JP2022122338A - Electric wire and cable - Google Patents

Electric wire and cable Download PDF

Info

Publication number
JP2022122338A
JP2022122338A JP2021019494A JP2021019494A JP2022122338A JP 2022122338 A JP2022122338 A JP 2022122338A JP 2021019494 A JP2021019494 A JP 2021019494A JP 2021019494 A JP2021019494 A JP 2021019494A JP 2022122338 A JP2022122338 A JP 2022122338A
Authority
JP
Japan
Prior art keywords
mass
parts
insulating layer
polyolefin
manufactured
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021019494A
Other languages
Japanese (ja)
Inventor
周 岩崎
Shu Iwasaki
有 木部
Tamotsu Kibe
孔亮 中村
Yoshiaki Nakamura
充 橋本
Mitsuru Hashimoto
元治 梶山
Motoharu Kajiyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2021019494A priority Critical patent/JP2022122338A/en
Priority to DE102022103046.6A priority patent/DE102022103046A1/en
Priority to CN202210122318.1A priority patent/CN114914015A/en
Publication of JP2022122338A publication Critical patent/JP2022122338A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0208Cables with several layers of insulating material
    • H01B7/0216Two layers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/025Other inorganic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/441Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from alkenes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/18Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances
    • H01B3/30Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes
    • H01B3/44Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins
    • H01B3/446Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of organic substances plastics; resins; waxes vinyl resins; acrylic resins from vinylacetals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/02Disposition of insulation
    • H01B7/0291Disposition of insulation comprising two or more layers of insulation having different electrical properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/18Protection against damage caused by wear, mechanical force or pressure; Sheaths; Armouring

Abstract

To provide an electric wire and a cable having high performance in fire retardancy and electrical insulation performance.SOLUTION: An electric wire 10 comprises: a conductor 11; an insulation layer (first insulation layer) 12 provided with a polyolefin-containing base polymer and coating the conductor 11; and an insulation layer (second insulation layer) 13 provided with a polyolefin-containing base polymer and coating the insulation layer 12. In the insulation layer 12, 130-200 pts.mass of aluminum hydroxide is added to 100 pts.mass of polyolefin. A surface area of the aluminum hydroxide per unit volume of a resin composition of the insulation layer 12 is 3.7 m2/ml or larger. In the insulation layer 13 being a non-halogen resin composition containing an acetic acid/vinyl copolymer as the main component of polyolefin, 150-250 pts.mass of magnesium hydrate is added to 100 pts.mass of polyolefin. The insulation layer 12 and the insulation layer 13 are each crosslinked.SELECTED DRAWING: Figure 1

Description

本発明は、電線およびこれを用いたケーブルに関する。 TECHNICAL FIELD The present invention relates to an electric wire and a cable using the same.

例えば鉄道車両には、モータなどに配線される動力線や、運転を制御する制御線など、多数のケーブルが使用されている。これらのケーブルには、高い難燃性および電気絶縁性能が要求される。 For example, railroad vehicles use a large number of cables such as power lines for motors and control lines for controlling operation. These cables are required to have high flame retardancy and electrical insulation performance.

高い難燃性を得るには、例えば、ポリオレフィン系樹脂に金属水酸化物を多量に配合する方法がある(例えば特許文献1および特許文献2参照)。 In order to obtain high flame retardancy, for example, there is a method of blending a large amount of metal hydroxide into a polyolefin resin (see, for example, Patent Documents 1 and 2).

特開2004-186011号公報Japanese Patent Application Laid-Open No. 2004-186011 特開2014-53247号公報JP 2014-53247 A

本願発明者は、電線およびこれを用いたケーブルにおいて、難燃性、あるいは電気絶縁性能の特性を向上させる技術について検討した。例えば、上記した特許文献1では、外側の絶縁層を構成する材料として、スチレン系エラストマやエチレンプロピレンゴムが添加された絶縁層が記載されているが、特許文献1に記載される処方では、十分な耐油性が得られない。また、内側の絶縁層として水酸化マグネシウムを含有する絶縁層が記載されているが、水酸化マグネシウムは不純物イオンが多くなり易いので、電線の電気的な特性を低下させる原因になる場合がある。また、内側の絶縁層のベースポリマとして極性が高いエチレンアクリル酸共重合体を用いる場合、吸湿性が高いので、電線の電気的な特性を低下させる原因になる場合がある。また、例えば上記特許文献に記載されるように、絶縁層として酢酸の割合が30%以上である酢酸ビニル共重合体をベースポリマとして用いた場合、電線表面のタックが強すぎることに起因して、電子線を照射することによる架橋処理が困難になる場合がある。 The inventors of the present application have studied techniques for improving flame retardancy or electrical insulation performance in electric wires and cables using the same. For example, in Patent Document 1 described above, an insulating layer to which a styrene elastomer or ethylene propylene rubber is added is described as a material constituting the outer insulating layer, but the formulation described in Patent Document 1 is sufficient. oil resistance is not obtained. Also, an insulating layer containing magnesium hydroxide is described as the inner insulating layer, but magnesium hydroxide tends to contain many impurity ions, which may cause deterioration of the electrical properties of the electric wire. Moreover, when an ethylene-acrylic acid copolymer having a high polarity is used as the base polymer of the inner insulating layer, the hygroscopicity is high, which may cause deterioration of the electrical properties of the electric wire. Further, as described in the above-mentioned patent document, for example, when a vinyl acetate copolymer containing 30% or more of acetic acid is used as a base polymer for an insulating layer, the tackiness of the wire surface is too strong. , the cross-linking treatment by electron beam irradiation may become difficult.

本発明は、難燃性および電気絶縁性能において高い特性を備える電線およびケーブルを提供すること目的とするものである。 SUMMARY OF THE INVENTION An object of the present invention is to provide electric wires and cables with high characteristics in terms of flame retardancy and electrical insulation performance.

一実施の形態である電線は、[1]導体と、ポリオレフィンを含むベースポリマを備え、前記導体を被覆する第1絶縁層と、ポリオレフィンを含むベースポリマを備え、前記第1絶縁層を被覆する第2絶縁層と、を有する。前記第1絶縁層は、ポリオレフィン100質量部に対して、水酸化アルミニウムが130~200質量部添加される。前記第1絶縁層の樹脂組成物の単位体積当たりの水酸化アルミニウムの表面積が3.7m/ml以上である。前記第2絶縁層は、ポリオレフィン100質量部に対して、水酸化マグネシウムが150~250質量部添加され、かつ、ポリオレフィンの主成分としてエチレン酢酸ビニル共重合体を含むノンハロゲン樹脂組成物である。前記第1絶縁層および前記第2絶縁層のそれぞれは、架橋されている。 An electric wire according to one embodiment includes: [1] a conductor, a base polymer containing polyolefin, a first insulating layer covering the conductor, and a base polymer containing polyolefin, covering the first insulating layer and a second insulating layer. For the first insulating layer, 130 to 200 parts by mass of aluminum hydroxide is added to 100 parts by mass of polyolefin. The surface area of aluminum hydroxide per unit volume of the resin composition of the first insulating layer is 3.7 m 2 /ml or more. The second insulating layer is a non-halogen resin composition containing 150 to 250 parts by mass of magnesium hydroxide with respect to 100 parts by mass of polyolefin and containing an ethylene-vinyl acetate copolymer as the main component of the polyolefin. Each of the first insulating layer and the second insulating layer is crosslinked.

