JP2022126535A - Method for manufacturing thermal conductive sheet and thermal conductive sheet - Google Patents

Method for manufacturing thermal conductive sheet and thermal conductive sheet Download PDF

Info

Publication number
JP2022126535A
JP2022126535A JP2021024670A JP2021024670A JP2022126535A JP 2022126535 A JP2022126535 A JP 2022126535A JP 2021024670 A JP2021024670 A JP 2021024670A JP 2021024670 A JP2021024670 A JP 2021024670A JP 2022126535 A JP2022126535 A JP 2022126535A
Authority
JP
Japan
Prior art keywords
filler
thermally conductive
conductive sheet
composition
producing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021024670A
Other languages
Japanese (ja)
Inventor
佑介 久保
Yusuke Kubo
慶輔 荒巻
Keisuke Aramaki
勇磨 佐藤
Yuma Sato
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dexerials Corp
Original Assignee
Dexerials Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dexerials Corp filed Critical Dexerials Corp
Priority to JP2021024670A priority Critical patent/JP2022126535A/en
Priority to PCT/JP2022/005966 priority patent/WO2022176854A1/en
Publication of JP2022126535A publication Critical patent/JP2022126535A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C35/00Heating, cooling or curing, e.g. crosslinking or vulcanising; Apparatus therefor
    • B29C35/02Heating or curing, e.g. crosslinking or vulcanizing during moulding, e.g. in a mould
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/38Boron-containing compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Thermal Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • Oral & Maxillofacial Surgery (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)
  • Manufacture Of Macromolecular Shaped Articles (AREA)
  • Heating, Cooling, Or Curing Plastics Or The Like In General (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)

Abstract

To obtain a thermal conductive sheet having tackiness in an inexpensive step.SOLUTION: A method for manufacturing a thermal conductive sheet includes the steps of: preparing a thermal conductive composition by dispersing a first filler that is magnetic powder having a thin plate shape, a second filler that is a thermal conductive filler having a thin plate shape and a third filler that is a thermal conductive filler into a binder resin, and thereby preparing a thermal conductive composition; forming the thermal conductive composition into a sheet shape; applying a magnetic field to the sheet-shaped thermal conductive composition, orienting the first filler in a thickness direction of the thermal conductive composition, and orienting the second filler in the thickness direction; and curing the thermal conductive composition.SELECTED DRAWING: Figure 1

Description

本発明の実施形態は、熱伝導性シートの製造方法及び熱伝導性シートに関する。
に関する。
TECHNICAL FIELD Embodiments of the present invention relate to a method for manufacturing a thermally conductive sheet and the thermally conductive sheet.
Regarding.

近年電子機器の更なる高性能化に伴って、半導体素子の高密度化、高実装化が進んでいる。これに伴って、電子機器を構成する電子部品から発熱する熱をさらに効率よく放熱することが重要になっている。 2. Description of the Related Art In recent years, as electronic devices have become more sophisticated, the density and packaging of semiconductor elements have increased. Along with this, it has become important to more efficiently dissipate the heat generated from the electronic components that make up the electronic equipment.

半導体素子は、効率よく放熱させるために、熱伝導性シートを介して放熱ファン、放熱板等のヒートシンクに取り付けられている。熱伝導性シートとしては、シリコーンに無機フィラー等の充填材を分散含有させたものが広く使用されている。 In order to efficiently dissipate heat, the semiconductor element is attached to a heat sink such as a heat dissipating fan or a heat dissipating plate via a heat conductive sheet. As a thermally conductive sheet, a material in which a filler such as an inorganic filler is dispersed in silicone is widely used.

このような放熱部材においては、更なる熱伝導率の向上が要求されており、一般には、高熱伝導性を目的として、マトリックス内に配合されている無機フィラーの充填率を高めることにより対応している。 In such heat dissipating members, there is a demand for further improvement in thermal conductivity. there is

しかし、無機フィラーの充填率を高めると、柔軟性が損なわれたり、粉落ちが発生したりするおそれがある。このため、無機フィラーの充填率を高めることには限界がある。 However, if the filling rate of the inorganic filler is increased, there is a possibility that flexibility may be impaired or powder may fall off. Therefore, there is a limit to increasing the filling rate of the inorganic filler.

無機フィラーとしては、例えば、アルミナ、窒化アルミニウム、水酸化アルミニウム等が挙げられる。また、高熱伝導率を目的として、窒化ホウ素、黒鉛等の鱗片状粒子、炭素繊維等をマトリックス内に充填させることがある。これは、鱗片状粒子等の有する熱伝導率の異方性によるものである。 Examples of inorganic fillers include alumina, aluminum nitride, and aluminum hydroxide. For the purpose of high thermal conductivity, the matrix may be filled with scaly particles such as boron nitride or graphite, carbon fibers, or the like. This is due to the anisotropy of the thermal conductivity of the scaly particles and the like.

