WO2022176822A1 - Method for producing heat dissipation member - Google Patents

Method for producing heat dissipation member Download PDF

Info

Publication number
WO2022176822A1
WO2022176822A1 PCT/JP2022/005789 JP2022005789W WO2022176822A1 WO 2022176822 A1 WO2022176822 A1 WO 2022176822A1 JP 2022005789 W JP2022005789 W JP 2022005789W WO 2022176822 A1 WO2022176822 A1 WO 2022176822A1
Authority
WO
WIPO (PCT)
Prior art keywords
adherend
thermally conductive
manufacturing
conductive composition
green sheet
Prior art date
Application number
PCT/JP2022/005789
Other languages
French (fr)
Japanese (ja)
Inventor
佑介 久保
慶輔 荒巻
勇磨 佐藤
Original Assignee
デクセリアルズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by デクセリアルズ株式会社 filed Critical デクセリアルズ株式会社
Publication of WO2022176822A1 publication Critical patent/WO2022176822A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K3/00Use of inorganic substances as compounding ingredients
    • C08K3/01Use of inorganic substances as compounding ingredients characterized by their specific function
    • C08K3/013Fillers, pigments or reinforcing additives
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K7/00Use of ingredients characterised by shape
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating

Definitions

  • the present invention relates to a method for manufacturing a heat radiating member.
  • Electronic devices are equipped with heat-dissipating members that dissipate heat from electronic components, and members such as heat sinks that constitute the heat-dissipating members are attached to semiconductors via heat-conducting members in order to efficiently dissipate heat.
  • a thermally conductive member a polymer matrix such as silicone in which a filler such as an inorganic filler is dispersed is widely used.
  • inorganic fillers include alumina, aluminum nitride, and aluminum hydroxide.
  • types of the heat conducting member there are a grease type, a sheet type, a liquid hardening type, and the like.
  • thermal conductivity there is a demand for further improvement in thermal conductivity in such thermally conductive members, and in general, this is achieved by increasing the filling rate of the inorganic filler blended in the matrix for the purpose of increasing the thermal conductivity. is doing.
  • increasing the filling rate of the inorganic filler impairs the flexibility and causes powder to fall off, so there is a limit to increasing the filling rate of the inorganic filler.
  • scale-like particles such as boron nitride and graphite, carbon fibers, etc. may be filled in the polymer matrix. This is due to the anisotropy of thermal conductivity of scale-like particles, carbon fibers, and the like.
  • carbon fibers have a thermal conductivity of about 600 W/mK to about 1200 W/mK in the fiber direction.
  • Boron nitride has a thermal conductivity of about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction.
  • the thermal conductivity can be dramatically improved.
  • Patent Document 1 As a method for producing a thermally conductive sheet having anisotropic thermal conductivity, there is a method of forming a composition containing a matrix and a thermally conductive filler into an uncured green sheet and slicing the laminate of the green sheets. There is (Patent Document 1). There is also a method of slicing a block-shaped object obtained by extruding the composition (Patent Documents 2 and 3).
  • heat-conducting member heat-conducting sheet
  • heat-conducting sheet heat-conducting sheet
  • the present invention has been made in view of the above, and it is an object of the present invention to provide a method of manufacturing a heat dissipating member that can improve mountability while maintaining high thermal conductivity.
  • a method for manufacturing a heat dissipating member according to the present invention provides a thermally conductive composition containing a polymer matrix and an anisotropic filler having anisotropic thermal conductivity. a step of placing the anisotropic filler on a first adherend in a pre-cured state in which the state in which the anisotropic filler is oriented in the thickness direction of the thermally conductive composition is maintained; and mounting the first adherend on the second adherend, and then further curing the thermally conductive composition in the pre-cured state.
  • mountability can be improved while maintaining high thermal conductivity.
  • FIG. 1 is a diagram showing an example of a heat radiating member according to an embodiment.
  • FIG. 2 is a flow chart showing an example of a basic flow of a method for manufacturing a heat radiating member according to the embodiment.
  • FIG. 3 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the first embodiment.
  • FIG. 4 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the second embodiment.
  • FIG. 5 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the third embodiment.
  • FIG. 6 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the fourth embodiment.
  • FIG. 1 is a diagram showing an example of a heat radiating member 1 according to an embodiment.
  • the heat dissipation member 1 is a member for dissipating the heat of the electronic component 10 .
  • the heat dissipation member 1 exemplified here has heat conductive sheets 11A and 11B, a heat spreader 12, and a heat sink 13. As shown in FIG.
  • the thermally conductive sheet 11A is sandwiched between the electronic component 10 and the heat spreader 12, and the thermally conductive sheet 11B is sandwiched between the heat spreader 12 and the heat sink 13.
  • FIG. 1 is a diagram showing an example of a heat radiating member 1 according to an embodiment.
  • the heat dissipation member 1 is a member for dissipating the heat of the electronic component 10 .
  • the heat dissipation member 1 exemplified here has heat conductive sheets 11A and 11B, a heat spreader 12, and a heat sink 13. As shown in FIG.
  • the electronic component 10 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include CPU, MPU, graphic processing elements, various semiconductor elements such as image sensors, antenna elements, batteries, and the like.
  • the heat spreader 12 is not particularly limited as long as it is a member capable of conducting (dissipating) heat from the electronic component 10, and can be appropriately selected according to the purpose.
  • the thermally conductive sheets 11A and 11B have high thermal conductivity in their thickness direction.
  • the thickness direction is a direction (vertical direction in FIG. 1) perpendicular to the bonding surface between the thermally conductive sheets 11A and 11B and the adherend (in this embodiment, the electronic component 10, the heat spreader 12, or the heat sink 13). be.
  • the heat conductive sheets 11A and 11B By using the heat conductive sheets 11A and 11B, the heat dissipation property of the heat dissipation member 1 can be improved.
  • the two thermally conductive sheets 11A and 11B may be referred to as the thermally conductive sheet 11 when there is no need to distinguish between them.
  • the mounting location of the heat conductive sheet 11 is not limited to the above, and can be appropriately selected according to the configuration of the electronic device to be cooled and the heat dissipating member as a whole. Further, in the above, the configuration using the heat spreader 12 and the heat sink 13 as members for promoting heat dissipation is exemplified. , a metal cover, a housing, or the like may be used.
  • the thermally conductive sheet 11 according to the present embodiment is obtained by curing a binder resin containing a polymer matrix and an anisotropic filler having anisotropic thermal conductivity.
  • the polymer matrix is a polymer component that serves as the base material of the thermally conductive sheet 11, and its type is not particularly limited, and known components can be appropriately selected.
  • the polymer matrix includes thermosetting resins, UV-curable resins, and the like.
  • thermosetting resins include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting polyphenylene. Ethers, thermosetting modified polyphenylene ethers, and the like. These may be used individually by 1 type, and may use 2 or more types together. Moreover, a catalyst may be added for adjusting the curing time, the curing temperature, and the like.
  • crosslinked rubber examples include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, and fluororubber. , urethane rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type, and may use 2 or more types together.
  • thermosetting resins it is preferable to use a silicone resin from the viewpoint of excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts.
  • the silicone resin is not particularly limited, and the type of silicone resin can be appropriately selected according to the purpose.
  • the silicone resin is preferably a silicone resin composed of a liquid silicone gel main agent and a curing agent.
  • silicone resins include addition reaction type liquid silicone resins, heat vulcanization type millable type silicone resins using peroxide for vulcanization, and the like.
  • addition reaction type liquid silicone resin is particularly preferable as a heat dissipating member for dissipating heat from an electronic device, since adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
  • addition reaction type liquid silicone resin it is preferable to use a two-liquid addition reaction type silicone resin or the like that uses polyorganosiloxane having a vinyl group as the main agent and polyorganosiloxane having an Si—H group as a curing agent.
  • the liquid silicone component has a silicone A liquid component as a main agent and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are blended in a predetermined ratio.
  • the blending ratio of the silicone A liquid component and the silicone B liquid component can be adjusted as appropriate. It is preferable that the blending ratio is such that the uncured component of the polymer matrix can bleed to the contact surface with the heat spreader 12 or the heat sink 13).
  • UV-curable resins examples include (meth)acrylate resins and unsaturated polyester resins containing photopolymerization initiators, and epoxy resins containing photocationic curing agents. These may be used individually by 1 type, and may use 2 or more types together.
  • the content of the polymer matrix in the heat conductive sheet 11 is not particularly limited and can be appropriately selected according to the purpose. It is preferably about 15% by volume to 50% by volume, more preferably 20% by volume to 45% by volume.
  • the anisotropic filler is a component for improving the thermal conductivity of the thermally conductive sheet 11, and has an anisotropic thermal conductivity.
  • the type of the anisotropic filler is not particularly limited as long as it is a material having high thermal conductivity and anisotropic thermal conductivity. Examples thereof include scaly particles and fibrous particles.
  • scale-like particles examples include boron nitride and graphite. These may be used individually by 1 type, and may use 2 or more types together.
  • the thermal conductivity is high in the surface direction (direction parallel to the bonding surface) and low in the direction perpendicular to the surface direction.
  • the thermal conductivity is about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction.
  • fibrous particles include carbon fibers.
  • carbon fibers for example, pitch-based, PAN-based, graphitized PBO fibers, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), etc. and those synthesized by Among these, carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable because high thermal conductivity can be obtained. These may be used individually by 1 type, and may use 2 or more types together.
  • the carbon fiber can be used by surface-treating part or all of it, if necessary.
  • Surface treatments include, for example, oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching or binding metals, metal compounds, organic compounds, etc. to the surface of functional groups or carbon fibers introduced to the surface by these treatments. and the like.
  • Functional groups include, for example, hydroxyl groups, carboxyl groups, carbonyl groups, nitro groups, amino groups and the like.
  • the average fiber length (average long axis length) of the carbon fibers is not particularly limited and can be appropriately selected. It is preferably in the range of 75 ⁇ m to 275 ⁇ m, and particularly preferably in the range of 90 ⁇ m to 250 ⁇ m.