[2]例えば、[1]において、前記第1絶縁層は、ポリオレフィンの主成分として融点が110℃以上のポリエチレンを含み、かつ、副成分として酢酸ビニル共重合体およびエチレンアクリル酸共重合体が含まれない。 [2] For example, in [1], the first insulating layer contains polyethylene having a melting point of 110°C or higher as a main component of polyolefin, and vinyl acetate copolymer and ethylene acrylic acid copolymer as secondary components. Not included.

[3]例えば[1]または[2]において、前記第1絶縁層は、ポリオレフィンの副成分として酸変性ポリオレフィンを含む。前記酸変性されたポリオレフィンは、ポリエチレン、エチレン-α-オレフィン、およびエチレンアクリル酸共重合体のうちの一種類以上を含む。 [3] For example, in [1] or [2], the first insulating layer contains acid-modified polyolefin as a subcomponent of polyolefin. The acid-modified polyolefin includes at least one of polyethylene, ethylene-α-olefin, and ethylene acrylic acid copolymer.

[4]例えば、[1]~[3]のいずれかにおいて、前記第1絶縁層に含まれる水酸化アルミニウムは、純水に懸濁した際の電気伝導度が20μS/cm以下である。 [4] For example, in any one of [1] to [3], the aluminum hydroxide contained in the first insulating layer has an electrical conductivity of 20 μS/cm or less when suspended in pure water.

[5]例えば、[1]~[3]のいずれかにおいて、前記第2絶縁層は、ポリオレフィンの主成分として融点が80℃以上のエチレン酢酸ビニル共重合体を含む。 [5] For example, in any one of [1] to [3], the second insulating layer contains an ethylene-vinyl acetate copolymer having a melting point of 80° C. or higher as a main component of polyolefin.

また、他の実施の形態であるケーブルは、[6]複数の電線と、前記複数の電線を一括して被覆するシースと、を有し、前記複数の電線のうちの少なくとも一部は、[1]~[5]のいずれかに記載される電線である。 In another embodiment, a cable has [6] a plurality of electric wires and a sheath that collectively covers the plurality of electric wires, and at least a part of the plurality of electric wires includes [ 1] to [5].

本発明の代表的な実施の形態によれば、難燃性および電気絶縁性能において高い特性を備える電線およびケーブルが得られる。 Exemplary embodiments of the present invention provide wires and cables with high properties in flame retardancy and electrical insulation performance.

一実施の形態である電線の構造例を示す断面図である。It is a sectional view showing an example of structure of an electric wire which is one embodiment. 図1に示す電線を含むケーブルの構造例を示す断面図である。FIG. 2 is a cross-sectional view showing a structural example of a cable including the electric wire shown in FIG. 1;

以下に、本発明の実施の形態について、図面を参照しつつ説明する。 BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings.

<電線およびケーブルの基本構造例>
図1は、一実施の形態である電線の構造例を示す断面図である。図2は、図1に示す電線を含むケーブルの構造例を示す断面図である。
<Example of basic structure of wire and cable>
FIG. 1 is a cross-sectional view showing a structural example of an electric wire according to one embodiment. FIG. 2 is a cross-sectional view showing a structural example of a cable including the electric wires shown in FIG.

図1に示す電線10は、導体11と、導体11を被覆する絶縁層(第1絶縁層)12と、絶縁層12を被覆する絶縁層(第2絶縁層)13と、を有する。電線10は、2層の絶縁層を備える2層絶縁電線である。後述するように、絶縁層12および13のそれぞれは、架橋されている。電線10は、2層架橋絶縁電線と言いかえることができる。また、後述するように、電線10は、絶縁層12および13のそれぞれに難燃剤を含有している。電線10は、2層架橋難燃絶縁電線と言い換えることができる。 The electric wire 10 shown in FIG. 1 has a conductor 11 , an insulating layer (first insulating layer) 12 covering the conductor 11 , and an insulating layer (second insulating layer) 13 covering the insulating layer 12 . The electric wire 10 is a double-layer insulated electric wire having two insulating layers. As will be described later, each of insulating layers 12 and 13 is crosslinked. The electric wire 10 can be said to be a two-layer bridging insulated electric wire. Insulation layers 12 and 13 of electric wire 10 each contain a flame retardant, as will be described later. The electric wire 10 can be rephrased as a two-layer cross-linked flame-retardant insulated electric wire.

図2に示すケーブル20は、複数の電線10と、複数の電線10を一括して被覆するシース(絶縁層、第3絶縁層)21と、を有する。図2に示す例では、シース21が2本の電線10を被覆する例を示している。ただし、シース21内の電線10の本数は、2本には限定されず、例えば、3本以上の場合もある。また、図2に示すように、シース21に被覆されるすべての電線が電線10であることが好ましいが、変形例としては、電線10とは異なる構造の電線が、電線10と一緒にシース21に被覆されている場合がある。 A cable 20 shown in FIG. 2 has a plurality of electric wires 10 and a sheath (insulating layer, third insulating layer) 21 that collectively covers the plurality of electric wires 10 . The example shown in FIG. 2 shows an example in which the sheath 21 covers two electric wires 10 . However, the number of wires 10 in the sheath 21 is not limited to two, and may be three or more, for example. Moreover, as shown in FIG. 2, it is preferable that all the electric wires covered by the sheath 21 are the electric wires 10. may be covered with

以下、電線10の特徴について、内層である絶縁層12と、外層である絶縁層13と、に分けて説明する。 The features of the electric wire 10 will be described below separately for the insulating layer 12 that is the inner layer and the insulating layer 13 that is the outer layer.

<絶縁層12>
内層である絶縁層12は、ベースポリマとしてポリオレフィンを主成分とする(ベースポリマの50重量%以上がポリオレフィンである)。絶縁層12は、難燃剤として水酸化アルミニウムを含んでいることが好ましい。一般的に難燃剤として用いられる金属水酸化物に水酸化マグネシウムがある。水酸化マグネシウムは不純物イオンが多くなり易いので、電線の電気的な特性を低下させる原因になる場合がある。一方、難燃剤として水酸化アルミニウムを用いた場合、水酸化マグネシウムを用いた場合と比較して、電線10の電気的特性を向上させることができる。
<Insulating layer 12>
The insulating layer 12, which is the inner layer, is mainly composed of polyolefin as a base polymer (50% by weight or more of the base polymer is polyolefin). The insulating layer 12 preferably contains aluminum hydroxide as a flame retardant. Metal hydroxides commonly used as flame retardants include magnesium hydroxide. Magnesium hydroxide tends to have a large amount of impurity ions, which may cause deterioration of the electrical properties of the electric wire. On the other hand, when aluminum hydroxide is used as the flame retardant, the electrical properties of the electric wire 10 can be improved as compared with the case of using magnesium hydroxide.

ただし、絶縁層12を構成する樹脂組成物(ベースポリマおよびフィラを含む組成物)の単位体積当たりの水酸化アルミニウムの表面積は、3.7m/ml以上である必要がある。また、絶縁層12に含まれるポリオレフィンを100質量部とした時の水酸化アルミニウムの添加量は、130~200質量部(130質量部以上、200質量部以下)である必要がある。 However, the surface area of aluminum hydroxide per unit volume of the resin composition (composition including base polymer and filler) forming the insulating layer 12 must be 3.7 m 2 /ml or more. The amount of aluminum hydroxide to be added should be 130 to 200 parts by mass (130 parts by mass or more and 200 parts by mass or less) when the polyolefin contained in the insulating layer 12 is 100 parts by mass.