例えば、炭素繊維の場合には、繊維方向に約600~1200W/mKの熱伝導率を有する。窒化ホウ素の場合には、面方向に約110W/mK、面方向に対して垂直な方向に約2W/mK程度の熱伝導率を有しており、異方性を有することが知られている。
このように炭素繊維、鱗片状粒子の面方向を熱の伝達方向であるシートの厚み方向と同じにする。即ち、炭素繊維、鱗片状粒子をシートの厚み方向に配向させることによって、熱伝導を飛躍的に向上させることができる。
For example, carbon fibers have a thermal conductivity of about 600-1200 W/mK in the fiber direction. Boron nitride has a thermal conductivity of about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction, and is known to have anisotropy. .
In this manner, the surface direction of the carbon fibers and scale-like particles is made the same as the thickness direction of the sheet, which is the direction of heat transfer. That is, by orienting the carbon fibers and the scale-like particles in the thickness direction of the sheet, it is possible to dramatically improve the heat conduction.

特許第5405890号公報Japanese Patent No. 5405890 特開2009-94110号公報JP-A-2009-94110 特許第6200119号公報Japanese Patent No. 6200119

ところで、熱伝導性シートは、各種熱源と放熱部材との間の熱抵抗を下げるために、薄くて熱伝導率が高い熱伝導性シートが望まれており、熱伝導性シートには被着体に付着させる等ハンドリングの観点からタック性(粘着性)が要求される。 By the way, thermally conductive sheets are desired to be thin and have high thermal conductivity in order to reduce the thermal resistance between various heat sources and heat radiating members. Tackiness (adhesiveness) is required from the viewpoint of handling such as attaching to

しかしながら、上記従来の技術においては、熱伝導樹脂組成物の硬化物をスライスして熱伝導性シートを製造しており、スライスによって形成した熱伝導性シート表面にはタック性がないという問題があった。
本発明は、上記に鑑みてなされたものであり、安価な工程で、タック性を有する熱伝導性シートを得ることを目的としている。
However, in the above conventional technique, a thermally conductive sheet is manufactured by slicing a cured product of a thermally conductive resin composition, and there is a problem that the surface of the thermally conductive sheet formed by slicing has no tackiness. rice field.
The present invention has been made in view of the above, and an object of the present invention is to obtain a thermally conductive sheet having tackiness by an inexpensive process.

実施形態の熱伝導性シートの製造方法は、薄板形状を有する磁性粉である第1フィラーと、薄板形状を有する熱伝導フィラーである第2フィラーと、熱伝導フィラーである第3フィラーと、をバインダ樹脂に分散させることにより熱伝導性組成物を調製する工程と、熱伝導性組成物をシート状とする工程と、シート状の熱伝導性組成物に対し磁場を印可し、第1フィラーを熱伝導性組成物の厚さ方向に沿って配向させて、第2フィラーを厚さ方向に沿って配向させる工程と、熱伝導性組成物を硬化する工程と、を備える。 A method for producing a thermally conductive sheet according to an embodiment includes a first filler that is a magnetic powder having a thin plate shape, a second filler that is a thermally conductive filler that has a thin plate shape, and a third filler that is a thermally conductive filler. A step of preparing a thermally conductive composition by dispersing it in a binder resin, a step of forming the thermally conductive composition into a sheet, applying a magnetic field to the sheet-shaped thermally conductive composition, and dispersing the first filler. Orienting along the thickness direction of the thermally conductive composition to orient the second filler along the thickness direction, and curing the thermally conductive composition.

実施形態の熱伝導性シートの製造方法によれば、工程数が少なく安価にタック性を有する熱伝導性シートを得ることができる。 According to the method for producing a thermally conductive sheet of the embodiment, it is possible to obtain a thermally conductive sheet having tackiness at low cost with a small number of steps.

図1は、実施形態の熱伝導性シートの製造フローチャートである。FIG. 1 is a manufacturing flow chart of the thermally conductive sheet of the embodiment. 図2は、熱伝導性組成物におけるフィラーの状態の概要説明図である。FIG. 2 is a schematic illustration of the state of fillers in a thermally conductive composition. 図3は、シート状の熱伝導組成物におけるフィラーの状態の概要説明図(その1)である。FIG. 3 is a schematic explanatory diagram (part 1) of the state of the filler in the sheet-like thermally conductive composition. 図4は、シート状の熱伝導組成物におけるフィラーの状態の概要説明図(その2)である。FIG. 4 is a schematic explanatory diagram (No. 2) of the state of the filler in the sheet-like thermally conductive composition. 図5は、実施例及び比較例の効果の説明図である。FIG. 5 is an explanatory diagram of the effect of the example and the comparative example.

以下、本技術が適用された熱伝導性シートの製造方法について、図面を参照しながら詳
細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術
の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図
面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な
寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互い
の寸法の関係や比率が異なる部分が含まれていることは勿論である。
Hereinafter, a method for manufacturing a thermally conductive sheet to which the present technology is applied will be described in detail with reference to the drawings. In addition, the present technology is not limited to the following embodiments, and various modifications are possible without departing from the gist of the present technology. Also, the drawings are schematic, and the ratio of each dimension may differ from the actual one. Specific dimensions and the like should be determined with reference to the following description. In addition, it goes without saying that there are portions with different dimensional relationships and ratios between the drawings.