  • the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and can be selected as appropriate. is preferred, and a range of 5 ⁇ m to 14 ⁇ m is more preferred.
  • the aspect ratio (average major axis length/average minor axis length) of carbon fibers is preferably 8 or more, more preferably 9 to 30, in order to reliably obtain high thermal conductivity. If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fibers is short, and the thermal conductivity may decrease. Since the dispersibility is lowered, there is a possibility that sufficient thermal conductivity cannot be obtained.
  • the thermal conductivity of carbon fibers in the fiber direction is about 600 W/mK to about 1200 W/mK.
  • the surface direction of the scaly particles and the fiber direction of the carbon fibers as described above are made the same as the thickness direction of the heat conductive sheet 11, which is the direction of heat conduction, that is, the scaly particles and carbon fibers are oriented in the thickness direction. As a result, thermal conductivity can be dramatically improved.
  • the thermally conductive sheet 11 may further contain an inorganic filler as a thermally conductive filler.
  • an inorganic filler By containing the inorganic filler, the thermal conductivity of the thermally conductive sheet 11 can be further increased, and the strength of the sheet can be improved.
  • the shape, material, average particle size, etc. of the inorganic filler are not particularly limited, and can be appropriately selected according to the purpose. Examples of the shape include spherical, ellipsoidal, massive, granular, flattened, needle-like, and the like. Among these, a spherical shape and an elliptical shape are preferable from the viewpoint of filling properties, and a spherical shape is particularly preferable.
  • inorganic filler materials include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, metal particles, and the like. is mentioned.
  • aluminum nitride aluminum nitride: AlN
  • silica silica
  • boron nitride titanium oxide
  • titania titanium oxide
  • glass zinc oxide
  • silicon carbide silicon (silicon), silicon oxide, metal particles, and the like.
  • alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and from the viewpoint of thermal conductivity, alumina and aluminum nitride are more preferable.
  • the thermally conductive sheet 11 may contain other components as appropriate depending on the purpose.
  • Other components include, for example, magnetic powders, thixotropic agents, dispersants, curing accelerators, retarders, slight tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants, and the like.
  • electromagnetic wave absorption performance may be imparted to the heat conductive sheet 11 by adjusting the content of the magnetic powder.
  • FIG. 2 is a flow chart showing an example of the basic flow of the method for manufacturing the heat radiating member 1 according to the embodiment.
  • a thermally conductive composition containing a polymer matrix and an anisotropic filler is applied to a first adherend in a pre-cured state in which the anisotropic filler is maintained oriented in the thickness direction of the thermally conductive composition.
  • a thermally conductive composition is a composition that serves as a material for the thermally conductive sheet 11 described above.
  • the first adherend is a member (the electronic component 10, the heat spreader 12, or the heat sink 13 in the configuration example of FIG. 1) to which the heat conductive sheet 11 is adhered.
  • the first adherend on which the temporarily cured thermally conductive composition is placed is mounted on the second adherend (S12).
  • the second adherend is a member adhered to the surface of the thermal conductive sheet 11 opposite to the surface to which the first adherend is adhered.
  • the second adherend of the heat conductive sheet 11A is the electronic component 10 when the first adherend is the heat spreader 12, and the heat spreader 12 when the first adherend is the electronic component 10.
  • the second adherend of the thermal conductive sheet 11B is the heat sink 13 when the first adherend is the heat spreader 12, and the heat spreader 12 when the first adherend is the heat sink 13.
  • the temporarily cured thermal conductive composition is further cured (S13).
  • the thermally conductive composition is mounted on the heat dissipating member 1 in a pre-cured state having appropriate orientation and relatively high flexibility, and is completely cured after mounting. This makes it possible to achieve both orientation and adhesiveness, and improve mountability while maintaining high thermal conductivity.
  • FIG. 3 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the first embodiment.
  • the liquid thermally conductive composition is applied to the first adherend so that the anisotropic filler is oriented in the thickness direction of the thermally conductive composition (S101).
  • a method for realizing the application is not particularly limited, but for example, the application can be achieved using a die head with slits.
  • the thermally conductive composition on the first adherend is pre-cured (S102) to obtain a pre-cured state in which the anisotropic filler is oriented in the thickness direction of the thermally conductive composition.
  • the first adherend on which the temporarily cured thermally conductive composition is placed is mounted on the second adherend (S103).
  • the temporarily cured thermal conductive composition is further cured (S104).
  • the thermally conductive composition is temporarily cured after being applied to the first adherend. This makes it possible to reduce the number of steps and the like.
  • temporary curing may be performed by ultraviolet curing, and curing may be performed by heat curing. Moreover, you may perform both temporary hardening and hardening by thermosetting. In addition, both temporary curing and curing may be performed by ultraviolet curing as long as the ultraviolet light can be sufficiently transmitted.
  • FIG. 4 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the second embodiment.
  • a green sheet having a sheet shape and in a pre-cured state is produced from a liquid thermally conductive composition (S201). After that, the green sheet is placed on the first adherend (S202). After that, the first adherend on which the temporarily cured green sheet is arranged is mounted on the second adherend (S203). After that, the temporarily cured green sheet is further cured (S204).
  • the thermally conductive composition is prepared in advance as a temporarily cured green sheet and placed in an appropriate location.
  • the step of producing the green sheet (the thermally conductive composition in the temporarily cured state) and the step of placing the green sheet on the first adherend can be separated.
  • temporary curing may be performed by ultraviolet curing, and curing may be performed by heat curing. Moreover, you may perform both temporary hardening and hardening by thermosetting. In addition, both temporary curing and curing may be performed by ultraviolet curing as long as the ultraviolet light can be sufficiently transmitted.
  • FIG. 5 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the third embodiment.
  • a liquid thermally conductive composition is extruded to produce an uncured block in which the anisotropic filler is oriented in the extrusion direction (S301).
  • the uncured block is made to have a non-dripping viscosity.
  • a green sheet having a sheet shape and in a pre-cured state is produced from the uncured block (S302). After that, the green sheet is placed on the first adherend (S303). After that, the first adherend on which the temporarily cured green sheet is arranged is mounted on the second adherend (S304). After that, the temporarily cured green sheet is further cured (S305).
  • the green sheet is made from an uncured block made by extrusion and having an anisotropic filler oriented in the direction of extrusion. Thereby, a green sheet can be produced efficiently.
  • temporary curing may be performed by ultraviolet curing, and curing may be performed by heat curing. Moreover, you may perform both temporary hardening and hardening by thermosetting. In addition, both temporary curing and curing may be performed by ultraviolet curing as long as the ultraviolet light can be sufficiently transmitted.
  • FIG. 6 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the fourth embodiment.
  • a liquid thermally conductive composition is extruded to produce an uncured block in which the anisotropic filler is oriented in the extrusion direction (S401).
  • the surface of the uncured block is irradiated with ultraviolet rays (S402).
  • the uncured block is sliced so as to include the surface irradiated with ultraviolet rays, and a green sheet having a sheet shape and in a temporarily cured state is produced (S403).
  • the green sheet is placed on the first adherend (S404).
  • the first adherend on which the temporarily cured green sheet is arranged is mounted on the second adherend (S405).
  • the temporarily cured green sheet is further cured (S406).
  • the green sheet is produced by cutting out the surface portion of the uncured block that has been cured to some extent by UV irradiation. This facilitates the production of green sheets.
  • Table 1 shows the evaluation results regarding the presence or absence of the orientation process, adhesion (adhesiveness), thermal resistance, orientation, reliability, and cost of each sample manufactured as described above.
  • the thermal resistance each value is shown when the compressibility is changed to 10%, 30%, and 50% for thicknesses of 0.5 mm and 1.0 mm, respectively.
  • the compressibility is the ratio of the compression width to the thickness before compression when the heat conductive composition is compressed in the thickness direction.
  • the presence or absence of the orientation process indicates the presence or absence of the process of orienting the anisotropic filler in the thickness direction.
  • the first comparative example and the first example have an orientation process
  • the second comparative example and the third comparative example do not have an orientation process.
  • Adhesion was evaluated based on whether or not the sample cured after being in close contact. Orientation was evaluated based on the thermal resistance of the sheet. Thermal resistance was measured by a method based on ASTM 05470. Reliability was evaluated based on the pump-out phenomenon when a 30% compressed sample was sandwiched between Cu plates and an HS test was performed 1000 times at ⁇ 40° C. to 125° C. (retention time: 30 minutes). Cost was evaluated based on yield.
  • the result was good ( ⁇ ) because it was cured after mounting, and in the first comparative example, the result was bad ( ⁇ ) because it was mounted after curing. In addition, in the second comparative example, the result was poor because it did not cure.
  • the orientation was evaluated based on the thermal resistance of [first comparative example: oriented sheet]. As for the second and third comparative examples, the thermal resistance was much higher than that of the first comparative example, so the result of orientation was poor. In Example 1, the performance was equal to or higher than that of the sheet, so the result of orientation was good.
  • the results were good in the first example, the first comparative example, and the third comparative example because they were cured, and the second comparative example was uncured and the liquid protruded outside, so the result was poor. rice field.
  • the yield was poor because individual pieces were processed from a sheet, resulting in a poor result.
  • heat dissipation member 10... electronic component, 11A, 11B... thermal conductive sheet, 12... heat spreader, 13... heat sink

Abstract

This method for producing a heat dissipation member comprises: a step wherein a thermally conductive composition, which contains a polymer matrix and an anisotropic filler that is anisotropic in terms of thermal conductivity, is arranged on a first adherend in a provisionally cured state where the orientation of the anisotropic filler in the thickness direction of the thermally conductive composition is maintained; a step wherein the first adherend is mounted on a second adherend; and a step wherein the thermally conductive composition in the provisionally cured state is further cured after the mounting of the first adherend on the second adherend.

