WO2022176748A1 - Heat conductive sheet and method for manufacturing heat conductive sheet - Google Patents

Heat conductive sheet and method for manufacturing heat conductive sheet Download PDF

Info

Publication number
WO2022176748A1
WO2022176748A1 PCT/JP2022/005216 JP2022005216W WO2022176748A1 WO 2022176748 A1 WO2022176748 A1 WO 2022176748A1 JP 2022005216 W JP2022005216 W JP 2022005216W WO 2022176748 A1 WO2022176748 A1 WO 2022176748A1
Authority
WO
WIPO (PCT)
Prior art keywords
thermally conductive
conductive sheet
volume
sheet
silicone
Prior art date
Application number
PCT/JP2022/005216
Other languages
French (fr)
Japanese (ja)
Inventor
圭佑 武笠
佑介 久保
慶輔 荒巻
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2022018203A external-priority patent/JP2022127596A/en
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2022176748A1 publication Critical patent/WO2022176748A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/18Oxygen-containing compounds, e.g. metal carbonyls
    • C08K3/20Oxides; Hydroxides
    • C08K3/22Oxides; Hydroxides of metals
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • C08K7/02Fibres or whiskers
    • C08K7/04Fibres or whiskers inorganic
    • C08K7/06Elements
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L83/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing silicon with or without sulfur, nitrogen, oxygen or carbon only; Compositions of derivatives of such polymers
    • C08L83/04Polysiloxanes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • Embodiments of the present invention relate to a thermally conductive sheet and a method for manufacturing a thermally conductive sheet.
  • the semiconductor element is attached to a heat sink such as a heat dissipation fan or a heat dissipation plate via a thermally conductive sheet.
  • a thermally conductive sheet a material in which a filler such as an inorganic filler is dispersed in silicone is widely used.
  • inorganic fillers include alumina, aluminum nitride, and aluminum hydroxide.
  • the matrix may be filled with scaly particles such as boron nitride or graphite, carbon fibers, or the like. This is due to the anisotropy of the thermal conductivity of the scaly particles and the like.
  • carbon fibers have a thermal conductivity of about 600-1200 W/mK in the fiber direction.
  • Boron nitride has a thermal conductivity of about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction, and is known to have anisotropy. .
  • the surface direction of the carbon fibers and scale-like particles is made the same as the thickness direction of the sheet, which is the direction of heat transfer. That is, by orienting the carbon fibers and the scale-like particles in the thickness direction of the sheet, it is possible to dramatically improve the heat conduction.
  • Patent Document 1 a sheet obtained by slicing a block of a composition containing a fibrous filler is pressed to promote contact between the fibrous fillers, thereby improving thermal conductivity. is described. Further, it is described that as a result of the press treatment, the smoothness of the sheet surface is improved, and the adhesion to the heating element and the heat radiating element is improved.
  • the present invention has been made in view of the above, and it is an object of the present invention to obtain a thermally conductive sheet with a low residual stress, a small amount of creep, a low thermal resistance value, and tackiness by a simple process.
  • the thermally conductive sheet of the embodiment includes a thermally conductive filler containing carbon fiber and at least one of aluminum nitride, aluminum oxide and aluminum hydroxide as an inorganic filler, and a volume ratio of 30 to 45% two-part addition-cure silicone.
  • thermally conductive sheet of the embodiment it is possible to obtain a thermally conductive sheet that has a low residual stress, a small amount of creep, a low thermal resistance value, and tackiness.
  • FIG. 1 is a manufacturing flow chart of the thermally conductive sheet of the embodiment.
  • FIG. 2 is an explanatory diagram of the effect of the embodiment.
  • the thermally conductive sheet of the embodiment contains at least one of carbon fiber, aluminum nitride, aluminum oxide, and aluminum hydroxide in a volume ratio of 55 to 70% as a thermally conductive filler. Furthermore, the thermally conductive sheet contains 30 to 45% by volume of a two-liquid addition reaction type silicone as a polymer matrix component.
  • FIG. 1 is a manufacturing flow chart of the thermally conductive sheet of the embodiment.
  • a predetermined amount of two-liquid addition reaction type liquid silicone resin is mixed at a predetermined ratio to prepare (step S11).
  • Thermosetting polymers are used as the polymer matrix component.
  • silicone resins are preferred because of their excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts. It is preferable to use
  • silicone resins There are various types of silicone resins, but the reason for using a two-liquid addition reaction type liquid silicone resin as a polymer matrix component is that, among silicone resins, it is used as a heat dissipation member for electronic devices. This is because adhesion between the heat generating surface and the heat sink surface is required. This is because an addition reaction type liquid silicone resin is particularly preferable as the silicone resin for this purpose.
  • the liquid silicone component has a silicone A liquid component as a main agent and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are blended in a predetermined ratio.
  • one or more thermally conductive fillers are prepared (step S12).
  • a surface-treated filler can be used as the thermally conductive filler.
  • the thermally conductive filler is treated with a coupling agent as this surface treatment, the dispersibility of the thermally conductive filler is improved, and the flexibility of the thermally conductive sheet is improved.
  • At least one of carbon fiber, aluminum nitride, aluminum oxide, and aluminum hydroxide is used as the thermally conductive filler. Subsequently, the prepared thermally conductive filler is added to and dispersed in the two-liquid addition reaction type liquid silicone resin to prepare a silicone resin composition (thermally conductive resin composition) (step S13).
  • the obtained silicone resin composition is extruded into a mold whose inner wall is release-treated to create a silicone molded body (step S14).
  • the obtained silicone molding is heat-treated at a predetermined temperature for a predetermined time to obtain a cured silicone product (step S15). Subsequently, the obtained silicone cured product is sliced (cut) with an ultrasonic cutter to obtain a molded sheet having a predetermined thickness (for example, 0.33 mm) (step S16).
  • a spacer of a predetermined thickness is inserted and press-treated at a predetermined pressure for a predetermined time to obtain a desired thickness (for example, a thickness of 0.30 mm).
  • a desired thickness for example, a thickness of 0.30 mm.
  • the thermally conductive sheet is obtained by slicing a mixture of carbon fibers, an inorganic filler, and a binder, and orienting the carbon fibers in the thickness direction of the sheet.
  • the effective thermal conductivity was 10 W/m ⁇ K or more.
  • the heat resistance when a thermally conductive sheet having a thickness of 0.35 mm or less is pressed at 2.81 kgf/cm 2 is 0.20° C. cm 2 /W or less, and the sheet is 50% thicker than the initial thickness.
  • the residual stress when compressed was 276 kPa or less.
  • the deformation rate in the x and y directions within the sheet surface was 15% or less.
  • the tack force was 80 gf or more when peeled off at 10 mm/sec.
  • the thermally conductive sheet of the present embodiment the residual stress is low, the amount of creep is small, and it has both high flexibility and high elasticity. Furthermore, it had low heat resistance and had tackiness.
  • the thermally conductive sheet of the present embodiment reduces the risk of damaging a heating element such as an IC even when pressure is applied due to the property of low residual stress.
  • the thermally conductive sheet of the present embodiment has a small amount of creep, it is possible to prevent short circuits that may occur due to creep. Furthermore, since it has tackiness, it becomes a thermally conductive sheet capable of preventing misalignment during mounting, and the adhesiveness to the adherend increases. Due to this high adhesiveness, a low thermal resistance of 0.20° C. ⁇ cm 2 /W or less could be achieved with a sheet as thin as 0.3 mm.
  • Example 1 the production of the thermally conductive sheet of the first example will be described.
  • Example 1 36% by volume of a two-liquid addition reaction type liquid silicone resin was prepared.
  • the two-liquid addition reaction type liquid silicone resin is a mixture of 20% by volume of silicone A liquid and 16% by volume of silicone B liquid.
  • thermally conductive filler 5% by volume of aluminum oxide particles (thermally conductive particles, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a volume average particle size of 15 ⁇ m and having been subjected to coupling treatment with 0.1% by volume of a coupling agent.
  • aluminum oxide particles thermally conductive particles, manufactured by Denki Kagaku Kogyo Co., Ltd.
  • thermoly conductive filler was mixed with the addition reaction type liquid silicone resin and dispersed to prepare a silicone resin composition (thermally conductive resin composition).
  • the obtained silicone resin composition was extruded into a rectangular parallelepiped mold (50 mm x 50 mm) with a release-treated polyethylene terephthalate (PET) film attached to the inner wall to mold a silicone molded body.
  • PET polyethylene terephthalate
  • the resulting silicone molded product was cured in an oven at 100°C for 6 hours to obtain a silicone cured product.
  • the cured silicone product obtained was cut with an ultrasonic cutter to obtain a molded sheet with a thickness of 0.33 mm.
  • the slicing speed of the ultrasonic cutter was 50 mm per second.
  • the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 ⁇ m.
  • a 0.30 mm thick heat conductive sheet was obtained by inserting a 0.3 mm thick spacer and pressing.
  • the pressing conditions were 0.5 MPa and 30 seconds.
  • the total filler content is 63 [volume %]
  • the average sheet thickness is 0.29 [mm]
  • the thermal resistance value is 0.181 [°C cm / W]
  • the tack force is 83 [gf].
  • Second Example a second example will be described. First, the manufacture of the thermally conductive sheet of the second embodiment will be described.
  • the second embodiment differs from the first embodiment in that, first, 31% by volume of a two-liquid addition reaction type liquid silicone resin is coupled with 0.4% by volume of a coupling agent, and a volume average particle diameter of 1 ⁇ m is obtained.
  • thermoly conductive particles 10% by volume of aluminum oxide particles (thermally conductive particles: manufactured by Nippon Light Metal Co., Ltd.) and 8% by volume of aluminum oxide particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) with a volume average particle size of 4 ⁇ m, and a coupling agent 25% by volume of aluminum nitride particles (thermally conductive particles, manufactured by Tokuyama Co., Ltd.) having a volume average particle size of 1 ⁇ m, which are coupled at 0.6% by volume, and pitch-based carbon fibers (thermally conductive fibers, average fiber length of 120 ⁇ m,
  • a silicone resin composition thermally conductive resin composition
  • a thermally conductive sheet of the second example was obtained.
  • the two-liquid addition reaction type liquid silicone resin is a mixture of 16% by volume of silicone A and 15% by volume of silicone B.
  • Example 1 aluminum oxide having a volume average particle diameter of 1 ⁇ m was obtained by coupling 30% by volume of a two-liquid addition reaction type liquid silicone resin with 0.5% by volume of a coupling agent. 20% by volume of particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) and aluminum nitride particles with a volume average particle diameter of 1 ⁇ m (thermally conductive particles, Tokuyama Corporation) that are coupled with 0.5% by volume of a coupling agent.
  • a silicone resin composition A thermally conductive sheet of Example 3 was obtained in the same manner as in Example 1, except that the thermally conductive resin composition) was used.
  • the two-liquid addition reaction type liquid silicone resin is a mixture of 16% by volume of silicone A and 14% by volume of silicone B.
  • Example 1 Preparation of Thermally Conductive Sheet-
  • 49% by volume of a two-liquid addition reaction type liquid silicone resin was added to aluminum oxide particles (thermally conductive particles: Denki Kagaku Kogyo Co., Ltd.) 31% by volume and pitch-based carbon fiber (thermal conductive fiber, average fiber length 120 ⁇ m, average fiber diameter 9 ⁇ m, Nippon Graphite Fiber Co., Ltd.) 20% by volume were dispersed.
  • a thermally conductive sheet of Comparative Example 1 was obtained in the same manner as in Example 1, except that a silicone resin composition (thermally conductive resin composition) was used.
  • the two-liquid addition reaction type liquid silicone resin is a mixture of 26% by volume of silicone A and 23% by volume of silicone B.
  • thermoly conductive particles manufactured by Denki Kagaku Kogyo Co., Ltd.
  • aluminum nitride particles with a volume average particle diameter of 1 ⁇ m that are coupled with 0.5% by volume of a coupling agent (thermally conductive particles, Tokuyama Corporation)
  • thermoly conductive particles Tokuyama Corporation
  • a silicone resin composition ( A thermally conductive sheet of the first comparative example was obtained in the same manner as in the first example except that the thermally conductive resin composition) was used.
  • the two-liquid addition reaction type liquid silicone resin is a mixture of 14% by volume of silicone A and 14% by volume of silicone B.
  • thermal resistance value of the thermally conductive sheet of the first comparative example was as high as 0.48 ⁇ cm 2 /W.
  • thermal conductivity of the thermally conductive sheets of Examples 1 to 3 is 14.5 to 16.3 W / m K, and the thermal conductivity of the thermally conductive sheet is It had sufficient thermal conductivity.
  • the heat conductive sheet of the first comparative example had a low heat conductivity of 3.5 W/m ⁇ K.
  • Tack force The thermally conductive sheets of Examples 1 to 3 were pressed with a probe of 5.1 mm ⁇ at 2 mm/sec at 200 gf, and then peeled off at 10 mm/sec. The force was 83 to 93 gf and had sufficient tackiness (80 gf or more). On the other hand, when the thermally conductive sheets of the first and second comparative examples were pressed with a probe of 5.1 mm ⁇ at 2 mm/sec at 200 gf and then peeled off at 10 mm/sec, the tack force was 49 gf, respectively. It was 40 gf, and the tack force was insufficient.
  • a thermally conductive sheet having both high flexibility and high elasticity which has low residual stress and a small amount of creep, has low thermal resistance and high elasticity. It also has properties such as tack. Due to the property of low residual stress, the risk of damaging a heating element such as an IC is reduced even when pressure is applied.
  • thermoly conductive sheet that can prevent a short circuit that may occur due to creep. Furthermore, the sheet has tackiness to prevent misalignment at the time of mounting, and the adhesion to the adherend is improved. Due to the high adhesion, a thin sheet with a thickness of about 0.3 mm achieved a low thermal resistance of 0.20° C. ⁇ cm 2 /W or less.