ベースポリマとフィラとの界面の面積(言い換えればフィラの表面積)が少ない程、水分の侵入を防止できると考えられる。この考え方に則れば、フィラの添加量は少ない程好ましく、フィラの表面積は小さいほど好ましいはずである。しかし、本願発明者の検討によれば、絶縁層12に含まれるポリオレフィンを100質量部とした時の水酸化アルミニウムの添加量が100質量部を超えている場合、水酸化アルミニウムの表面積が、3.7m/ml未満の場合には絶縁破壊が発生する場合があり、水酸化アルミニウムの表面積が、3.7m/ml以上である場合には、絶縁破壊しないことが判った。このメカニズムは、完全には明らかにされている訳ではないが、以下のように考察できる。すなわち、水酸化アルミニウムのフィラに起因する絶縁破壊は、樹脂組成物の絶縁抵抗の要素に加え、電解ひずみの要素が影響していると考えられる。絶縁層12に添加される水酸化アルミニウムの量が多くなれば、樹脂組成物の絶縁抵抗は小さくなるが、水酸化アルミニウムの表面積が、3.7m/ml以上の場合には、電解ひずみも小さくなるので、絶縁破壊を防止できると考えられる。 It is believed that the smaller the area of the interface between the base polymer and the filler (in other words, the surface area of the filler), the more likely it is that moisture can be prevented from entering. Based on this idea, the smaller the amount of filler added, the better, and the smaller the surface area of the filler, the better. However, according to the study of the inventor of the present application, when the amount of aluminum hydroxide added exceeds 100 parts by mass when the polyolefin contained in the insulating layer 12 is 100 parts by mass, the surface area of aluminum hydroxide is reduced to 3 parts by mass. When the surface area of aluminum hydroxide is less than 0.7 m 2 / ml, dielectric breakdown may occur. Although this mechanism has not been clarified completely, it can be considered as follows. That is, the dielectric breakdown caused by the aluminum hydroxide filler is considered to be affected by the element of electrolytic strain in addition to the element of insulation resistance of the resin composition. As the amount of aluminum hydroxide added to the insulating layer 12 increases, the insulation resistance of the resin composition decreases. Since it becomes small, it is thought that dielectric breakdown can be prevented.

また、絶縁層12に対して十分な難燃性を付与する観点から、絶縁層12に含まれるポリオレフィンを100質量部とした時の水酸化アルミニウムの添加量は、130質量部以上である必要がある。例えば、上記した水酸化アルミニウムの添加量が100質量部未満であれば、絶縁層12の絶縁破壊は生じないが、難燃性が不足する。ただし、上記した水酸化アルミニウムの添加量が200質量部を超えると、水酸化アルミニウムの表面積が、3.7m/ml以上であっても絶縁破壊する場合がある。また、上記した水酸化アルミニウムの添加量が200質量部を超えると、絶縁層12の伸び特性などの機械的特性が低下する。したがって、絶縁層12に含まれるポリオレフィンを100質量部とした時の水酸化アルミニウムの添加量は、130~200質量部である必要がある。 In addition, from the viewpoint of imparting sufficient flame retardancy to the insulating layer 12, the amount of aluminum hydroxide added should be 130 parts by mass or more when the polyolefin contained in the insulating layer 12 is 100 parts by mass. be. For example, if the amount of aluminum hydroxide added is less than 100 parts by mass, dielectric breakdown of the insulating layer 12 does not occur, but flame retardancy is insufficient. However, if the amount of aluminum hydroxide added exceeds 200 parts by mass, dielectric breakdown may occur even if the surface area of aluminum hydroxide is 3.7 m 2 /ml or more. In addition, if the amount of aluminum hydroxide added exceeds 200 parts by mass, the mechanical properties such as elongation properties of the insulating layer 12 are deteriorated. Therefore, the amount of aluminum hydroxide to be added should be 130 to 200 parts by mass when the polyolefin contained in the insulating layer 12 is 100 parts by mass.

また、電線10の電気特性を向上させる観点からは、以下の構成が好ましい。すなわち、絶縁層12に含まれる水酸化アルミニウムは、純水に懸濁した際の電気伝導度が20μS/cm以下であることが好ましい。また、変形例として水酸化アルミニウムに表面処理を施すこともできる。例えば、水酸化アルミニウムの表面にシラン処理が施されている場合、ベースポリマと水酸化アルミニウムのフィラとの密着性が向上するので、電気特性を向上させることができる点で好ましい。なお、電気特性の向上に着目すれば、水酸化アルミニウムのフィラと、クレーやタルクなどの充填剤とを置き換えることも考えられる。しかし、本実施の形態の場合、絶縁層12の難燃性を向上させる観点から、水酸化アルミニウムをベースポリマ中に充填されるフィラとして採用する。 Moreover, from the viewpoint of improving the electrical properties of the electric wire 10, the following configuration is preferable. That is, the aluminum hydroxide contained in the insulating layer 12 preferably has an electric conductivity of 20 μS/cm or less when suspended in pure water. Also, as a modification, aluminum hydroxide can be subjected to a surface treatment. For example, when the surface of aluminum hydroxide is silane-treated, the adhesion between the base polymer and the aluminum hydroxide filler is improved, which is preferable in terms of improving electrical properties. Note that if attention is paid to the improvement of the electrical properties, it is conceivable to replace the aluminum hydroxide filler with a filler such as clay or talc. However, in the case of the present embodiment, from the viewpoint of improving the flame retardancy of the insulating layer 12, aluminum hydroxide is used as the filler filled in the base polymer.

また、電線10の耐油性を評価する耐油試験を適切に実施する観点からは、以下の構成が好ましい。すなわち、絶縁層12は、ポリオレフィンの主成分として融点が110℃以上のポリエチレンを含むことが好ましい。耐油試験の代表的な方法として、100℃に加熱した試験油(IRM902試験油)に72時間浸漬する前後において引張特性を計測し、浸漬前後での引張特性の変化の程度を評価する方法がある。この時、試料のベースポリマであるポリオレフィンの主成分(ベース)の融点は、示差走査熱量測定法(DSC法)にて110℃以上が好ましい。上記したポリオレフィンの主成分(ベース)とは、ポリオレフィン100質量部に対して50質量部以上を占める成分のことをいう。ポリオレフィンの主成分の融点が110℃を下回ると、耐油試験中にベースポリマの結晶が融解し、油の拡散を防ぐことが困難になる。この場合、試験油の拡散に起因して引張特性の変化率が大きくなり、正確な耐油性の評価が困難になる。 Moreover, from the viewpoint of appropriately conducting an oil resistance test for evaluating the oil resistance of the electric wire 10, the following configuration is preferable. That is, the insulating layer 12 preferably contains polyethylene having a melting point of 110° C. or higher as a main component of polyolefin. As a representative method of the oil resistance test, the tensile properties are measured before and after 72 hours of immersion in test oil (IRM902 test oil) heated to 100°C, and the degree of change in tensile properties before and after immersion is evaluated. . At this time, the melting point of the main component (base) of the polyolefin, which is the base polymer of the sample, is preferably 110° C. or higher by differential scanning calorimetry (DSC method). The above-described main component (base) of polyolefin refers to a component that accounts for 50 parts by mass or more with respect to 100 parts by mass of polyolefin. If the melting point of the main component of the polyolefin is below 110°C, the crystals of the base polymer will melt during the oil resistance test, making it difficult to prevent the oil from diffusing. In this case, the rate of change in tensile properties increases due to diffusion of the test oil, making it difficult to accurately evaluate oil resistance.

