WO2012063672A1 - Heat-conductive resin composition - Google Patents

Heat-conductive resin composition Download PDF

Info

Publication number
WO2012063672A1
WO2012063672A1 PCT/JP2011/075101 JP2011075101W WO2012063672A1 WO 2012063672 A1 WO2012063672 A1 WO 2012063672A1 JP 2011075101 W JP2011075101 W JP 2011075101W WO 2012063672 A1 WO2012063672 A1 WO 2012063672A1
Authority
WO
WIPO (PCT)
Prior art keywords
resin composition
specific gravity
thermoplastic
conductive resin
thermal conductivity
Prior art date
Application number
PCT/JP2011/075101
Other languages
French (fr)
Japanese (ja)
Inventor
隆行 森
近藤 康雄
Original Assignee
北川工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北川工業株式会社 filed Critical 北川工業株式会社
Publication of WO2012063672A1 publication Critical patent/WO2012063672A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/02Elements
    • C08K3/04Carbon
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0066Use of inorganic compounding ingredients
    • C08J9/0071Nanosized fillers, i.e. having at least one dimension below 100 nanometers
    • C08J9/0076Nanofibres
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/0085Use of fibrous compounding ingredients
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/026Crosslinking before of after foaming
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2201/00Foams characterised by the foaming process
    • C08J2201/02Foams characterised by the foaming process characterised by mechanical pre- or post-treatments
    • C08J2201/03Extrusion of the foamable blend
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2203/00Foams characterized by the expanding agent
    • C08J2203/22Expandable microspheres, e.g. Expancel®
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2205/00Foams characterised by their properties
    • C08J2205/04Foams characterised by their properties characterised by the foam pores
    • C08J2205/052Closed cells, i.e. more than 50% of the pores are closed
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/22Thermoplastic resins
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2300/00Characterised by the use of unspecified polymers
    • C08J2300/26Elastomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2307/00Characterised by the use of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2309/00Characterised by the use of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08J2309/06Copolymers with styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2311/00Characterised by the use of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2319/00Characterised by the use of rubbers not provided for in groups C08J2307/00 - C08J2317/00
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2323/00Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers
    • C08J2323/02Characterised by the use of homopolymers or copolymers of unsaturated aliphatic hydrocarbons having only one carbon-to-carbon double bond; Derivatives of such polymers not modified by chemical after treatment
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2325/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by an aromatic carbocyclic ring; Derivatives of such polymers
    • C08J2325/02Homopolymers or copolymers of hydrocarbons
    • C08J2325/04Homopolymers or copolymers of styrene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2327/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers
    • C08J2327/02Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment
    • C08J2327/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Derivatives of such polymers not modified by chemical after-treatment containing chlorine atoms
    • C08J2327/06Homopolymers or copolymers of vinyl chloride
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2375/00Characterised by the use of polyureas or polyurethanes; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2377/00Characterised by the use of polyamides obtained by reactions forming a carboxylic amide link in the main chain; Derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L11/00Compositions of homopolymers or copolymers of chloroprene
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L15/00Compositions of rubber derivatives
    • C08L15/02Rubber derivatives containing halogen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L7/00Compositions of natural rubber
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/02Copolymers with acrylonitrile
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L9/00Compositions of homopolymers or copolymers of conjugated diene hydrocarbons
    • C08L9/06Copolymers with styrene