Abstract

A heat conductive sheet of an embodiment comprises a heat conductive filler including carbon fibers and at least one of aluminum nitride, aluminum oxide and aluminum hydroxide as an inorganic filler, and a two-component addition reaction silicone having a volume ratio of 30-45%, so that a heat conductive sheet having a small amount of creep, while having a low residual stress, a low thermal resistance value and good tackiness can be obtained by a simple process.

Description

熱伝導性シート及び熱伝導性シートの製造方法Thermally conductive sheet and method for producing thermally conductive sheet
 本発明の実施形態は、熱伝導性シート及び熱伝導性シートの製造方法に関する。 Embodiments of the present invention relate to a thermally conductive sheet and a method for manufacturing a thermally conductive sheet.
 近年電子機器の更なる高性能化に伴って、半導体素子の高密度化、高実装化が進んでいる。これに伴って、電子機器を構成する電子部品から発熱する熱をさらに効率よく放熱することが重要になっている。 In recent years, as electronic devices have become more sophisticated, semiconductor devices have become more dense and highly mounted. Along with this, it has become important to more efficiently dissipate the heat generated from the electronic components that make up the electronic equipment.
 半導体素子は、効率よく放熱させるために、熱伝導性シートを介して放熱ファン、放熱板等のヒートシンクに取り付けられている。熱伝導性シートとしては、シリコーンに無機フィラー等の充填材を分散含有させたものが広く使用されている。 In order to efficiently dissipate heat, the semiconductor element is attached to a heat sink such as a heat dissipation fan or a heat dissipation plate via a thermally conductive sheet. As a thermally conductive sheet, a material in which a filler such as an inorganic filler is dispersed in silicone is widely used.
 このような放熱部材においては、更なる熱伝導率の向上が要求されており、一般には、高熱伝導性を目的として、マトリックス内に配合されている無機フィラーの充填率を高めることにより対応している。 In such heat dissipating members, there is a demand for further improvement in thermal conductivity. there is
 しかし、無機フィラーの充填率を高めると、柔軟性が損なわれたり、粉落ちが発生したりするおそれがある。このため、無機フィラーの充填率を高めることには限界がある。 However, if the filling rate of the inorganic filler is increased, there is a risk that the flexibility will be impaired or that powder will fall off. Therefore, there is a limit to increasing the filling rate of the inorganic filler.
 無機フィラーとしては、例えば、アルミナ、窒化アルミニウム、水酸化アルミニウム等が挙げられる。また、高熱伝導率を目的として、窒化ホウ素、黒鉛等の鱗片状粒子、炭素繊維等をマトリックス内に充填させることがある。これは、鱗片状粒子等の有する熱伝導率の異方性によるものである。 Examples of inorganic fillers include alumina, aluminum nitride, and aluminum hydroxide. For the purpose of high thermal conductivity, the matrix may be filled with scaly particles such as boron nitride or graphite, carbon fibers, or the like. This is due to the anisotropy of the thermal conductivity of the scaly particles and the like.
 例えば、炭素繊維の場合には、繊維方向に約600~1200W/mKの熱伝導率を有する。窒化ホウ素の場合には、面方向に約110W/mK、面方向に対して垂直な方向に約2W/mK程度の熱伝導率を有しており、異方性を有することが知られている。
 このように炭素繊維、鱗片状粒子の面方向を熱の伝達方向であるシートの厚み方向と同じにする。即ち、炭素繊維、鱗片状粒子をシートの厚み方向に配向させることによって、熱伝導を飛躍的に向上させることができる。
For example, carbon fibers have a thermal conductivity of about 600-1200 W/mK in the fiber direction. Boron nitride has a thermal conductivity of about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction, and is known to have anisotropy. .
In this manner, the surface direction of the carbon fibers and scale-like particles is made the same as the thickness direction of the sheet, which is the direction of heat transfer. That is, by orienting the carbon fibers and the scale-like particles in the thickness direction of the sheet, it is possible to dramatically improve the heat conduction.
 また、特許文献1には、繊維状フィラーを含む組成物のブロックからスライスして得たシートをプレス処理することで繊維状フィラー同士の接触が促進されることにより熱伝導性が改善されることが記載されている。
 そしてプレス処理の結果、シート表面の平滑性が改善され、発熱体や放熱体との密着性が良くなる旨が記載されている。
Further, in Patent Document 1, a sheet obtained by slicing a block of a composition containing a fibrous filler is pressed to promote contact between the fibrous fillers, thereby improving thermal conductivity. is described.
Further, it is described that as a result of the press treatment, the smoothness of the sheet surface is improved, and the adhesion to the heating element and the heat radiating element is improved.
特許第5541401号公報Japanese Patent No. 5541401
 ところで、プレス技術を駆使することで放熱体との密着性が向上しフィラー同士の接触が促進される一方で、内部が密になっているプレス後のシートを更に圧縮するにはより大きな圧力を要するという課題があった。
 本発明は、上記に鑑みてなされたものであり、簡易な工程で、低残留応力でありながらクリープ量が少なく、低熱抵抗値でタック性を有する熱伝導性シートを得ることを目的としている。
By the way, using press technology improves the adhesion to the radiator and promotes the contact between the fillers, but at the same time, it requires greater pressure to further compress the pressed sheet, which has a dense interior. There was a problem of needing
The present invention has been made in view of the above, and it is an object of the present invention to obtain a thermally conductive sheet with a low residual stress, a small amount of creep, a low thermal resistance value, and tackiness by a simple process.
 上記課題を解決するため、実施形態の熱伝導性シートは、炭素繊維と、無機フィラーとして窒化アルミニウム、酸化アルミニウム及び水酸化アルミニウムのうち少なくともいずれかと、を含む熱伝導フィラーと、体積割合が30~45%の2液付加反応型シリコーンと、を含む。 In order to solve the above problems, the thermally conductive sheet of the embodiment includes a thermally conductive filler containing carbon fiber and at least one of aluminum nitride, aluminum oxide and aluminum hydroxide as an inorganic filler, and a volume ratio of 30 to 45% two-part addition-cure silicone.
 実施形態の熱伝導性シートによれば、低残留応力でありながらクリープ量が少なく、低熱抵抗値でタック性を有する熱伝導性シートが得られる。 According to the thermally conductive sheet of the embodiment, it is possible to obtain a thermally conductive sheet that has a low residual stress, a small amount of creep, a low thermal resistance value, and tackiness.
図1は、実施形態の熱伝導性シートの製造フローチャートである。FIG. 1 is a manufacturing flow chart of the thermally conductive sheet of the embodiment. 図2は、実施例の効果の説明図である。FIG. 2 is an explanatory diagram of the effect of the embodiment.
