより大きいと弾性熱膨張部材が膨張しすぎて、膨張分を見込んだ間隙にすると、熱伝導性フィラーの効果が小さくなることから、熱伝導率が下がり、放熱性が悪化する可能性があるため好ましくない。
The elastic thermal expansion member is preferably made of a material whose volume reversibly changes with temperature changes, and whose dimensions increase by 1% or more when the temperature rises by 100°C. If the dimension is less than 1%, there is a possibility that the elastic thermal expansion member will not function as a switch in actual use, resulting in poor responsiveness to temperature changes.
More preferably, the average coefficient of linear thermal expansion of the elastic thermal expansion member is in the range of 1×10 −4 /K to 10×10 −4 /K when the temperature changes from 0° C. to 100° C. If the average linear thermal expansion coefficient is less than 1×10 −4 /K when the temperature changes from 0° C. to 100° C., the dimensional change of the elastic thermal expansion member is too small, and the elastic thermal expansion member and the first group The gap between the material and the second base material needs to be precise, and the responsiveness to temperature changes may also deteriorate. Further, if the average coefficient of linear thermal expansion is greater than 10×10 −4 /K when the temperature changes from 0° C. to 100° C., the elastic thermal expansion member expands too much, and if the gap is set to allow for the expansion, the heat conduction Since the effect of the reactive filler is reduced, the thermal conductivity may be lowered and the heat dissipation may be deteriorated, which is not preferable.

弾性熱膨張部材は、熱硬化性エラストマーと熱硬化性エラストマーに分散された熱伝導性フィラーを有する。ここで、熱硬化性エラストマーは加硫剤又は架橋剤により加硫または架橋されたエラストマーである。熱硬化性エラストマーとしては、例えば、シリコーンゴム、ウレタンゴム、フッ素ゴム、アクリルゴム、天然ゴム、ブタジエンゴム、塩素化ポリエチレン、エピクロルヒドリンゴム、クロロスルフォン化ポリエチレン等などが挙げられる。また、熱硬化性エラストマーはソリッド体でも、発泡体でもよい。 The elastic thermal expansion member comprises a thermoset elastomer and a thermally conductive filler dispersed in the thermoset elastomer. Here, a thermosetting elastomer is an elastomer vulcanized or crosslinked with a vulcanizing agent or crosslinking agent. Examples of thermosetting elastomers include silicone rubber, urethane rubber, fluororubber, acrylic rubber, natural rubber, butadiene rubber, chlorinated polyethylene, epichlorohydrin rubber, chlorosulfonated polyethylene, and the like. Also, the thermosetting elastomer may be solid or foamed.

弾性熱膨張部材の熱伝導率は、0.25W/m・K以上である。好適な熱伝導率は、0.4W/m・K以上、さらには0.5W/m・K以上が好ましい。弾性熱膨張部材の熱伝導率を大きくするという観点から、弾性熱膨張部材は、熱伝導率が比較的大きい熱伝導性フィラーを有することが望ましい。弾性熱膨張部材の熱伝導率を大きくするために用いられる熱伝導性フィラーの好適な熱伝導率は、20W/m・K以上である。熱伝導率が比較的大きい熱伝導性フィラーとしては、例えば、酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素、金属粉、黒鉛、酸化グラフェン、フェライト等 などが挙げられる。特にバッテリー等に使用する場合、漏電の可能性を考慮すると絶縁性を有する熱伝導性フィラーが好ましい。絶縁性を有する熱伝導性フィラーとしては酸化マグネシウム、酸化アルミニウム、窒化アルミニウム、窒化ホウ素、炭化ケイ素などが挙げられる。 The thermal conductivity of the elastic thermal expansion member is 0.25 W/m·K or more. A preferable thermal conductivity is 0.4 W/m·K or more, more preferably 0.5 W/m·K or more. From the viewpoint of increasing the thermal conductivity of the elastic thermal expansion member, it is desirable that the elastic thermal expansion member contains a thermally conductive filler having a relatively high thermal conductivity. A preferable thermal conductivity of the thermally conductive filler used to increase the thermal conductivity of the elastic thermal expansion member is 20 W/m·K or more. Thermally conductive fillers with relatively high thermal conductivity include, for example, magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, silicon carbide, metal powder, graphite, graphene oxide, ferrite, and the like. In particular, when the filler is used for a battery or the like, thermally conductive fillers having insulating properties are preferable in consideration of the possibility of electrical leakage. Thermally conductive fillers having insulating properties include magnesium oxide, aluminum oxide, aluminum nitride, boron nitride, and silicon carbide.

弾性熱膨張部材の熱伝導性フィラーの含有量はエラストマー100質量部に対して熱伝導性フィラーは20~350質量部であり、好ましくは50~300質量部、更に好ましくは100~250質量部である。熱伝導性フィラーが20質量部以下であると弾性熱膨張部材の熱伝導率が0.25W/m・K未満となり、放熱性が悪化する可能性がある。また、熱伝導性フィラーが350質量部以上であると熱伝導性フィラーの熱線膨張率が下がり、熱スイッチとしての応答性が悪化する可能性がある。弾性熱膨張部材の熱伝導率を維持したまま、熱線膨張率を大きくするために熱伝導性フィラーを配向させてもよい。熱伝導性フィラーを配向させる方法としては、アスペクト比の大きな熱伝導性フィラーとエラストマーを押し出し成型したり、熱伝導異方性粒子とエラストマーに磁性粒子を加えて、磁場により配向させてもよい。 The content of the thermally conductive filler in the elastic thermal expansion member is 20 to 350 parts by mass, preferably 50 to 300 parts by mass, more preferably 100 to 250 parts by mass, per 100 parts by mass of the elastomer. be. If the amount of the thermally conductive filler is 20 parts by mass or less, the thermal conductivity of the elastic thermal expansion member will be less than 0.25 W/m·K, and heat dissipation may deteriorate. Moreover, when the amount of the thermally conductive filler is 350 parts by mass or more, the linear thermal expansion coefficient of the thermally conductive filler may decrease, and the responsiveness as a thermal switch may deteriorate. The thermally conductive filler may be oriented to increase the linear thermal expansion coefficient while maintaining the thermal conductivity of the elastic thermal expansion member. As a method for orienting the thermally conductive filler, a thermally conductive filler having a large aspect ratio and an elastomer may be extruded, or magnetic particles may be added to the thermally conductive anisotropic particles and the elastomer and oriented by a magnetic field.