図1は、実施形態の熱伝導性シートの製造フローチャートである。
まず、薄板形状を有する磁性粉である第1フィラーF1と、薄板形状を有する熱伝導フィラーである第2フィラーF2と、熱伝導フィラーである第3フィラーF3と、をバインダ樹脂(高分子マトリックス成分)BDに分散させることにより熱伝導性組成物を調製する(ステップS11)。
FIG. 1 is a manufacturing flow chart of the thermally conductive sheet of the embodiment.
First, a first filler F1 that is a magnetic powder having a thin plate shape, a second filler F2 that is a thermally conductive filler that has a thin plate shape, and a third filler F3 that is a thermally conductive filler are combined with a binder resin (polymer matrix component ) Prepare a thermally conductive composition by dispersing it in BD (step S11).

図2は、熱伝導性組成物におけるフィラーの状態の概要説明図である。
図2に示すように、熱伝導性組成物10は、バインダ樹脂BD内において、第1フィラーF1、第2フィラーF2及び第3フィラーF3が分散した状態となっている。
FIG. 2 is a schematic illustration of the state of fillers in a thermally conductive composition.
As shown in FIG. 2, the thermally conductive composition 10 is in a state in which the first filler F1, the second filler F2 and the third filler F3 are dispersed in the binder resin BD.

この場合において、第1フィラーF1及び第2フィラーF2は、非配向状態であるので、様々な方向を向いた状態となっている。図1においては、第1フィラーF1及び第2フィラーF2を側方から見た状態の粒子を棒状に示しており、第1フィラーF1及び第2フィラーF2を面方向から見た状態の粒子を板状に示している。 In this case, since the first filler F1 and the second filler F2 are in a non-oriented state, they face various directions. In FIG. 1, the particles of the first filler F1 and the second filler F2 viewed from the side are shown in a rod shape, and the particles of the first filler F1 and the second filler F2 viewed from the surface direction are plate-shaped. shown in the form.

ここで、薄板形状とは、鱗片状、扁平状、フレーク状等を意味するものであり、その厚さは、例えば、1μm以下の平板形状である。
また、第1フィラーF1としては、鱗片状磁性体粒子であり、フェライト(Fe系合金)、パーマロイ(Ni-Fe系合金)、センダスト(Al-Si-Fe系合金)等が挙げられる。
Here, the thin plate shape means a scale shape, a flat shape, a flake shape, and the like, and the thickness thereof is, for example, a flat plate shape of 1 μm or less.
The first filler F1 is a scale-like magnetic particle, and examples thereof include ferrite (Fe-based alloy), permalloy (Ni--Fe-based alloy), and sendust (Al--Si--Fe-based alloy).

この場合において、第1フィラーF1の熱伝導シート組成物中の含有量は、第2フィラーF2の配向を確実に行うために、5~30vol%とするのが好ましい。
また、第1フィラーとしてフェライトを用いた場合には、熱伝導性シートに絶縁性を付与することができる。
In this case, the content of the first filler F1 in the thermal conductive sheet composition is preferably 5 to 30 vol % in order to ensure the orientation of the second filler F2.
Moreover, when ferrite is used as the first filler, insulation can be imparted to the thermally conductive sheet.

また、第2フィラーF2としては、鱗片状窒化ホウ素(鱗片状BN)、人造黒鉛、鱗片状黒鉛、膨張性黒鉛および膨張化黒鉛等の鱗片状粒子材料が挙げられる。
この場合において、第2フィラーF2の熱伝導率は、熱伝導性シートとして用いる場合に十分な熱伝導率を有する必要があるので、10W/m・K以上とするのが好ましい。
また、第2フィラーF2の熱伝導シート組成物中の含有量は、熱伝導性を十分とするため、5~30vol%とするのが好ましい。
Examples of the second filler F2 include scaly particle materials such as scaly boron nitride (scaly BN), artificial graphite, scaly graphite, expansive graphite, and expanded graphite.
In this case, the thermal conductivity of the second filler F2 is preferably 10 W/m·K or more because it is necessary to have a sufficient thermal conductivity when used as a thermally conductive sheet.
Also, the content of the second filler F2 in the thermally conductive sheet composition is preferably 5 to 30 vol % in order to ensure sufficient thermal conductivity.

また、第3フィラーF3としては、酸化亜鉛粒子、アルミナ粒子、窒化アルミニウム粒子、炭化ケイ素粒子、窒化ケイ素粒子、酸化マグネシウム粒子、人造黒鉛、天然黒鉛、酸処理黒鉛、膨張性黒鉛、膨張化黒鉛、カーボンブラック、カーボンナノチューブ、気相成長炭素繊維、有機繊維を炭化して得られる炭素繊維等が挙げられる。 Further, as the third filler F3, zinc oxide particles, alumina particles, aluminum nitride particles, silicon carbide particles, silicon nitride particles, magnesium oxide particles, artificial graphite, natural graphite, acid-treated graphite, expandable graphite, expandable graphite, Examples include carbon black, carbon nanotubes, vapor-grown carbon fibers, and carbon fibers obtained by carbonizing organic fibers.

この場合において、バインダ樹脂BD内で均一に分散して十分に熱を伝導するとともに、第1フィラーF1及び第2フィラーF2の配向を阻害しないように第3フィラーの粒径は、0.2~5μmとするのが好ましい。さらに同じ理由から第3フィラーの含有量が、10~60vol%であるのが好ましい。 In this case, the particle diameter of the third filler is 0.2 to 0.2 so as to disperse uniformly in the binder resin BD and sufficiently conduct heat, and not to hinder the orientation of the first filler F1 and the second filler F2. 5 μm is preferred. For the same reason, the content of the third filler is preferably 10-60 vol %.