 以下、本技術が適用された熱伝導性シートの製造方法について、図面を参照しながら詳細に説明する。なお、本技術は、以下の実施形態のみに限定されるものではなく、本技術の要旨を逸脱しない範囲内において種々の変更が可能であることは勿論である。また、図面は模式的なものであり、各寸法の比率等は現実のものとは異なることがある。具体的な寸法等は以下の説明を参酌して判断すべきものである。また、図面相互間においても互いの寸法の関係や比率が異なる部分が含まれていることは勿論である。 A method for manufacturing a thermally conductive sheet to which this technology is applied will be described in detail below with reference to the drawings. In addition, the present technology is not limited to the following embodiments, and various modifications are possible without departing from the gist of the present technology. Also, the drawings are schematic, and the ratio of each dimension may differ from the actual one. Specific dimensions and the like should be determined with reference to the following description. In addition, it goes without saying that there are portions with different dimensional relationships and ratios between the drawings.
 まず実施形態の熱伝導性シートについて説明する。
 実施形態の熱伝導性シートは、熱伝導フィラーとして、体積割合が55~70%であり、炭素繊維、窒化アルミニウム、酸化アルミニウム、水酸化アルミニウムのうち、少なくともいずれかを含んでいる。
 さらに熱伝導性シートは、体積割合が30~45%の高分子マトリックス成分としての2液付加反応型シリコーンを含んでいる。
First, the thermally conductive sheet of the embodiment will be described.
The thermally conductive sheet of the embodiment contains at least one of carbon fiber, aluminum nitride, aluminum oxide, and aluminum hydroxide in a volume ratio of 55 to 70% as a thermally conductive filler.
Furthermore, the thermally conductive sheet contains 30 to 45% by volume of a two-liquid addition reaction type silicone as a polymer matrix component.
 図1は、実施形態の熱伝導性シートの製造フローチャートである。
 まず、所定比率で所定量の2液性の付加反応型液状シリコーン樹脂を混合し調製する(ステップS11)。
FIG. 1 is a manufacturing flow chart of the thermally conductive sheet of the embodiment.
First, a predetermined amount of two-liquid addition reaction type liquid silicone resin is mixed at a predetermined ratio to prepare (step S11).
 ここで、高分子マトリックス成分として、2液性の付加反応型液状シリコーン樹脂を用いている理由について説明する。
 高分子マトリックス成分としては、熱硬化性ポリマーが用いられているが、熱硬化性ポリマーの中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーン樹脂を用いることが好ましい。
 シリコーン樹脂としては、様々な種類があるが、高分子マトリックス成分として2液性の付加反応型液状シリコーン樹脂をもちいている理由は、シリコーン樹脂の中でも、電子機器の放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるからである。
 このためのシリコーン樹脂としては、付加反応型液状シリコーン樹脂が特に好ましいからである。
Here, the reason for using a two-liquid addition reaction type liquid silicone resin as the polymer matrix component will be explained.
Thermosetting polymers are used as the polymer matrix component. Among thermosetting polymers, silicone resins are preferred because of their excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts. It is preferable to use
There are various types of silicone resins, but the reason for using a two-liquid addition reaction type liquid silicone resin as a polymer matrix component is that, among silicone resins, it is used as a heat dissipation member for electronic devices. This is because adhesion between the heat generating surface and the heat sink surface is required.
This is because an addition reaction type liquid silicone resin is particularly preferable as the silicone resin for this purpose.
 ここで、液状シリコーン成分は、主剤となるシリコーンA液成分と硬化剤が含まれるシリコーンB液成分を有し、シリコーンA液成分とシリコーンB液成分とが所定の割合で配合されている。
 これと並行して、一又は複数の熱伝導性フィラーの調製を行う(ステップS12)。
Here, the liquid silicone component has a silicone A liquid component as a main agent and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are blended in a predetermined ratio.
In parallel with this, one or more thermally conductive fillers are prepared (step S12).
 この場合において、熱伝導性フィラーとしては、表面処理が施されたものを用いることができる。この表面処理としてカップリング剤で熱伝導性フィラーを処理すると、熱伝導性フィラーの分散性が向上し、ひいては、熱伝導性シートの柔軟性が向上する。 In this case, a surface-treated filler can be used as the thermally conductive filler. When the thermally conductive filler is treated with a coupling agent as this surface treatment, the dispersibility of the thermally conductive filler is improved, and the flexibility of the thermally conductive sheet is improved.
 ここで、熱伝導性フィラーとしては、炭素繊維、窒化アルミニウム、酸化アルミニウム、水酸化アルミニウムの少なくともいずれかが用いられる。
 続いて2液性の付加反応型液状シリコーン樹脂に調製した熱伝導性フィラーを添加して分散させ、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製する(ステップS13)。
At least one of carbon fiber, aluminum nitride, aluminum oxide, and aluminum hydroxide is used as the thermally conductive filler.
Subsequently, the prepared thermally conductive filler is added to and dispersed in the two-liquid addition reaction type liquid silicone resin to prepare a silicone resin composition (thermally conductive resin composition) (step S13).
 次に、得られたシリコーン樹脂組成物を、内壁に剥離処理した金型の中に押し出してシリコーン成型体を作成する(ステップS14)。 Next, the obtained silicone resin composition is extruded into a mold whose inner wall is release-treated to create a silicone molded body (step S14).
 得られたシリコーン成型体を所定温度で所定時間加熱処理し、シリコーン硬化物とする(ステップS15)。
 続いて、得られたシリコーン硬化物を超音波カッターでスライス(切断)し、所定厚さ(例えば、0.33mm)の成型体シートを得る(ステップS16)。
The obtained silicone molding is heat-treated at a predetermined temperature for a predetermined time to obtain a cured silicone product (step S15).
Subsequently, the obtained silicone cured product is sliced (cut) with an ultrasonic cutter to obtain a molded sheet having a predetermined thickness (for example, 0.33 mm) (step S16).
 さらに得られた成型体シートを剥離処理PETフィルムで挟んだ後、所定厚さのスペーサを入れて所定圧力で所定時間プレス処理することにより所望の厚さ(例えば、厚さ0.30mm)の熱伝導性シートを得た(ステップS17)。 Furthermore, after sandwiching the resulting molded sheet with release-treated PET films, a spacer of a predetermined thickness is inserted and press-treated at a predetermined pressure for a predetermined time to obtain a desired thickness (for example, a thickness of 0.30 mm). A conductive sheet was obtained (step S17).
 熱伝導性シートは、炭素繊維と無機フィラーとバインダからなる混合物を成形し、スライスすることによって得た炭素繊維をシートの厚み方向に配向させている。
 得られた熱伝導性シートによれば、実効熱伝導率は、10W/m・K以上であった。