融点が110℃のポリオレフィンとして、低密度ポリエチレン、直鎖状低密度ポリエチレン、中密度ポリエチレン、高密度ポリエチレン、およびポリプロピレンなどを例示できる。ただし、ポリオレフィンの主成分としてポリプロピレンを用いた場合、電子線照射による架橋処理を行った場合にポリプロピレンは崩壊するので、ポリオレフィンの主成分としてはポリエチレンが好ましい。 Examples of polyolefins having a melting point of 110° C. include low-density polyethylene, linear low-density polyethylene, medium-density polyethylene, high-density polyethylene, and polypropylene. However, when polypropylene is used as the main component of the polyolefin, polyethylene is preferable as the main component of the polyolefin because the polypropylene collapses when subjected to cross-linking treatment by electron beam irradiation.

また、ポリオレフィンの副成分(ポリオレフィン100質量部に対して50質量部未満の成分)として、酢酸ビニル共重合体およびエチレンアクリル酸共重合体が含まれないことが好ましい。酢酸ビニル共重合体およびエチレンアクリル酸共重合体は吸湿性を備えているので、これらの成分を除外することにより、水分に起因する電気特性の低下を防止できる。 In addition, it is preferable that vinyl acetate copolymer and ethylene-acrylic acid copolymer are not contained as subcomponents of polyolefin (components less than 50 parts by mass with respect to 100 parts by mass of polyolefin). Since the vinyl acetate copolymer and the ethylene acrylic acid copolymer are hygroscopic, the elimination of these components can prevent deterioration of electrical properties due to moisture.

ただし、酸で変性されているエチレンアクリル酸共重合体は、ポリマの密着性を高めることができる。ポリオレフィンの副成分として、酸で変性されたエチレンアクリル酸共重合体が含まれている場合、ベースポリマの密着性を向上させることにより水分の侵入を抑制し、電線10の電気特性を向上させることができる。酸としては、マレイン酸、無水マレイン酸、あるいはフマル酸などを挙げることができる。また、酸変性ポリオレフィンとしては、ポリエチレン、エチレン-α-オレフィン、あるいはエチレンアクリル酸共重合体を挙げることができる。ポリオレフィンの副成分としては、上記した複数の成分のうちの一種類が単独で含まれている場合もあり、上記した複数の成分の二種類以上が含まれている場合もある。 However, an acid-modified ethylene-acrylic acid copolymer can increase the adhesion of the polymer. When an acid-modified ethylene-acrylic acid copolymer is included as a secondary component of the polyolefin, the adhesion of the base polymer is improved to suppress the intrusion of moisture and improve the electrical properties of the electric wire 10. can be done. Examples of acids include maleic acid, maleic anhydride, and fumaric acid. Examples of acid-modified polyolefin include polyethylene, ethylene-α-olefin, and ethylene-acrylic acid copolymer. As the subcomponent of the polyolefin, one kind of the plurality of components described above may be contained singly, and two or more kinds of the plurality of components described above may be contained.

また、図1に示す電線10の絶縁層12を構成する樹脂組成物には、上記以外の副成分が含まれている場合がある。上記以外の副成分として絶縁層12を構成する樹脂組成物に添加される材料を機能的に例示すると、例えば、架橋助剤、難燃助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、着色剤、補強材、界面活性剤、可塑剤、金属キレート剤、発泡剤、相溶化剤、加工助剤、安定剤、などを例示できる。 Further, the resin composition forming the insulating layer 12 of the electric wire 10 shown in FIG. 1 may contain subcomponents other than those described above. Materials added to the resin composition constituting the insulating layer 12 as subcomponents other than the above are functionally exemplified. , coloring agents, reinforcing agents, surfactants, plasticizers, metal chelating agents, foaming agents, compatibilizers, processing aids, stabilizers, and the like.

<絶縁層13>
外層である絶縁層13は、ベースポリマとしてポリオレフィンを主成分とする(ベースポリマの50重量%以上がポリオレフィンである)。絶縁層13は、ベースポリマに難燃剤のフィラ等を混合させた樹脂組成物から成る。絶縁層13は、燃焼時にハロゲンガスを発生させない、ノンハロゲン樹脂組成物である。また、絶縁層13は、難燃剤として水酸化マグネシウムを含んでいる。ノンハロゲン樹脂組成物用の難燃剤として、赤リンなどのリン系難燃剤や、メラミンシアヌレート等のトリアジン系難燃剤などがあるが、水酸化マグネシウムの場合、燃焼時に人体に有害なホスフィンガスやシアンガスを発生させないので、これを採用する。
<Insulating layer 13>
The insulating layer 13, which is an outer layer, is mainly composed of polyolefin as a base polymer (50% by weight or more of the base polymer is polyolefin). The insulating layer 13 is made of a resin composition in which a flame retardant filler or the like is mixed with a base polymer. The insulating layer 13 is a non-halogen resin composition that does not generate halogen gas when burned. Moreover, the insulating layer 13 contains magnesium hydroxide as a flame retardant. Flame retardants for non-halogen resin compositions include phosphorus-based flame retardants such as red phosphorus and triazine-based flame retardants such as melamine cyanurate. This is adopted because it does not generate

絶縁層13の難燃性を向上させる観点から、絶縁層13のベースポリマであるポリオレフィン100質量部に対して150質量部以上の水酸化マグネシウムが添加されていることが好ましく、160質量部以上の水酸化マグネシウムが添加されていることが特に好ましい。また、絶縁層13の伸び特性などの機械的特性の低下を防止する観点からは、絶縁層13のベースポリマであるポリオレフィン100質量部に対して250質量部以下の水酸化マグネシウムが添加されていることが好ましく、200質量部以下の水酸化マグネシウムが添加されていることが特に好ましい。 From the viewpoint of improving the flame retardancy of the insulating layer 13, it is preferable that 150 parts by mass or more of magnesium hydroxide is added to 100 parts by mass of polyolefin, which is the base polymer of the insulating layer 13, and 160 parts by mass or more. It is particularly preferred that magnesium hydroxide is added. In addition, from the viewpoint of preventing deterioration of mechanical properties such as elongation properties of the insulating layer 13, 250 parts by mass or less of magnesium hydroxide is added to 100 parts by mass of polyolefin, which is the base polymer of the insulating layer 13. It is particularly preferable that 200 parts by mass or less of magnesium hydroxide is added.