Definitions

  • the present invention relates to a heat conductive resin composition.
  • a flexible resin composition having thermal conductivity may be attached between the electronic component and the heat dissipation mechanism in order to effectively transfer the heat generated by the electronic component to a heat dissipation mechanism such as a metal chassis or a heat dissipation fin.
  • thermal conductive sheets and thermal conductive compositions obtained by blending alumina powder or aluminum nitride powder with silicone rubber or synthetic rubber as a base material (for example, patent documents). 1 and 2).
  • a lightweight resin composition having thermal conductivity a base material made of polyurethane foam is blended with alumina powder (see Patent Document 3), the magnetic particles are aligned with the lines of magnetic force when foaming is generated in a magnetic field.
  • alumina powder see Patent Document 3
  • the magnetic particles are aligned with the lines of magnetic force when foaming is generated in a magnetic field.
  • Patent Document 4 those obtained by adding carbon fibers to a thermoplastic resin (see Patent Documents 5 and 6), and the like.
  • JP 2004-269562 A Japanese Patent Laid-Open No. 2004-307643 Japanese Patent No. 4113084 JP 2010-69742 A JP 2009-144000 A Japanese Patent Application No. 2010-195731
  • compositions of Patent Documents 1 and 2 have a high specific gravity because they contain a metal or ceramic filler with good thermal conductivity. As a result, it is not appropriate because it obstructs the weight reduction required for portable electronic devices in recent years and causes an increase in the weight of automobiles that prioritize fuel efficiency.
  • the composition of Patent Document 3 has a thermal conductivity of about 0.05 W / (m ⁇ K), which is superior to the thermal conductivity of air, 0.024 W / (m ⁇ K), but is a general-purpose flexible.
  • the thermal conductivity of ethylene-propylene-diene rubber (EPDM), which is a material, is smaller than 0.38 W / (m ⁇ K), and the thermal conductivity is insufficient for use in heat dissipation of electronic parts.
  • the composition of Patent Document 4 has a thermal conductivity of 0.4 W / (m ⁇ K), and can be reduced in weight by using a foam structure as compared with EPDM, but only a heat dissipation effect equivalent to that of EPDM can be obtained. Absent.
  • the specific gravity of EPDM is 0.86
  • a material having a thermal conductivity of more than 0.38 W / (m ⁇ K) and a specific gravity of less than 0.86 is a heat dissipation material having light weight and thermal conductivity higher than EPDM. I can say that.
  • a commercially available heat dissipation material with a low specific gravity has a specific gravity of 1.1 and a thermal conductivity of 0.7 W / (m ⁇ K). Therefore, there is a demand for a material with a lower specific gravity and a higher thermal conductivity. Yes.
  • the heat conductive resin composition of the 1st aspect of this invention contains matrix resin, pitch-type carbon fiber, and a foaming agent.
  • the pitch-based carbon fiber is blended in an amount of 20 to 85 parts by weight with respect to 100 parts by weight of the matrix resin.
  • the thermally conductive resin composition is foamed 1.2 to 2.7 times with a foaming agent, has a specific gravity of 1.1 or less, and a thermal conductivity of 0.4 W / (m ⁇ K). ) Or more.
  • the value obtained by dividing the specific gravity by the thermal conductivity is preferably in the range of 0.5 to 1.0.
  • the heat conductive resin composition of the 3rd aspect of this invention contains matrix resin, a vapor growth carbon fiber, and a foaming agent.
  • the vapor grown carbon fiber is blended in an amount of 20 to 50 parts by weight with respect to 100 parts by weight of the matrix resin.
  • the thermally conductive resin composition is foamed 1.2 to 3.6 times with a foaming agent, has a specific gravity of 1.1 or less, and a thermal conductivity of 0.4 W / (m ⁇ K). ) Or more.
  • the value obtained by dividing the specific gravity by the heat conductivity is preferably in the range of 0.37 to 0.94.
  • the matrix resin is one selected from the group consisting of silicone rubber, polybutadiene, nitrile rubber, natural rubber, butyl rubber, styrene butadiene rubber, chloroprene rubber, and fluorine rubber. The above or a copolymer thereof can be used.
  • thermoplastic elastomer may be used as the matrix resin.
  • thermoplastic elastomers thermoplastic styrene elastomers, thermoplastic polyolefin elastomers, thermoplastic polyurethane elastomers, thermoplastic polyester elastomers, thermoplastic vulcanized elastomers, thermoplastic vinyl chloride elastomers, thermoplastic polyamide elastomers, organic
  • butyl rubber-based thermoplastic elastomers partially crosslinked with a peroxide, or a copolymer thereof can be used.
  • generated by the foaming agent is a closed cell in the heat conductive resin composition of this invention.
  • the heat conductive resin composition of the present invention is characterized in that the matrix resin is filled with both carbon fibers (pitch-based carbon fibers or vapor-grown carbon fibers) and a foaming agent.
  • the blending amount of the carbon fiber with respect to the matrix resin and the foaming ratio by the foaming agent are determined, the specific gravity is 1.1 or less, and the thermal conductivity is 0.4 W / (m ⁇ K) or more. is there.
  • the thermally conductive resin composition of the present invention suppresses a decrease in thermal conductivity during foaming by using the above-described carbon fiber as a thermally conductive filler.
  • a decrease in specific gravity due to foaming 1.1 or less
  • a high thermal conductivity 0.4 W / (m ⁇ K) or more.
  • the reason for suppressing the decrease in thermal conductivity during foaming by using pitch-based carbon fiber or vapor-grown carbon fiber as the thermally conductive filler is considered as follows.
  • a spherical or flake-shaped filler if the resin composition is foamed, the interval between the fillers is separated. As a result, the thermal conductivity decreases.
  • the filler if it is a fibrous filler, the filler has a length even if foamed, so that the state where the fillers are close to each other is easily maintained, a path for transferring heat remains, and high thermal conductivity is maintained. it is conceivable that.
  • the heat conductive resin composition which reduced specific gravity can be obtained by making expansion ratio into 1.2 times or more.
  • the degree of decrease in thermal conductivity increases.
  • the value obtained by dividing the specific gravity by the thermal conductivity is in the range of 0.5 to 1.0, a small specific gravity and a high thermal conductivity can be achieved in a balanced manner.
  • the value of the thermal conductivity mentioned here is a value when the unit is “W / (m ⁇ K)” as described above.
  • high thermal conductivity can be obtained by blending 20 parts by weight or more with respect to 100 parts by weight of the matrix resin. However, if it exceeds 50 parts by weight, the thermal conductivity increases, but the ratio of the matrix resin is insufficient, so that the shape cannot be maintained, and it becomes difficult to form the desired shape.
  • the heat conductive resin composition which reduced specific gravity can be obtained by making expansion ratio into 1.2 times or more.
  • the degree of decrease in thermal conductivity increases.
  • the value obtained by dividing the specific gravity by the thermal conductivity is in the range of 0.37 to 0.94, a small specific gravity and a high thermal conductivity can be achieved in a balanced manner.
  • the value of the thermal conductivity mentioned here is a value when the unit is “W / (m ⁇ K)” as described above.
  • the bubbles generated by the foaming agent are closed cells.
  • closed cells it is possible to reduce the variation in the thermal conductivity of the thermally conductive resin composition produced because the matrix portion other than the bubbles with high heat transfer effect is continuous, and always obtain a high thermal conductivity. it can.
  • durability of a heat conductive resin composition can also be improved.
  • thermal expansion type microcapsule As an example for generating closed cells, it is conceivable to use a thermal expansion type microcapsule as a foaming agent. When a thermal expansion type microcapsule is used, it is preferable to form a heat transfer path in the matrix because the carbon fiber surrounds the outer shell of the expanded capsule when foamed.
  • the pitch-based carbon fiber described above has a true density of 1.5 to 2.3 g / cm 3 , a thermal conductivity in the fiber axis direction of 500 W / (m ⁇ K) or more, a fiber diameter of 5 to 15 ⁇ m, a fiber length One having a thickness of 50 to 500 ⁇ m is preferably used.
  • the above-mentioned vapor grown carbon fiber may have a fiber diameter of 0.01 to 0.5 ⁇ m and a fiber length of 1 to 500 ⁇ m.
  • the thermally conductive resin composition of this example is composed of a matrix resin, pitch-based carbon fibers, a foaming agent, and a crosslinking agent. Details of the materials are as follows.
  • Matrix resin Silicone rubber XE20-C0510 manufactured by Momentive Performance Materials
  • Pitch-based carbon fiber average fiber diameter 8 ⁇ m, average fiber length 200 ⁇ m
  • Foaming agent Thermal expansion microcapsule Daifoam H850D manufactured by Dainichi Seika Kogyo Co., Ltd.
  • Cross-linking agent TC-8 The manufacturing method of the said heat conductive resin composition is demonstrated. First, a predetermined amount of silicone rubber and pitch-based carbon fiber were kneaded with two rolls, then a foaming agent and a crosslinking agent were added, and kneaded uniformly with two rolls. The obtained composition was preformed with a sheet mold having a thickness of 1 to 2 mm, and then heated at 170 ° C. for 10 minutes with a sheet mold having a thickness of 3 mm to foam and crosslink. Went. In this way, a sheet-like silicone rubber sponge was produced.
  • Example 2 20 parts by weight of pitch-based carbon fiber and 1 part by weight of a foaming agent were blended with 100 parts by weight of the matrix resin.
  • Examples 2 to 14 A heat conductive resin composition was manufactured by changing the blending amount of the material by the same material and manufacturing method as in Example 1. Table 1 shows the blending amounts of the pitch-based carbon fiber and the foaming agent in Examples 1 to 14.
  • Example 1 A resin composition was produced using the same matrix resin as in Example 1 and changing the blending amount of the materials.
  • the blending amount of the pitch-based carbon fiber was determined from the range of 0 to 100 parts by weight with respect to 100 parts by weight of the matrix resin.
  • the blending amount of the foaming agent was either 0 or 20 parts by weight.
  • Table 2 shows the blending amounts of the pitch-based carbon fiber and the foaming agent in Comparative Examples 1 to 9.
  • thermal conductivity was determined using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.). Specific gravity was determined using a hydrometer. The expansion ratio was determined as (specific gravity before foaming / specific gravity after foaming).
  • Example 1 to 14 The evaluation results of Examples 1 to 14 are shown in Table 1.
  • the evaluation results of Comparative Examples 1 to 9 are shown in Table 2.
  • Tables 1 and 2 those having a thermal conductivity of 0.7 W / (m ⁇ K) or higher are indicated as “ ⁇ (very good)”, and those having a thermal conductivity of 0.4 W / (m ⁇ K) or higher are indicated as “ ⁇ (good)”. ) ”And those less than 0.4 W / (m ⁇ K) were“ ⁇ (not particularly excellent) ”.
  • the specific gravity of 0.86 or less is “ ⁇ (very good)”, 1.1 or less is “ ⁇ (good)”, and the specific gravity is more than 1.1 “ ⁇ (particularly excellent) Not)).
  • the compounding amount of the pitch-based carbon fiber exceeds 100 parts by weight with respect to 100 parts by weight of the matrix resin, the ratio of the matrix resin is insufficient, so that the shape cannot be maintained and the desired shape cannot be formed.
  • FIG. 1 is a graph showing the relationship between the thermal conductivity and specific gravity of Examples 1 to 14 and Comparative Examples 1 to 9.
  • the foaming agent was blended in an amount of 1 to 10 parts by weight, good physical properties were obtained with a specific gravity of 1.1 or less and a thermal conductivity of 0.4 or more (region surrounded by a broken line in the graph).
  • the specific gravity is preferably as small as possible, if a large amount of a foaming agent is blended in order to lower the specific gravity and the expansion ratio is increased, the thermal conductivity decreases accordingly. Therefore, by adjusting the expansion ratio and setting the specific gravity to be 0.3 or more, more preferably 0.4 or more, high thermal conductivity can be maintained while reducing the specific gravity.
  • the higher the thermal conductivity the better.
  • the pitch-based carbon fiber is preferably made into a blending amount that does not lose flexibility and can be molded (for example, a blending amount that is 2.0 W / (m ⁇ K) or less during foam molding).
  • the thermally conductive resin composition of the present example contains a matrix resin, vapor grown carbon fiber, a foaming agent, and a crosslinking agent. Among each material, the matrix resin, the foaming agent, and the crosslinking agent were the same as those in Example 1. Details of the vapor growth carbon fiber are as follows. Vapor growth carbon fiber: VGCF (registered trademark) -H manufactured by Showa Denko KK The manufacturing method of the said heat conductive resin composition is the same as that of Example 1 except having replaced the pitch-type carbon fiber and the vapor growth carbon fiber as a material.
  • Example 16 20 parts by weight of vapor grown carbon fiber and 1 part by weight of a foaming agent were blended with 100 parts by weight of the matrix resin.
  • a heat conductive resin composition was manufactured by changing the blending amount of the material by the same material and manufacturing method as in Example 15. Table 3 shows the blending amounts of the vapor-grown carbon fiber and the foaming agent in Examples 16 to 26.
  • thermal conductivity was determined using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.). Specific gravity was determined using a hydrometer. The expansion ratio was determined as (specific gravity before foaming / specific gravity after foaming).
  • Table 3 shows the evaluation results of Comparative Examples 10 to 14.
  • the evaluation criteria in Tables 3 and 4 are the same as those in Tables 1 and 2.
  • Example 15 to 26 the value obtained by dividing the specific gravity by the thermal conductivity was in the range of 0.37 to 0.94.
  • the specific gravity of the resin composition increased when no foaming agent was blended.
  • the compounding quantity of the vapor growth carbon fiber exceeded 65 parts by weight with respect to 100 parts by weight of the matrix resin, it could not be formed into a desired shape.
  • FIG. 2 is a graph showing the relationship between the thermal conductivity and specific gravity of Examples 15 to 26 and Comparative Examples 10 to 14.
  • the specific gravity was 1.1 or less and the thermal conductivity was 0.4 or more (region surrounded by a broken line in the graph).
  • the specific gravity is preferably as small as possible, if a large amount of a foaming agent is blended in order to lower the specific gravity and the expansion ratio is increased, the thermal conductivity decreases accordingly. Therefore, by adjusting the expansion ratio and setting the specific gravity to be 0.3 or more, more preferably 0.4 or more, high thermal conductivity can be maintained while reducing the specific gravity.
  • the higher the thermal conductivity the better.
  • the vapor-grown carbon fiber is preferably made into a blending amount that does not lose flexibility and can be molded (for example, a blending amount that is 2.3 W / (m ⁇ K) or less during foam molding).
  • FIG. 3 shows a graph showing the relationship between the thermal conductivity and specific gravity of the general-purpose resin member and the thermal conductive resin composition of this example.
  • the general-purpose resin member here is a general-purpose rubber and a commercially available general heat dissipation sheet.
  • FIG. 3 although a commercially available heat-radiation sheet shows high heat conductivity depending on the kind, the specific gravity is large as a whole.
  • the thermally conductive resin composition containing the vapor-grown carbon fiber or pitch-based carbon fiber and the foaming agent of the above examples has a thermal conductivity of 0.4 W / ( m ⁇ K) and a specific gravity of 1.1 or less (region surrounded by a broken line in the graph).
  • this invention is not limited to said specific embodiment, In addition, it can implement with a various form.
  • silicone rubber is used as the matrix resin
  • thermoplastic elastomer may be used.
  • thermoplastic elastomers thermoplastic styrene elastomers, thermoplastic polyolefin elastomers, thermoplastic polyurethane elastomers, thermoplastic polyester elastomers, thermoplastic vulcanized elastomers, thermoplastic vinyl chloride elastomers, thermoplastic polyamide elastomers, organic It is conceivable to use one or more selected from the group consisting of a butyl rubber thermoplastic elastomer partially crosslinked with a peroxide, or a copolymer thereof.
  • pitch-based carbon fiber and the vapor growth carbon fiber may be other than those described in the embodiment. Further, pitch-based carbon fibers and vapor-grown carbon fibers may be appropriately mixed and used.
  • the foaming agent may be other than that described in the embodiment.
  • the generated bubbles are preferably closed cells, but may be open cells.