バインダ樹脂BDとしては、例えば、熱硬化性ポリマーが挙げられる。
熱硬化性ポリマーとしては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。
Examples of the binder resin BD include thermosetting polymers.
Examples of thermosetting polymers include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, and thermosetting polyphenylene. Ethers, thermosetting modified polyphenylene ethers, and the like. These may be used individually by 1 type, and may use 2 or more types together.

この場合において、架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 In this case, the crosslinked rubber includes, for example, natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, Fluororubber, urethane rubber, acrylic rubber, polyisobutylene rubber, silicone rubber, and the like. These may be used individually by 1 type, and may use 2 or more types together.

また、これら熱硬化性ポリマーの中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーン樹脂を用いることが好ましい。
シリコーン樹脂としては、特に制限はなく、目的に応じてシリコーン樹脂の種類を適宜選択することができる。例えば、成形加工性、耐候性、密着性等を得る観点からは、シリコーン樹脂として、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーン樹脂であることが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂等が挙げられる。
Among these thermosetting polymers, it is preferable to use a silicone resin from the viewpoint of excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts.
The silicone resin is not particularly limited, and the type of silicone resin can be appropriately selected according to the purpose. For example, from the viewpoint of obtaining molding processability, weather resistance, adhesion, etc., the silicone resin is preferably a silicone resin composed of a liquid silicone gel main agent and a curing agent. Examples of such silicone resins include addition reaction type liquid silicone resins, heat vulcanization type millable type silicone resins using peroxide for vulcanization, and the like.

これらのシリコーン樹脂の中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーン樹脂が特に好ましい。この付加反応型液状シリコーン樹脂としては、例えば、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂等を用いることが好ましい。 Among these silicone resins, the addition reaction type liquid silicone resin is particularly preferable as a heat dissipation member for electronic devices, because the heat generating surface of the electronic component and the heat sink surface are required to have good adhesion. As the addition reaction type liquid silicone resin, for example, a two-liquid addition reaction type silicone resin or the like can be used in which polyorganosiloxane having a vinyl group is used as a main component and polyorganosiloxane having an Si—H group is used as a curing agent. is preferred.

ここで、液状シリコーン成分は、主剤となるシリコーンA液成分と硬化剤が含まれるシリコーンB液成分を有し、シリコーンA液成分とシリコーンB液成分とが所定の割合で配合されている。 Here, the liquid silicone component has a silicone A liquid component as a main agent and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are blended in a predetermined ratio.

次に熱伝導性組成物10をシート状とするに際して、バーコータ等のように熱伝導性組成物を狭いギャップ(隙間)を通過させる。これにより、薄板形状(鱗片状)の第1フィラーF1及び第2フィラーF2をシートの面方向に沿って配向させる(ステップS12)。 Next, when forming the thermally conductive composition 10 into a sheet, the thermally conductive composition is passed through a narrow gap (clearance) by a bar coater or the like. As a result, the thin plate-shaped (scaly) first filler F1 and the second filler F2 are oriented along the surface direction of the sheet (step S12).

図3は、シート状の熱伝導組成物におけるフィラーの状態の概要説明図(その1)である。
図3に示すように、熱伝導組成物10は、バインダ樹脂BD内において、第1フィラーF及び第2フィラーF2は、シートの面方向に沿って配向している。
FIG. 3 is a schematic explanatory diagram (part 1) of the state of the filler in the sheet-like thermally conductive composition.
As shown in FIG. 3, in the heat conductive composition 10, the first filler F and the second filler F2 are oriented along the surface direction of the sheet in the binder resin BD.

図4は、シート状の熱伝導組成物におけるフィラーの状態の概要説明図(その2)である。
続いて、シート状の熱伝導性組成物10に対し磁力線の向きが厚さ方向となるように磁場を印可し、図4に示すように、第1フィラーF1を熱伝導性組成物の厚さ方向に沿って配向させて、第2フィラーF2を厚さ方向に沿って配向させる(ステップS13)。
これは、第1フィラーF1及び第2フィラーF2が積層された状態で配向しているため、磁性体粒子である第1フィラーF1が厚さ方向に配向するのに伴って、第2フィラーF2も物理的に厚さ方向に配向するためである。
FIG. 4 is a schematic explanatory diagram (No. 2) of the state of the filler in the sheet-like thermally conductive composition.
Subsequently, a magnetic field is applied to the sheet-shaped thermally conductive composition 10 so that the direction of the magnetic lines of force is in the thickness direction, and as shown in FIG. The second filler F2 is oriented along the thickness direction (step S13).
This is because the first filler F1 and the second filler F2 are oriented in a laminated state, so that the second filler F2 is also This is because it is physically oriented in the thickness direction.

このため、第1フィラーF1の配向に伴って、第2フィラーF2の配向を行わせるために、物理的に第1フィラーF1の配向時の力を第2フィラーF2に確実に伝達するように、第1フィラーF1と第2フィラーF2の粒径比率は3:1~1:3の範囲とするのが好ましい。 For this reason, in order to orient the second filler F2 along with the orientation of the first filler F1, it is necessary to physically transmit the force at the time of orientation of the first filler F1 to the second filler F2. The particle size ratio of the first filler F1 and the second filler F2 is preferably in the range of 3:1 to 1:3.