[磁場による配向]
弾性熱膨張部材において熱伝導性フィラーを減らす一実施例として、磁場による配向について説明する。磁場により配向される熱伝導性フィラーとしては、熱伝導異方性粒子、磁性粒子及びバインダーからなる複合粒子を用いる。熱伝導異方性粒子は、熱伝導に異方性を有する粒子、すなわち、熱伝導率が方向により異なる粒子であり、結晶面の方向に大きい熱伝導率を有する。熱伝導異方性粒子の結晶面の方向の熱伝導率は、150W/m・K以上であることが望ましい。熱伝導異方性粒子の形状は、鱗片状が望ましい。熱伝導異方性粒子は、非磁性体の粒子であってもよい。熱伝導異方性粒子としては、例えば、窒化ホウ素粒子、黒鉛粒子などが挙げられる。
[Orientation by magnetic field]
Orientation by a magnetic field will be described as an example of reducing the thermally conductive filler in the elastic thermal expansion member. Composite particles composed of thermally conductive anisotropic particles, magnetic particles and a binder are used as the thermally conductive filler that is oriented by a magnetic field. Particles with anisotropic thermal conductivity are particles that have anisotropic thermal conductivity, that is, particles that have different thermal conductivity depending on the direction, and have a large thermal conductivity in the direction of the crystal plane. The thermal conductivity of the anisotropic thermally conductive particles in the direction of the crystal plane is desirably 150 W/m·K or more. The shape of the thermally conductive anisotropic particles is desirably scaly. The thermally conductive anisotropic particles may be non-magnetic particles. Examples of anisotropic thermally conductive particles include boron nitride particles and graphite particles.

磁性粒子は、磁化特性に優れたものであればよく、例えば、鉄、ニッケル、コバルト、ガドリニウム、ステンレス鋼、マグネタイト、マグヘマイト、マンガン亜鉛フェライト、バリウムフェライト、ストロンチウムフェライト、などの強磁性体、MnO、Cr、FeCl、MnAsなどの反強磁性体、およびこれらを用いた合金類の粒子が好適である。微細な粒子として入手しやすく、飽和磁化が高いという観点から、鉄、ニッケル、コバルト、およびこれらのフェライト系合金の粉末を用いるとよい。 The magnetic particles may be those having excellent magnetization properties, for example, ferromagnetic materials such as iron, nickel, cobalt, gadolinium, stainless steel, magnetite, maghemite, manganese zinc ferrite, barium ferrite, strontium ferrite, MnO, Particles of antiferromagnetic materials such as Cr 2 O 3 , FeCl 2 , MnAs, and alloys using these are preferred. Powders of iron, nickel, cobalt, and ferritic alloys thereof are preferably used from the viewpoints of easy availability as fine particles and high saturation magnetization.

磁性粒子は、熱伝導異方性粒子の表面に付着しており、熱伝導異方性粒子を配向させる役割を果たす。磁性粒子は、熱伝導異方性粒子の表面の一部のみに付着していてもよく、表面全体を被覆するように付着していてもよい。 The magnetic particles are attached to the surfaces of the anisotropic thermally conductive particles and play a role of orienting the anisotropic thermally conductive particles. The magnetic particles may adhere only to a part of the surface of the thermally conductive anisotropic particles, or may adhere so as to cover the entire surface.

熱伝導異方性粒子と磁性粒子を接着させるバインダーとしては、成形性への影響が少なく、環境にも優しいという理由から、水溶性のバインダーが好適である。例えば、メチルセルロース、カルボキシメチルセルロース、ヒドロキシプロピルメチルセルロース、ポリビニルアルコール等が挙げられる。 As the binder for bonding the anisotropic thermally conductive particles and the magnetic particles, a water-soluble binder is preferable because it has little effect on moldability and is friendly to the environment. Examples thereof include methylcellulose, carboxymethylcellulose, hydroxypropylmethylcellulose, polyvinyl alcohol and the like.

窒化ホウ素粒子は電気的に絶縁性を有するため、熱伝導異方性粒子として窒化ホウ素粒子を使用すると、絶縁性が要求される用途に対して有利である。ただし表面に付着あるいは被覆する磁性粒子として導電性の粒子を使用すると、弾性熱膨張部材の絶縁性が低下する。したがって、バッテリーや電子部品の放熱用途など、弾性熱膨張部材に絶縁性が要求される場合には、磁性粒子においても絶縁性の粒子を採用することが望ましい。電気的に絶縁性の粒子としては、粒子そのものが絶縁性を有する酸化鉄粒子、マンガンフェライト粒子などが好適である。 Since boron nitride particles are electrically insulating, the use of boron nitride particles as thermally conductive anisotropic particles is advantageous for applications that require insulating properties. However , if conductive particles are used as the magnetic particles attached to or coated on the surface, the insulating property of the elastic thermal expansion member is lowered. Therefore, in the case where the elastic thermal expansion member is required to have insulating properties, such as for heat dissipation applications of batteries and electronic parts, it is desirable to employ insulating particles as the magnetic particles. As the electrically insulating particles, iron oxide particles, manganese ferrite particles, and the like, which themselves have insulating properties, are suitable.