Abstract

This heat-conductive resin composition comprises a matrix resin, pitch-based carbon fibers or vapor-grown carbon fibers and a foaming agent, and has a specific gravity of 1.1 or less and a heat conductivity of 0.4 W/(m·K) or more.

Description

熱伝導性樹脂組成物Thermally conductive resin composition 関連出願の相互参照Cross-reference of related applications
 本国際出願は、2010年11月11日に日本国特許庁に出願された日本国特許出願第2010-253003号に基づく優先権を主張するものであり、日本国特許出願第2010-253003号の全内容を本国際出願に援用する。 This international application claims priority based on Japanese Patent Application No. 2010-253003 filed with the Japan Patent Office on November 11, 2010, and is based on Japanese Patent Application No. 2010-253003. The entire contents are incorporated into this international application.
 本発明は、熱伝導性樹脂組成物に関する。 The present invention relates to a heat conductive resin composition.
 近年、電子部品の高速化・高密度化にともない発生する熱量も増大する傾向にある。そのため、電子部品が発生する熱を金属シャーシや放熱フィンなどの放熱機構に効果的に伝達する目的で、電子部品と放熱機構との間に熱伝導性を有する柔軟樹脂組成物を取り付ける場合がある。 In recent years, the amount of heat generated tends to increase as the speed and density of electronic components increase. Therefore, a flexible resin composition having thermal conductivity may be attached between the electronic component and the heat dissipation mechanism in order to effectively transfer the heat generated by the electronic component to a heat dissipation mechanism such as a metal chassis or a heat dissipation fin. .
 熱伝導性を有する樹脂組成物としては、シリコーンゴムや合成ゴムを基材にアルミナ粉末や窒化アルミニウム粉末を配合してなる熱伝導シートや熱伝導性組成物が知られている(例えば、特許文献1,2参照)。 Known resin compositions having thermal conductivity include thermal conductive sheets and thermal conductive compositions obtained by blending alumina powder or aluminum nitride powder with silicone rubber or synthetic rubber as a base material (for example, patent documents). 1 and 2).
 一方、熱伝導性を有する軽量樹脂組成物としては、ポリウレタンフォームからなる基材にアルミナ粉末を配合してなるもの(特許文献3参照)、磁場中での発泡生成時に磁性体粒子を磁力線に沿って配向したもの(特許文献4参照)、熱可塑性樹脂に炭素繊維を添加したもの(特許文献5,6参照)などが提案されている。 On the other hand, as a lightweight resin composition having thermal conductivity, a base material made of polyurethane foam is blended with alumina powder (see Patent Document 3), the magnetic particles are aligned with the lines of magnetic force when foaming is generated in a magnetic field. Have been proposed (see Patent Document 4), those obtained by adding carbon fibers to a thermoplastic resin (see Patent Documents 5 and 6), and the like.
特開2004-269562号公報JP 2004-269562 A 特開2004-307643号公報Japanese Patent Laid-Open No. 2004-307643 特許第4113084号公報Japanese Patent No. 4113084 特開2010-69742号公報JP 2010-69742 A 特開2009-144000号公報JP 2009-144000 A 特願2010-195731号公報Japanese Patent Application No. 2010-195731
 しかしながら、特許文献1,2の組成物は、熱伝導の良い金属またはセラミックスフィラーを配合するため、比重が大きくなってしまう。その結果、近年の携帯型電子機器に求められる軽量化を阻害することや、燃費を優先する自動車の重量増を招くという理由等で適切でない。 However, the compositions of Patent Documents 1 and 2 have a high specific gravity because they contain a metal or ceramic filler with good thermal conductivity. As a result, it is not appropriate because it obstructs the weight reduction required for portable electronic devices in recent years and causes an increase in the weight of automobiles that prioritize fuel efficiency.
 また、特許文献3の組成物は、熱伝導率が0.05W/(m・K)程度であり、空気の熱伝導率0.024W/(m・K)よりも優れるが、汎用的な柔軟材料であるエチレン-プロピレン-ジエンゴム(EPDM)の熱伝導率0.38W/(m・K)よりも小さく、電子部品の放熱に用いるには熱伝導率が不足する。特許文献4の組成物は熱伝導率0.4W/(m・K)であり、EPDMと比較して発泡構造を利用することで軽量化は達成できるが、EPDMと同等の放熱効果しか得られない。EPDMの比重は0.86であるため、熱伝導率0.38W/(m・K)を超え、比重0.86未満である材料は、EPDM以上の軽量性と熱伝導率を有する放熱材料といえる。また、市販の放熱材料で比重が小さい材料は比重1.1で熱伝導率0.7W/(m・K)であるため、これよりも比重が小さく、熱伝導率が大きい材料が求められている。 The composition of Patent Document 3 has a thermal conductivity of about 0.05 W / (m · K), which is superior to the thermal conductivity of air, 0.024 W / (m · K), but is a general-purpose flexible. The thermal conductivity of ethylene-propylene-diene rubber (EPDM), which is a material, is smaller than 0.38 W / (m · K), and the thermal conductivity is insufficient for use in heat dissipation of electronic parts. The composition of Patent Document 4 has a thermal conductivity of 0.4 W / (m · K), and can be reduced in weight by using a foam structure as compared with EPDM, but only a heat dissipation effect equivalent to that of EPDM can be obtained. Absent. Since the specific gravity of EPDM is 0.86, a material having a thermal conductivity of more than 0.38 W / (m · K) and a specific gravity of less than 0.86 is a heat dissipation material having light weight and thermal conductivity higher than EPDM. I can say that. In addition, a commercially available heat dissipation material with a low specific gravity has a specific gravity of 1.1 and a thermal conductivity of 0.7 W / (m · K). Therefore, there is a demand for a material with a lower specific gravity and a higher thermal conductivity. Yes.
 つまり、比重1.1以下で、熱伝導率0.4W/(m・K)を超える放熱材料は特に優れているといえる。
 また、特許文献5,6の組成物は、高い熱伝導率を示すものの、炭素繊維が多く含まれることにより、比重が1を上回り、柔軟性に欠けるという問題がある。
That is, it can be said that a heat dissipation material having a specific gravity of 1.1 or less and a thermal conductivity exceeding 0.4 W / (m · K) is particularly excellent.
Moreover, although the composition of patent documents 5 and 6 shows high thermal conductivity, when many carbon fibers are contained, there exists a problem that specific gravity exceeds 1 and lacks a softness | flexibility.
 つまり、上記のような従来技術では、高熱伝導性でありながら比重が小さくかつ柔軟性を図ることが可能な熱伝導性樹脂組成物を得ることが困難であった。
 本発明は、上述した問題に鑑みてなされたものであり、その目的は、熱伝導性に優れ、比重が小さく柔軟性を有する熱伝導性樹脂組成物を提供することである。
That is, according to the conventional technology as described above, it has been difficult to obtain a heat conductive resin composition that has high thermal conductivity but low specific gravity and can be flexible.
This invention is made | formed in view of the problem mentioned above, The objective is to provide the heat conductive resin composition which is excellent in heat conductivity, has small specific gravity, and has a softness | flexibility.
 以下、本発明において採用した構成について説明する。
 本発明の第1局面の熱伝導性樹脂組成物は、マトリックス樹脂と、ピッチ系炭素繊維と、発泡剤とを含むものである。ピッチ系炭素繊維は、マトリックス樹脂100重量部に対して20~85重量部配合されている。そしてこの熱伝導性樹脂組成物は、発泡剤により1.2~2.7倍に発泡させてなり、比重が1.1以下であり、かつ、熱伝導率が0.4W/(m・K)以上であることを特徴とする。
Hereinafter, the configuration employed in the present invention will be described.
The heat conductive resin composition of the 1st aspect of this invention contains matrix resin, pitch-type carbon fiber, and a foaming agent. The pitch-based carbon fiber is blended in an amount of 20 to 85 parts by weight with respect to 100 parts by weight of the matrix resin. The thermally conductive resin composition is foamed 1.2 to 2.7 times with a foaming agent, has a specific gravity of 1.1 or less, and a thermal conductivity of 0.4 W / (m · K). ) Or more.
 本発明の第2局面の熱伝導性樹脂組成物において、比重を熱伝導率で除した値は、0.5~1.0の範囲であることが好ましい。
 また、本発明の第3局面の熱伝導性樹脂組成物は、マトリックス樹脂と、気相成長炭素繊維と、発泡剤とを含むものである。気相成長炭素繊維は、マトリックス樹脂100重量部に対して20~50重量部配合されている。そしてこの熱伝導性樹脂組成物は、発泡剤により1.2~3.6倍に発泡させてなり、比重が1.1以下であり、かつ、熱伝導率が0.4W/(m・K)以上であることを特徴とする。
In the thermally conductive resin composition of the second aspect of the present invention, the value obtained by dividing the specific gravity by the thermal conductivity is preferably in the range of 0.5 to 1.0.
Moreover, the heat conductive resin composition of the 3rd aspect of this invention contains matrix resin, a vapor growth carbon fiber, and a foaming agent. The vapor grown carbon fiber is blended in an amount of 20 to 50 parts by weight with respect to 100 parts by weight of the matrix resin. The thermally conductive resin composition is foamed 1.2 to 3.6 times with a foaming agent, has a specific gravity of 1.1 or less, and a thermal conductivity of 0.4 W / (m · K). ) Or more.
 上記熱伝導性樹脂組成物において、比重を熱伝導率で除した値は、0.37~0.94の範囲であることが好ましい。
 また、本発明の熱伝導性樹脂組成物において、上記マトリックス樹脂は、シリコーンゴム、ポリブタジエン、ニトリルゴム、天然ゴム、ブチルゴム、スチレンブタジエンゴム、クロロプレンゴム、及びフッ素系ゴムからなる群から選ばれる1種以上、もしくはこれらの共重合体を用いることができる。
In the above heat conductive resin composition, the value obtained by dividing the specific gravity by the heat conductivity is preferably in the range of 0.37 to 0.94.
In the thermally conductive resin composition of the present invention, the matrix resin is one selected from the group consisting of silicone rubber, polybutadiene, nitrile rubber, natural rubber, butyl rubber, styrene butadiene rubber, chloroprene rubber, and fluorine rubber. The above or a copolymer thereof can be used.
 また、マトリックス樹脂として熱可塑性エラストマーを用いても良い。熱可塑性エラストマーとしては、熱可塑性スチレン系エラストマー、熱可塑性ポリオレフィン系エラストマー、熱可塑性ポリウレタン系エラストマー、熱可塑性ポリエステル系エラストマー、熱可塑性加硫エラストマー、熱可塑性塩化ビニル系エラストマー、熱可塑性ポリアミド系エラストマー、有機過酸化物で部分架橋してなるブチルゴム系熱可塑性エラストマーからなる群から選ばれる1種以上、もしくはこれらの共重合体を用いることができる。 Further, a thermoplastic elastomer may be used as the matrix resin. As thermoplastic elastomers, thermoplastic styrene elastomers, thermoplastic polyolefin elastomers, thermoplastic polyurethane elastomers, thermoplastic polyester elastomers, thermoplastic vulcanized elastomers, thermoplastic vinyl chloride elastomers, thermoplastic polyamide elastomers, organic One or more selected from the group consisting of butyl rubber-based thermoplastic elastomers partially crosslinked with a peroxide, or a copolymer thereof can be used.