Description

放熱部材の製造方法Method for manufacturing heat dissipating member
 本発明は、放熱部材の製造方法に関する。 The present invention relates to a method for manufacturing a heat radiating member.
 電子機器の更なる高性能化に伴って、半導体素子等の電子部品の高密度化、高実装化が進んでいる。これに伴って、電子機器を構成する電子部品から発熱する熱をさらに効率よく放熱することが重要になっている。電子機器には、電子部品の熱を放熱させる放熱部材が備えられており、放熱部材を構成するヒートシンク等の部材は、効率よく放熱させるために熱伝導部材を介して半導体に取り付けられている。熱伝導部材としては、シリコーン等の高分子マトリックスに無機フィラー等の充填材を分散含有させたものが広く使用されている。無機フィラーとしては、例えば、アルミナ、窒化アルミニウム、水酸化アルミニウム等が挙げられる。また、熱伝導部材のタイプとして、グリスタイプ、シートタイプ、液状硬化タイプ等がある。このような熱伝導部材においては、更なる熱伝導率の向上が要求されており、一般には、高熱伝導率化を目的として、マトリックス内に配合されている無機フィラーの充填率を高めることにより対応している。しかし、無機フィラーの充填率を高めると、柔軟性が損なわれたり、粉落ちが発生したりするため、無機フィラーの充填率を高めることには限界がある。 As the performance of electronic devices continues to improve, electronic components such as semiconductor elements are becoming more dense and highly mounted. Along with this, it has become important to more efficiently dissipate the heat generated from the electronic components that make up the electronic equipment. Electronic devices are equipped with heat-dissipating members that dissipate heat from electronic components, and members such as heat sinks that constitute the heat-dissipating members are attached to semiconductors via heat-conducting members in order to efficiently dissipate heat. As a thermally conductive member, a polymer matrix such as silicone in which a filler such as an inorganic filler is dispersed is widely used. Examples of inorganic fillers include alumina, aluminum nitride, and aluminum hydroxide. Further, as types of the heat conducting member, there are a grease type, a sheet type, a liquid hardening type, and the like. There is a demand for further improvement in thermal conductivity in such thermally conductive members, and in general, this is achieved by increasing the filling rate of the inorganic filler blended in the matrix for the purpose of increasing the thermal conductivity. is doing. However, increasing the filling rate of the inorganic filler impairs the flexibility and causes powder to fall off, so there is a limit to increasing the filling rate of the inorganic filler.
 また、高熱伝導化を目的として、窒化ホウ素、黒鉛等の鱗片状粒子、炭素繊維等を高分子マトリックス内に充填させることがある。これは、鱗片状粒子、炭素繊維等の有する熱伝導率の異方性によるものである。例えば、炭素繊維の場合には、繊維方向に約600W/mK~約1200W/mK程度の熱伝導率を有する。窒化ホウ素の場合には、面方向に約110W/mK、面方向に対して垂直な方向に約2W/mK程度の熱伝導率を有する。このような炭素繊維の繊維方向や鱗片状粒子の面方向を、熱の伝導方向である熱伝導部材の厚み方向と同じにする、即ち、炭素繊維や鱗片状粒子を厚み方向に配向させることによって、熱伝導性を飛躍的に向上させることができる。 In addition, for the purpose of high thermal conductivity, scale-like particles such as boron nitride and graphite, carbon fibers, etc. may be filled in the polymer matrix. This is due to the anisotropy of thermal conductivity of scale-like particles, carbon fibers, and the like. For example, carbon fibers have a thermal conductivity of about 600 W/mK to about 1200 W/mK in the fiber direction. Boron nitride has a thermal conductivity of about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction. By making the fiber direction of the carbon fiber and the surface direction of the scale-like particles the same as the thickness direction of the heat conductive member, which is the direction of heat conduction, that is, by orienting the carbon fibers and the scale-like particles in the thickness direction , the thermal conductivity can be dramatically improved.
 熱伝導率の異方性を有する熱伝導シートを製造する方法として、マトリックスと熱伝導性フィラーとを含む組成物を未硬化状態のグリーンシートに成形し、グリーンシートの積層体をスライスする方法がある(特許文献1)。また、当該組成物を押出成形して得られたブロック状の物体をスライスする方法がある(特許文献2,3)。 As a method for producing a thermally conductive sheet having anisotropic thermal conductivity, there is a method of forming a composition containing a matrix and a thermally conductive filler into an uncured green sheet and slicing the laminate of the green sheets. There is (Patent Document 1). There is also a method of slicing a block-shaped object obtained by extruding the composition (Patent Documents 2 and 3).
特許第5405890号公報Japanese Patent No. 5405890 特開2009-94110号公報JP-A-2009-94110 特許第6200119号公報Japanese Patent No. 6200119
 上記のような熱伝導部材(熱伝導シート)を放熱部材に実装する際には、適切な配向性の維持と、確実な接着性とが求められる。配向性が崩れると、熱伝導性が低下する。配向性を維持するためには熱伝導部材を硬化させる必要があるが、熱伝導部材の柔軟性が低くなると、熱伝導部材と被着体との接着が困難となる。 When mounting the above-described heat-conducting member (heat-conducting sheet) on a heat-dissipating member, it is necessary to maintain proper orientation and secure adhesion. If the orientation collapses, the thermal conductivity will decrease. In order to maintain the orientation, it is necessary to harden the heat-conducting member.
 本発明は、上記に鑑みてなされたものであって、高い熱伝導性を維持しつつ実装性を向上させることができる放熱部材の製造方法を提供することを目的とする。 The present invention has been made in view of the above, and it is an object of the present invention to provide a method of manufacturing a heat dissipating member that can improve mountability while maintaining high thermal conductivity.
 上述した課題を解決し、目的を達成するために、本発明に係る放熱部材の製造方法は、高分子マトリックスと熱伝導率に異方性を有する異方性充填剤とを含む熱伝導組成物を、前記異方性充填剤が前記熱伝導組成物の厚み方向に配向した状態が維持される仮硬化状態で第1被着体に配置する工程と、前記第1被着体を第2被着体に実装する工程と、前記第1被着体を前記第2被着体に実装した後、前記仮硬化状態の前記熱伝導組成物を更に硬化させる工程と、を含むものである。 In order to solve the above-described problems and achieve the object, a method for manufacturing a heat dissipating member according to the present invention provides a thermally conductive composition containing a polymer matrix and an anisotropic filler having anisotropic thermal conductivity. a step of placing the anisotropic filler on a first adherend in a pre-cured state in which the state in which the anisotropic filler is oriented in the thickness direction of the thermally conductive composition is maintained; and mounting the first adherend on the second adherend, and then further curing the thermally conductive composition in the pre-cured state.
 本発明によれば、高い熱伝導性を維持しつつ実装性を向上させることができる。 According to the present invention, mountability can be improved while maintaining high thermal conductivity.
図1は、実施形態に係る放熱部材の一例を示す図である。FIG. 1 is a diagram showing an example of a heat radiating member according to an embodiment. 図2は、実施形態に係る放熱部材の製造方法の基本的な流れの一例を示すフローチャートである。FIG. 2 is a flow chart showing an example of a basic flow of a method for manufacturing a heat radiating member according to the embodiment. 図3は、第1実施例に係る放熱部材の製造方法の流れを示すフローチャートである。FIG. 3 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the first embodiment. 図4は、第2実施例に係る放熱部材の製造方法の流れを示すフローチャートである。FIG. 4 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the second embodiment. 図5は、第3実施例に係る放熱部材の製造方法の流れを示すフローチャートである。FIG. 5 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the third embodiment. 図6は、第4実施例に係る放熱部材の製造方法の流れを示すフローチャートである。FIG. 6 is a flow chart showing the flow of the manufacturing method of the heat radiating member according to the fourth embodiment.
 以下、添付図面を参照しながら、本発明の実施形態を詳細に説明する。なお、以下に説明する実施形態により本発明が限定されるものではない。また、図面の記載において、同一又は対応する要素には適宜同一の符号を付している。さらに、図面は模式的なものであり、各要素の寸法の関係等は、現実のものとは異なる場合があることに留意する必要がある。図面の相互間においても、互いの寸法の関係や比率が異なる部分が含まれている場合がある。 Hereinafter, embodiments of the present invention will be described in detail with reference to the accompanying drawings. In addition, this invention is not limited by embodiment described below. Moreover, in the description of the drawings, the same or corresponding elements are given the same reference numerals as appropriate. Furthermore, it should be noted that the drawings are schematic, and the dimensional relationship of each element may differ from the actual one. Even between the drawings, there are cases where portions with different dimensional relationships and ratios are included.
 [放熱部材の構成例]
 図1は、実施形態に係る放熱部材1の一例を示す図である。放熱部材1は、電子部品10の熱を放熱させるための部材である。ここで例示する放熱部材1は、熱伝導シート11A,11B、ヒートスプレッダ12、及びヒートシンク13を有する。熱伝導シート11Aは、電子部品10とヒートスプレッダ12との間に挟持され、熱伝導シート11Bは、ヒートスプレッダ12とヒートシンク13との間に挟持されている。
[Configuration example of heat dissipation member]
FIG. 1 is a diagram showing an example of a heat radiating member 1 according to an embodiment. The heat dissipation member 1 is a member for dissipating the heat of the electronic component 10 . The heat dissipation member 1 exemplified here has heat conductive sheets 11A and 11B, a heat spreader 12, and a heat sink 13. As shown in FIG. The thermally conductive sheet 11A is sandwiched between the electronic component 10 and the heat spreader 12, and the thermally conductive sheet 11B is sandwiched between the heat spreader 12 and the heat sink 13. As shown in FIG.
 電子部品10としては、特に制限はなく、目的に応じて適宜選択することができ、例えば、CPU、MPU、グラフィック演算素子、イメージセンサ等の各種半導体素子、アンテナ素子、バッテリー等が挙げられる。ヒートスプレッダ12は、電子部品10の熱を伝導(放熱)可能な部材であれば、特に制限はなく、目的に応じて適宜選択することができる。熱伝導シート11A,11Bは、その厚み方向に高い熱伝導性を有する。厚み方向とは、熱伝導シート11A,11Bと被着体(本実施形態では電子部品10、ヒートスプレッダ12、又はヒートシンク13)との接着面に対して垂直な方向(図1中、上下方向)である。熱伝導シート11A,11Bを用いることによって、放熱部材1の放熱性を向上させることができる。以下、2つの熱伝導シート11A,11Bを区別する必要がない場合には、熱伝導シート11と記載する場合がある。 The electronic component 10 is not particularly limited and can be appropriately selected according to the purpose. Examples thereof include CPU, MPU, graphic processing elements, various semiconductor elements such as image sensors, antenna elements, batteries, and the like. The heat spreader 12 is not particularly limited as long as it is a member capable of conducting (dissipating) heat from the electronic component 10, and can be appropriately selected according to the purpose. The thermally conductive sheets 11A and 11B have high thermal conductivity in their thickness direction. The thickness direction is a direction (vertical direction in FIG. 1) perpendicular to the bonding surface between the thermally conductive sheets 11A and 11B and the adherend (in this embodiment, the electronic component 10, the heat spreader 12, or the heat sink 13). be. By using the heat conductive sheets 11A and 11B, the heat dissipation property of the heat dissipation member 1 can be improved. Hereinafter, the two thermally conductive sheets 11A and 11B may be referred to as the thermally conductive sheet 11 when there is no need to distinguish between them.
 なお、熱伝導シート11の実装場所は、上記に限らず、冷却対象となる電子機器や放熱部材全体の構成に応じて適宜選択され得る。また、上記においては、放熱を促進させる部材としてヒートスプレッダ12及びヒートシンク13を利用する構成が例示されているが、これに限らず、例えば冷却器、ダイパッド、プリント基板、冷却ファン、ペルチェ素子、ヒートパイプ、金属カバー、筐体等を利用してもよい。 Note that the mounting location of the heat conductive sheet 11 is not limited to the above, and can be appropriately selected according to the configuration of the electronic device to be cooled and the heat dissipating member as a whole. Further, in the above, the configuration using the heat spreader 12 and the heat sink 13 as members for promoting heat dissipation is exemplified. , a metal cover, a housing, or the like may be used.