 さらに厚みが0.35mm以下の熱伝導性シートを2.81kgf/cmで加圧した際の熱抵抗が0.20℃・cm/W以下であり、また、シートを初期厚みから50%圧縮した時の残留応力が276kPa以下であった。
The thermally conductive sheet is obtained by slicing a mixture of carbon fibers, an inorganic filler, and a binder, and orienting the carbon fibers in the thickness direction of the sheet.
According to the obtained thermally conductive sheet, the effective thermal conductivity was 10 W/m·K or more.
Furthermore, the heat resistance when a thermally conductive sheet having a thickness of 0.35 mm or less is pressed at 2.81 kgf/cm 2 is 0.20° C. cm 2 /W or less, and the sheet is 50% thicker than the initial thickness. The residual stress when compressed was 276 kPa or less.
 さらに加えて100kPaで1000時間加圧した際にシート面内のx、y方向の変形率が15%以下であった。 In addition, when pressurized at 100 kPa for 1000 hours, the deformation rate in the x and y directions within the sheet surface was 15% or less.
 プレスした熱伝導性シートを5.1mmΦのプローブで2mm/秒で200gfで押し付けた後、10mm/秒で引き剥がした際のタック力が80gf以上であった。 After pressing the pressed thermally conductive sheet with a 5.1 mmφ probe at 2 mm/sec at 200 gf, the tack force was 80 gf or more when peeled off at 10 mm/sec.
 以上の説明のように、本実施形態の熱伝導性シートによれば、低残留応力でありながらクリープ量が少なく、高柔軟性及び高弾性を併せ持っていることがわかる。
 さらに低熱抵抗であり、タック性も有していた。
As described above, according to the thermally conductive sheet of the present embodiment, the residual stress is low, the amount of creep is small, and it has both high flexibility and high elasticity.
Furthermore, it had low heat resistance and had tackiness.
 これらの結果、本実施形態の熱伝導性シートによれば、低残留応力の性質により圧力をかかってもIC等の発熱体を損傷するリスクが低減されることがわかる。 From these results, it can be seen that the thermally conductive sheet of the present embodiment reduces the risk of damaging a heating element such as an IC even when pressure is applied due to the property of low residual stress.
 また、本実施形態の熱伝導性シートは、クリープ量が少ないため、クリープにより生じうる回路の短絡を防ぐことができる。
 更にタック性を有しているため、実装時の位置ずれを防ぐことが可能な熱伝導性シートとなっており、被着体との密着性も高くなる。
 この密着性の高さにより、厚さ0.3mmほどの薄いシートで0.20℃・cm/W以下という低熱抵抗を達成できた。
In addition, since the thermally conductive sheet of the present embodiment has a small amount of creep, it is possible to prevent short circuits that may occur due to creep.
Furthermore, since it has tackiness, it becomes a thermally conductive sheet capable of preventing misalignment during mounting, and the adhesiveness to the adherend increases.
Due to this high adhesiveness, a low thermal resistance of 0.20° C.·cm 2 /W or less could be achieved with a sheet as thin as 0.3 mm.
 次に具体的な実施例と比較例について説明する。
[1]実施例[1.1]第1実施例
 まず、第1実施例の熱伝導性シートの製造について説明する。
 第1実施例では、2液性の付加反応型液状シリコーン樹脂36体積%を調整した。
Next, specific examples and comparative examples will be described.
[1] Examples [1.1] First Example First, the production of the thermally conductive sheet of the first example will be described.
In Example 1, 36% by volume of a two-liquid addition reaction type liquid silicone resin was prepared.
 ここで、2液性の付加反応型液状シリコーン樹脂は、シリコーンA液を20体積%、シリコーンB液を16体積%の比率で混合したものである。 Here, the two-liquid addition reaction type liquid silicone resin is a mixture of 20% by volume of silicone A liquid and 16% by volume of silicone B liquid.
 これと並行して、熱伝導性フィラーとして、カップリング剤0.1体積%でカップリング処理した体積平均粒子径15μmの酸化アルミニウム粒子(熱伝導性粒子、電気化学工業株式会社製)5体積%と、カップリング剤0.9体積%でカップリング処理した体積平均粒子径1μmの窒化アルミニウム粒子(熱伝導性粒子、株式会社トクヤマ製)33体積%と、ピッチ系炭素繊維(熱伝導性繊維、平均繊維長120μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)25体積%となるように調製した。 In parallel with this, as a thermally conductive filler, 5% by volume of aluminum oxide particles (thermally conductive particles, manufactured by Denki Kagaku Kogyo Co., Ltd.) having a volume average particle size of 15 μm and having been subjected to coupling treatment with 0.1% by volume of a coupling agent. And, 33% by volume of aluminum nitride particles (thermally conductive particles, manufactured by Tokuyama Co., Ltd.) having a volume average particle size of 1 μm that are coupled with 0.9% by volume of a coupling agent, and pitch-based carbon fibers (thermally conductive fibers, Average fiber length 120 μm, average fiber diameter 9 μm, manufactured by Nippon Graphite Fiber Co., Ltd.) was adjusted to 25% by volume.
 続いて付加反応型液状シリコーン樹脂に熱伝導性フィラーを混合し、分散させて、シリコーン樹脂組成物(熱伝導性樹脂組成物)を調製した。 Subsequently, a thermally conductive filler was mixed with the addition reaction type liquid silicone resin and dispersed to prepare a silicone resin composition (thermally conductive resin composition).
 次に、得られたシリコーン樹脂組成物を、内壁に剥離処理したポリエチレンテレフタレート(PET)フィルムを貼った直方体状の金型(50mm×50mm)の中に押し出してシリコーン成型体を成型した。 Next, the obtained silicone resin composition was extruded into a rectangular parallelepiped mold (50 mm x 50 mm) with a release-treated polyethylene terephthalate (PET) film attached to the inner wall to mold a silicone molded body.
 得られたシリコーン成型体をオーブンにて、100℃で6時間硬化してシリコーン硬化物とした。 The resulting silicone molded product was cured in an oven at 100°C for 6 hours to obtain a silicone cured product.
 続いて得られたシリコーン硬化物を超音波カッターで切断し、厚み0.33mmの成型体シートを得た。超音波カッターのスライス速度は、毎秒50mmとした。このとき、超音波カッターに付与する超音波振動は、発振周波数を20.5kHzとし、振幅を60μmとした。 Then, the cured silicone product obtained was cut with an ultrasonic cutter to obtain a molded sheet with a thickness of 0.33 mm. The slicing speed of the ultrasonic cutter was 50 mm per second. At this time, the ultrasonic vibration applied to the ultrasonic cutter had an oscillation frequency of 20.5 kHz and an amplitude of 60 μm.
 得られた成型体シートを剥離処理PETフィルムで挟んだ後、厚さ0.3mmのスペーサを入れてプレス処理することにより、厚さ0.30mmの熱伝導性シートを得た。プレス条件は0.5MPaの条件で、30秒とした。
 本第1実施例によれば、合計フィラー含有率63[体積%]、平均シート厚み0.29[mm]、熱抵抗値=0.181[℃・cm2/W]、タック力83[gf]、x方向の変形率11[%]、y方向の変形率11%の熱伝導性シートが得られた。
After sandwiching the resulting molded sheet between release-treated PET films, a 0.30 mm thick heat conductive sheet was obtained by inserting a 0.3 mm thick spacer and pressing. The pressing conditions were 0.5 MPa and 30 seconds.