弾性熱膨張部材における熱伝導異方性粒子の含有量は、熱伝導異方性粒子の種類に応じて適宜決定すればよい。熱伝導異方性粒子の含有量が少なすぎると熱の伝達経路が充分に形成されない。このため熱伝導性の向上効果を得るためには、熱伝導異方性粒子の含有量は熱硬化性エラストマーの質量を100質量部としたとき20質量部以上であることが望ましい。一方で成形性や物性の影響を少なくし、コスト高を防ぐという観点から、熱伝導異方性粒子の含有量は、熱硬化性エラストマーの質量を100質量部としたとき300質量部以下であることが望ましい。 The content of the anisotropic thermally conductive particles in the elastic thermal expansion member may be appropriately determined according to the type of the anisotropic thermally conductive particles. If the content of the anisotropic thermally conductive particles is too low, the heat transfer path will not be sufficiently formed. Therefore, in order to obtain the effect of improving the thermal conductivity, the content of the anisotropic thermally conductive particles is desirably 20 parts by mass or more when the mass of the thermosetting elastomer is 100 parts by mass. On the other hand, from the viewpoint of reducing the influence of moldability and physical properties and preventing high costs, the content of the anisotropic thermally conductive particles is 300 parts by mass or less when the mass of the thermosetting elastomer is 100 parts by mass. is desirable.

本発明の磁場による熱伝導異方性粒子のエラストマーへの配向に関する製造方法は、複合粒子の製造工程、混合原料調整工程と成形工程を有する。 The production method of the present invention relating to orientation of thermally conductive anisotropic particles into an elastomer by a magnetic field comprises a composite particle production step, a mixed raw material adjustment step, and a molding step.

まず、複合粒子は、それぞれの粉末を攪拌造粒機を用いて攪拌して製造する。 First, the composite particles are produced by agitating each powder using an agitating granulator.

エラストマー原料は、エラストマー成分の他、必要に応じて、遅延剤、可塑剤、触媒、発泡剤、整泡剤、難燃剤、帯電防止剤、減粘剤、安定剤、充填剤、着色剤などを含む。混合原料は、熱伝導性粒子とエラストマー原料とを、インターミキサー、攪拌羽根などを用いて攪拌、混合して調整すればよい。 In addition to the elastomer component, the elastomer raw material may contain retarders, plasticizers, catalysts, foaming agents, foam stabilizers, flame retardants, antistatic agents, viscosity reducers, stabilizers, fillers, colorants, etc. include. The mixed raw material may be prepared by stirring and mixing the thermally conductive particles and the elastomer raw material using an intermixer, a stirring blade, or the like.

成形工程では、先の工程において調整した混合原料を成形型に配置して、磁場中で混合原料を成形する工程である。 The molding step is a step of placing the raw material mixture prepared in the previous step in a mold and molding the raw material mixture in a magnetic field.

成形型は、密閉型でも開放型でもよい。磁場は、熱伝導異方性粒子を配向させる方向に形成すればよい。例えば、熱伝導異方性粒子を直線状に配向させる場合、混合原料の一端から他端に向かって、磁力線を作用させることが望ましい。このような磁場を形成するためには、混合原料を挟むように磁石を配置すればよい。磁石には、永久磁石または電磁石を用いればよい。電磁石を用いると、磁場形成のオン、オフを瞬時に切り替えることができ、磁場の強さの制御が容易である。 The mold may be closed or open. The magnetic field may be formed in a direction that orients the anisotropic thermally conductive particles. For example, when the thermally conductive anisotropic particles are oriented linearly, it is desirable to apply magnetic lines of force from one end to the other end of the mixed raw material. In order to form such a magnetic field, magnets may be arranged so as to sandwich the raw material mixture. A permanent magnet or an electromagnet may be used as the magnet. By using an electromagnet, it is possible to instantly switch on and off the formation of the magnetic field, making it easy to control the strength of the magnetic field.

本工程においては、磁束密度が略均一な磁場を、混合原料に作用させることが望ましい。具体的には、混合原料における磁束密度の差が、±10%以内であるとよい。±5%以内、さらには±3%以内であるとより好適である。混合原料に一様な磁場を作用させることにより、熱伝導異方性粒子の偏在を抑制することができ、所望の配向状態を得ることができる。また、成型は、150mT以上1200mT以下の磁束密度を行うとよい。こうすることで、混合原料中の熱伝導異方性粒子を、確実に配向させることができる。本工程にて成形が終了した後、脱型・架橋して、本発明の弾性熱膨張部材を得る。 In this step, it is desirable to apply a magnetic field having a substantially uniform magnetic flux density to the mixed raw material. Specifically, the difference in magnetic flux density in the mixed raw material is preferably within ±10%. Within ±5%, more preferably within ±3%. By applying a uniform magnetic field to the mixed raw material, uneven distribution of the thermally conductive anisotropic particles can be suppressed, and a desired orientation state can be obtained. Moreover, it is preferable that the molding be performed at a magnetic flux density of 150 mT or more and 1200 mT or less. By doing so, the thermally conductive anisotropic particles in the mixed raw material can be reliably oriented. After the molding is completed in this step, it is demolded and crosslinked to obtain the elastic thermal expansion member of the present invention.