 [熱伝導シートの構成例]
 本実施形態に係る熱伝導シート11は、高分子マトリックスと、熱伝導率に異方性を有する異方性充填剤とを含むバインダ樹脂が硬化されたものである。
[Configuration example of thermally conductive sheet]
The thermally conductive sheet 11 according to the present embodiment is obtained by curing a binder resin containing a polymer matrix and an anisotropic filler having anisotropic thermal conductivity.
 高分子マトリックスは、熱伝導シート11の基材となる高分子成分であり、その種類は特に限定されず、公知の成分を適宜選択することができる。例えば、高分子マトリックスとして、熱硬化性樹脂、紫外線硬化性樹脂等が挙げられる。 The polymer matrix is a polymer component that serves as the base material of the thermally conductive sheet 11, and its type is not particularly limited, and known components can be appropriately selected. For example, the polymer matrix includes thermosetting resins, UV-curable resins, and the like.
 熱硬化性樹脂としては、例えば、架橋ゴム、エポキシ樹脂、ポリイミド樹脂、ビスマレイミド樹脂、ベンゾシクロブテン樹脂、フェノール樹脂、不飽和ポリエステル、ジアリルフタレート樹脂、シリコーン樹脂、ポリウレタン、ポリイミドシリコーン、熱硬化型ポリフェニレンエーテル、熱硬化型変性ポリフェニレンエーテル等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。また、硬化時間や硬化温度などの調整のために、触媒を添加してもよい。 Examples of thermosetting resins include crosslinked rubber, epoxy resin, polyimide resin, bismaleimide resin, benzocyclobutene resin, phenol resin, unsaturated polyester, diallyl phthalate resin, silicone resin, polyurethane, polyimide silicone, thermosetting polyphenylene. Ethers, thermosetting modified polyphenylene ethers, and the like. These may be used individually by 1 type, and may use 2 or more types together. Moreover, a catalyst may be added for adjusting the curing time, the curing temperature, and the like.
 なお、架橋ゴムとしては、例えば、天然ゴム、ブタジエンゴム、イソプレンゴム、ニトリルゴム、水添ニトリルゴム、クロロプレンゴム、エチレンプロピレンゴム、塩素化ポリエチレン、クロロスルホン化ポリエチレン、ブチルゴム、ハロゲン化ブチルゴム、フッ素ゴム、ウレタンゴム、アクリルゴム、ポリイソブチレンゴム、シリコーンゴム等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of crosslinked rubber include natural rubber, butadiene rubber, isoprene rubber, nitrile rubber, hydrogenated nitrile rubber, chloroprene rubber, ethylene propylene rubber, chlorinated polyethylene, chlorosulfonated polyethylene, butyl rubber, halogenated butyl rubber, and fluororubber. , urethane rubber, acrylic rubber, polyisobutylene rubber, and silicone rubber. These may be used individually by 1 type, and may use 2 or more types together.
 また、これら熱硬化性樹脂の中でも、成形加工性及び耐候性に優れるとともに、電子部品に対する密着性及び追従性の点から、シリコーン樹脂を用いることが好ましい。シリコーン樹脂としては、特に制限はなく、目的に応じてシリコーン樹脂の種類を適宜選択することができる。 In addition, among these thermosetting resins, it is preferable to use a silicone resin from the viewpoint of excellent moldability and weather resistance, as well as adhesion and conformability to electronic parts. The silicone resin is not particularly limited, and the type of silicone resin can be appropriately selected according to the purpose.
 上述した成形加工性、耐候性、密着性等を得る観点からは、シリコーン樹脂として、液状シリコーンゲルの主剤と、硬化剤とから構成されるシリコーン樹脂であることが好ましい。そのようなシリコーン樹脂としては、例えば、付加反応型液状シリコーン樹脂、過酸化物を加硫に用いる熱加硫型ミラブルタイプのシリコーン樹脂等が挙げられる。これらの中でも、電子機器の熱を放熱させる放熱部材としては、電子部品の発熱面とヒートシンク面との密着性が要求されるため、付加反応型液状シリコーン樹脂が特に好ましい。 From the standpoint of obtaining the moldability, weather resistance, adhesion, etc. described above, the silicone resin is preferably a silicone resin composed of a liquid silicone gel main agent and a curing agent. Examples of such silicone resins include addition reaction type liquid silicone resins, heat vulcanization type millable type silicone resins using peroxide for vulcanization, and the like. Among these, addition reaction type liquid silicone resin is particularly preferable as a heat dissipating member for dissipating heat from an electronic device, since adhesion between the heat generating surface of the electronic component and the heat sink surface is required.
 付加反応型液状シリコーン樹脂としては、ビニル基を有するポリオルガノシロキサンを主剤、Si-H基を有するポリオルガノシロキサンを硬化剤とした、2液性の付加反応型シリコーン樹脂等を用いることが好ましい。 As the addition reaction type liquid silicone resin, it is preferable to use a two-liquid addition reaction type silicone resin or the like that uses polyorganosiloxane having a vinyl group as the main agent and polyorganosiloxane having an Si—H group as a curing agent.
 ここで、液状シリコーン成分は、主剤となるシリコーンA液成分と硬化剤が含まれるシリコーンB液成分を有し、シリコーンA液成分とシリコーンB液成分とが所定の割合で配合されている。シリコーンA液成分とシリコーンB液成分との配合割合は適宜調整できるが、熱伝導シート11に柔軟性を付与するとともに、熱伝導シート11の被着体(図1に示す例では電子部品10、ヒートスプレッダ12、又はヒートシンク13)との接触面に高分子マトリックスの未硬化成分をブリードさせることができる配合割合とすることが好ましい。 Here, the liquid silicone component has a silicone A liquid component as a main agent and a silicone B liquid component containing a curing agent, and the silicone A liquid component and the silicone B liquid component are blended in a predetermined ratio. The blending ratio of the silicone A liquid component and the silicone B liquid component can be adjusted as appropriate. It is preferable that the blending ratio is such that the uncured component of the polymer matrix can bleed to the contact surface with the heat spreader 12 or the heat sink 13).
 紫外線硬化性樹脂としては、例えば、光重合開始剤を配合した(メタ)アクリレート樹脂や不飽和ポリエステル樹脂、光カチオン硬化剤を含有したエポキシ樹脂等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of UV-curable resins include (meth)acrylate resins and unsaturated polyester resins containing photopolymerization initiators, and epoxy resins containing photocationic curing agents. These may be used individually by 1 type, and may use 2 or more types together.
 また、熱伝導シート11における高分子マトリックスの含有量は、特に制限されず、目的に応じて適宜選択することができるが、シートの成形加工性、シートの密着性等を確保する観点からは、15体積%~50体積%程度であることが好ましく、20体積%~45体積%であることがより好ましい。 In addition, the content of the polymer matrix in the heat conductive sheet 11 is not particularly limited and can be appropriately selected according to the purpose. It is preferably about 15% by volume to 50% by volume, more preferably 20% by volume to 45% by volume.
 異方性充填剤は、熱伝導シート11の熱伝導性を向上させるための成分であり、熱伝導率の異方性を有する。異方性充填剤の種類については、熱伝導性が高く、熱伝導率の異方性を有する材料であれば特に限定はされないが、例えば、鱗片状粒子、繊維状粒子等が挙げられる。 The anisotropic filler is a component for improving the thermal conductivity of the thermally conductive sheet 11, and has an anisotropic thermal conductivity. The type of the anisotropic filler is not particularly limited as long as it is a material having high thermal conductivity and anisotropic thermal conductivity. Examples thereof include scaly particles and fibrous particles.
 鱗片状粒子としては、例えば、窒化ホウ素、黒鉛等が挙げられる。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。鱗片状粒子を使用することで、熱伝導率は、面方向(接着面と平行な方向)に高く、面方向に対して垂直な方向に低くなる。例えば、窒化ホウ素を使用する場合の熱伝導率は、面方向に約110W/mK、面方向に対して垂直な方向に約2W/mK程度となる。 Examples of scale-like particles include boron nitride and graphite. These may be used individually by 1 type, and may use 2 or more types together. By using scaly particles, the thermal conductivity is high in the surface direction (direction parallel to the bonding surface) and low in the direction perpendicular to the surface direction. For example, when using boron nitride, the thermal conductivity is about 110 W/mK in the plane direction and about 2 W/mK in the direction perpendicular to the plane direction.
 繊維状粒子としては、例えば、炭素繊維が挙げられる。炭素繊維としては、例えば、ピッチ系、PAN系、PBO繊維を黒鉛化したもの、アーク放電法、レーザー蒸発法、CVD法(化学気相成長法)、CCVD法(触媒化学気相成長法)等で合成されたもの等が挙げられる。これらの中でも、高い熱伝導性が得られる点から、PBO繊維を黒鉛化した炭素繊維、ピッチ系炭素繊維がより好ましい。これらは、1種単独で使用してもよいし、2種以上を併用してもよい。 Examples of fibrous particles include carbon fibers. As carbon fibers, for example, pitch-based, PAN-based, graphitized PBO fibers, arc discharge method, laser evaporation method, CVD method (chemical vapor deposition method), CCVD method (catalytic chemical vapor deposition method), etc. and those synthesized by Among these, carbon fibers obtained by graphitizing PBO fibers and pitch-based carbon fibers are more preferable because high thermal conductivity can be obtained. These may be used individually by 1 type, and may use 2 or more types together.
 また、炭素繊維は、必要に応じて、その一部又は全部を表面処理して用いることができる。表面処理としては、例えば、酸化処理、窒化処理、ニトロ化、スルホン化、若しくはこれらの処理によって表面に導入された官能基又は炭素繊維の表面に、金属、金属化合物、有機化合物等を付着又は結合させる処理等が挙げられる。官能基としては、例えば、水酸基、カルボキシル基、カルボニル基、ニトロ基、アミノ基等が挙げられる。 In addition, the carbon fiber can be used by surface-treating part or all of it, if necessary. Surface treatments include, for example, oxidation treatment, nitriding treatment, nitration, sulfonation, or attaching or binding metals, metal compounds, organic compounds, etc. to the surface of functional groups or carbon fibers introduced to the surface by these treatments. and the like. Functional groups include, for example, hydroxyl groups, carboxyl groups, carbonyl groups, nitro groups, amino groups and the like.
 さらに、炭素繊維の平均繊維長(平均長軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、50μm~300μmの範囲であることが好ましく、75μm~275μmの範囲であることがより好ましく、90μm~250μmの範囲であることが特に好ましい。 Furthermore, the average fiber length (average long axis length) of the carbon fibers is not particularly limited and can be appropriately selected. It is preferably in the range of 75 μm to 275 μm, and particularly preferably in the range of 90 μm to 250 μm.
 さらにまた、炭素繊維の平均繊維径(平均短軸長さ)についても、特に制限はなく適宜選択することができるが、確実に高い熱伝導性を得る点から、4μm~20μmの範囲であることが好ましく、5μm~14μmの範囲であることがより好ましい。 Furthermore, the average fiber diameter (average minor axis length) of the carbon fibers is not particularly limited and can be selected as appropriate. is preferred, and a range of 5 μm to 14 μm is more preferred.
 炭素繊維のアスペクト比(平均長軸長さ/平均短軸長さ)については、確実に高い熱伝導性を得る点から、8以上であることが好ましく、9~30であることがより好ましい。アスペクト比が8未満であると、炭素繊維の繊維長(長軸長さ)が短いため、熱伝導率が低下してしまうおそれがあり、一方、30を超えると、熱伝導シート11中での分散性が低下するため、十分な熱伝導率を得られないおそれがある。 The aspect ratio (average major axis length/average minor axis length) of carbon fibers is preferably 8 or more, more preferably 9 to 30, in order to reliably obtain high thermal conductivity. If the aspect ratio is less than 8, the fiber length (major axis length) of the carbon fibers is short, and the thermal conductivity may decrease. Since the dispersibility is lowered, there is a possibility that sufficient thermal conductivity cannot be obtained.
 炭素繊維を使用することで、熱伝導率は、繊維方向に高くなる。炭素繊維の繊維方向の熱伝導率は、約600W/mK~約1200W/mK程度となる。 By using carbon fiber, the thermal conductivity increases in the fiber direction. The thermal conductivity of carbon fibers in the fiber direction is about 600 W/mK to about 1200 W/mK.