According to the first embodiment, the total filler content is 63 [volume %], the average sheet thickness is 0.29 [mm], the thermal resistance value is 0.181 [°C cm / W], and the tack force is 83 [gf]. , a thermally conductive sheet having a deformation rate of 11% in the x direction and a deformation rate of 11% in the y direction was obtained.
[1.2]第2実施例
 次に第2実施例について説明する。
 まず、第2実施例の熱伝導性シートの製造について説明する。
 本第2実施例が第1実施例と異なる点は、まず、2液性の付加反応型液状シリコーン樹脂31体積%に、カップリング剤0.4体積%でカップリング処理した体積平均粒子径1μmの酸化アルミニウム粒子(熱伝導性粒子:日本軽金属株式会社製)10体積%および体積平均粒子径4μmの酸化アルミニウム粒子(熱伝導性粒子:電気化学工業株式会社製)8体積%と、カップリング剤0.6体積%でカップリング処理した体積平均粒子径1μmの窒化アルミニウム粒子(熱伝導性粒子、株式会社トクヤマ製)25体積%と、ピッチ系炭素繊維(熱伝導性繊維、平均繊維長120μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)25体積%とを分散させて、調製したシリコーン樹脂組成物(熱伝導性樹脂組成物)を用いた以外は、第1実施例と同様にして、第2実施例の熱伝導性シートを得た。
[1.2] Second Example Next, a second example will be described.
First, the manufacture of the thermally conductive sheet of the second embodiment will be described.
The second embodiment differs from the first embodiment in that, first, 31% by volume of a two-liquid addition reaction type liquid silicone resin is coupled with 0.4% by volume of a coupling agent, and a volume average particle diameter of 1 μm is obtained. 10% by volume of aluminum oxide particles (thermally conductive particles: manufactured by Nippon Light Metal Co., Ltd.) and 8% by volume of aluminum oxide particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) with a volume average particle size of 4 μm, and a coupling agent 25% by volume of aluminum nitride particles (thermally conductive particles, manufactured by Tokuyama Co., Ltd.) having a volume average particle size of 1 μm, which are coupled at 0.6% by volume, and pitch-based carbon fibers (thermally conductive fibers, average fiber length of 120 μm, In the same manner as in Example 1, except that a silicone resin composition (thermally conductive resin composition) prepared by dispersing 25% by volume of an average fiber diameter of 9 μm (manufactured by Nippon Graphite Fiber Co., Ltd.) was used. A thermally conductive sheet of the second example was obtained.
 なお、2液性の付加反応型液状シリコーン樹脂は、シリコーンA液を16体積%、シリコーンB液を15体積%の比率で混合したものである。 The two-liquid addition reaction type liquid silicone resin is a mixture of 16% by volume of silicone A and 15% by volume of silicone B.
[1.3]第3実施例
 次に第3実施例について説明する。
 -熱伝導性シートの作製-第1実施例において、2液性の付加反応型液状シリコーン樹脂30体積%に、カップリング剤0.5体積%でカップリング処理した体積平均粒子径1μmの酸化アルミニウム粒子(熱伝導性粒子:電気化学工業株式会社製)20体積%と、カップリング剤0.5体積%でカップリング処理した体積平均粒子径1μmの窒化アルミニウム粒子(熱伝導性粒子、株式会社トクヤマ製)24体積%と、ピッチ系炭素繊維(熱伝導性繊維、平均繊維長120μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)25体積%とを分散させて、調製したシリコーン樹脂組成物(熱伝導性樹脂組成物)を用いた以外は、第1実施例と同様にして、第3実施例の熱伝導性シートを得た。
 なお、2液性の付加反応型液状シリコーン樹脂は、シリコーンA液を16体積%、シリコーンB液を14体積%の比率で混合したものである。
[1.3] Third Example Next, a third example will be described.
-Preparation of Thermally Conductive Sheet- In Example 1, aluminum oxide having a volume average particle diameter of 1 μm was obtained by coupling 30% by volume of a two-liquid addition reaction type liquid silicone resin with 0.5% by volume of a coupling agent. 20% by volume of particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) and aluminum nitride particles with a volume average particle diameter of 1 μm (thermally conductive particles, Tokuyama Corporation) that are coupled with 0.5% by volume of a coupling agent. A silicone resin composition ( A thermally conductive sheet of Example 3 was obtained in the same manner as in Example 1, except that the thermally conductive resin composition) was used.
The two-liquid addition reaction type liquid silicone resin is a mixture of 16% by volume of silicone A and 14% by volume of silicone B.
[1.4]第1比較例
 次に第1比較例について説明する。
 -熱伝導性シートの作製-第1実施例において、2液性の付加反応型液状シリコーン樹脂49体積%に、カップリング処理していない体積平均粒子径1μmの酸化アルミニウム粒子(熱伝導性粒子:電気化学工業株式会社製)31体積%と、ピッチ系炭素繊維(熱伝導性繊維、平均繊維長120μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)20体積%とを分散させて、調製したシリコーン樹脂組成物(熱伝導性樹脂組成物)を用いた以外は、第1実施例と同様にして、第1比較例の熱伝導性シートを得た。
 なお、2液性の付加反応型液状シリコーン樹脂は、シリコーンA液を26体積%、シリコーンB液を23体積%の比率で混合したものである。
[1.4] First Comparative Example Next, a first comparative example will be described.
-Preparation of Thermally Conductive Sheet- In Example 1, 49% by volume of a two-liquid addition reaction type liquid silicone resin was added to aluminum oxide particles (thermally conductive particles: Denki Kagaku Kogyo Co., Ltd.) 31% by volume and pitch-based carbon fiber (thermal conductive fiber, average fiber length 120 μm, average fiber diameter 9 μm, Nippon Graphite Fiber Co., Ltd.) 20% by volume were dispersed. A thermally conductive sheet of Comparative Example 1 was obtained in the same manner as in Example 1, except that a silicone resin composition (thermally conductive resin composition) was used.
The two-liquid addition reaction type liquid silicone resin is a mixture of 26% by volume of silicone A and 23% by volume of silicone B.
[1.5]第2比較例
 次に第2比較例について説明する。
 -熱伝導性シートの作製-第1実施例において、2液性の付加反応型液状シリコーン樹脂28体積%に、カップリング剤0.5体積%でカップリング処理した体積平均粒子径1μmの酸化アルミニウム粒子(熱伝導性粒子:電気化学工業株式会社製)22体積%と、カップリング剤0.5体積%でカップリング処理した体積平均粒子径1μmの窒化アルミニウム粒子(熱伝導性粒子、株式会社トクヤマ製)25体積%と、ピッチ系炭素繊維(熱伝導性繊維、平均繊維長120μm、平均繊維径9μm、日本グラファイトファイバー株式会社製)24体積%とを分散させて、調製したシリコーン樹脂組成物(熱伝導性樹脂組成物)を用いた以外は、第1実施例と同様にして、第1比較例の熱伝導性シートを得た。
 なお、2液性の付加反応型液状シリコーン樹脂は、シリコーンA液を14体積%、シリコーンB液を14体積%の比率で混合したものである。
[1.5] Second Comparative Example Next, a second comparative example will be described.