また、絶縁層13のベースポリマであるポリオレフィンは、主成分(ポリオレフィン100質量部に対して50質量部以上)として、酢酸ビニル共重合体を含む。特に、エチレン酢酸ビニル共重合体は燃焼時に脱酢酸による吸熱反応がある点で好ましい。酢酸ビニル共重合体は脱酢酸による吸熱効果が難燃性の向上に寄与する。このため、絶縁層13のポリオレフィンは、酢酸ビニル共重合体を主成分として含む必要があるが、ポリオレフィンの主成分として融点が80℃以上のエチレン酢酸ビニル共重合体を含むことが特に好ましい。融点が80℃以上のエチレン酢酸ビニル共重合体を主成分として用いた場合、電線10動詞のタック性を抑制する効果が得られる。また、電線10に対して試験油(IRM903試験油)を用いた耐油試験を行う場合、試験温度は70℃である。このため、絶縁層13のポリオレフィンの融点が高くなることにより、耐油試験の評価精度を向上させることができる。 Polyolefin, which is the base polymer of the insulating layer 13, contains a vinyl acetate copolymer as a main component (50 parts by mass or more with respect to 100 parts by mass of polyolefin). In particular, an ethylene-vinyl acetate copolymer is preferable because it undergoes an endothermic reaction due to deacetic acid during combustion. Vinyl acetate copolymer contributes to the improvement of flame retardancy due to the endothermic effect of deacetic acid. For this reason, the polyolefin of the insulating layer 13 must contain a vinyl acetate copolymer as a main component, and it is particularly preferable to contain an ethylene-vinyl acetate copolymer having a melting point of 80° C. or higher as a main component of the polyolefin. When an ethylene-vinyl acetate copolymer having a melting point of 80° C. or higher is used as the main component, the effect of suppressing the tackiness of the electric wire 10 is obtained. Moreover, when conducting an oil resistance test using a test oil (IRM903 test oil) on the electric wire 10, the test temperature is 70°C. For this reason, the melting point of the polyolefin of the insulating layer 13 is increased, so that the evaluation accuracy of the oil resistance test can be improved.

また、エチレン酢酸ビニル共重合体は、単独で用いてもよいが、絶縁層13の特性を向上させる目的で、複数種類の酢酸ビニル共重合体と混合して用いてもよい。例えば、絶縁層13の伸び特性を向上させる観点から、融点が80℃未満の酢酸ビニル共重合体(例えば結晶を持たない酢酸ビニル共重合体)と混合させる場合がある。伸び特性を向上させる効果は、低融点の酢酸ビニル共重合体の割合が60%以上である場合に、特に発現し易い。また、必要に応じて絶縁層13のポリオレフィンとして、酢酸ビニル共重合体と、他のポリオレフィンとを混合する場合がある。例えば、絶縁層13のポリオレフィンが、酸変性されたエチレン-α-オレフィンを含んでいる場合、絶縁層13の低温特性を向上させることができる。 Moreover, the ethylene-vinyl acetate copolymer may be used alone, but may be used in combination with a plurality of types of vinyl acetate copolymers for the purpose of improving the properties of the insulating layer 13 . For example, from the viewpoint of improving the elongation property of the insulating layer 13, it may be mixed with a vinyl acetate copolymer having a melting point of less than 80° C. (for example, a vinyl acetate copolymer having no crystals). The effect of improving the elongation property is particularly likely to be exhibited when the proportion of the vinyl acetate copolymer having a low melting point is 60% or more. Moreover, as the polyolefin of the insulating layer 13, a vinyl acetate copolymer and other polyolefin may be mixed as needed. For example, when the polyolefin of the insulating layer 13 contains acid-modified ethylene-α-olefin, the low temperature properties of the insulating layer 13 can be improved.

また、図1に示す電線10の絶縁層13を構成する樹脂組成物には、上記以外の副成分が含まれている場合がある。上記以外の副成分として絶縁層13を構成する樹脂組成物に添加される材料を機能的に例示すると、例えば、架橋助剤、難燃助剤、紫外線吸収剤、光安定剤、軟化剤、滑剤、着色剤、補強材、界面活性剤、可塑剤、金属キレート剤、発泡剤、相溶化剤、加工助剤、安定剤、などを例示できる。 Moreover, the resin composition forming the insulating layer 13 of the electric wire 10 shown in FIG. 1 may contain subcomponents other than those described above. Materials added to the resin composition constituting the insulating layer 13 as subcomponents other than the above are functionally exemplified. , coloring agents, reinforcing agents, surfactants, plasticizers, metal chelating agents, foaming agents, compatibilizers, processing aids, stabilizers, and the like.

<架橋について>
電線10が燃焼した際のドリップ(樹脂組成物の一部が溶け落ちる現象)を抑制する観点からは、絶縁層12および絶縁層13のそれぞれは架橋されていることが好ましい。架橋処理の方法としては、有機過酸化物、硫黄化合物、あるいはシラン等を用いた化学架橋、電子線や放射線などのエネルギービームを照射する照射架橋、あるいは、その他の化学反応を利用した架橋方法などがあるが、いずれの架橋方法も適用可能である。電子線を照射する方法により架橋する方法の場合、室温付近で架橋処理を実施できるため、処理の容易さ、あるいは架橋処理の前後でポリマの結晶のガラス転移温度や融解温度が変化し難い点で特に有利な方法である。
<About cross-linking>
From the viewpoint of suppressing drip (phenomenon in which a part of the resin composition melts down) when the electric wire 10 is burned, it is preferable that each of the insulating layers 12 and 13 is crosslinked. Examples of cross-linking methods include chemical cross-linking using organic peroxides, sulfur compounds, silanes, etc., irradiation cross-linking using energy beams such as electron beams and radiation, and cross-linking methods using other chemical reactions. However, any cross-linking method is applicable. In the case of the method of cross-linking by irradiating an electron beam, the cross-linking treatment can be performed at around room temperature, so the ease of processing, or the fact that the glass transition temperature and melting temperature of the polymer crystals do not easily change before and after the cross-linking treatment. It is a particularly advantageous method.

<評価>
次に、図1に示す電線10の実施例および実施例に対する比較例をいくつか作製し、それぞれについて評価した結果について説明する。表1は、実施例1~7の配合割合と評価結果を示す。表2は、比較例1~5の配合割合と評価結果を示す。
<Evaluation>
Next, examples of the electric wire 10 shown in FIG. 1 and several comparative examples for the examples were produced, and evaluation results for each will be described. Table 1 shows the blending ratios and evaluation results of Examples 1 to 7. Table 2 shows the blending ratios and evaluation results of Comparative Examples 1 to 5.

表1に示す複数の実施例および表2に示す複数の比較例のそれぞれは、以下の手順で図1に示す電線10と同じ構造を持つように製造した。導体11は、例えば、錫めっき銅線を素線とし、37本の素線を撚り線とした錫めっき導体である。導体11の直径は例えば0.18mmである。絶縁層12および絶縁層13のそれぞれは、表1および表2に示す配合のものを14インチオープンロールにて混練し、造粒機でペレット化した。その後、絶縁層12の厚さが0.3mm、絶縁層13の厚さが0.47mmになるように40mm押出機を用いて2層押出成形を行い、導体11を被覆した。得られた電線10に電子線を照射することにより架橋処理を行った。 Each of the plurality of examples shown in Table 1 and the plurality of comparative examples shown in Table 2 was manufactured to have the same structure as the electric wire 10 shown in FIG. 1 by the following procedure. The conductor 11 is, for example, a tin-plated conductor in which tin-plated copper wires are used as strands and 37 strands are twisted. The diameter of the conductor 11 is, for example, 0.18 mm. Each of the insulating layer 12 and the insulating layer 13 was formed by kneading the compositions shown in Tables 1 and 2 with a 14-inch open roll and pelletizing with a granulator. After that, two-layer extrusion molding was performed using a 40 mm extruder so that the thickness of the insulating layer 12 was 0.3 mm and the thickness of the insulating layer 13 was 0.47 mm, and the conductor 11 was covered. A cross-linking treatment was performed by irradiating the obtained electric wire 10 with an electron beam.