 また、本発明の熱伝導性樹脂組成物は、発泡剤によって生成される気泡が独立気泡であることが好ましい。
 以下、本発明の構成について、さらに詳しく説明する。
Moreover, it is preferable that the bubble produced | generated by the foaming agent is a closed cell in the heat conductive resin composition of this invention.
Hereinafter, the configuration of the present invention will be described in more detail.
 本発明の熱伝導性樹脂組成物は、マトリックス樹脂に対し、炭素繊維(ピッチ系炭素繊維または気相成長炭素繊維)と、発泡剤との双方を充填した点に特徴がある。また、マトリックス樹脂に対する炭素繊維の配合量と発泡剤による発泡倍率を定め、比重が1.1以下であり、かつ、熱伝導率が0.4W/(m・K)以上とした点に特徴がある。 The heat conductive resin composition of the present invention is characterized in that the matrix resin is filled with both carbon fibers (pitch-based carbon fibers or vapor-grown carbon fibers) and a foaming agent. In addition, it is characterized in that the blending amount of the carbon fiber with respect to the matrix resin and the foaming ratio by the foaming agent are determined, the specific gravity is 1.1 or less, and the thermal conductivity is 0.4 W / (m · K) or more. is there.
 発泡剤を配合して発泡倍率を大きくすると、樹脂組成物の比重は小さくなるものの、熱伝導率が顕著に低下することが知られている。これは、一般的な熱伝導性フィラーを用いた場合でも同様である。発泡させた樹脂組成物に所望の熱伝導率を付与するためにはフィラーを大量に配合する必要があり、比重の増大や成形性の低下を引き起こす。 It is known that when the foaming ratio is increased by adding a foaming agent, the specific gravity of the resin composition is reduced, but the thermal conductivity is significantly reduced. This is the same even when a general heat conductive filler is used. In order to impart desired thermal conductivity to the foamed resin composition, it is necessary to add a large amount of filler, which causes an increase in specific gravity and a decrease in moldability.
 これに対し、本発明の熱伝導性樹脂組成物は、熱伝導性フィラーとして上述した炭素繊維を用いることで、発泡時の熱伝導率低下を抑制している。その結果、発泡による比重の低下(1.1以下)と、高い熱伝導率(0.4W/(m・K)以上)と、の両方を達成することができる。 On the other hand, the thermally conductive resin composition of the present invention suppresses a decrease in thermal conductivity during foaming by using the above-described carbon fiber as a thermally conductive filler. As a result, it is possible to achieve both a decrease in specific gravity due to foaming (1.1 or less) and a high thermal conductivity (0.4 W / (m · K) or more).
 熱伝導性フィラーとしてピッチ系炭素繊維または気相成長炭素繊維を用いることによって発泡時の熱伝導率の低下を抑制する理由は次のように考えられる。球形やフレーク形状のフィラーを用いた場合、樹脂組成物を発泡させるとフィラー同士の間隔が離れてしまう。その結果、熱伝導率が低下する。一方、繊維状のフィラーであれば、発泡させてもフィラーが長さを有することからフィラー同士が接近した状態が維持されやすく、熱を伝達するパスが残り、高い熱伝導率を保つためであると考えられる。 The reason for suppressing the decrease in thermal conductivity during foaming by using pitch-based carbon fiber or vapor-grown carbon fiber as the thermally conductive filler is considered as follows. When a spherical or flake-shaped filler is used, if the resin composition is foamed, the interval between the fillers is separated. As a result, the thermal conductivity decreases. On the other hand, if it is a fibrous filler, the filler has a length even if foamed, so that the state where the fillers are close to each other is easily maintained, a path for transferring heat remains, and high thermal conductivity is maintained. it is conceivable that.
 なお、フィラーとしてピッチ系炭素繊維を用いる場合、マトリックス樹脂100重量部に対して20重量部以上配合することで、高い熱伝導率を得ることができる。但し、85重量部を超えて配合すると、熱伝導率は高くなるが、マトリックス樹脂の比率が不足するために形状を維持できず所望の形状に成形ができ難くなる。 In addition, when using pitch-type carbon fiber as a filler, high thermal conductivity can be obtained by mix | blending 20 weight part or more with respect to 100 weight part of matrix resins. However, if it exceeds 85 parts by weight, the thermal conductivity is increased, but the ratio of the matrix resin is insufficient, so that the shape cannot be maintained and it becomes difficult to form the desired shape.
 また、発泡倍率を1.2倍以上とすることで比重を低減した熱伝導性樹脂組成物を得ることができる。但し、2.7倍を超える倍率で発泡させると、熱伝導率の低下度合が大きくなる。 Moreover, the heat conductive resin composition which reduced specific gravity can be obtained by making expansion ratio into 1.2 times or more. However, when foaming is performed at a magnification exceeding 2.7 times, the degree of decrease in thermal conductivity increases.
 さらに、比重を熱伝導率で除した値が0.5~1.0の範囲であるときに、小さい比重と高い熱伝導率とをバランスよく達成することができる。なお、ここで言う熱伝導率の値は、上述したように単位を「W/(m・K)」としたときの値である。 Furthermore, when the value obtained by dividing the specific gravity by the thermal conductivity is in the range of 0.5 to 1.0, a small specific gravity and a high thermal conductivity can be achieved in a balanced manner. In addition, the value of the thermal conductivity mentioned here is a value when the unit is “W / (m · K)” as described above.
 また、フィラーとして気相成長炭素繊維を用いる場合、マトリックス樹脂100重量部に対して20重量部以上配合することで、高い熱伝導率を得ることができる。但し、50重量部を超えて配合すると、熱伝導率は高くなるが、マトリックス樹脂の比率が不足するために形状を維持できず、所望の形状に成形ができ難くなる。 Moreover, when using vapor-grown carbon fiber as a filler, high thermal conductivity can be obtained by blending 20 parts by weight or more with respect to 100 parts by weight of the matrix resin. However, if it exceeds 50 parts by weight, the thermal conductivity increases, but the ratio of the matrix resin is insufficient, so that the shape cannot be maintained, and it becomes difficult to form the desired shape.
 また、発泡倍率を1.2倍以上とすることで比重を低減した熱伝導性樹脂組成物を得ることができる。但し、3.6倍を超える倍率で発泡させると、熱伝導率の低下度合が大きくなる。 Moreover, the heat conductive resin composition which reduced specific gravity can be obtained by making expansion ratio into 1.2 times or more. However, when foaming is performed at a magnification exceeding 3.6 times, the degree of decrease in thermal conductivity increases.
 さらに、比重を熱伝導率で除した値が0.37~0.94の範囲であるときに、小さい比重と高い熱伝導率とをバランスよく達成することができる。なお、ここで言う熱伝導率の値は、上述したように単位を「W/(m・K)」としたときの値である。 Furthermore, when the value obtained by dividing the specific gravity by the thermal conductivity is in the range of 0.37 to 0.94, a small specific gravity and a high thermal conductivity can be achieved in a balanced manner. In addition, the value of the thermal conductivity mentioned here is a value when the unit is “W / (m · K)” as described above.
 また、本発明の熱伝導性樹脂組成物は、発泡剤によって生成される気泡が独立気泡であることが好ましい。独立気泡とすることによって、伝熱効果の高い気泡以外のマトリクス部分が連続するために製造された熱伝導性樹脂組成物の熱伝導率の変動を小さくでき、常に高い熱伝導率を得ることができる。また、熱伝導性樹脂組成物の耐久性も向上させることができる。 In the thermally conductive resin composition of the present invention, it is preferable that the bubbles generated by the foaming agent are closed cells. By using closed cells, it is possible to reduce the variation in the thermal conductivity of the thermally conductive resin composition produced because the matrix portion other than the bubbles with high heat transfer effect is continuous, and always obtain a high thermal conductivity. it can. Moreover, durability of a heat conductive resin composition can also be improved.
 なお、独立気泡を生成するための一例として、発泡剤として熱膨張型マイクロカプセルを用いることが考えられる。熱膨張型のマイクロカプセルを用いる場合、発泡させたときに、炭素繊維が膨張したカプセルの外皮を取り囲むような状態となり、マトリクス内の伝熱経路を形成する上で好ましい。 As an example for generating closed cells, it is conceivable to use a thermal expansion type microcapsule as a foaming agent. When a thermal expansion type microcapsule is used, it is preferable to form a heat transfer path in the matrix because the carbon fiber surrounds the outer shell of the expanded capsule when foamed.
 なお、上述したピッチ系炭素繊維は、真密度が1.5~2.3g/cm3、繊維軸方向の熱伝導率が500W/(m・K)以上、繊維径が5~15μm、繊維長50~500μmのものを用いるとよい。 The pitch-based carbon fiber described above has a true density of 1.5 to 2.3 g / cm 3 , a thermal conductivity in the fiber axis direction of 500 W / (m · K) or more, a fiber diameter of 5 to 15 μm, a fiber length One having a thickness of 50 to 500 μm is preferably used.
 また、上述した気相成長炭素繊維は、繊維径が0.01~0.5μm、繊維長が1~500μmのものを用いるとよい。 Further, the above-mentioned vapor grown carbon fiber may have a fiber diameter of 0.01 to 0.5 μm and a fiber length of 1 to 500 μm.
ピッチ系炭素繊維を含有する熱伝導性樹脂組成物の熱伝導率と比重との関係を表すグラフである。It is a graph showing the relationship between the heat conductivity and specific gravity of the heat conductive resin composition containing pitch type carbon fiber. 気相成長炭素繊維を含有する熱伝導性樹脂組成物の熱伝導率と比重との関係を表すグラフである。It is a graph showing the relationship between the heat conductivity and specific gravity of the heat conductive resin composition containing a vapor growth carbon fiber. 汎用樹脂部材および熱伝導性樹脂組成物の熱伝導率と比重との関係を表すグラフである。It is a graph showing the relationship between the heat conductivity and specific gravity of a general-purpose resin member and a heat conductive resin composition.
 以下に本発明の実施形態について説明する。
 1.ピッチ系炭素繊維を含有する熱伝導性樹脂組成物の製造および評価
 <熱伝導性樹脂組成物の製造>
 [実施例1]
 本実施例の熱伝導性樹脂組成物は、マトリックス樹脂、ピッチ系炭素繊維、発泡剤、架橋剤からなる。材料の詳細は以下に示すとおりである。
マトリックス樹脂:モメンティブ・パフォーマンス・マテリアルズ社製 シリコーンゴムXE20-C0510
ピッチ系炭素繊維:平均繊維径 8μm、平均繊維長 200μm
発泡剤:大日精化工業(株)製 熱膨張マイクロカプセル ダイフォームH850D
架橋剤:モメンティブ・パフォーマンス・マテリアルズ社製 架橋剤TC-8
 上記熱伝導性樹脂組成物の製造方法を説明する。まず、所定量計量したシリコーンゴムとピッチ系炭素繊維を二本ロールで混練し、次に発泡剤および架橋剤を加え、二本ロールで均一に混練した。得られた組成物を、厚さが1~2mmとなるシート用金型で予備成形し、その後、厚さが3mmとなるシート用金型で170℃にて10分間加熱することにより発泡と架橋を行った。このようにして、シート状のシリコーンゴムスポンジを製造した。
Embodiments of the present invention will be described below.
1. Production and Evaluation of Thermally Conductive Resin Composition Containing Pitch Carbon Fiber <Manufacture of Thermally Conductive Resin Composition>