さらに、より確実に第1フィラーFの配向時の力を第2フィラーF2に確実に伝達するためには、第1フィラーF1の近傍に第2フィラーF2が位置している必要があるため、第1フィラーF1と第2フィラーF2のの体積比率は、3:1~1:3の範囲とするのが好ましい。 Furthermore, in order to more reliably transmit the force of the orientation of the first filler F to the second filler F2, the second filler F2 needs to be positioned in the vicinity of the first filler F1. The volume ratio of the first filler F1 and the second filler F2 is preferably in the range of 3:1 to 1:3.

ここで、磁場の印可方法としては、例えば、永久磁石や電磁石でシート状の熱伝導性組成物を挟むことにより行うが、これに限られるものではない。
次にシート状の熱伝導性組成物を加熱等により硬化して熱伝導性フィルム10Fとする(ステップS14)。
Here, as a method of applying a magnetic field, for example, a sheet-like thermally conductive composition is sandwiched between permanent magnets or electromagnets, but it is not limited to this.
Next, the sheet-like thermally conductive composition is cured by heating or the like to form the thermally conductive film 10F (step S14).

この場合において、第1フィラーF1として軟磁性体を用いる場合には、磁場の印可をやめると、厚さ方向への配向が元に戻る虞があるので、磁場の印可状態でシート状の熱伝導性組成物を加熱等により硬化する。 In this case, when a soft magnetic material is used as the first filler F1, there is a risk that the orientation in the thickness direction will return to the original orientation when the application of the magnetic field is stopped. The adhesive composition is cured by heating or the like.

実施形態の熱伝導性シートの製造方法によれば、熱伝導樹脂組成物の硬化物をスライスして熱伝導性シートを製造する工程がないため、熱伝導性シートの表面にタック性を持たせることができる。
また製造工程数を低減できるので熱伝導性シートの製造コストも低減することができる。
According to the method for producing a thermally conductive sheet of the embodiment, since there is no step of slicing the cured product of the thermally conductive resin composition to produce a thermally conductive sheet, the surface of the thermally conductive sheet is given tackiness. be able to.
Moreover, since the number of manufacturing steps can be reduced, the manufacturing cost of the thermally conductive sheet can also be reduced.

次により具体的な実施例について説明する。 Next, more specific examples will be described.

[1]実施例
[1.1]第1実施例
[1.1.1]配合
第1実施例においては、以下の第1配合の樹脂及びフィラーを用いた。
(第1配合)
樹脂:シリコーン樹脂を35vol%配合。
第1フィラー:D50(ミディアム平均径)が70μmである鱗片状のセンダストを10vol%配合。
第2フィラー:D50が40μmである鱗片状の六方晶BNを10vol%配合
第3フィラー:D50が3μmである球状アルミナを35vol%配合
[1] Examples [1.1] First Example [1.1.1] Formulation In the first example, the following first formulation resin and filler were used.
(1st formulation)
Resin: Contains 35 vol% of silicone resin.
First filler: 10% by volume of scaly Sendust having a D50 (medium average diameter) of 70 µm.
Second filler: 10 vol% of scaly hexagonal BN with a D50 of 40 µm is blended Third filler: 35 vol% of spherical alumina with a D50 of 3 µm is blended

[1.1.2]製造条件
まず上記第1配合の組成物をバーコータにより、厚さ1mmに塗布し、第1フィラー及び第2フィラーの面方向配向を行う(シート形成工程)。
続いて、永久磁石でシートを挟み磁場を印可し、第1フィラーを厚さ方向に配向し、この第1フィラーの厚さ方向の配向により、第2フィラーを厚さ方向に配向する(磁場印可工程)。
続いて、オーブンにおいて、60℃で4Hr保持し(硬化工程)、第1実施例の熱伝導シートを得た。
[1.1.2] Manufacturing Conditions First, the composition of the first formulation is applied to a thickness of 1 mm using a bar coater, and the first filler and the second filler are oriented in the plane direction (sheet forming step).
Subsequently, the sheet is sandwiched between permanent magnets and a magnetic field is applied to orient the first filler in the thickness direction. process).
Subsequently, it was held in an oven at 60° C. for 4 hours (curing step) to obtain a thermally conductive sheet of the first example.

[1.2]第2実施例
[1.2.1]配合
第2実施例においては、以下の第2配合の樹脂及びフィラーを用いた。
(第2配合)
樹脂:シリコーン樹脂を35vol%配合。
第1フィラー:D50(ミディアム平均径)が70μmである鱗片状のフェライトを10vol%配合。
第2フィラー:D50が40μmである鱗片状の六方晶BNを10vol%配合。
第3フィラー:D50が3μmである球状アルミナを35vol%配合。
[1.2] Second Example [1.2.1] Compounding In the second example, the following second compounding resin and filler were used.
(Second formulation)
Resin: Contains 35 vol% of silicone resin.
First filler: 10% by volume of scaly ferrite having a D50 (medium average diameter) of 70 µm.
Second filler: 10% by volume of scaly hexagonal BN having a D50 of 40 μm.
Third filler: 35 vol % of spherical alumina having a D50 of 3 µm.