表1および表2に「表面積」として記載された項目は、絶縁層12の樹脂組成物の単位体積当たりの難燃剤である水酸化アルミニウムまたは水酸化マグネシウムの表面積の値を示している。「表面積」は、1ccの樹脂組成物に対する比表面積を示しており、(表面積)=(BET法による表面積)×比重×難燃剤重量÷樹脂組成物全体の重量の式により算出される。 The item described as “surface area” in Tables 1 and 2 indicates the surface area value of aluminum hydroxide or magnesium hydroxide, which is the flame retardant, per unit volume of the resin composition of the insulating layer 12 . "Surface area" indicates the specific surface area for 1 cc of the resin composition, and is calculated by the formula: (Surface area) = (Surface area by BET method) x Specific gravity x Weight of flame retardant / Weight of entire resin composition.

引張試験においては、作製した電線10から導体11を取り出したチューブを用いて、変位速度250mm/minで引張試験を実施し、引張強さと伸び特性とを測定した。評価の指標として、伸びが150%以上のものを〇、150%未満、かつ、120%以上のものを△、120%未満のものを×とした。 In the tensile test, a tube obtained by extracting the conductor 11 from the produced electric wire 10 was used, and the tensile test was performed at a displacement rate of 250 mm/min to measure tensile strength and elongation characteristics. As an evaluation index, ◯ indicates that the elongation is 150% or more, Δ indicates that the elongation is less than 150% and 120% or more, and x indicates that the elongation is less than 120%.

耐油試験では、電線10から導体11を取り出したチューブを、100℃に加熱した試験油(IRM902)に72時間浸漬した。その後、室温で16時間放置し、上記した引張試験と同様の条件で、引張試験を実施し、引張強さおよび伸び特性を測定した。得られた測定結果を上記した引張試験の結果と比較して、試験油による加熱前後の引張強さおよび伸び特性の変化率を算出した。評価の指標として、引張強さの変化率の絶対値が30%未満のものを〇、30%以上のものを△とした。また、伸び特性の変化率の絶対値が40%未満のものを〇、40%以上のものを△とした。 In the oil resistance test, the tube obtained by extracting the conductor 11 from the electric wire 10 was immersed in test oil (IRM902) heated to 100° C. for 72 hours. Then, it was allowed to stand at room temperature for 16 hours, and a tensile test was performed under the same conditions as the tensile test described above to measure tensile strength and elongation properties. The obtained measurement results were compared with the results of the tensile test described above to calculate the rate of change in tensile strength and elongation properties before and after heating with the test oil. As an evaluation index, ◯ indicates that the absolute value of the rate of change in tensile strength is less than 30%, and Δ indicates that it is 30% or more. In addition, when the absolute value of the rate of change in the elongation property was less than 40%, it was evaluated as ◯, and when it was 40% or more, it was evaluated as Δ.

難燃性試験として、欧州規格(EN45545-2)に準拠し、以下の評価を行った。すなわち、垂直に支持した電線にバーナの炎を1分間当てた後、炎を外して上側固定部と炭化上端部との距離が50mm以上、かつ、上側固定部と炭化部下端との距離が540mm未満のものを〇とし、それ以外を×とした。 As a flame retardancy test, the following evaluations were performed according to the European standard (EN45545-2). That is, after applying the flame of the burner to the wire supported vertically for 1 minute, the flame is removed, and the distance between the upper fixed part and the carbonized upper end is 50 mm or more, and the distance between the upper fixed part and the carbonized part lower end is 540 mm. Those less than 0 were designated as 0, and others were designated as x.

電気試験として、欧州規格EN50305.6.7に準拠した1500V直流安定性試験を実施した。240時間短絡しなかったものを〇、240時間未満で短絡したものを×とした。 As an electrical test, a 1500 V direct current stability test was performed according to European standard EN50305.6.7. A sample that did not short-circuit for 240 hours was rated as ◯, and a sample that short-circuited in less than 240 hours was rated as x.

電気伝導度の評価として、純水100mlに難燃剤を2g投入してから攪拌し、85℃で20時間加熱した。その後、ろ過した懸濁液を電気伝導度測定器により測定した。 For evaluation of electric conductivity, 2 g of flame retardant was added to 100 ml of pure water, stirred, and heated at 85° C. for 20 hours. The filtered suspension was then measured with a conductivity meter.

総合評価として、全ての評価項目が〇のものを◎、△が一つ以上含まれるものを◎とした。また×が含まれるものは×とした。 As a comprehensive evaluation, ⊚ indicates that all evaluation items are 〇, and ⊚ indicates that one or more △ is included. Moreover, the thing containing x was set to x.

Figure 2022122338000002
Figure 2022122338000002

Figure 2022122338000003
Figure 2022122338000003

Figure 2022122338000004
Figure 2022122338000004

Figure 2022122338000005
Figure 2022122338000005

<実施例1>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Example 1>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL107ZO)を130質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 130 parts by mass of aluminum hydroxide (OL107ZO manufactured by Huber) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表1に示す各種の評価を実施した。表1に示すように、すべての評価項目において、〇と判定されたので、総合評価は◎であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 1 were carried out. As shown in Table 1, all the evaluation items were judged to be ◯, so the overall evaluation was ⊚.

<実施例2>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Example 2>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL107ZO)を150質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 150 parts by mass of aluminum hydroxide (OL107ZO manufactured by Huber) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表1に示す各種の評価を実施した。表1に示すように、すべての評価項目において、〇と判定されたので、総合評価は◎であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 1 were carried out. As shown in Table 1, all the evaluation items were judged to be ◯, so the overall evaluation was ⊚.

<実施例3>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製 ,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Example 3>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL107ZO)を150質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), and 4 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals). , 150 parts by mass of aluminum hydroxide (OL107ZO manufactured by Huber) as a flame retardant, and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表1に示す各種の評価を実施した。表1に示すように、すべての評価項目において、〇と判定されたので、総合評価は◎であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 1 were carried out. As shown in Table 1, all the evaluation items were judged to be ◯, so the overall evaluation was ⊚.

<実施例4>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製 ,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Example 4>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL107ZO)を180質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), and 4 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals). , 180 parts by mass of aluminum hydroxide (OL107ZO manufactured by Huber) as a flame retardant, and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表1に示す各種の評価を実施した。表1に示すように、すべての評価項目において、〇と判定されたので、総合評価は◎であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 1 were carried out. As shown in Table 1, all the evaluation items were judged to be ◯, so the overall evaluation was ⊚.

<実施例5>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製 ,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Example 5>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL107ZO)を200質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), and 4 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals). , 200 parts by mass of aluminum hydroxide (OL107ZO manufactured by Huber) as a flame retardant, and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表1に示す各種の評価を実施した。表1に示すように、破断伸びは130%だったので評価は△とした。その他のすべての評価項目において、〇と判定されたので、総合評価は〇であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 1 were carried out. As shown in Table 1, the elongation at break was 130%, so the evaluation was made as Δ. All other evaluation items were evaluated as 0, so the overall evaluation was 0.