[Example 1]
The thermally conductive resin composition of this example is composed of a matrix resin, pitch-based carbon fibers, a foaming agent, and a crosslinking agent. Details of the materials are as follows.
Matrix resin: Silicone rubber XE20-C0510 manufactured by Momentive Performance Materials
Pitch-based carbon fiber: average fiber diameter 8 μm, average fiber length 200 μm
Foaming agent: Thermal expansion microcapsule Daifoam H850D manufactured by Dainichi Seika Kogyo Co., Ltd.
Cross-linking agent: Momentive Performance Materials, Inc. Cross-linking agent TC-8
The manufacturing method of the said heat conductive resin composition is demonstrated. First, a predetermined amount of silicone rubber and pitch-based carbon fiber were kneaded with two rolls, then a foaming agent and a crosslinking agent were added, and kneaded uniformly with two rolls. The obtained composition was preformed with a sheet mold having a thickness of 1 to 2 mm, and then heated at 170 ° C. for 10 minutes with a sheet mold having a thickness of 3 mm to foam and crosslink. Went. In this way, a sheet-like silicone rubber sponge was produced.
 本実施例では、マトリックス樹脂100重量部に対してピッチ系炭素繊維を20重量部、発泡剤を1重量部配合した。
 [実施例2~14]
 実施例1と同様の材料および製造方法により、材料の配合量を変更して熱伝導性樹脂組成物を製造した。実施例1~14におけるピッチ系炭素繊維および発泡剤の配合量を表1に示す。
In this example, 20 parts by weight of pitch-based carbon fiber and 1 part by weight of a foaming agent were blended with 100 parts by weight of the matrix resin.
[Examples 2 to 14]
A heat conductive resin composition was manufactured by changing the blending amount of the material by the same material and manufacturing method as in Example 1. Table 1 shows the blending amounts of the pitch-based carbon fiber and the foaming agent in Examples 1 to 14.
 [比較例1~9]
 実施例1と同様のマトリックス樹脂を用い、材料の配合量を変更して樹脂組成物を製造した。ピッチ系炭素繊維の配合量は、マトリックス樹脂100重量部に対して0~100重量部の範囲から決定した。また発泡剤の配合量は0または20重量部のいずれかとした。比較例1~9におけるピッチ系炭素繊維および発泡剤の配合量を表2に示す。
[Comparative Examples 1 to 9]
A resin composition was produced using the same matrix resin as in Example 1 and changing the blending amount of the materials. The blending amount of the pitch-based carbon fiber was determined from the range of 0 to 100 parts by weight with respect to 100 parts by weight of the matrix resin. The blending amount of the foaming agent was either 0 or 20 parts by weight. Table 2 shows the blending amounts of the pitch-based carbon fiber and the foaming agent in Comparative Examples 1 to 9.
 <熱伝導性樹脂組成物の評価>
 熱伝導率は、迅速熱伝導率計(京都電子工業社製 QTM-500)を用い、求めた。比重は比重計を用いて求めた。発泡倍率は(発泡前比重/発泡後比重)として求めた。
<Evaluation of thermally conductive resin composition>
The thermal conductivity was determined using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.). Specific gravity was determined using a hydrometer. The expansion ratio was determined as (specific gravity before foaming / specific gravity after foaming).
 実施例1~14の評価結果を表1に示す。また比較例1~9の評価結果を表2に示す。
 表1,2において、熱伝導率は0.7W/(m・K)以上のものを「◎(非常に良好)」とし、0.4W/(m・K)以上のものを「○(良好)」とし、0.4W/(m・K)未満のものを「×(特に優れてはいない)」とした。また、比重は、0.86以下のものを「◎(非常に良好)」とし、1.1以下のものを「○(良好)」とし、1.1を超えるものを「×(特に優れてはいない)」とした。
The evaluation results of Examples 1 to 14 are shown in Table 1. The evaluation results of Comparative Examples 1 to 9 are shown in Table 2.
In Tables 1 and 2, those having a thermal conductivity of 0.7 W / (m · K) or higher are indicated as “◎ (very good)”, and those having a thermal conductivity of 0.4 W / (m · K) or higher are indicated as “◯ (good)”. ) ”And those less than 0.4 W / (m · K) were“ × (not particularly excellent) ”. In addition, the specific gravity of 0.86 or less is “◎ (very good)”, 1.1 or less is “◯ (good)”, and the specific gravity is more than 1.1 “× (particularly excellent) Not)).
 また、総合評価は、熱伝導率および比重のいずれも「◎」であるものを「◎」とし、いずれか一方が「◎」かつ他方が「○」のものを「○」、いずれか一方でも「×」のあるものを「×」とした。 In addition, the overall evaluation is “◎” when both thermal conductivity and specific gravity are “◎”, and “○” when either one is “◎” and the other is “○”. A thing with "x" was made into "x".
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 表1から明らかなように、実施例1~14全ての熱伝導性樹脂組成物において、0.4W/(m・K)以上の熱伝導率と、1.1以下の比重と、を同時に実現することができた。このとき、ピッチ系炭素繊維はマトリックス樹脂100重量部に対して20~85重量部配合されており、発泡倍率は、1.2~2.7倍であった。
Figure JPOXMLDOC01-appb-T000002
As is clear from Table 1, in all the thermally conductive resin compositions of Examples 1 to 14, a thermal conductivity of 0.4 W / (m · K) or more and a specific gravity of 1.1 or less were simultaneously realized. We were able to. At this time, the pitch-based carbon fiber was blended in an amount of 20 to 85 parts by weight with respect to 100 parts by weight of the matrix resin, and the expansion ratio was 1.2 to 2.7 times.
 さらに、実施例1,3~5,8,9,12~14においては、0.7W/(m・K)以上の熱伝導率と、0.86以下の比重と、を同時に実現することができた。このときの発泡倍率は1.5~2.2倍であった。 Further, in Examples 1, 3 to 5, 8, 9, 12 to 14, it is possible to simultaneously realize a thermal conductivity of 0.7 W / (m · K) or more and a specific gravity of 0.86 or less. did it. At this time, the expansion ratio was 1.5 to 2.2 times.
 また、実施例1~14において、比重を熱伝導率で除した値は、0.5~1.0の範囲となった。
 一方、表2から明らかなように、発泡剤を配合しない場合には、樹脂組成物の比重が大きくなった。また、発泡剤を多量に配合し、発泡倍率が2.9倍を超えると、熱伝導率が大きく低下した。
In Examples 1 to 14, the value obtained by dividing the specific gravity by the thermal conductivity was in the range of 0.5 to 1.0.
On the other hand, as is clear from Table 2, the specific gravity of the resin composition increased when no foaming agent was blended. Moreover, when a foaming agent was blended in a large amount and the expansion ratio exceeded 2.9 times, the thermal conductivity was greatly reduced.
 また、ピッチ系炭素繊維の配合量がマトリックス樹脂100重量部に対して100重量部を超えると、マトリックス樹脂の比率が不足するために形状を維持できず、所望の形状に成形ができなかった。 In addition, when the compounding amount of the pitch-based carbon fiber exceeds 100 parts by weight with respect to 100 parts by weight of the matrix resin, the ratio of the matrix resin is insufficient, so that the shape cannot be maintained and the desired shape cannot be formed.
 実施例1~14および比較例1~9の熱伝導率と比重との関係を表すグラフを図1に示す。発泡剤を1重量部~10重量部配合したものは、比重が1.1以下、熱伝導率が0.4以上となる良好な物性を示した(グラフ中、破線で囲まれた領域)。なお比重は小さいほど好ましいが、比重を下げるために多量に発泡剤を配合し発泡倍率を上げると、それに伴って熱伝導率が減少してしまう。そこで、発泡倍率を調整して、比重は0.3以上、より好ましくは0.4以上とすることで、比重を小さくしつつ高い熱伝導率を維持することができる。 1 is a graph showing the relationship between the thermal conductivity and specific gravity of Examples 1 to 14 and Comparative Examples 1 to 9. When the foaming agent was blended in an amount of 1 to 10 parts by weight, good physical properties were obtained with a specific gravity of 1.1 or less and a thermal conductivity of 0.4 or more (region surrounded by a broken line in the graph). Although the specific gravity is preferably as small as possible, if a large amount of a foaming agent is blended in order to lower the specific gravity and the expansion ratio is increased, the thermal conductivity decreases accordingly. Therefore, by adjusting the expansion ratio and setting the specific gravity to be 0.3 or more, more preferably 0.4 or more, high thermal conductivity can be maintained while reducing the specific gravity.
 一方、熱伝導率は大きいほど好ましいが、熱伝導率を上げるために多量にピッチ系炭素繊維を配合すると、それに伴って熱伝導性樹脂組成物の柔軟性が失われたり、所望の形状に成形できなくなってしまう。そこで、ピッチ系炭素繊維は、柔軟性が失われず、成形が可能な程度の配合量(例えば発泡成形時に2.0W/(m・K)以下となる配合量など)にするとよい。 On the other hand, the higher the thermal conductivity, the better. However, if a large amount of pitch-based carbon fiber is blended to increase the thermal conductivity, the thermal conductive resin composition loses its flexibility or is molded into a desired shape. It becomes impossible. Therefore, the pitch-based carbon fiber is preferably made into a blending amount that does not lose flexibility and can be molded (for example, a blending amount that is 2.0 W / (m · K) or less during foam molding).
 2.気相成長炭素繊維を含有する熱伝導性樹脂組成物の製造および評価
 <熱伝導性樹脂組成物の製造>
 [実施例15]
 本実施例の熱伝導性樹脂組成物は、マトリックス樹脂、気相成長炭素繊維、発泡剤、架橋剤を含有している。各材料のうち、マトリックス樹脂、発泡剤、架橋剤は実施例1と同様のものを用いた。気相成長炭素繊維の詳細は以下に示すとおりである。
気相成長炭素繊維:昭和電工(株)製 VGCF(登録商標)-H
 上記熱伝導性樹脂組成物の製造方法は、材料としてピッチ系炭素繊維と気相成長炭素繊維とを入れ替えた以外は実施例1と同様である。
2. Production and Evaluation of Thermally Conductive Resin Composition Containing Vapor Growth Carbon Fiber <Production of Thermally Conductive Resin Composition>
[Example 15]
The thermally conductive resin composition of the present example contains a matrix resin, vapor grown carbon fiber, a foaming agent, and a crosslinking agent. Among each material, the matrix resin, the foaming agent, and the crosslinking agent were the same as those in Example 1. Details of the vapor growth carbon fiber are as follows.
Vapor growth carbon fiber: VGCF (registered trademark) -H manufactured by Showa Denko KK
The manufacturing method of the said heat conductive resin composition is the same as that of Example 1 except having replaced the pitch-type carbon fiber and the vapor growth carbon fiber as a material.
 本実施例では、マトリックス樹脂100重量部に対して気相成長炭素繊維を20重量部、発泡剤を1重量部配合した。
 [実施例16~26]
 実施例15と同様の材料および製造方法により、材料の配合量を変更して熱伝導性樹脂組成物を製造した。実施例16~26における気相成長炭素繊維および発泡剤の配合量を表3に示す。