[1.2.2]製造条件
上記配合2の熱伝導性シート組成物をバーコーターにて1mmに塗布し、永久磁石でシートを挟み磁場配向後、オーブンにおいて60℃4Hr保持し(硬化工程)、第2実施例の熱伝導シートを得た。
[1.2.2] Manufacturing conditions The thermally conductive sheet composition of Formulation 2 above was applied with a bar coater to a thickness of 1 mm, the sheet was sandwiched between permanent magnets and subjected to magnetic field orientation, and then held in an oven at 60°C for 4 hours (curing step). , a heat conductive sheet of the second example was obtained.

[2]比較例
次に比較例について説明する。
[2.1]第1比較例
[2.1.1]配合
第1実施例と同じ第1配合を用いた。
[2] Comparative Example Next, a comparative example will be described.
[2.1] First Comparative Example [2.1.1] Formulation The same first formulation as in the first example was used.

[2.1.2]製造条件
まず、上記第1配合の組成物をバーコータにより、厚さ1mmに塗布した。
続いて、オーブンにおいて、60℃で4Hr保持し(硬化工程)、第1比較例の熱伝導シートを得た。
[2.1.2] Manufacturing Conditions First, the composition of the first formulation was applied to a thickness of 1 mm using a bar coater.
Subsequently, it was held in an oven at 60° C. for 4 hours (curing step) to obtain a thermally conductive sheet of the first comparative example.

[2.2]第2比較例
[2.2.1]配合
第1実施例と同じ第1配合を用いた。
[2.2] Second Comparative Example [2.2.1] Formulation The same first formulation as in the first example was used.

[2.1.2]製造条件
まず、上記第1配合の組成物をバーコータにより、厚さ1mmに塗布した。
続いて、オーブンにおいて、60℃で0.5Hr保持し、半硬化状態のグリーンシートを得た。
続いて、得られたグリーンシートを50枚積層し、60℃で4Hr保持して(硬化工程)、ブロック状の成形体を作製し、得られた成形体を積層方向とは垂直にスライスして第2比較例の熱伝導シートを得た。
[2.1.2] Manufacturing Conditions First, the composition of the first formulation was applied to a thickness of 1 mm using a bar coater.
Subsequently, it was held at 60° C. for 0.5 hours in an oven to obtain a semi-cured green sheet.
Subsequently, 50 green sheets obtained were laminated and held at 60° C. for 4 hours (curing step) to prepare a block-shaped compact, and the obtained compact was sliced perpendicular to the stacking direction. A heat conductive sheet of the second comparative example was obtained.

[3]実施例の効果
図5は、実施例及び比較例の説明図である。
[3.1]配向方向及びバルク熱伝導率
熱伝導性フィラーである第2フィラーの配向方向は、図5に示すように、第1実施例、第2実施例及び第2比較例の熱伝導性シートのいずれも厚さ方向であり、半導体素子等の熱源から放熱フィン等の放熱部材に効率良く熱を伝えることができることが予測され、バルク熱伝導率も4.0[W/m・K]以上であり、実際に高熱伝導率であることがわかった。
[3] Effect of Example FIG. 5 is an explanatory diagram of an example and a comparative example.
[3.1] Orientation Direction and Bulk Thermal Conductivity As shown in FIG. It is predicted that heat can be efficiently transferred from a heat source such as a semiconductor element to a heat dissipation member such as a heat dissipation fin, and the bulk thermal conductivity is also 4.0 [W / m K]. ], and it was found that the thermal conductivity was actually high.

これらに対し、第1比較例の熱伝導性シートは、熱伝導性フィラーである第2フィラーの配向方向が面方向であり、バルク熱伝導率は、2.0[W/m・K]であり、熱伝導率が低く、実用的ではなかった。 On the other hand, in the thermally conductive sheet of the first comparative example, the orientation direction of the second filler, which is the thermally conductive filler, is the plane direction, and the bulk thermal conductivity is 2.0 [W/m K]. However, it was not practical due to its low thermal conductivity.

[3.2]プロセス数及びコスト
第1実実施例及び第2実施例のプロセス数は、図5に示すように、それぞれ4であり、第1比較例のプロセス数は3であり、プロセス数が少ないので、製造コストは良好(○)であった。
[3.2] Number of Processes and Cost The manufacturing cost was good (○) because there was little

これに対し、第2比較例のプロセス数は、6であり、製造コストは高くなり不可(×)であった。 On the other hand, the number of processes in the second comparative example was 6, and the manufacturing cost was high, so it was impossible (x).

[3.3]タック性
タック性に関しては、図5に示すように、第1実施例、第2実施例及び第1実施例は、製造プロセスにおいてスライス工程を含んでいないので良好(○)であった。
[3.3] Tackiness With regard to tackiness, as shown in FIG. 5, the first, second and first examples are good (○) because they do not include a slicing step in the manufacturing process. there were.

一方、ブロック状の成形体を作製し、得られた成形体をスライスして作成した第2比較例は従来例と同様に不可(×)であった。 On the other hand, the second comparative example, in which a block-shaped molded body was prepared and sliced from the obtained molded body, was unsatisfactory (x) as in the conventional example.