<実施例6>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製 ,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Example 6>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL104ZO)を180質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 180 parts by mass of aluminum hydroxide (OL104ZO manufactured by Huber) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表1に示す各種の評価を実施した。表1に示すように、すべての評価項目において、〇と判定されたので、総合評価は◎であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 1 were carried out. As shown in Table 1, all the evaluation items were judged to be ◯, so the overall evaluation was ⊚.

<実施例7>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Example 7>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP0510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL107ZO)を150質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP0510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 150 parts by mass of aluminum hydroxide (OL107ZO manufactured by Huber) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表1に示す各種の評価を実施した。表1に示すように、耐油引張強さの変化率の絶対値および耐油破断伸びの変化率の絶対値が、それぞれ30%より大きかったので評価は△とした。その他のすべての評価項目において、〇と判定されたので、総合評価は〇であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 1 were carried out. As shown in Table 1, the absolute value of the rate of change in oil-resistant tensile strength and the absolute value of the rate of change in oil-resistant elongation at break were each greater than 30%, so the evaluation was given as Δ. All other evaluation items were evaluated as 0, so the overall evaluation was 0.

<比較例1>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Comparative Example 1>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL104ZO)を160質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 160 parts by mass of aluminum hydroxide (OL104ZO manufactured by Huber) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表2に示す各種の評価を実施した。表2に示すように、水酸化アルミニウムの表面積が3.7m/ml未満(3.5m/ml)であり、直流安定性試験が不合格であった。このため、総合評価は×であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 2 were carried out. As shown in Table 2, the aluminum hydroxide had a surface area of less than 3.7 m 2 /ml (3.5 m 2 /ml) and failed the direct current stability test. Therefore, the overall evaluation was x.

<比較例2>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Comparative Example 2>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL104ZO)を120質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 120 parts by mass of aluminum hydroxide (OL104ZO manufactured by Huber) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表2に示す各種の評価を実施した。表2に示すように、水酸化アルミニウムの表面積が3.7m/ml未満(2.9m/ml)であり、直流安定性試験が不合格であった。また、燃焼試験も不合格であった。このため、総合評価は×であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 2 were carried out. As shown in Table 2, the aluminum hydroxide had a surface area of less than 3.7 m 2 /ml (2.9 m 2 /ml) and failed the direct current stability test. It also failed the combustion test. Therefore, the overall evaluation was x.

<比較例3>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Comparative Example 3>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を4質量部、難燃剤として水酸化アルミニウム(Huber製,OL107ZO)を210質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), and 4 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals). 210 parts by mass of aluminum hydroxide (OL107ZO manufactured by Huber) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表2に示す各種の評価を実施した。表2に示すように、水酸化アルミニウムの添加量が多すぎるため、破断伸びが120%で不合格であった。また、直流安定性試験が不合格であった。このため、総合評価は×であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 2 were carried out. As shown in Table 2, the elongation at break was 120% and was unacceptable because the amount of aluminum hydroxide added was too large. Also, the DC stability test failed. Therefore, the overall evaluation was x.

<比較例4>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Comparative Example 4>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化マグネシウム(Huber製,H10A)を150質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 150 parts by mass of magnesium hydroxide (manufactured by Huber, H10A) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表2に示す各種の評価を実施した。表2に示すように、直流安定性試験が不合格であった。この原因は、水酸化アルミニウムに変えて水酸化マグネシウムを添加したためと考えられる。このため、総合評価は×であった。 Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 2 were carried out. As shown in Table 2, the DC stability test failed. The reason for this is thought to be that magnesium hydroxide was added in place of aluminum hydroxide. Therefore, the overall evaluation was x.

<比較例5>
図1に示す絶縁層13において、EVA(三井デュポンケミカル製,V5274)を45質量部、EVA(ランクセス製,レバブン600)を40質量部、変性ポリオレフィン(三井化学製,タフマMH7020)を15質量部、難燃剤として水酸化マグネシウム(神島化学工業,マグシーズS4)を180質量部、他の添加剤として表3に示す添加剤を8質量部、混練した。
<Comparative Example 5>
In the insulating layer 13 shown in FIG. 1, 45 parts by mass of EVA (V5274, manufactured by DuPont Mitsui Chemicals), 40 parts by mass of EVA (Levabun 600, manufactured by Lanxess), and 15 parts by mass of modified polyolefin (Tafuma MH7020, manufactured by Mitsui Chemicals) , 180 parts by mass of magnesium hydroxide (Kamishima Chemical Co., Ltd., Magshees S4) as a flame retardant, and 8 parts by mass of additives shown in Table 3 as other additives were kneaded.

図1に示す絶縁層12として、ポリエチレン(プライムポリマ製,SP1510)を70質量部、EBR(三井化学製,タフマDF840)を26質量部、変性ポリオレフィン(アルケマ製,ボンダインLX4110)を4質量部、難燃剤として水酸化マグネシウム(Huber製,H10A)を100質量部、表4に示す他添加剤を5質量部、混練した。 As the insulating layer 12 shown in FIG. 1, 70 parts by mass of polyethylene (SP1510, manufactured by Prime Polymer), 26 parts by mass of EBR (Tafuma DF840, manufactured by Mitsui Chemicals), 4 parts by mass of modified polyolefin (Bondyne LX4110, manufactured by Arkema), 100 parts by mass of magnesium hydroxide (manufactured by Huber, H10A) as a flame retardant and 5 parts by mass of other additives shown in Table 4 were kneaded.

上記材料を用いて図1に示す電線を作製し、5Mrad電子線を照射して絶縁層12および13を架橋した後、表2に示す各種の評価を実施した。表2に示すように、難燃剤の添加量が少ないため、燃焼試験が不合格であった。また、直流安定性試験が不合格であった。この原因は、水酸化アルミニウムに変えて水酸化マグネシウムを添加したためと考えられる。このため、総合評価は×であった。
<評価結果>
表1に示す実施例および表2に示す比較例の評価結果より、以下のことが判る。まず、内層である絶縁層12に添加される難燃剤として水酸化アルミニウムを用いることにより、難燃性と電気特性を両立させることができる。また、ポリオレフィンを100質量部とした時の水酸化アルミニウムの添加量は、難燃性を向上させる観点から130質量部以上が好ましく、破断伸び特性を向上させる観点から200質量部以下が好ましい。また、絶縁層12の樹脂組成物の単位体積当たりの水酸化アルミニウムの表面積が3.7m/ml以上であれば、直流安定性試験に合格する電線10が得られる。ただし、比較例3の結果から、水酸化アルミニウムの添加量が200質量部を超えると、表面積が3.7m/ml以上で直流安定性試験に不合格になる。
Using the above materials, the electric wire shown in FIG. 1 was produced and irradiated with an electron beam of 5 Mrad to crosslink the insulating layers 12 and 13. After that, various evaluations shown in Table 2 were carried out. As shown in Table 2, the combustion test failed because the amount of flame retardant added was small. Also, the DC stability test failed. The reason for this is thought to be that magnesium hydroxide was added in place of aluminum hydroxide. Therefore, the overall evaluation was x.
<Evaluation results>
The evaluation results of the examples shown in Table 1 and the comparative examples shown in Table 2 reveal the following. First, by using aluminum hydroxide as the flame retardant added to the insulating layer 12, which is the inner layer, both flame retardancy and electrical properties can be achieved. The amount of aluminum hydroxide to be added to 100 parts by mass of polyolefin is preferably 130 parts by mass or more from the viewpoint of improving flame retardancy, and preferably 200 parts by mass or less from the viewpoint of improving breaking elongation properties. Also, if the surface area of aluminum hydroxide per unit volume of the resin composition of the insulating layer 12 is 3.7 m 2 /ml or more, the electric wire 10 that passes the DC stability test can be obtained. However, from the results of Comparative Example 3, when the amount of aluminum hydroxide added exceeds 200 parts by mass, the surface area is 3.7 m 2 /ml or more and the DC stability test fails.