-Preparation of Thermally Conductive Sheet- In Example 1, aluminum oxide having a volume average particle diameter of 1 μm was obtained by coupling 28% by volume of a two-liquid addition reaction type liquid silicone resin with 0.5% by volume of a coupling agent. 22% by volume of particles (thermally conductive particles: manufactured by Denki Kagaku Kogyo Co., Ltd.) and aluminum nitride particles with a volume average particle diameter of 1 μm that are coupled with 0.5% by volume of a coupling agent (thermally conductive particles, Tokuyama Corporation) A silicone resin composition ( A thermally conductive sheet of the first comparative example was obtained in the same manner as in the first example except that the thermally conductive resin composition) was used.
The two-liquid addition reaction type liquid silicone resin is a mixture of 14% by volume of silicone A and 14% by volume of silicone B.
[1.6]実施例の効果
[1.6.1]シート厚さ
 第1実施例~第3実施例の平均シート厚さは、0.29~0.32mmであり、実施例全体では、0.3mmであった。
 一方、第1比較例と第2比較例の平均シート厚さはそれぞれ0.30mm、0.31mmであり、比較例全体では、0.31mmであった。
[1.6] Effect of Example [1.6.1] Sheet thickness The average sheet thickness of the first to third examples is 0.29 to 0.32 mm, and the overall example is was 0.3 mm.
On the other hand, the average sheet thicknesses of the first comparative example and the second comparative example were 0.30 mm and 0.31 mm, respectively, and the total thickness of the comparative example was 0.31 mm.
[1.6.2]熱抵抗
 第1実施例~第3実施例の熱伝導性シートを2.81kgf/cmで加圧した際のシート熱抵抗値は、0.181~0.189℃・cm/Wであり、厚さ0.3mmほどの薄いシートで0.20℃・cm/W以下という低熱抵抗値を達成していた。
 これらに対し、第1比較例の熱伝導シートの熱抵抗値は0.48・cm/Wと高いものであった。
[1.6.2] Thermal resistance When the thermal conductive sheets of Examples 1 to 3 were pressed at 2.81 kgf/cm 2 , the sheet thermal resistance values were 0.181 to 0.189°C. · cm 2 /W, and a thin sheet with a thickness of about 0.3 mm achieved a low thermal resistance value of 0.20°C·cm 2 /W or less.
On the other hand, the thermal resistance value of the thermally conductive sheet of the first comparative example was as high as 0.48·cm 2 /W.
[1.6.3]熱伝導率
 第1実施例~第3実施例の熱伝導性シートの実効熱伝導率は、14.5~16.3W/m・Kであり、熱伝導性シートとして十分な熱伝導率であった。第1比較例の熱伝導シートの熱伝導率は3.5W/m・Kであり、熱伝導率は低いものであった。
[1.6.3] Thermal conductivity The effective thermal conductivity of the thermally conductive sheets of Examples 1 to 3 is 14.5 to 16.3 W / m K, and the thermal conductivity of the thermally conductive sheet is It had sufficient thermal conductivity. The heat conductive sheet of the first comparative example had a low heat conductivity of 3.5 W/m·K.
[1.6.4]残留応力
 第1実施例~第3実施例の熱伝導性シートを厚さが初期厚みの50%の厚さとなるように圧縮した時の残留応力は、238~269kPaであり、熱伝導性シートとして十分な276kPa以下であった。
 これらに対し、第2比較例の熱伝導シートを厚さが初期厚みの50%の厚さとなるように圧縮した時の残留応力は537kPaと高いものであった。
[1.6.4] Residual stress When the thermally conductive sheets of Examples 1 to 3 were compressed to a thickness of 50% of the initial thickness, the residual stress was 238 to 269 kPa. It was 276 kPa or less, which is sufficient for a thermally conductive sheet.
On the other hand, when the heat conductive sheet of the second comparative example was compressed to a thickness of 50% of the initial thickness, the residual stress was as high as 537 kPa.
[1.6.5]タック力
 第1実施例~第3実施例の熱伝導性シートを5.1mmΦのプローブで2mm/秒で200gfで押し付けた後、10mm/秒で引き剥がした際のタック力は、83~93gfであり、十分なタック性(80gf以上)を有していた。
 これらに対し、第1比較例と第2比較例の熱伝導シートを5.1mmΦのプローブで2mm/秒で200gfで押し付けた後、10mm/秒で引き剥がした際のタック力は、それぞれ49gfと40gfであり、タック力が不足していた。
[1.6.5] Tack force The thermally conductive sheets of Examples 1 to 3 were pressed with a probe of 5.1 mmΦ at 2 mm/sec at 200 gf, and then peeled off at 10 mm/sec. The force was 83 to 93 gf and had sufficient tackiness (80 gf or more).
On the other hand, when the thermally conductive sheets of the first and second comparative examples were pressed with a probe of 5.1 mmΦ at 2 mm/sec at 200 gf and then peeled off at 10 mm/sec, the tack force was 49 gf, respectively. It was 40 gf, and the tack force was insufficient.
[1.6.6]シート変形率
 第1実施例~第3実施例の熱伝導性シートを100kPaで1000時間加圧した際にシート面内のx方向の変形率は、4.8~11%、y方向の変形率は、5.1~11%であり、熱伝導性シートとして十分な15%以下を達成しており、クリープ量が少ないという結果が得られた。
 これらに対し、第1比較例の熱伝導性シートを100kPaで1000時間加圧した際にシート面内のx方向の変形率は30%、y方向の変形率は33%であり、クリープ量が多いという結果が得られた。
[1.6.6] Sheet deformation ratio When the thermally conductive sheets of Examples 1 to 3 were pressed at 100 kPa for 1000 hours, the deformation ratio in the x direction in the sheet plane was 4.8 to 11. %, and the deformation rate in the y direction was 5.1 to 11%, achieving 15% or less, which is sufficient for a thermally conductive sheet, and the result was that the amount of creep was small.
On the other hand, when the thermally conductive sheet of the first comparative example was pressurized at 100 kPa for 1000 hours, the deformation rate in the x direction in the sheet plane was 30%, the deformation rate in the y direction was 33%, and the creep amount was A lot of results were obtained.
[1.6.7]まとめ
 以上の説明のように、各実施例によれば、低残留応力でありながらクリープ量が少ないという高柔軟かつ高弾性を併せ持つ熱伝導性シートであり、低熱抵抗やタックといった性質も有する。低残留応力の性質により圧力をかかってもIC等の発熱体を損傷するリスクが低減される。
[1.6.7] Summary As described above, according to each example, a thermally conductive sheet having both high flexibility and high elasticity, which has low residual stress and a small amount of creep, has low thermal resistance and high elasticity. It also has properties such as tack. Due to the property of low residual stress, the risk of damaging a heating element such as an IC is reduced even when pressure is applied.
 また、クリープにより生じうる回路の短絡を防ぐことが可能な熱伝導性シートとなっている。
 さらに実装時の位置ずれを防ぐタック性を持ち合わせたシートとなっており被着体との密着もよくなる。密着性の高さにより、厚さ0.3mmほどの薄いシートで0.20℃・cm/W以下という低熱抵抗を達成した。
Moreover, it is a thermally conductive sheet that can prevent a short circuit that may occur due to creep.
Furthermore, the sheet has tackiness to prevent misalignment at the time of mounting, and the adhesion to the adherend is improved. Due to the high adhesion, a thin sheet with a thickness of about 0.3 mm achieved a low thermal resistance of 0.20° C.·cm 2 /W or less.