本発明の熱スイッチにおいて、連結部材、第一基材および第二基材に弾性熱膨張部材を固定する方法としては金属部材などで、カシメて固定してもよいし、接着剤により固定してもよい。 In the thermal switch of the present invention, as a method for fixing the elastic thermal expansion member to the connecting member, the first base material and the second base material, it may be fixed by caulking with a metal member or the like, or by fixing with an adhesive. good too.

[弾性熱膨張部材以外の部材]
第一基材および第二基材は、熱伝導性を有するものであれば、特に限定されるものではないが、材料の熱伝導性は高いほうが好ましい。具体的には、第一基材および第二基材は、1~500W/mKの熱伝導率を有する材料によって形成されることが好ましい。材料の熱伝導率が高いほど、熱スイッチの接続状態及び非接続状態での見かけ上の熱伝導率の差が大きいため、断熱と放熱が効率的に作用する。第一基材および第二基材を形成する材料は金属或いは合金が好ましい。
[Members other than elastic thermal expansion members]
The first base material and the second base material are not particularly limited as long as they have thermal conductivity, but it is preferable that the material has high thermal conductivity. Specifically, the first base material and the second base material are preferably made of a material having a thermal conductivity of 1 to 500 W/mK. The higher the thermal conductivity of the material, the greater the difference in apparent thermal conductivity between the connected state and the unconnected state of the thermal switch. The materials forming the first and second substrates are preferably metals or alloys.

連結部材は断熱性を有すれば、形成する材料は特に限定されるものではない。連結部材の材料としては熱変化に対して比較的熱膨張の少ないものがよく、また、樹脂、エラストマーなど熱伝導性が低いものであればよい。また、保温性を向上させるために連結部材の一部に断熱部材を設けてもよい。 The material for forming the connecting member is not particularly limited as long as it has heat insulating properties. As the material of the connecting member, a material having a relatively small thermal expansion with respect to heat change, and a material having a low thermal conductivity such as a resin or an elastomer may be used. Moreover, a heat insulating member may be provided on a part of the connecting member in order to improve heat retention.

断熱部材は熱を断熱すればよく、その熱伝導率は0.2W/m・K以下が好ましい。また、平均線熱膨張係数が大きくないほうが好ましく、0℃から100℃に温度変化した場合の平均線熱膨張係数が、1×10-6/K~5×10-4/Kの範囲であることが好ましい。 The heat insulating member should just insulate heat, and its thermal conductivity is preferably 0.2 W/m·K or less. In addition, it is preferable that the average linear thermal expansion coefficient is not large, and the average linear thermal expansion coefficient when the temperature changes from 0 ° C. to 100 ° C. is in the range of 1 × 10 -6 /K to 5 × 10 -4 /K. is preferred.

断熱部材は特に限定されないが、断熱性の観点から樹脂、エラストマーが好ましい。樹脂及びエラストマーとしては、アクリル、ウレタン、シリコーン、ポリスチレン、ラテックス、合成ゴム、ポリエステル、ポリビニルアルコール、ポリプロピレン、ポリエチレン、ポリフルオロカーボン、ポリカーボネート、ポリアミド、ポリフェニレンエーテル、ポリアセタール、ポリブチレンテレフタレート、ポリエーテルエーテルケトン、エポキシ樹脂、フェノール樹脂、ポリフェニレンサルファイド及びポリイミドからなる群から選ばれるいずれか1種であるのがよい。 The heat insulating member is not particularly limited, but resins and elastomers are preferable from the viewpoint of heat insulating properties. Resins and elastomers include acrylic, urethane, silicone, polystyrene, latex, synthetic rubber, polyester, polyvinyl alcohol, polypropylene, polyethylene, polyfluorocarbon, polycarbonate, polyamide, polyphenylene ether, polyacetal, polybutylene terephthalate, polyetheretherketone, epoxy. Any one selected from the group consisting of resin, phenol resin, polyphenylene sulfide and polyimide is preferable.

更に断熱性を向上させるために樹脂及びエラストマーの発泡体、樹脂及びエラストマーにチタニア、アルミナおよびジルコニア等のセラミックス粒子、シリカ、シリカエアロゲル、ガラス繊維、アラミド繊維等のエンプラ、スーパーエンプラ系繊維を混合してもよい。特に少ないスペースにおける高い断熱性の観点からシリカエアロゲル(熱伝導率:0.025W/m・K)やALCパネル(熱伝導率:0.17W/m・K)が好ましい。 In order to further improve heat insulation, resin and elastomer foams, resin and elastomer mixed with ceramic particles such as titania, alumina and zirconia, engineering plastics such as silica, silica airgel, glass fibers and aramid fibers, and super engineering plastic fibers. may Silica airgel (thermal conductivity: 0.025 W/m·K) and ALC panel (thermal conductivity: 0.17 W/m·K) are preferable from the viewpoint of high heat insulation in a particularly small space.

本発明の熱スイッチにおいて、間隙を所定の大きさに設ける方法としては、非接続状態において保温性が維持される構造である限り特に限定されるものではない。図2に示すように、断熱性を有する連結部材を用いて固定してもよい。 In the thermal switch of the present invention, the method of providing the gap with a predetermined size is not particularly limited as long as the structure maintains heat retention in the non-connected state. As shown in FIG. 2, a connection member having heat insulation may be used for fixing.