In this example, 20 parts by weight of vapor grown carbon fiber and 1 part by weight of a foaming agent were blended with 100 parts by weight of the matrix resin.
[Examples 16 to 26]
A heat conductive resin composition was manufactured by changing the blending amount of the material by the same material and manufacturing method as in Example 15. Table 3 shows the blending amounts of the vapor-grown carbon fiber and the foaming agent in Examples 16 to 26.
 [比較例10~14]
 実施例15と同様のマトリックス樹脂を用い、材料の配合量を変更して樹脂組成物を製造した。気相成長炭素繊維の配合量は、マトリックス樹脂100重量部に対して0~100重量部の範囲から決定した。また発泡剤は配合しなかった。比較例10~14における気相成長炭素繊維および発泡剤の配合量を表4に示す。
[Comparative Examples 10 to 14]
A resin composition was produced using the same matrix resin as in Example 15 and changing the blending amount of the materials. The compounding amount of the vapor growth carbon fiber was determined from the range of 0 to 100 parts by weight with respect to 100 parts by weight of the matrix resin. Moreover, the foaming agent was not mix | blended. Table 4 shows the amounts of the vapor-grown carbon fiber and the foaming agent in Comparative Examples 10 to 14.
 <熱伝導性樹脂組成物の評価>
 熱伝導率は、迅速熱伝導率計(京都電子工業社製 QTM-500)を用い、求めた。比重は比重計を用いて求めた。発泡倍率は(発泡前比重/発泡後比重)として求めた。
<Evaluation of thermally conductive resin composition>
The thermal conductivity was determined using a rapid thermal conductivity meter (QTM-500, manufactured by Kyoto Electronics Industry Co., Ltd.). Specific gravity was determined using a hydrometer. The expansion ratio was determined as (specific gravity before foaming / specific gravity after foaming).
 実施例15~26の評価結果を表3に示す。また比較例10~14の評価結果を表4に示す。表3,4における評価基準は、表1,2と同様である。 The evaluation results of Examples 15 to 26 are shown in Table 3. Table 4 shows the evaluation results of Comparative Examples 10 to 14. The evaluation criteria in Tables 3 and 4 are the same as those in Tables 1 and 2.
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 表3から明らかなように、実施例15~26の全ての熱伝導性樹脂組成物において、0.4W/(m・K)以上の熱伝導率と、1.1以下の比重と、を同時に実現することができた。このとき、気相成長炭素繊維はマトリックス樹脂100重量部に対して20~50重量部配合されており、発泡倍率は、1.2~3.6倍であった。
Figure JPOXMLDOC01-appb-T000004
As is clear from Table 3, in all the thermally conductive resin compositions of Examples 15 to 26, a thermal conductivity of 0.4 W / (m · K) or more and a specific gravity of 1.1 or less were simultaneously obtained. Could be realized. At this time, the vapor growth carbon fiber was blended in an amount of 20 to 50 parts by weight with respect to 100 parts by weight of the matrix resin, and the expansion ratio was 1.2 to 3.6 times.
 さらに、実施例15,18~20,24~26においては、0.7W/(m・K)以上の熱伝導率と、0.86以下の比重と、を同時に実現することができた。このときの発泡倍率は1.5~3.4倍であった。 Furthermore, in Examples 15, 18 to 20, and 24 to 26, a thermal conductivity of 0.7 W / (m · K) or more and a specific gravity of 0.86 or less could be realized at the same time. The expansion ratio at this time was 1.5 to 3.4 times.
 また、実施例15~26において、比重を熱伝導率で除した値は、0.37~0.94の範囲となった。
 一方、表4から明らかなように、発泡剤を配合しない場合には、樹脂組成物の比重が大きくなった。また、気相成長炭素繊維の配合量がマトリックス樹脂100重量部に対して65重量部を超えると、所望の形状に成形ができなかった。
In Examples 15 to 26, the value obtained by dividing the specific gravity by the thermal conductivity was in the range of 0.37 to 0.94.
On the other hand, as apparent from Table 4, the specific gravity of the resin composition increased when no foaming agent was blended. Moreover, when the compounding quantity of the vapor growth carbon fiber exceeded 65 parts by weight with respect to 100 parts by weight of the matrix resin, it could not be formed into a desired shape.
 実施例15~26および比較例10~14の熱伝導率と比重との関係を表すグラフを図2に示す。上記各実施例では、比重が1.1以下、熱伝導率が0.4以上となる良好な物性を示した(グラフ中、破線で囲まれた領域)。なお比重は小さいほど好ましいが、比重を下げるために多量に発泡剤を配合し発泡倍率を上げると、それに伴って熱伝導率が減少してしまう。そこで、発泡倍率を調整して、比重は0.3以上、より好ましくは0.4以上とすることで、比重を小さくしつつ高い熱伝導率を維持することができる。 2 is a graph showing the relationship between the thermal conductivity and specific gravity of Examples 15 to 26 and Comparative Examples 10 to 14. In each of the above examples, good physical properties were shown such that the specific gravity was 1.1 or less and the thermal conductivity was 0.4 or more (region surrounded by a broken line in the graph). Although the specific gravity is preferably as small as possible, if a large amount of a foaming agent is blended in order to lower the specific gravity and the expansion ratio is increased, the thermal conductivity decreases accordingly. Therefore, by adjusting the expansion ratio and setting the specific gravity to be 0.3 or more, more preferably 0.4 or more, high thermal conductivity can be maintained while reducing the specific gravity.
 一方、熱伝導率は大きいほど好ましいが、熱伝導率を上げるために多量に気相成長炭素繊維を配合すると、それに伴って熱伝導性樹脂組成物の柔軟性が失われたり、所望の形状に成形できなくなってしまう。そこで、気相成長炭素繊維は、柔軟性が失われず、成形が可能な程度の配合量(例えば発泡成形時に2.3W/(m・K)以下となる配合量など)にするとよい。 On the other hand, the higher the thermal conductivity, the better. However, if a large amount of vapor-grown carbon fiber is added to increase the thermal conductivity, the flexibility of the thermal conductive resin composition is lost or the desired shape is obtained. It becomes impossible to mold. Therefore, the vapor-grown carbon fiber is preferably made into a blending amount that does not lose flexibility and can be molded (for example, a blending amount that is 2.3 W / (m · K) or less during foam molding).
 3.汎用樹脂部材と熱伝導性樹脂組成物との比較
 汎用樹脂部材および本実施例の熱伝導性樹脂組成物の熱伝導率と比重との関係を表すグラフを図3に示す。ここでいう汎用樹脂部材とは、汎用ゴムおよび市販されている一般的な放熱シートである。
3. Comparison of General-Purpose Resin Member and Thermal Conductive Resin Composition FIG. 3 shows a graph showing the relationship between the thermal conductivity and specific gravity of the general-purpose resin member and the thermal conductive resin composition of this example. The general-purpose resin member here is a general-purpose rubber and a commercially available general heat dissipation sheet.
 汎用ゴムは、表5に示すものを用いた。 General-purpose rubbers shown in Table 5 were used.
Figure JPOXMLDOC01-appb-T000005
 放熱シートは、表6に示すメーカーの製品を用いた。
Figure JPOXMLDOC01-appb-T000005
The manufacturer's product shown in Table 6 was used for the heat dissipation sheet.
Figure JPOXMLDOC01-appb-T000006
 図3において、市販の放熱シートは種類によっては高い熱伝導率を示すが、全体的に比重が大きい。また、シリコーンゴムに気相成長炭素繊維あるいはピッチ系炭素繊維を混入したものであって、発泡剤を用いないものも同様に、高い熱伝導率を示すが比重が大きくなる。
Figure JPOXMLDOC01-appb-T000006
In FIG. 3, although a commercially available heat-radiation sheet shows high heat conductivity depending on the kind, the specific gravity is large as a whole. A silicone rubber mixed with vapor-grown carbon fiber or pitch-based carbon fiber, which does not use a foaming agent, also exhibits high thermal conductivity but has a high specific gravity.
 一方、上記実施例の気相成長炭素繊維あるいはピッチ系炭素繊維および発泡剤を含有する熱伝導性樹脂組成物は、炭素繊維および発泡倍率を適切に設定することによって熱伝導率0.4W/(m・K)以上、かつ、比重1.1以下とすることが可能となる(グラフ中、破線で囲まれた領域)。 On the other hand, the thermally conductive resin composition containing the vapor-grown carbon fiber or pitch-based carbon fiber and the foaming agent of the above examples has a thermal conductivity of 0.4 W / ( m · K) and a specific gravity of 1.1 or less (region surrounded by a broken line in the graph).
 以上、本発明の実施形態について説明したが、本発明は上記の具体的な実施形態に限定されず、この他にも種々の形態で実施することができる。
 例えば、上記実施形態では、マトリックス樹脂としてシリコーンゴムを用いる例を示したが、ポリブタジエン、ニトリルゴム、天然ゴム、ブチルゴム、スチレンブタジエンゴム、クロロプレンゴム、及びフッ素系ゴムからなる群から選ばれる1種以上、もしくはこれらの共重合体であっても良い。
As mentioned above, although embodiment of this invention was described, this invention is not limited to said specific embodiment, In addition, it can implement with a various form.
For example, in the above-described embodiment, an example in which silicone rubber is used as the matrix resin has been shown, but one or more selected from the group consisting of polybutadiene, nitrile rubber, natural rubber, butyl rubber, styrene butadiene rubber, chloroprene rubber, and fluorine-based rubber. Or a copolymer thereof.
 また、熱可塑性エラストマーを用いてもよい。熱可塑性エラストマーとしては、熱可塑性スチレン系エラストマー、熱可塑性ポリオレフィン系エラストマー、熱可塑性ポリウレタン系エラストマー、熱可塑性ポリエステル系エラストマー、熱可塑性加硫エラストマー、熱可塑性塩化ビニル系エラストマー、熱可塑性ポリアミド系エラストマー、有機過酸化物で部分架橋してなるブチルゴム系熱可塑性エラストマーからなる群から選ばれる1種以上、もしくはこれらの共重合体を用いることが考えられる。 Further, a thermoplastic elastomer may be used. As thermoplastic elastomers, thermoplastic styrene elastomers, thermoplastic polyolefin elastomers, thermoplastic polyurethane elastomers, thermoplastic polyester elastomers, thermoplastic vulcanized elastomers, thermoplastic vinyl chloride elastomers, thermoplastic polyamide elastomers, organic It is conceivable to use one or more selected from the group consisting of a butyl rubber thermoplastic elastomer partially crosslinked with a peroxide, or a copolymer thereof.
 また、ピッチ系炭素繊維および気相成長炭素繊維は、実施形態に記載したもの以外であってもよい。また、ピッチ系炭素繊維および気相成長炭素繊維を適宜混合して用いてもよい。 Further, the pitch-based carbon fiber and the vapor growth carbon fiber may be other than those described in the embodiment. Further, pitch-based carbon fibers and vapor-grown carbon fibers may be appropriately mixed and used.
 また、発泡剤も実施形態に記載したもの以外であってもよい。その際、生成される気泡が独立気泡であることが好ましいが、連続気泡であってもよい。 Further, the foaming agent may be other than that described in the embodiment. At that time, the generated bubbles are preferably closed cells, but may be open cells.