Claims (6)

  1.  体積割合が55~70%であり、炭素繊維と、無機フィラーとして窒化アルミニウム、酸化アルミニウム及び水酸化アルミニウムのうち少なくともいずれかと、を含む熱伝導フィラーと、
     体積割合が30~45%の2液付加反応型シリコーンと、
     を含む熱伝導性シート。
    a thermally conductive filler having a volume ratio of 55 to 70% and containing carbon fiber and at least one of aluminum nitride, aluminum oxide and aluminum hydroxide as an inorganic filler;
    a two-liquid addition reaction silicone having a volume ratio of 30 to 45%;
    A thermally conductive sheet containing.
  2.  熱伝導率が10W/m・K以上である、
     請求項1に記載の熱伝導性シート。
    Thermal conductivity is 10 W / m K or more,
    The thermally conductive sheet according to claim 1.
  3.  厚さ0.35mm以下とした前記熱伝導性シートを、2.81kgf/cmで加圧した際の熱抵抗値が0.20℃・cm/W以下であり、
     初期厚みの50%の厚さとなるように圧縮した時の残留応力が276kPa以下である、
     請求項1に記載の熱伝導性シート。
    The heat conductive sheet having a thickness of 0.35 mm or less has a thermal resistance value of 0.20° C. cm 2 /W or less when pressurized at 2.81 kgf/cm 2 ,
    The residual stress when compressed to a thickness of 50% of the initial thickness is 276 kPa or less.
    The thermally conductive sheet according to claim 1.
  4.  100kPaで1000時間加圧した際にシート面内のx、y方向の変形率が15%以下である、
     請求項1に記載の熱伝導性シート。
    The deformation rate in the x and y directions in the sheet plane is 15% or less when pressurized at 100 kPa for 1000 hours.
    The thermally conductive sheet according to claim 1.
  5.  プレスした熱伝導性シートを5.1mmΦのプローブで2mm/秒で200gfで押し付けた後、10mm/秒で引き剥がした際のタック力が80gf以上である、
     請求項1に記載の熱伝導性シート。
    After pressing the pressed thermally conductive sheet with a probe of 5.1 mmΦ at 200 gf at 2 mm / sec, the tack force when peeling off at 10 mm / sec is 80 gf or more.
    The thermally conductive sheet according to claim 1.
  6.  炭素繊維と、無機フィラーとして窒化アルミニウム、酸化アルミニウム及び水酸化アルミニウムのうち少なくともいずれかと、を含む熱伝導フィラーと、体積割合が30~45%の2液付加反応型シリコーンと、を混合して熱伝導シート組成物を作成する工程と、
     前記熱伝導シート組成物を熱硬化して、ブロック体を成形する工程と、
     前記炭素繊維が熱伝導シートの厚さ方向に配向するように前記ブロック体をスライスして前記熱伝導シートを作成する工程と、
     を備えた熱伝導性シートの製造方法。
    A heat conductive filler containing carbon fiber, at least one of aluminum nitride, aluminum oxide and aluminum hydroxide as an inorganic filler, and a two-liquid addition reaction type silicone having a volume ratio of 30 to 45% are mixed and heated. creating a conductive sheet composition;
    a step of thermosetting the thermally conductive sheet composition to form a block;
    creating the thermally conductive sheet by slicing the block body so that the carbon fibers are oriented in the thickness direction of the thermally conductive sheet;
    A method for producing a thermally conductive sheet comprising
PCT/JP2022/005216 2021-02-19 2022-02-09 Heat conductive sheet and method for manufacturing heat conductive sheet WO2022176748A1 (en)