次に、本発明の熱スイッチをバッテリーパックの周囲に備えた温度調整機能について説明する。所定の温度で放熱状態を変化させることによって、バッテリーパックは放電による熱を有効利用しつつ、その温度を調整することによって、バッテリーの機能を向上させる。具体的には、自動車の始動時には、低温であるため、電池抵抗が高く、バッテリーパック内部の熱をできるだけ放熱しないことが望ましい。一方で自動車の暖気後は、バッテリーパックの内部の温度が高くなり電解液分解による発火の恐れがあるため、バッテリーパック内部の温度を積極的に放熱することが好ましい。バッテリーパックに備えた本発明の熱スイッチは、自動車の始動時には非接続状態であるため、バッテリーパック内部の熱を放熱しにくく、熱を有効利用してバッテリーを保温し、放電効率の良い温度まで上昇することができる。一方、自動車の暖気後は、バッテリーパック内部の温度が上昇し、熱スイッチが接続状態となり、伝熱効率が急激に上昇するため、バッテリーパック内部の熱を積極的に外部に放出することができる。 Next, the temperature control function provided with the thermal switch of the present invention around the battery pack will be described. By changing the heat dissipation state at a predetermined temperature, the battery pack effectively utilizes the heat from the discharge and adjusts the temperature to improve the function of the battery. Specifically, since the temperature is low when the automobile is started, the battery resistance is high, and it is desirable to dissipate the heat inside the battery pack as little as possible. On the other hand, after the automobile is warmed up, the temperature inside the battery pack rises and there is a risk of ignition due to the decomposition of the electrolyte. Since the thermal switch of the present invention provided in the battery pack is in a non-connected state when the automobile is started, it is difficult to dissipate the heat inside the battery pack. can rise. On the other hand, after the vehicle warms up, the temperature inside the battery pack rises, the thermal switch is closed, and the heat transfer efficiency rises sharply, so the heat inside the battery pack can be actively released to the outside.

次に、実施例を挙げて本発明を具体的に説明する。 EXAMPLES Next, the present invention will be specifically described with reference to examples.

[実施例1]
天然ゴム100質量部、熱伝導性フィラーとしての酸化マグネシウム粉末(宇部マテリアルズ社製「RF-50SC」、熱伝導率45W/m・K)200質量部、酸化亜鉛(堺化学工業社製酸化亜鉛二種)5質量部、ステアリン酸亜鉛(花王社製ルーナックS30)1質量部、老化防止剤A(精工化学社製オゾノン6C)1.5質量部、老化防止剤B(精工化学社製ノンフレックスRD)1質量部、加硫助剤(モノメタクリル酸亜鉛、サートマー社製PRO11542)3質量部、ワックス(大内新興化学社製サンノック)2質量部、オイル(ナフテンオイル、出光興産社製ダイアナプロセスNM-280)5質量部、加硫促進剤A(N-シクロヘキシル-2-ベンゾチアゾリルスルフェンアミド、大内新興化学社製ノクセラーCZ)2質量部、加硫促進剤B(テトラメチルチウラムジスルフィド、三新化学工業社製サンセラーTT)1質量部、加硫剤(軽井沢精錬所社製硫黄)0.5質量部を混練りすることにより調整した。なお、上記混練りは、まず、加硫剤と加硫促進剤以外の材料をバンバリーミキサーを用いて140℃で5分間混練りし、ついで、加硫剤と加硫促進剤を配合し、オープンロールを用いて60℃で5分間混練りした。そして、160℃×20分の条件でプレス成形(加硫)して、縦100mm×横100mm×厚さ10mmの天然ゴムシートを製造し、弾性熱膨張部材を得た。
[Example 1]
100 parts by mass of natural rubber, 200 parts by mass of magnesium oxide powder ("RF-50SC" manufactured by Ube Materials Co., Ltd., thermal conductivity 45 W / m K) as a thermally conductive filler, zinc oxide (zinc oxide manufactured by Sakai Chemical Industry Co., Ltd.) Type 2) 5 parts by mass, zinc stearate (Lunax S30 manufactured by Kao Corporation) 1 part by mass, antioxidant A (Ozonon 6C manufactured by Seiko Chemical Co., Ltd.) 1.5 parts by mass, anti-aging agent B (Nonflex manufactured by Seiko Chemical Co., Ltd.) RD) 1 part by mass, vulcanizing aid (zinc monomethacrylate, PRO11542 manufactured by Sartomer) 3 parts by mass, wax (Sannok manufactured by Ouchi Shinko Kagaku Co., Ltd.) 2 parts by mass, oil (naphthene oil, Diana process manufactured by Idemitsu Kosan Co., Ltd.) NM-280) 5 parts by mass, vulcanization accelerator A (N-cyclohexyl-2-benzothiazolylsulfenamide, Ouchi Shinko Chemical Co., Ltd. Noccellar CZ) 2 parts by mass, vulcanization accelerator B (tetramethylthiuram disulfide , Suncellar TT manufactured by Sanshin Kagaku Kogyo Co., Ltd.) and 0.5 parts by mass of a vulcanizing agent (sulfur manufactured by Karuizawa Seirensho Co., Ltd.) were kneaded. In the kneading, first, materials other than the vulcanizing agent and the vulcanization accelerator are kneaded using a Banbury mixer at 140 ° C. for 5 minutes, and then the vulcanizing agent and the vulcanization accelerator are blended and opened. The mixture was kneaded at 60° C. for 5 minutes using a roll. Then, press molding (vulcanization) was performed under the conditions of 160° C. for 20 minutes to produce a natural rubber sheet of 100 mm long×100 mm wide×10 mm thick to obtain an elastic thermal expansion member.