 上記のような鱗片状粒子の面方向や炭素繊維の繊維方向を、熱の伝導方向である熱伝導シート11の厚み方向と同じにする、即ち、鱗片状粒子や炭素繊維を厚み方向に配向させることにより、熱伝導性を飛躍的に向上させることができる。 The surface direction of the scaly particles and the fiber direction of the carbon fibers as described above are made the same as the thickness direction of the heat conductive sheet 11, which is the direction of heat conduction, that is, the scaly particles and carbon fibers are oriented in the thickness direction. As a result, thermal conductivity can be dramatically improved.
 なお、熱伝導シート11は、熱伝導性充填剤として、無機物フィラーをさらに含有してもよい。無機物フィラーを含有させることにより、熱伝導シート11の熱伝導性をより高め、シートの強度を向上できる。無機物フィラーとしては、形状、材質、平均粒径等については特に制限がされず、目的に応じて適宜選択することができる。形状としては、例えば、球状、楕円球状、塊状、粒状、扁平状、針状等が挙げられる。これらの中でも、球状、楕円形状が充填性の点から好ましく、球状が特に好ましい。 Note that the thermally conductive sheet 11 may further contain an inorganic filler as a thermally conductive filler. By containing the inorganic filler, the thermal conductivity of the thermally conductive sheet 11 can be further increased, and the strength of the sheet can be improved. The shape, material, average particle size, etc. of the inorganic filler are not particularly limited, and can be appropriately selected according to the purpose. Examples of the shape include spherical, ellipsoidal, massive, granular, flattened, needle-like, and the like. Among these, a spherical shape and an elliptical shape are preferable from the viewpoint of filling properties, and a spherical shape is particularly preferable.
 無機物フィラーの材料としては、例えば、窒化アルミニウム(窒化アルミ:AlN)、シリカ、アルミナ(酸化アルミニウム)、窒化ホウ素、チタニア、ガラス、酸化亜鉛、炭化ケイ素、ケイ素(シリコン)、酸化珪素、金属粒子等が挙げられる。1種単独で使用してもよいし、2種以上を併用してもよい。これらの中でも、アルミナ、窒化ホウ素、窒化アルミニウム、酸化亜鉛、シリカが好ましく、熱伝導率の点から、アルミナ、窒化アルミニウムがより好ましい。 Examples of inorganic filler materials include aluminum nitride (aluminum nitride: AlN), silica, alumina (aluminum oxide), boron nitride, titania, glass, zinc oxide, silicon carbide, silicon (silicon), silicon oxide, metal particles, and the like. is mentioned. One type may be used alone, or two or more types may be used in combination. Among these, alumina, boron nitride, aluminum nitride, zinc oxide, and silica are preferable, and from the viewpoint of thermal conductivity, alumina and aluminum nitride are more preferable.
 また、熱伝導シート11は、上述した高分子マトリックス、異方性充填剤等に加え、目的に応じてその他の成分を適宜含有してもよい。その他の成分としては、例えば、磁性粉、チキソトロピー性付与剤、分散剤、硬化促進剤、遅延剤、微粘着付与剤、可塑剤、難燃剤、酸化防止剤、安定剤、着色剤等が挙げられる。また、磁性粉の含有量を調整することにより、熱伝導シート11に電磁波吸収性能を付与してもよい。 In addition to the above-mentioned polymer matrix, anisotropic filler, etc., the thermally conductive sheet 11 may contain other components as appropriate depending on the purpose. Other components include, for example, magnetic powders, thixotropic agents, dispersants, curing accelerators, retarders, slight tackifiers, plasticizers, flame retardants, antioxidants, stabilizers, colorants, and the like. . Moreover, electromagnetic wave absorption performance may be imparted to the heat conductive sheet 11 by adjusting the content of the magnetic powder.
 [放熱部材の製造方法]
 以下に、放熱部材1の製造方法について説明する。図2は、実施形態に係る放熱部材1の製造方法の基本的な流れの一例を示すフローチャートである。
[Manufacturing method of heat dissipation member]
A method for manufacturing the heat radiating member 1 will be described below. FIG. 2 is a flow chart showing an example of the basic flow of the method for manufacturing the heat radiating member 1 according to the embodiment.
 先ず、高分子マトリックスと異方性充填剤とを含む熱伝導組成物を、異方性充填剤が熱伝導組成物の厚み方向に配向した状態が維持される仮硬化状態で第1被着体に配置する(S11)。熱伝導組成物とは、上述した熱伝導シート11の素材となる組成物である。第1被着体とは、熱伝導シート11が接着される部材(図1の構成例においては電子部品10、ヒートスプレッダ12、又はヒートシンク13)である。 First, a thermally conductive composition containing a polymer matrix and an anisotropic filler is applied to a first adherend in a pre-cured state in which the anisotropic filler is maintained oriented in the thickness direction of the thermally conductive composition. (S11). A thermally conductive composition is a composition that serves as a material for the thermally conductive sheet 11 described above. The first adherend is a member (the electronic component 10, the heat spreader 12, or the heat sink 13 in the configuration example of FIG. 1) to which the heat conductive sheet 11 is adhered.
 その後、仮硬化状態の熱伝導組成物が配置された第1被着体を第2被着体に実装する(S12)。第2被着体とは、熱伝導シート11の第1被着体が接着される面とは反対側の面に接着される部材である。例えば、熱伝導シート11Aについての第2被着体は、第1被着体がヒートスプレッダ12である場合には電子部品10となり、第1被着体が電子部品10である場合にはヒートスプレッダ12となる。熱伝導シート11Bについての第2被着体は、第1被着体がヒートスプレッダ12である場合にはヒートシンク13となり、第1被着体がヒートシンク13である場合にはヒートスプレッダ12となる。 After that, the first adherend on which the temporarily cured thermally conductive composition is placed is mounted on the second adherend (S12). The second adherend is a member adhered to the surface of the thermal conductive sheet 11 opposite to the surface to which the first adherend is adhered. For example, the second adherend of the heat conductive sheet 11A is the electronic component 10 when the first adherend is the heat spreader 12, and the heat spreader 12 when the first adherend is the electronic component 10. Become. The second adherend of the thermal conductive sheet 11B is the heat sink 13 when the first adherend is the heat spreader 12, and the heat spreader 12 when the first adherend is the heat sink 13.
 そして、第1被着体を第2被着体に実装した後、仮硬化状態の熱伝導組成物を更に硬化させる(S13)。 Then, after the first adherend is mounted on the second adherend, the temporarily cured thermal conductive composition is further cured (S13).
 上記方法によれば、熱伝導組成物は、適切な配向性と比較的高い柔軟性とを有する仮硬化状態で放熱部材1に実装され、実装後に完全に硬化される。これにより、配向性と接着性とを両立させることができ、高い熱伝導性を維持しつつ実装性を向上させることができる。 According to the above method, the thermally conductive composition is mounted on the heat dissipating member 1 in a pre-cured state having appropriate orientation and relatively high flexibility, and is completely cured after mounting. This makes it possible to achieve both orientation and adhesiveness, and improve mountability while maintaining high thermal conductivity.
 以下に、上記実施形態に係る放熱部材1の製造方法の具体的な実施例について説明する。 Specific examples of the method for manufacturing the heat radiating member 1 according to the above embodiment will be described below.
 [第1実施例]
 図3は、第1実施例に係る放熱部材1の製造方法の流れを示すフローチャートである。先ず、液状の熱伝導組成物を、異方性充填剤が熱伝導組成物の厚み方向に配向した状態となるように第1被着体に塗布する(S101)。当該塗布を実現する方法は、特に限定されるべきものではないが、例えば、スリット付きダイヘッドを用いて当該塗布を実現できる。その後、第1被着体上の熱伝導組成物を仮硬化し(S102)、異方性充填剤が熱伝導組成物の厚み方向に配向した状態が維持される仮硬化状態とする。その後、仮硬化状態の熱伝導組成物が配置された第1被着体を第2被着体に実装する(S103)。その後、仮硬化状態の熱伝導組成物を更に硬化させる(S104)。
[First embodiment]
FIG. 3 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the first embodiment. First, the liquid thermally conductive composition is applied to the first adherend so that the anisotropic filler is oriented in the thickness direction of the thermally conductive composition (S101). A method for realizing the application is not particularly limited, but for example, the application can be achieved using a die head with slits. After that, the thermally conductive composition on the first adherend is pre-cured (S102) to obtain a pre-cured state in which the anisotropic filler is oriented in the thickness direction of the thermally conductive composition. After that, the first adherend on which the temporarily cured thermally conductive composition is placed is mounted on the second adherend (S103). After that, the temporarily cured thermal conductive composition is further cured (S104).
 上記方法によれば、熱伝導組成物は、第1被着体に塗布された後に仮硬化状態となる。これにより、工程数の削減等を実現できる。 According to the above method, the thermally conductive composition is temporarily cured after being applied to the first adherend. This makes it possible to reduce the number of steps and the like.
 なお、仮硬化及び仮硬化後の硬化の方法の組み合わせは問わない。例えば、仮硬化を紫外線硬化で行い、硬化を熱硬化で行ってもよい。また、仮硬化と硬化の双方を熱硬化で行ってもよい。また、紫外光が十分に透過できる状態であれば、仮硬化と硬化の双方を紫外線硬化で行ってもよい。 It should be noted that the combination of temporary hardening and hardening after temporary hardening does not matter. For example, temporary curing may be performed by ultraviolet curing, and curing may be performed by heat curing. Moreover, you may perform both temporary hardening and hardening by thermosetting. In addition, both temporary curing and curing may be performed by ultraviolet curing as long as the ultraviolet light can be sufficiently transmitted.
 [第2実施例]
 図4は、第2実施例に係る放熱部材1の製造方法の流れを示すフローチャートである。先ず、液状の熱伝導組成物から、シート形状を有し仮硬化状態のグリーンシートを作製する(S201)。その後、グリーンシートを第1被着体に配置する(S202)。その後、仮硬化状態のグリーンシートが配置された第1被着体を第2被着体に実装する(S203)。その後、仮硬化状態のグリーンシートを更に硬化させる(S204)。
[Second embodiment]
FIG. 4 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the second embodiment. First, a green sheet having a sheet shape and in a pre-cured state is produced from a liquid thermally conductive composition (S201). After that, the green sheet is placed on the first adherend (S202). After that, the first adherend on which the temporarily cured green sheet is arranged is mounted on the second adherend (S203). After that, the temporarily cured green sheet is further cured (S204).
 上記方法によれば、熱伝導組成物は、仮硬化状態のグリーンシートとして予め準備され、適宜な場所に配置される。これにより、グリーンシート(仮硬化状態の熱伝導組成物)を作製する工程と、グリーンシートを第1被着体に配置する工程とを分割できる。 According to the above method, the thermally conductive composition is prepared in advance as a temporarily cured green sheet and placed in an appropriate location. Thereby, the step of producing the green sheet (the thermally conductive composition in the temporarily cured state) and the step of placing the green sheet on the first adherend can be separated.
 なお、仮硬化及び仮硬化後の硬化の方法の組み合わせは問わない。例えば、仮硬化を紫外線硬化で行い、硬化を熱硬化で行ってもよい。また、仮硬化と硬化の双方を熱硬化で行ってもよい。また、紫外光が十分に透過できる状態であれば、仮硬化と硬化の双方を紫外線硬化で行ってもよい。 It should be noted that the combination of temporary hardening and hardening after temporary hardening does not matter. For example, temporary curing may be performed by ultraviolet curing, and curing may be performed by heat curing. Moreover, you may perform both temporary hardening and hardening by thermosetting. In addition, both temporary curing and curing may be performed by ultraviolet curing as long as the ultraviolet light can be sufficiently transmitted.
 [第3実施例]
 図5は、第3実施例に係る放熱部材1の製造方法の流れを示すフローチャートである。先ず、液状の熱伝導組成物を押出成形し、異方性充填剤が押出方向に配向した未硬化ブロックを作製する(S301)。未硬化ブロックは、液だれしない程度の粘度を有するように作製される。その後、未硬化ブロックから、シート形状を有し仮硬化状態のグリーンシートを作製する(S302)。その後、グリーンシートを第1被着体に配置する(S303)。その後、仮硬化状態のグリーンシートが配置された第1被着体を第2被着体に実装する(S304)。その後、仮硬化状態のグリーンシートを更に硬化させる(S305)。