[3.4]絶縁性
絶縁性に関しては、図5に示すように、絶縁性を有するフェライトを第1フィラーF1として用いている第2実施例においては、良好(○)であったが、フィラーとして絶縁性材料を用いていない第1実施例、第1比較例及び第2比較例は不可(×)であった。
[3.4] Insulation With regard to insulation, as shown in FIG. The first example, the first comparative example, and the second comparative example, in which an insulating material is not used as a material, are not acceptable (x).

[3.5]まとめ
以上の説明のように、第1実施例及び第2実施例は、フィラーの材料に起因して絶縁性の有無の違いはあるものの、プロセス数、バルク熱伝導率、タック性及び製造コストの観点から好ましいものであった。
[3.5] Summary As described above, in the first and second examples, although there is a difference in the presence or absence of insulation due to the filler material, the number of processes, bulk thermal conductivity, tack It was preferable from the viewpoint of quality and manufacturing cost.

一方、第1比較例は、バルク熱伝導率の観点から熱伝導シートとして好ましくなく、第2比較例は、タック性及び製造コストの観点から熱伝導シートとして好ましくなかった。 On the other hand, the first comparative example was not preferable as a thermally conductive sheet from the viewpoint of bulk thermal conductivity, and the second comparative example was not preferable as a thermally conductive sheet from the viewpoint of tackiness and manufacturing cost.

10 熱伝導性組成物
10F 熱伝導性シート
BD バインダ樹脂(高分子マトリックス成分)
F1 第1フィラー
F2 第2フィラー
F3 第3フィラー
10 thermally conductive composition 10F thermally conductive sheet BD binder resin (polymer matrix component)
F1 First filler F2 Second filler F3 Third filler

Claims (14)

薄板形状を有する磁性粉である第1フィラーと、薄板形状を有する熱伝導フィラーである第2フィラーと、熱伝導フィラーである第3フィラーと、をバインダ樹脂に分散させることにより熱伝導性組成物を調製する工程と、
前記熱伝導性組成物をシート状とする工程と、
前記シート状の前記熱伝導性組成物に対し磁場を印可し、前記第1フィラーを前記熱伝導性組成物の厚さ方向に沿って配向させて、前記第2フィラーを前記厚さ方向に沿って配向させる工程と、
前記熱伝導性組成物を硬化する工程と、
を備えた熱伝導性シートの製造方法。
A thermally conductive composition is prepared by dispersing a first filler that is a magnetic powder having a thin plate shape, a second filler that is a thermally conductive filler that has a thin plate shape, and a third filler that is a thermally conductive filler in a binder resin. a step of preparing
A step of forming the thermally conductive composition into a sheet;
A magnetic field is applied to the sheet-like thermally conductive composition, the first filler is oriented along the thickness direction of the thermally conductive composition, and the second filler is oriented along the thickness direction. and orienting with
curing the thermally conductive composition;
A method for producing a thermally conductive sheet comprising
前記第1フィラーと前記第2フィラーの粒径比率が3:1~1:3の範囲である、
請求項1記載の熱伝導性シートの製造方法。
The particle size ratio of the first filler and the second filler is in the range of 3:1 to 1:3,
The method for producing a thermally conductive sheet according to claim 1.
前記第1フィラーと前記第2フィラーの体積比率が、3:1~1:3の範囲である、
請求項1又は請求項2記載の熱伝導性シートの製造方法。
The volume ratio of the first filler and the second filler is in the range of 3:1 to 1:3,
The method for producing a thermally conductive sheet according to claim 1 or 2.
前記第1フィラーが、鉄系合金である、
請求項1乃至請求項3のいずれか一項に記載の熱伝導性シートの製造方法。
The first filler is an iron-based alloy,
The method for producing a thermally conductive sheet according to any one of claims 1 to 3.
前記第1フィラーは、フェライトである、
請求項1乃至請求項3のいずれか一項に記載の熱伝導性シートの製造方法。
The first filler is ferrite,
The method for producing a thermally conductive sheet according to any one of claims 1 to 3.
前記第2フィラーの熱伝導率は、10W/m・K以上である、
請求項1乃至請求項5のいずれか一項に記載の熱伝導性シートの製造方法。
The thermal conductivity of the second filler is 10 W / m K or more,
The method for producing a thermally conductive sheet according to any one of claims 1 to 5.
前記第2フィラーは、BNフィラーである、
請求項1乃至請求項6のいずれか一項に記載の熱伝導性シートの製造方法。
The second filler is a BN filler,
The method for producing a thermally conductive sheet according to any one of claims 1 to 6.
前記第3フィラーの粒径は、0.2~5μmである、
請求項1乃至請求項7のいずれか一項に記載の熱伝導性シートの製造方法。
The particle size of the third filler is 0.2 to 5 μm,
The method for producing a thermally conductive sheet according to any one of claims 1 to 7.
前記バインダ樹脂は、シリコーン樹脂である、
請求項1乃至請求項8のいずれか一項に記載の熱伝導性シートの製造方法。
The binder resin is a silicone resin,
The method for producing a thermally conductive sheet according to any one of claims 1 to 8.
前記熱伝導シート組成物中の前記第1フィラーの含有量が、5~30vol%である、
請求項1乃至請求項9のいずれか一項に記載の熱伝導性シートの製造方法。
The content of the first filler in the thermally conductive sheet composition is 5 to 30 vol%.
The method for producing a thermally conductive sheet according to any one of claims 1 to 9.
前記熱伝導シート組成物中の前記第2のフィラーの含有量が、5~30vol%である請求項1乃至請求項10のいずれか一項に記載の熱伝導性シートの製造方法。 The method for producing a thermally conductive sheet according to any one of claims 1 to 10, wherein the content of the second filler in the thermally conductive sheet composition is 5 to 30 vol%. 前記熱伝導シート組成物中の前記第3フィラーの含有量が、10~60vol%である請求項1乃至請求項11のいずれか一項に記載の熱伝導性シートの製造方法。 The method for producing a thermally conductive sheet according to any one of claims 1 to 11, wherein the content of the third filler in the thermally conductive sheet composition is 10 to 60 vol%. 厚さ方向に沿って配向され、薄板形状を有する磁性粉である第1フィラーと、
前記第1フィラーに沿って配向された薄板形状を有する熱伝導フィラーである第2フィラーと、
熱伝導フィラーである第3フィラーと、
前記第1フィラー、前記第2フィラー及び前記第3フィラーを分散状態で支持するバインダ樹脂と、
を備えた熱伝導性シート。
a first filler that is a magnetic powder that is oriented along the thickness direction and has a thin plate shape;
a second filler that is a thermally conductive filler having a thin plate shape oriented along the first filler;
a third filler that is a thermally conductive filler;
a binder resin that supports the first filler, the second filler, and the third filler in a dispersed state;
A thermally conductive sheet with
前記熱伝導性シートは、絶縁性である、
請求項13に記載の熱伝導性シート。
The thermally conductive sheet is insulating,
The thermally conductive sheet according to claim 13.
JP2021024670A 2021-02-18 2021-02-18 Method for manufacturing thermal conductive sheet and thermal conductive sheet Pending JP2022126535A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2021024670A JP2022126535A (en) 2021-02-18 2021-02-18 Method for manufacturing thermal conductive sheet and thermal conductive sheet
PCT/JP2022/005966 WO2022176854A1 (en) 2021-02-18 2022-02-15 Method for manufacturing thermally conductive sheet, and thermally conductive sheet