第一基材および第二基材は、100mm×100mm×1mmのアルミニウム板(熱伝導率:237W/m・K)を用いた。 A 100 mm×100 mm×1 mm aluminum plate (thermal conductivity: 237 W/m·K) was used for the first base material and the second base material.

弾性熱膨張部材、第一基材および第二基材を連結部材に接着剤により貼り付け、弾性熱膨張部材と、第一基材および第二基材との間をそれぞれ0.1mmの間隙を設けて、実施例1の熱スイッチを作製した。 The elastic thermal expansion member, the first base material and the second base material are attached to the connecting member with an adhesive, and a gap of 0.1 mm is provided between the elastic thermal expansion member and the first base material and the second base material. was provided to fabricate the thermal switch of Example 1.

[実施例2]
実施例1の弾性熱膨張部材の酸化マグネシウム粉末の配合量を300質量部に変更した点以外は同様に実施例2の熱スイッチを作製した。
[Example 2]
A thermal switch of Example 2 was produced in the same manner as in Example 1, except that the amount of magnesium oxide powder compounded in the elastic thermal expansion member was changed to 300 parts by mass.

[実施例3]
実施例1の弾性熱膨張部材の酸化マグネシウム粉末の配合量を50質量部に変更した点以外は同様に実施例3の熱スイッチを作製した。
[Example 3]
A thermal switch of Example 3 was produced in the same manner as in Example 1, except that the amount of magnesium oxide powder compounded in the elastic thermal expansion member was changed to 50 parts by mass.

[比較例1]
実施例1の弾性熱膨張部材の酸化マグネシウム粉末の配合量を0質量部に変更した点以外は同様に比較例1の熱スイッチを作製した。
[Comparative Example 1]
A thermal switch of Comparative Example 1 was produced in the same manner as in Example 1, except that the amount of the magnesium oxide powder compounded in the elastic thermal expansion member was changed to 0 parts by mass.

[比較例2]
実施例1の弾性熱膨張部材の酸化マグネシウム粉末の配合量を400質量部に変更した点以外は同様に比較例2の熱スイッチを作製した。
[Comparative Example 2]
A thermal switch of Comparative Example 2 was produced in the same manner as in Example 1, except that the amount of magnesium oxide powder compounded in the elastic thermal expansion member was changed to 400 parts by mass.

[実施例4]
<複合粒子Aの製造>
熱伝導性フィラーを攪拌造粒法により製造した。まず、鱗片状ホウ素粒子(スリーエムジャパン社製「Flakes 70/500」、平均粒径(D50)230~280μm)と、磁性粒子として絶縁性ステンレス鋼粉末(エプソンアトミックス(株)社製「Fe-3.5%Si-4.5%Cr」の絶縁処理品、球状、平均粒子径3μm)と、バインダーのヒドロキシプロピルメチルセルロース(HPMC、信越化学工業社製「TC-5」と、を準備した。
[Example 4]
<Production of Composite Particle A>
A thermally conductive filler was produced by an agitation granulation method. First, scale-like boron particles ("Flakes 70/500" manufactured by 3M Japan, average particle size (D 50 ) 230 to 280 μm), and insulating stainless steel powder as magnetic particles ("Fe -3.5% Si-4.5% Cr” insulation treated product, spherical, average particle size 3 μm) and binder hydroxypropyl methylcellulose (HPMC, “TC-5” manufactured by Shin-Etsu Chemical Co., Ltd.) were prepared. .

次に鱗片状ホウ素粒子300g、絶縁性ステンレス鋼粉末150g、及びHPMC13.5gを、FMミキサ(日本コークス工業社製)の容器内へ投入し、1分間混合した。その後、水を125g添加して、さらに6分間混合して、複合粒子Aを製造した。 Next, 300 g of scale-like boron particles, 150 g of insulating stainless steel powder, and 13.5 g of HPMC were charged into a container of an FM mixer (manufactured by Nippon Coke Kogyo Co., Ltd.) and mixed for 1 minute. After that, 125 g of water was added and mixed for another 6 minutes to produce composite particles A.

<弾性熱膨張部材の製造>
複合粒子Aを用いて、弾性熱膨張部材を製造した。まず、液状シリコーンゴム(東レ・ダウコーニング社製「EG-3100」)100質量部と、架橋剤のハイドロゲンジメチコン(信越化学工業社製「KF9901」)0.2質量部と、遅延剤のアセチレングリコール(日信化学工業社製「サーフィノール(登録商標)61」)0.05質量部と、を混合し、シリコーンコンパウンドを製造した。
<Manufacture of elastic thermal expansion member>
Composite particles A were used to produce an elastic thermal expansion member. First, liquid silicone rubber (“EG-3100” manufactured by Dow Corning Toray Co., Ltd.) 100 parts by mass, hydrogen dimethicone (“KF9901” manufactured by Shin-Etsu Chemical Co., Ltd.) 0.2 parts by mass of a cross-linking agent, and acetylene glycol as a retarder ("Surfinol (registered trademark) 61" manufactured by Nissin Chemical Industry Co., Ltd.) and 0.05 parts by mass were mixed to produce a silicone compound.