[Third embodiment]
FIG. 5 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the third embodiment. First, a liquid thermally conductive composition is extruded to produce an uncured block in which the anisotropic filler is oriented in the extrusion direction (S301). The uncured block is made to have a non-dripping viscosity. Thereafter, a green sheet having a sheet shape and in a pre-cured state is produced from the uncured block (S302). After that, the green sheet is placed on the first adherend (S303). After that, the first adherend on which the temporarily cured green sheet is arranged is mounted on the second adherend (S304). After that, the temporarily cured green sheet is further cured (S305).
 上記方法によれば、グリーンシートは、押出成形により作製され異方性充填剤が押出方向に配向した未硬化ブロックから作製される。これにより、グリーンシートを効率的に作製できる。 According to the above method, the green sheet is made from an uncured block made by extrusion and having an anisotropic filler oriented in the direction of extrusion. Thereby, a green sheet can be produced efficiently.
 なお、仮硬化及び仮硬化後の硬化の方法の組み合わせは問わない。例えば、仮硬化を紫外線硬化で行い、硬化を熱硬化で行ってもよい。また、仮硬化と硬化の双方を熱硬化で行ってもよい。また、紫外光が十分に透過できる状態であれば、仮硬化と硬化の双方を紫外線硬化で行ってもよい。 It should be noted that the combination of temporary hardening and hardening after temporary hardening does not matter. For example, temporary curing may be performed by ultraviolet curing, and curing may be performed by heat curing. Moreover, you may perform both temporary hardening and hardening by thermosetting. In addition, both temporary curing and curing may be performed by ultraviolet curing as long as the ultraviolet light can be sufficiently transmitted.
 [第4実施例]
 図6は、第4実施例に係る放熱部材1の製造方法の流れを示すフローチャートである。先ず、液状の熱伝導組成物を押出成形し、異方性充填剤が押出方向に配向した未硬化ブロックを作製する(S401)。その後、未硬化ブロックの表面に紫外線を照射する(S402)。その後、紫外線が照射された表面が含まれるように未硬化ブロックをスライスし、シート形状を有し仮硬化状態のグリーンシートを作製する(S403)。その後、グリーンシートを第1被着体に配置する(S404)。その後、仮硬化状態のグリーンシートが配置された第1被着体を第2被着体に実装する(S405)。その後、仮硬化状態のグリーンシートを更に硬化させる(S406)。
[Fourth embodiment]
FIG. 6 is a flow chart showing the flow of the manufacturing method of the heat radiating member 1 according to the fourth embodiment. First, a liquid thermally conductive composition is extruded to produce an uncured block in which the anisotropic filler is oriented in the extrusion direction (S401). After that, the surface of the uncured block is irradiated with ultraviolet rays (S402). After that, the uncured block is sliced so as to include the surface irradiated with ultraviolet rays, and a green sheet having a sheet shape and in a temporarily cured state is produced (S403). After that, the green sheet is placed on the first adherend (S404). After that, the first adherend on which the temporarily cured green sheet is arranged is mounted on the second adherend (S405). After that, the temporarily cured green sheet is further cured (S406).
 上記方法によれば、グリーンシートは、未硬化ブロックのうち紫外線照射によりある程度硬化された表面部分を切り出すことにより作製される。これにより、グリーンシートの作製を容易化できる。 According to the above method, the green sheet is produced by cutting out the surface portion of the uncured block that has been cured to some extent by UV irradiation. This facilitates the production of green sheets.
 [比較結果]
 以下に、本実施形態に係る製造方法による効果と、比較例に係る製造方法による効果との比較結果について説明する。ここでは、第1~第3比較例に係る製造方法のそれぞれにより製造された試料と、上記第1実施例に対応する製造方法により製造された試料との比較結果について説明する。
[Comparison result]
The results of comparison between the effects of the manufacturing method according to the present embodiment and the effects of the manufacturing method according to the comparative example will be described below. Here, comparison results between the samples manufactured by the manufacturing methods according to the first to third comparative examples and the samples manufactured by the manufacturing method corresponding to the first example will be described.
 各試料の製造には下記配合を用いた。
・2液硬化シリコーンA/B:35vol%
・40μm鱗片状BN:25vol%
・1μm窒化アルミ:20vol%
・1μmアルミナ:20vol%
The following formulations were used to produce each sample.
・Two-liquid curing silicone A/B: 35 vol%
・ 40 μm scaly BN: 25 vol%
・1 μm aluminum nitride: 20 vol%
・1 μm alumina: 20 vol %
 [第1比較例:配向したシート]
 上記配合の割合で各材料を混合し、押出成形により押出方向に配向した未硬化の成形体を作製した。未硬化の成形体を60℃で4時間加熱して硬化した。硬化した成形体を0.5mm及び1.0mmにスライスすることで鱗片状BNが厚み方向に配向したシートを得た。
[First Comparative Example: Oriented Sheet]
Each material was mixed in the above proportions, and an uncured molded body oriented in the extrusion direction was produced by extrusion molding. The uncured molding was cured by heating at 60° C. for 4 hours. By slicing the cured compact into 0.5 mm and 1.0 mm pieces, a sheet having scale-like BN oriented in the thickness direction was obtained.
 [第2比較例:グリス]
 上記配合において2液硬化シリコーンA/Bをシリコーンオイルに置き換えて混合した。混合物をシリンジに充填し、グリスを得た。ダイヘッドにて厚みが0.5mm及び1.0mmとなるようにディスペンスした。
[Second Comparative Example: Grease]
In the above formulation, the two-component curing silicone A/B was replaced with silicone oil and mixed. The mixture was filled into a syringe and grease was obtained. A die head was used to dispense to thicknesses of 0.5 mm and 1.0 mm.
 [第3比較例:液状硬化]
 上記配合においてA液で作製したものとB液で作製したものをそれぞれシリンジに充填し、硬化前の組成物を得た。この組成物を、ダイヘッドを用いて厚みが0.5mm及び1.0mmとなるようにディスペンスした。
[Third Comparative Example: Liquid Curing]
Syringes were each filled with the composition prepared from the A liquid and the composition prepared from the B liquid in the above composition to obtain a composition before curing. This composition was dispensed to thicknesses of 0.5 mm and 1.0 mm using a die head.
 [第1実施例:液状配向塗布+硬化]
 上記配合においてA液で作製したものとB液で作製したものをそれぞれシリンジに充填し、硬化前の組成物を得た。この組成物を、スリット付きダイヘッドを用いて鱗片状BNが厚み方向に配向されるように、又厚みが0.5mm及び1.0mmとなるようにディスペンスした。
[First embodiment: liquid alignment coating + curing]
Syringes were each filled with the composition prepared from the A liquid and the composition prepared from the B liquid in the above composition to obtain a composition before curing. This composition was dispensed using a slitted die head such that the BN flakes were oriented in the thickness direction and the thicknesses were 0.5 mm and 1.0 mm.
 下記表1は、上記のように製造した各試料の配向工程の有無、接着(接着性)、熱抵抗、配向性、信頼性、及びコストについての評価結果を示している。熱抵抗については、厚さ0.5mm及び1.0mmのそれぞれについて圧縮率を10%、30%、及び50%と変化させた場合の各値が示されている。圧縮率とは、熱伝導組成物を厚み方向に圧縮する際における圧縮幅の圧縮前の厚みに対する割合である。 Table 1 below shows the evaluation results regarding the presence or absence of the orientation process, adhesion (adhesiveness), thermal resistance, orientation, reliability, and cost of each sample manufactured as described above. As for the thermal resistance, each value is shown when the compressibility is changed to 10%, 30%, and 50% for thicknesses of 0.5 mm and 1.0 mm, respectively. The compressibility is the ratio of the compression width to the thickness before compression when the heat conductive composition is compressed in the thickness direction.
 配向工程の有無は、異方性充填剤を厚み方向に配向する工程の有無を示している。ここでは、第1比較例及び第1実施例は配向工程を有し、第2比較例及び第3比較例は配向工程を有していない。 The presence or absence of the orientation process indicates the presence or absence of the process of orienting the anisotropic filler in the thickness direction. Here, the first comparative example and the first example have an orientation process, and the second comparative example and the third comparative example do not have an orientation process.
 接着は、試料が密着した後で硬化するか否かに基づいて評価された。配向性は、シートの熱抵抗を基準として評価された。熱抵抗は、ASTM 05470に準拠する方法により測定された。信頼性は、30%圧縮状態の試料をCu板に挟み、-40℃~125℃(保持30min)のHS試験を1000回行った際のポンプアウト現象に基づいて評価された。コストは、歩留まりに基づいて評価された。 Adhesion was evaluated based on whether or not the sample cured after being in close contact. Orientation was evaluated based on the thermal resistance of the sheet. Thermal resistance was measured by a method based on ASTM 05470. Reliability was evaluated based on the pump-out phenomenon when a 30% compressed sample was sandwiched between Cu plates and an HS test was performed 1000 times at −40° C. to 125° C. (retention time: 30 minutes). Cost was evaluated based on yield.
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000001
 接着については、第1実施例及び第3比較例では実装後に硬化するため結果が良好(〇)となり、第1比較例では硬化後に実装するため結果が不良(×)となった。また、第2比較例では硬化しないため結果が不良となった。 As for adhesion, in the first example and the third comparative example, the result was good (○) because it was cured after mounting, and in the first comparative example, the result was bad (×) because it was mounted after curing. In addition, in the second comparative example, the result was poor because it did not cure.
 配向性については、[第1比較例:配向したシート]の熱抵抗を基準として評価した。第2比較例及び第3比較例については、第1比較例に対して熱抵抗が非常に大きくなることから、配向性の結果は不良となった。第1実施例については、シートと同等以上の性能となることから、配向性の結果は良好となった。 The orientation was evaluated based on the thermal resistance of [first comparative example: oriented sheet]. As for the second and third comparative examples, the thermal resistance was much higher than that of the first comparative example, so the result of orientation was poor. In Example 1, the performance was equal to or higher than that of the sheet, so the result of orientation was good.
 信頼性については、第1実施例、第1比較例、及び第3比較例では硬化したため結果が良好となり、第2比較例では未硬化であり、液が外にはみ出したため、結果が不良となった。 As for reliability, the results were good in the first example, the first comparative example, and the third comparative example because they were cured, and the second comparative example was uncured and the liquid protruded outside, so the result was poor. rice field.
 コストについては、液状である第1実施例、第2比較例、及び第3比較例では材料歩留まりが良いため、結果が良好となった。第1比較例ではシートから個片加工するため歩留まりが悪いため、結果が不良となった。 In terms of cost, the first example, the second comparative example, and the third comparative example, which are liquid, had good material yields, so the results were good. In the first comparative example, the yield was poor because individual pieces were processed from a sheet, resulting in a poor result.
 以上のように、第1実施例(本実施形態)に係る製造方法によれば、接着、熱抵抗、配向性、信頼性、及びコストの全てにおいて良好な結果を得ることができた。 As described above, according to the manufacturing method according to the first example (this embodiment), good results were obtained in all of adhesion, thermal resistance, orientation, reliability, and cost.
 1…放熱部材、10…電子部品、11A,11B…熱伝導シート、12…ヒートスプレッダ、13…ヒートシンク 1... heat dissipation member, 10... electronic component, 11A, 11B... thermal conductive sheet, 12... heat spreader, 13... heat sink