Claims (7)

  1.  マトリックス樹脂と、ピッチ系炭素繊維と、発泡剤とを含み、
     前記ピッチ系炭素繊維が、前記マトリックス樹脂100重量部に対して20~85重量部配合されており、
     前記発泡剤により、1.2~2.7倍に発泡させてなり、
     比重が1.1以下であり、かつ、熱伝導率が0.4W/(m・K)以上である
     ことを特徴とする熱伝導性樹脂組成物。
    Including a matrix resin, pitch-based carbon fiber, and a foaming agent;
    The pitch-based carbon fiber is blended in an amount of 20 to 85 parts by weight with respect to 100 parts by weight of the matrix resin.
    With the foaming agent, foamed 1.2 to 2.7 times,
    A heat conductive resin composition having a specific gravity of 1.1 or less and a thermal conductivity of 0.4 W / (m · K) or more.
  2.  比重を熱伝導率で除した値が、0.5~1.0の範囲である
     ことを特徴とする請求項1に記載の熱伝導性樹脂組成物。
    The heat conductive resin composition according to claim 1, wherein the value obtained by dividing the specific gravity by the heat conductivity is in the range of 0.5 to 1.0.
  3.  マトリックス樹脂と、気相成長炭素繊維と、発泡剤とを含み、
     前記気相成長炭素繊維が、前記マトリックス樹脂100重量部に対して20~50重量部配合されており、
     前記発泡剤により、1.2~3.6倍に発泡させてなり、
     比重が1.1以下であり、かつ、熱伝導率が0.4W/(m・K)以上である
     ことを特徴とする熱伝導性樹脂組成物。
    Including a matrix resin, vapor-grown carbon fiber, and a foaming agent;
    The vapor-grown carbon fiber is blended in an amount of 20 to 50 parts by weight with respect to 100 parts by weight of the matrix resin.
    With the foaming agent, foamed 1.2 to 3.6 times,
    A heat conductive resin composition having a specific gravity of 1.1 or less and a thermal conductivity of 0.4 W / (m · K) or more.
  4.  比重を熱伝導率で除した値が、0.37~0.94の範囲である
     ことを特徴とする請求項3に記載の熱伝導性樹脂組成物。
    The heat conductive resin composition according to claim 3, wherein a value obtained by dividing the specific gravity by the heat conductivity is in the range of 0.37 to 0.94.
  5.  前記マトリックス樹脂は、シリコーンゴム、ポリブタジエン、ニトリルゴム、天然ゴム、ブチルゴム、スチレンブタジエンゴム、クロロプレンゴム、及びフッ素系ゴムからなる群から選ばれる1種以上、もしくはこれらの共重合体である
     ことを特徴とする請求項1から請求項4のいずれか1項に記載の熱伝導性樹脂組成物。
    The matrix resin is one or more selected from the group consisting of silicone rubber, polybutadiene, nitrile rubber, natural rubber, butyl rubber, styrene butadiene rubber, chloroprene rubber, and fluorine rubber, or a copolymer thereof. The thermally conductive resin composition according to any one of claims 1 to 4.
  6.  前記マトリックス樹脂は、熱可塑性エラストマーであり、
     前記熱可塑性エラストマーは、熱可塑性スチレン系エラストマー、熱可塑性ポリオレフィン系エラストマー、熱可塑性ポリウレタン系エラストマー、熱可塑性ポリエステル系エラストマー、熱可塑性加硫エラストマー、熱可塑性塩化ビニル系エラストマー、熱可塑性ポリアミド系エラストマー、有機過酸化物で部分架橋してなるブチルゴム系熱可塑性エラストマーからなる群から選ばれる1種以上、もしくはこれらの共重合体である
     ことを特徴とする請求項1から請求項4のいずれか1項に記載の熱伝導性樹脂組成物。
    The matrix resin is a thermoplastic elastomer,
    The thermoplastic elastomer includes thermoplastic styrene elastomer, thermoplastic polyolefin elastomer, thermoplastic polyurethane elastomer, thermoplastic polyester elastomer, thermoplastic vulcanized elastomer, thermoplastic vinyl chloride elastomer, thermoplastic polyamide elastomer, organic 5. One or more kinds selected from the group consisting of a butyl rubber-based thermoplastic elastomer that is partially crosslinked with a peroxide, or a copolymer thereof. The heat conductive resin composition as described.
  7.  前記発泡剤によって生成される気泡は独立気泡である
     ことを特徴とする請求項1から請求項6のいずれか1項に記載の熱伝導性樹脂組成物。
    The thermally conductive resin composition according to any one of claims 1 to 6, wherein the bubbles generated by the foaming agent are closed cells.
PCT/JP2011/075101 2010-11-11 2011-10-31 Heat-conductive resin composition WO2012063672A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2010253003A JP2012102263A (en) 2010-11-11 2010-11-11 Thermally conductive resin composition
JP2010-253003 2010-11-11