次に、複合粒子Aの添加量104質量部を添加し、混合原料を調整した。続いて、混合原料を、予めオーブンにて130℃に加熱したアルミニウム製の成形型(キャビティは縦100mm×横100mm×厚さ10mmの直方体。)に注入し、密閉した。そして、成形型を磁気誘導成形装置に設置し、キャビティ内の磁束密度を約1000mTとし、130℃下で、10分間磁場をかけながら行った。成形が終了した後、脱型して、弾性熱膨張部材を得た。その後、実施例1と同様に熱スイッチを作成し、実施例4の熱スイッチを得た。 Next, 104 parts by mass of Composite Particles A was added to prepare a mixed raw material. Subsequently, the mixed raw material was poured into an aluminum mold (the cavity was a rectangular parallelepiped of 100 mm long×100 mm wide×10 mm thick) preheated to 130° C. in an oven and sealed. Then, the mold was set in a magnetic induction molding apparatus, and the magnetic flux density in the cavity was set to about 1000 mT, and the molding was performed at 130° C. for 10 minutes while applying a magnetic field. After the molding was completed, the mold was removed to obtain an elastic thermal expansion member. After that, a thermal switch was produced in the same manner as in Example 1, and a thermal switch of Example 4 was obtained.




Figure 2022135221000002
Figure 2022135221000002

Figure 2022135221000003
Figure 2022135221000003

<タイプAデュロメータ硬さの測定>
JIS K6253-3:2012に準拠した硬度計(高分子計器社製「ASKER P1-A型」)を用いて、厚さ1mmの弾性熱膨張部材を3枚重ねてタイプAデュロメータ硬度を測定した。タイプAデュロメータ硬さとしては、押針と弾性熱膨張部材とが接触した直後の瞬間値を採用した。
<Measurement of type A durometer hardness>
Using a JIS K6253-3:2012 hardness tester ("ASKER P1-A" manufactured by Kobunshi Keiki Co., Ltd.), three elastic thermal expansion members with a thickness of 1 mm were stacked to measure the type A durometer hardness. As the type A durometer hardness, an instantaneous value immediately after contact between the indenter and the elastic thermal expansion member was adopted.

<熱伝導率の測定>
弾性熱膨張部材の熱伝導率について、JIS A1412-2:1999の熱流計法に準拠した、英弘精機社製の熱流束計「HC-074」を用いて測定を行った。
<Measurement of thermal conductivity>
The thermal conductivity of the elastic thermal expansion member was measured using a heat flux meter "HC-074" manufactured by Eko Seiki Co., Ltd., which complies with the heat flow meter method of JIS A1412-2:1999.

<平均線熱膨張係数>
弾性熱膨張部材の平均線熱膨張係数について、JIS K7197-1991に基づいて、線膨張率を測定し、平均線熱膨張係数とした。
<Average linear thermal expansion coefficient>
Regarding the average linear thermal expansion coefficient of the elastic thermal expansion member, the linear thermal expansion coefficient was measured based on JIS K7197-1991, and taken as the average linear thermal expansion coefficient.

<熱スイッチの評価>
第一基材から第二基材への熱の伝わり方を熱流束計を用いて評価した。具体的には第一基材側の温度を調節し、第一基材側の温度を23℃にした場合と150℃にした場合で、第二基材に取り付けた熱流束計で熱量を計測した。その結果、実施例3は弾性熱膨張部材の熱伝導率が低く、若干放熱性が劣る結果となったが、熱スイッチとして機能した。比較例1では弾性熱膨張部材の熱伝導率が低く、放熱性が劣った。比較例2は弾性熱膨張部材の平均線熱膨張率が低く、弾性熱膨張部材が第二基材と接触せず、熱スイッチとして機能しなかった。
<Evaluation of Thermal Switch>
A heat flux meter was used to evaluate how heat was transferred from the first base material to the second base material. Specifically, the temperature on the first base material side is adjusted, and the heat quantity is measured with a heat flux meter attached to the second base material when the temperature on the first base material side is set to 23 ° C and 150 ° C. did. As a result, in Example 3, the thermal conductivity of the elastic thermal expansion member was low, resulting in slightly inferior heat dissipation, but it functioned as a thermal switch. In Comparative Example 1, the thermal conductivity of the elastic thermal expansion member was low, and the heat dissipation was poor. In Comparative Example 2, the average linear thermal expansion coefficient of the elastic thermal expansion member was low, the elastic thermal expansion member did not come into contact with the second base material, and did not function as a thermal switch.

本発明の熱スイッチは、温度によって伝熱性能が変化するスイッチとして利用できる。例えば、バッテリーパックや排ガスフィルター等において、スタート時の低温状態で触媒活性が低いものでも断熱により、比較的短時間に活性温度まで昇温させることができ、逆に高温になり過ぎると、放熱性を発揮し、触媒および基材本体の熱劣化を抑制できることが期待される。本発明の熱スイッチを、バッテリーパックや排ガスフィルター等に用いた場合、放熱と保温を制御することにより、最適な温度を保ち、バッテリーの放電効果を最適にさせることができる。
The thermal switch of the present invention can be used as a switch whose heat transfer performance changes with temperature. For example, in battery packs, exhaust gas filters, etc., even if the catalyst activity is low at the start of the cold state, it can be heated up to the activation temperature in a relatively short time by heat insulation. It is expected that the heat deterioration of the catalyst and the base material can be suppressed. When the thermal switch of the present invention is used in a battery pack, an exhaust gas filter, or the like, it is possible to maintain an optimum temperature by controlling heat dissipation and heat retention, thereby optimizing the discharge effect of the battery.