Claims (10)

  1.  高分子マトリックスと熱伝導率に異方性を有する異方性充填剤とを含む熱伝導組成物を、前記異方性充填剤が前記熱伝導組成物の厚み方向に配向した状態が維持される仮硬化状態で第1被着体に配置する工程と、
     前記第1被着体を第2被着体に実装する工程と、
     前記第1被着体を前記第2被着体に実装した後、前記仮硬化状態の前記熱伝導組成物を更に硬化させる工程と、
     を含む放熱部材の製造方法。
    A thermally conductive composition containing a polymer matrix and an anisotropic filler having anisotropic thermal conductivity is maintained in a state in which the anisotropic filler is oriented in the thickness direction of the thermally conductive composition. A step of arranging on the first adherend in a temporarily cured state;
    mounting the first adherend on a second adherend;
    After mounting the first adherend on the second adherend, further curing the thermally conductive composition in the temporarily cured state;
    A method for manufacturing a heat dissipating member comprising:
  2.  液状の前記熱伝導組成物を、前記異方性充填剤が前記熱伝導組成物の厚み方向に配向した状態となるように前記第1被着体に塗布する工程と、
     前記第1被着体に塗布された前記熱伝導組成物を前記仮硬化状態にする工程と、
     を含む請求項1に記載の放熱部材の製造方法。
    applying the liquid thermally conductive composition to the first adherend such that the anisotropic filler is oriented in the thickness direction of the thermally conductive composition;
    setting the thermally conductive composition applied to the first adherend to the temporarily cured state;
    The manufacturing method of the heat radiating member according to claim 1, comprising:
  3.  液状の前記熱伝導組成物から、シート形状を有し前記仮硬化状態のグリーンシートを作製する工程と、
     前記グリーンシートを前記第1被着体に配置する工程と、
     前記第1被着体を前記第2被着体に実装した後、前記グリーンシートを更に硬化させる工程と、
     を含む請求項1に記載の放熱部材の製造方法。
    a step of producing a green sheet having a sheet shape and being in the pre-cured state from the liquid thermally conductive composition;
    placing the green sheet on the first adherend;
    After mounting the first adherend on the second adherend, further curing the green sheet;
    The manufacturing method of the heat radiating member according to claim 1, comprising:
  4.  液状の前記熱伝導組成物を押出成形し、前記異方性充填剤が押出方向に配向した未硬化ブロックを作製する工程と、
     前記未硬化ブロックから、シート形状を有し前記仮硬化状態のグリーンシートを作製する工程と、
     前記グリーンシートを前記第1被着体に配置する工程と、
     前記第1被着体を前記第2被着体に実装した後、前記グリーンシートを更に硬化させる工程と、
     を含む請求項1に記載の放熱部材の製造方法。
    extruding the thermally conductive composition in liquid form to produce an uncured block with the anisotropic filler oriented in the direction of extrusion;
    a step of producing a green sheet having a sheet shape and in the pre-cured state from the uncured block;
    placing the green sheet on the first adherend;
    After mounting the first adherend on the second adherend, further curing the green sheet;
    The manufacturing method of the heat radiating member according to claim 1, comprising:
  5.  液状の前記熱伝導組成物を押出成型し、前記異方性充填剤が押出方向に配向した未硬化ブロックを作成する工程と、
     前記未硬化ブロックの表面に紫外線を照射する工程と、
     紫外線が照射された前記表面が含まれるように前記未硬化ブロックをスライスし、シート形状を有し前記仮硬化状態のグリーンシートを作製する工程と、
     前記グリーンシートを前記第1被着体に配置する工程と、
     前記第1被着体を前記第2被着体に実装した後、前記グリーンシートを更に硬化させる工程と、
     含む請求項1に記載の放熱部材の製造方法。
    extruding the thermally conductive composition in liquid form to form an uncured block with the anisotropic filler oriented in the direction of extrusion;
    irradiating the surface of the uncured block with UV light;
    a step of slicing the uncured block so as to include the surface irradiated with ultraviolet rays to produce a green sheet having a sheet shape and being in the precured state;
    placing the green sheet on the first adherend;
    After mounting the first adherend on the second adherend, further curing the green sheet;
    The manufacturing method of the heat radiating member according to claim 1 .
  6.  前記異方性充填剤は、鱗片状粒子又は繊維状粒子の少なくとも一方を含む、
     請求項1~5のいずれか1項に記載の放熱部材の製造方法。
    The anisotropic filler contains at least one of scale-like particles or fibrous particles,
    A method for manufacturing a heat dissipating member according to any one of claims 1 to 5.
  7.  前記異方性充填剤は、前記鱗片状粒子として窒化ホウ素を含む、
     請求項6に記載の放熱部材の製造方法。
    The anisotropic filler contains boron nitride as the scale-like particles,
    The manufacturing method of the heat radiating member according to claim 6.
  8.  前記異方性充填剤は、前記繊維状粒子として炭素繊維を含む、
     請求項6に記載の放熱部材の製造方法。
    The anisotropic filler contains carbon fibers as the fibrous particles,
    The manufacturing method of the heat radiating member according to claim 6.
  9.  前記異方性充填剤は、前記鱗片状粒子として窒化ホウ素を含み、前記繊維状粒子として炭素繊維を含む、
     請求項6に記載の放熱部材の製造方法。
    The anisotropic filler contains boron nitride as the scale-like particles and carbon fiber as the fibrous particles.
    The manufacturing method of the heat radiating member according to claim 6.
  10.  前記高分子マトリックスは、熱硬化性樹脂又は紫外線硬化性樹脂の少なくとも一方を含む、
     請求項1~9のいずれか1項に記載の放熱部材の製造方法。
    The polymer matrix contains at least one of a thermosetting resin and an ultraviolet curable resin,
    A method for manufacturing a heat dissipating member according to any one of claims 1 to 9.
PCT/JP2022/005789 2021-02-22 2022-02-15 Method for producing heat dissipation member WO2022176822A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021-025947 2021-02-22
JP2021025947A JP2022127772A (en) 2021-02-22 2021-02-22 Method for manufacturing heat dissipation member