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021024670A JP2022126535A (en) 2021-02-18 2021-02-18 Method for manufacturing thermal conductive sheet and thermal conductive sheet

Publications (1)

Publication Number Publication Date
JP2022126535A true JP2022126535A (en) 2022-08-30

Family

ID=82931759

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021024670A Pending JP2022126535A (en) 2021-02-18 2021-02-18 Method for manufacturing thermal conductive sheet and thermal conductive sheet

Country Status (2)

Country Link
JP (1) JP2022126535A (en)
WO (1) WO2022176854A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009010296A (en) * 2007-06-29 2009-01-15 Nitto Denko Corp Heat-conductive adhesive film and method for producing the same
JP2017143204A (en) * 2016-02-12 2017-08-17 信越化学工業株式会社 Thermally conductive resin mold and method for manufacturing the same
KR20190047398A (en) * 2017-10-27 2019-05-08 주식회사 엘지화학 Composite material
WO2020067141A1 (en) * 2018-09-26 2020-04-02 積水ポリマテック株式会社 Heat conductive sheet

Also Published As

Publication number Publication date
WO2022176854A1 (en) 2022-08-25

Similar Documents

Publication Publication Date Title
CN107871721B (en) Thermal conductive sheet, method for producing same, and semiconductor device
US20180014431A1 (en) Thermal Pad and Electronic Device
JP2004080040A (en) Flexible surface layer film for providing highly filled or less bridged thermally conductive interface pads
CN110739224A (en) Method for manufacturing thermally conductive sheet
JP2007012911A (en) Heat dissipation component and manufacturing method thereof
JP2002080617A (en) Thermoconductive sheet
US20210296207A1 (en) Thermally conductive sheet, method formanufacturing the same, and method for mounting thermally conductive sheet
US11597196B2 (en) Method for producing thermally conductive sheet
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
US20220098462A1 (en) Thermally conductive sheet, method for manufacturing the same, and method for mounting thermally conductive sheet
WO2019164002A1 (en) Insulating heat dissipation sheet
JP2022542444A (en) thermal interface material
WO2022176854A1 (en) Method for manufacturing thermally conductive sheet, and thermally conductive sheet
JP2000108220A (en) Thermally conductive resin molding, its manufacture and use
WO2022044724A1 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
CN116868333A (en) Heat conductive sheet and electronic device
KR101967856B1 (en) High Thermal Conductive Film and Manufacturing the Same
WO2022176748A1 (en) Heat conductive sheet and method for manufacturing heat conductive sheet
WO2022176823A1 (en) Heat conductive sheet
WO2022176822A1 (en) Method for producing heat dissipation member
JP2022127596A (en) Thermally conductive sheet and manufacturing method thereof
JP2013225541A (en) Heat conduction sheet
WO2023211414A2 (en) A high thermal conductor nano hybrid composite material for thermal interface applications and a production method thereof
JP2022046021A (en) Thermal conductive sheet and method for manufacturing thermal conductive sheet
WO2021095515A1 (en) Heat dissipation sheet

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20220817