Publications (1)

Publication Number Publication Date
WO2012063672A1 true WO2012063672A1 (en) 2012-05-18

Family

ID=46050823

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2011/075101 WO2012063672A1 (en) 2010-11-11 2011-10-31 Heat-conductive resin composition

Country Status (2)

Country Link
JP (1) JP2012102263A (en)
WO (1) WO2012063672A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110511348A (en) * 2019-08-13 2019-11-29 江苏澳盛复合材料科技有限公司 A kind of thermosetting resin cured matter and preparation method thereof of the tool electric conductivity of softness
WO2020183029A1 (en) * 2019-03-14 2020-09-17 Sika Technology Ag Thermally expandable compositions and use thereof in welding sealer tapes
US11004767B2 (en) 2017-01-19 2021-05-11 Sony Corporation Composite material, electronic apparatus, and method for manufacturing electronic apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019210442A (en) * 2018-06-08 2019-12-12 信越化学工業株式会社 Thermal conductive silicone low specific gravity sheet
EP4174138A1 (en) 2020-06-30 2023-05-03 Nitto Denko Corporation Composite material, preform for composite material, and method for producing composite material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128931A (en) * 2000-10-30 2002-05-09 Sekisui Chem Co Ltd Thermally conductive resin sheet
JP2002317064A (en) * 2001-04-20 2002-10-31 Sekisui Chem Co Ltd Thermoconductive material
JP2004050704A (en) * 2002-07-22 2004-02-19 Polymatech Co Ltd Heat-conductive polymer molding and manufacturing method therefor
JP2009092826A (en) * 2007-10-05 2009-04-30 Ricoh Co Ltd Heating member, rotating body for fixing, fixing device, image forming apparatus, and method for manufacturing heating member
JP2011241375A (en) * 2010-04-23 2011-12-01 Sumitomo Chemical Co Ltd Heat dissipation member and part for lighting fixture comprising the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002128931A (en) * 2000-10-30 2002-05-09 Sekisui Chem Co Ltd Thermally conductive resin sheet
JP2002317064A (en) * 2001-04-20 2002-10-31 Sekisui Chem Co Ltd Thermoconductive material
JP2004050704A (en) * 2002-07-22 2004-02-19 Polymatech Co Ltd Heat-conductive polymer molding and manufacturing method therefor
JP2009092826A (en) * 2007-10-05 2009-04-30 Ricoh Co Ltd Heating member, rotating body for fixing, fixing device, image forming apparatus, and method for manufacturing heating member
JP2011241375A (en) * 2010-04-23 2011-12-01 Sumitomo Chemical Co Ltd Heat dissipation member and part for lighting fixture comprising the same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11004767B2 (en) 2017-01-19 2021-05-11 Sony Corporation Composite material, electronic apparatus, and method for manufacturing electronic apparatus
WO2020183029A1 (en) * 2019-03-14 2020-09-17 Sika Technology Ag Thermally expandable compositions and use thereof in welding sealer tapes
CN113474399A (en) * 2019-03-14 2021-10-01 Sika技术股份公司 Thermally expandable composition and use thereof in weld sealing tapes
US20220154048A1 (en) * 2019-03-14 2022-05-19 Sika Technology Ag Thermally expandable compositions and use thereof in welding sealer tapes
CN113474399B (en) * 2019-03-14 2023-07-25 Sika技术股份公司 Thermally expandable composition and use thereof in welding sealing strips
CN110511348A (en) * 2019-08-13 2019-11-29 江苏澳盛复合材料科技有限公司 A kind of thermosetting resin cured matter and preparation method thereof of the tool electric conductivity of softness

Also Published As

Publication number Publication date
JP2012102263A (en) 2012-05-31

Similar Documents

Publication Publication Date Title
WO2012063672A1 (en) Heat-conductive resin composition
JP2003060134A (en) Heat conductive sheet
JP7469408B2 (en) Porous cell body and method for producing same
KR101940567B1 (en) Thermally conductive resin molded article
JP2005146057A (en) High-thermal-conductivity molding and method for producing the same
KR20030074178A (en) Sheet for conducting heat
US20110014466A1 (en) Composite materials comprising core-shell nano-fibrils
JP3847022B2 (en) Thermally conductive elastomer composition, molded product thereof and laminate thereof
JP2010001402A (en) High thermal conductivity resin molded article
JP6526939B2 (en) Thermal conductive resin molding
KR101355472B1 (en) High thermal conductive resin composition
JP6490877B1 (en) Thermal conductive resin molding
KR101622508B1 (en) Composite sheet comprising polymer nano composite layer and method for producing thereof
JP2005133002A (en) Fluororesin composition
JP2013023581A (en) Epoxy resin composition, molding, and sheet material
JP2008266659A (en) Non-crosslinking resin composition and thermally conductive molded product using it
JPH0370754A (en) Highly thermally conductive rubber composition
JP2009231009A (en) Pressure-sensitive conductive material
JP2006176766A (en) Shock-absorbing resin composition and shock-absorbing material
JP2021161141A (en) Foam having both impact absorption performance and heat dissipation performance
JP2012052020A (en) Thermally conductive resin composition
JP2020066648A (en) Thermal conductive composite material and heat release sheet
JP2011094088A (en) High-density elastomeric material
JP2005290018A (en) Rubber formed product
JP2009221527A (en) Method for producing fiber composite material

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 11839577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 11839577

Country of ref document: EP

Kind code of ref document: A1