1 熱スイッチ
10 弾性熱膨張部材
11 第一基材
12 第二基材
13 連結部材
14 断熱部材
15 支持部材

1 thermal switch 10 elastic thermal expansion member 11 first base material 12 second base material 13 connecting member 14 heat insulating member 15 supporting member

Claims (6)

第一基材と、第二基材と、該第一基材と該第二基材との間に介在され、所定の温度条件下で膨張することにより、該第一基材および該第二基材とを接続し、該第一基材と第二基材の間の熱伝達経路を構成する弾性熱膨張部材と、を備える熱スイッチであって、
該弾性熱膨張部材は、熱硬化性エラストマーと、該熱硬化性エラストマー中に分散された熱伝導性フィラーと、を含み、
該弾性熱膨張部材は、0~100℃の平均線熱膨張係数が1×10-4/K~10×10-4/Kであることを特徴とする熱スイッチ。
It is interposed between the first base material, the second base material, and the first base material and the second base material, and expands under predetermined temperature conditions to form the first base material and the second base material. an elastic thermal expansion member connected to the base material and forming a heat transfer path between the first base material and the second base material,
the elastic thermal expansion member comprises a thermoset elastomer and a thermally conductive filler dispersed in the thermoset elastomer;
The thermal switch, wherein the elastic thermal expansion member has an average linear thermal expansion coefficient of 1×10 -4 /K to 10×10 -4 /K at 0 to 100°C.
前記熱硬化性エラストマーは、シリコーンゴム、ウレタンゴム、フッ素ゴム、アクリルゴム、天然ゴム、ブタジエンゴム、塩素化ポリエチレン、エピクロルヒドリンゴム、クロロスルフォン化ポリエチレン等の架橋性を有するエラストマーの中から選択される請求項1に記載の熱スイッチ。
The thermosetting elastomer is selected from crosslinkable elastomers such as silicone rubber, urethane rubber, fluororubber, acrylic rubber, natural rubber, butadiene rubber, chlorinated polyethylene, epichlorohydrin rubber, and chlorosulfonated polyethylene. 2. The thermal switch of claim 1.
前記熱伝導性フィラーの熱伝導率は20W/m・K以上である請求項1または請求項2に記載の熱スイッチ。
3. The thermal switch according to claim 1, wherein the thermal conductivity of said thermally conductive filler is 20 W/m·K or more.
前記熱伝導性フィラーは熱硬化性エラストマー100質量部に対し、20~350質量部である請求項1ないし請求項3に記載の熱スイッチ。
The thermal switch according to any one of claims 1 to 3, wherein the thermally conductive filler is 20 to 350 parts by mass with respect to 100 parts by mass of the thermosetting elastomer.
前記熱伝導性フィラーは弾性熱膨張部材中を第一基材から第二基材に沿って熱伝達経路を形成するように配向されてなる請求項1ないし請求項4に記載の熱スイッチ。
5. The thermal switch according to claim 1, wherein the thermally conductive filler is oriented in the elastic thermal expansion member so as to form a heat transfer path from the first substrate along the second substrate.
前記熱伝導性フィラーは熱伝導異方性粒子、磁性粒子及びバインダーからなる複合粒子である請求項5に記載の熱スイッチ。

6. The thermal switch according to claim 5, wherein the thermally conductive filler is a composite particle composed of thermally conductive anisotropic particles, magnetic particles and a binder.

JP2021034883A 2021-03-05 2021-03-05 thermal switch Pending JP2022135221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2021034883A JP2022135221A (en) 2021-03-05 2021-03-05 thermal switch

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021034883A JP2022135221A (en) 2021-03-05 2021-03-05 thermal switch

Publications (1)

Publication Number Publication Date
JP2022135221A true JP2022135221A (en) 2022-09-15

Family

ID=83231117

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021034883A Pending JP2022135221A (en) 2021-03-05 2021-03-05 thermal switch

Country Status (1)

Country Link
JP (1) JP2022135221A (en)

Similar Documents

Publication Publication Date Title
US10851277B2 (en) Highly filled high thermal conductive material, method for manufacturing same, composition, coating liquid and molded article
US10597569B2 (en) Flexible phase change material composite for thermal management systems
KR101875960B1 (en) Composites for High radiant heat and thermal management and a fabrication process thereof
TW202203491A (en) Thermal management multilayer sheet, an assembly and a battery comprising the same
KR101491328B1 (en) Structure for power electronic parts housing of vehicle
CN105914427B (en) Average-temperature structure and device applied to energy storage device
JP5829279B2 (en) Urethane foam molding and method for producing the same
JP5719887B2 (en) Elastomer molded body and method for producing the same
JP6165603B2 (en) Elastomer molded body and method for producing the same
KR20160021790A (en) Silicone rubber composition for thermally conductive silicone-rubber development member, and thermally conductive silicone-rubber development member
KR20150090079A (en) Heat-conducting foam sheet for electronic instruments and heat-conducting laminate for electronic instruments
KR20210021931A (en) Cooling element for battery module, battery module comprising the same
JP2022135221A (en) thermal switch
JP2002164689A (en) Radio wave absorbing body of high thermal conductivity
JP5662743B2 (en) Urethane foam molding and method for producing the same
WO2012063672A1 (en) Heat-conductive resin composition
JP6427314B2 (en) Thermal conductivity variable material using hollow magnetic particles
US20110045377A1 (en) Bipolar plate for fuel cell
JP6489375B2 (en) Liquid-filled heat dissipation member
JP2004035782A (en) Highly thermoconductive material and manufacturing method therefor
JP6739373B2 (en) Elastomer molding and manufacturing method thereof
JP7312515B2 (en) Heat dissipation material
JP2012153079A (en) Urethane foam molded article, and manufacturing method therefor
JP5118988B2 (en) Urethane foam molding and method for producing the same
US20240058996A1 (en) Urethane foam-molded article and method for producing same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231205