Publications (1)

Publication Number Publication Date
WO2022176822A1 true WO2022176822A1 (en) 2022-08-25

Family

ID=82931726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2022/005789 WO2022176822A1 (en) 2021-02-22 2022-02-15 Method for producing heat dissipation member

Country Status (2)

Country Link
JP (1) JP2022127772A (en)
WO (1) WO2022176822A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284859A (en) * 2000-03-31 2001-10-12 Jsr Corp Heat-conductive sheet and application thereof
JP2020047622A (en) * 2018-09-14 2020-03-26 アイシン精機株式会社 Semiconductor device and manufacturing method thereof
WO2020105601A1 (en) * 2018-11-20 2020-05-28 積水ポリマテック株式会社 Thermal conductive sheet and method for manufacturing same
JP2020116873A (en) * 2019-01-25 2020-08-06 デクセリアルズ株式会社 Manufacturing method of heat-conductive sheet
JP2021022603A (en) * 2019-07-25 2021-02-18 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2021138141A (en) * 2020-03-09 2021-09-16 デクセリアルズ株式会社 Thermally conductive material and method for producing the same, heat dissipation structure and method for producing the same, and electronic device

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001284859A (en) * 2000-03-31 2001-10-12 Jsr Corp Heat-conductive sheet and application thereof
JP2020047622A (en) * 2018-09-14 2020-03-26 アイシン精機株式会社 Semiconductor device and manufacturing method thereof
WO2020105601A1 (en) * 2018-11-20 2020-05-28 積水ポリマテック株式会社 Thermal conductive sheet and method for manufacturing same
JP2020116873A (en) * 2019-01-25 2020-08-06 デクセリアルズ株式会社 Manufacturing method of heat-conductive sheet
JP2021022603A (en) * 2019-07-25 2021-02-18 三菱電機株式会社 Semiconductor device and manufacturing method of semiconductor device
JP2021138141A (en) * 2020-03-09 2021-09-16 デクセリアルズ株式会社 Thermally conductive material and method for producing the same, heat dissipation structure and method for producing the same, and electronic device

Also Published As

Publication number Publication date
JP2022127772A (en) 2022-09-01

Similar Documents

Publication Publication Date Title
CN108463882B (en) Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat dissipating member, and semiconductor device
JP6739478B2 (en) Method for manufacturing heat conductive sheet
WO2012070289A1 (en) Thermal conductive sheet and power module
WO2020017350A1 (en) Heat-conductive sheet, method for manufacturing same, and method for mounting heat-conductive sheet
WO2020153346A1 (en) Method for producing thermally conductive sheet
WO2020162164A1 (en) Heat-conducting sheet, method for mounting heat-conducting sheet, and method for producing electronic equipment
JP2011178894A (en) Thermosetting resin composition, thermally conductive sheet, and power module
JP6999019B2 (en) Thermally conductive sheet and its manufacturing method, mounting method of thermally conductive sheet
CN110739223A (en) Method for manufacturing thermally conductive sheet
WO2020153377A1 (en) Thermally-conductive resin sheet
WO2022176822A1 (en) Method for producing heat dissipation member
US20240120254A1 (en) Thermally-conductive sheet and electronic device
WO2022176823A1 (en) Heat conductive sheet
JP6862601B1 (en) Thermal conductive sheet and its manufacturing method, mounting method of thermal conductive sheet
WO2022176748A1 (en) Heat conductive sheet and method for manufacturing heat conductive sheet
WO2021157477A1 (en) Thermally conductive sheet, method for manufacturing thermally conductive sheet, heat-dissipating component, and method for manufacturing heat-dissipating component
KR20210109563A (en) Thermally conductive sheet, manufacturing method of thermally conductive sheet
JP2021050350A (en) Thermally conductive sheet, method for producing the same, and method for mounting thermally conductive sheet
TW202309240A (en) Heat conduction sheet and method for manufacturing heat conduction sheet

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22756140

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 22756140

Country of ref document: EP

Kind code of ref document: A1