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2021025446 2021-02-19
JP2021-025446 2021-02-19
JP2022018203A JP2022127596A (en) 2021-02-19 2022-02-08 Thermally conductive sheet and manufacturing method thereof
JP2022-018203 2022-02-08

Publications (1)

Publication Number Publication Date
WO2022176748A1 true WO2022176748A1 (en) 2022-08-25

Family

ID=82931678

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005216 WO2022176748A1 (en) 2021-02-19 2022-02-09 Heat conductive sheet and method for manufacturing heat conductive sheet

Country Status (1)

Country Link
WO (1) WO2022176748A1 (en)

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121388A (en) * 1997-07-02 1999-01-26 Denki Kagaku Kogyo Kk Polymeric material molding and its use
JP2015029071A (en) * 2013-06-27 2015-02-12 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing the same, and semiconductor device
JP2015035580A (en) * 2013-07-10 2015-02-19 デクセリアルズ株式会社 Thermally conductive sheet
JP2015092534A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Silicone heat conduction sheet
JP2017135371A (en) * 2016-01-26 2017-08-03 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member, and semiconductor device
JP2020013872A (en) * 2018-07-18 2020-01-23 デクセリアルズ株式会社 Manufacturing method of heat conductive sheet
JP2021190698A (en) * 2020-05-28 2021-12-13 デクセリアルズ株式会社 Heat conductive sheet, manufacturing method thereof, heat dissipation structure and electronic apparatus

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1121388A (en) * 1997-07-02 1999-01-26 Denki Kagaku Kogyo Kk Polymeric material molding and its use
JP2015029071A (en) * 2013-06-27 2015-02-12 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing the same, and semiconductor device
JP2015035580A (en) * 2013-07-10 2015-02-19 デクセリアルズ株式会社 Thermally conductive sheet
JP2015092534A (en) * 2013-09-30 2015-05-14 積水化学工業株式会社 Silicone heat conduction sheet
JP2017135371A (en) * 2016-01-26 2017-08-03 デクセリアルズ株式会社 Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipation member, and semiconductor device
JP2020013872A (en) * 2018-07-18 2020-01-23 デクセリアルズ株式会社 Manufacturing method of heat conductive sheet
JP2021190698A (en) * 2020-05-28 2021-12-13 デクセリアルズ株式会社 Heat conductive sheet, manufacturing method thereof, heat dissipation structure and electronic apparatus

Similar Documents

Publication Publication Date Title
US10526519B2 (en) Thermally conductive sheet, production method for thermally conductive sheet, heat dissipation member, and semiconductor device
WO2015002084A1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
WO2015002085A1 (en) Method of manufacturing heat conductive sheet, heat conductive sheet, and heat dissipation member
JP6739478B2 (en) Method for manufacturing heat conductive sheet
US20210296207A1 (en) Thermally conductive sheet, method formanufacturing the same, and method for mounting thermally conductive sheet
JP7096723B2 (en) Method for manufacturing a heat conductive sheet
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
WO2020153346A1 (en) Method for producing thermally conductive sheet
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
WO2022176748A1 (en) Heat conductive sheet and method for manufacturing heat conductive sheet
JP2022127596A (en) Thermally conductive sheet and manufacturing method thereof
WO2022044724A1 (en) Thermally conductive sheet and method for manufacturing thermally conductive sheet
WO2022176854A1 (en) Method for manufacturing thermally conductive sheet, and thermally conductive sheet
WO2022176822A1 (en) Method for producing heat dissipation member
JP6862601B1 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
WO2022176823A1 (en) Heat conductive sheet
WO2022168729A1 (en) Thermally conductive sheet laminate and electronic equipment using same
JP2021050350A (en) Thermally conductive sheet, method for producing the same, and method for mounting thermally conductive sheet
US20220089919A1 (en) Thermally conductive sheet and method for producing thermally conductive sheet
WO2021060320A1 (en) Heat-dissipating sheet
JP2006156720A (en) Mounting method of electronic component

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756068

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756068

Country of ref document: EP

Kind code of ref document: A1