本発明は前記実施の形態および実施例に限定されるものではなく、その要旨を逸脱しな
い範囲で種々変更可能である。
The present invention is not limited to the above embodiments and examples, and can be modified in various ways without departing from the scope of the invention.

本発明は、電線およびケーブルに適用可能である。 The invention is applicable to wires and cables.

10 電線
11 導体
12 絶縁層(第1絶縁層、内層)
13 絶縁層(第2絶縁層、外層)
20 ケーブル
21 シース
10 Electric wire 11 Conductor 12 Insulating layer (first insulating layer, inner layer)
13 insulating layer (second insulating layer, outer layer)
20 cable 21 sheath

Claims (6)

導体と、
ポリオレフィンを含むベースポリマを備え、前記導体を被覆する第1絶縁層と、
ポリオレフィンを含むベースポリマを備え、前記第1絶縁層を被覆する第2絶縁層と、
を有し、
前記第1絶縁層は、ポリオレフィン100質量部に対して、水酸化アルミニウムが130~200質量部添加され、
前記第1絶縁層の樹脂組成物の単位体積当たりの水酸化アルミニウムの表面積が3.7m/ml以上であり、
前記第2絶縁層は、ポリオレフィン100質量部に対して、水酸化マグネシウムが150~250質量部添加され、かつ、ポリオレフィンの主成分としてエチレン酢酸ビニル共重合体を含むノンハロゲン樹脂組成物であり、
前記第1絶縁層および前記第2絶縁層のそれぞれは架橋されている、電線。
a conductor;
a first insulating layer comprising a base polymer comprising polyolefin and covering the conductor;
a second insulating layer comprising a base polymer comprising polyolefin and covering the first insulating layer;
has
The first insulating layer contains 130 to 200 parts by mass of aluminum hydroxide added to 100 parts by mass of polyolefin,
The surface area of aluminum hydroxide per unit volume of the resin composition of the first insulating layer is 3.7 m 2 /ml or more,
The second insulating layer is a non-halogen resin composition containing 150 to 250 parts by mass of magnesium hydroxide with respect to 100 parts by mass of polyolefin and containing an ethylene-vinyl acetate copolymer as the main component of the polyolefin,
The electric wire, wherein each of the first insulating layer and the second insulating layer is crosslinked.
請求項1において、
前記第1絶縁層は、ポリオレフィンの主成分として融点が110℃以上のポリエチレンを含み、かつ、副成分として酢酸ビニル共重合体およびエチレンアクリル酸共重合体が含まれない、電線。
In claim 1,
The electric wire, wherein the first insulating layer contains polyethylene having a melting point of 110° C. or higher as a main component of polyolefin, and does not contain a vinyl acetate copolymer and an ethylene-acrylic acid copolymer as secondary components.
請求項1または2において、
前記第1絶縁層は、ポリオレフィンの副成分として酸変性ポリオレフィンを含み、
前記酸変性ポリオレフィンは、ポリエチレン、エチレン-α-オレフィン、およびエチレンアクリル酸共重合体のうちの一種類以上を含む、電線。
In claim 1 or 2,
The first insulating layer contains acid-modified polyolefin as a secondary component of polyolefin,
The electric wire, wherein the acid-modified polyolefin includes one or more of polyethylene, ethylene-α-olefin, and ethylene-acrylic acid copolymer.
請求項1~3のいずれか1項において、
前記第1絶縁層に含まれる水酸化アルミニウムは、純水に懸濁した際の電気伝導度が20μS/cm以下である、電線。
In any one of claims 1 to 3,
The electric wire, wherein the aluminum hydroxide contained in the first insulating layer has an electrical conductivity of 20 μS/cm or less when suspended in pure water.
請求項1~4のいずれか1項において、
前記第2絶縁層は、ポリオレフィンの主成分として融点が80℃以上のエチレン酢酸ビニル共重合体を含む、電線。
In any one of claims 1 to 4,
The electric wire, wherein the second insulating layer contains an ethylene-vinyl acetate copolymer having a melting point of 80° C. or higher as a main component of polyolefin.
複数の電線と、前記複数の電線を一括して被覆するシースと、を有し、
前記複数の電線のうちの少なくとも一部は、請求項1~5のいずれか1項に記載される電線である、ケーブル。
having a plurality of electric wires and a sheath that collectively covers the plurality of electric wires,
A cable, wherein at least some of the plurality of electric wires are electric wires according to any one of claims 1 to 5.
JP2021019494A 2021-02-10 2021-02-10 Electric wire and cable Pending JP2022122338A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2021019494A JP2022122338A (en) 2021-02-10 2021-02-10 Electric wire and cable
DE102022103046.6A DE102022103046A1 (en) 2021-02-10 2022-02-09 ELECTRICAL WIRE AND CABLE
CN202210122318.1A CN114914015A (en) 2021-02-10 2022-02-09 Electric wire and cable

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2021019494A JP2022122338A (en) 2021-02-10 2021-02-10 Electric wire and cable

Publications (1)

Publication Number Publication Date
JP2022122338A true JP2022122338A (en) 2022-08-23

Family

ID=82493251

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021019494A Pending JP2022122338A (en) 2021-02-10 2021-02-10 Electric wire and cable

Country Status (3)

Country Link
JP (1) JP2022122338A (en)
CN (1) CN114914015A (en)
DE (1) DE102022103046A1 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004186011A (en) 2002-12-04 2004-07-02 Yazaki Corp Flame resisting electric wire and cable
JP5907015B2 (en) 2012-09-10 2016-04-20 日立金属株式会社 Railway vehicle wires and railway vehicle cables
JP6875780B2 (en) 2019-07-23 2021-05-26 哲弥 佐野 Multi-story solar power generation unit that combines a storage room and a reflector

Also Published As

Publication number Publication date
CN114914015A (en) 2022-08-16
DE102022103046A1 (en) 2022-08-11

Similar Documents

Publication Publication Date Title
JP5733352B2 (en) Insulated electric wire for vehicle and cable for vehicle using non-halogen crosslinkable resin composition
JP5821827B2 (en) Insulated electric wire for railway vehicles and cable for railway vehicles using non-halogen crosslinked resin composition
JP6376463B2 (en) cable
JP6229942B2 (en) Insulated wires for railway vehicles and cables for railway vehicles
JP5617903B2 (en) Vehicle wires, vehicle cables
JP5652452B2 (en) Non-halogen flame retardant insulated wire
JP2015000913A (en) Non-halogen flame-retardant resin composition, and wires and cables prepared using the same
JP5907015B2 (en) Railway vehicle wires and railway vehicle cables
JP2016134381A (en) Insulated wire and cable
US10703889B2 (en) Insulated electric wire and insulating resin composition
JP7103111B2 (en) Non-halogen flame-retardant resin composition, insulated wires, and cables
JP6756691B2 (en) Insulated wire
JP2022122338A (en) Electric wire and cable
JP6756692B2 (en) Insulated wire
JP6756693B2 (en) Insulated wire
JP6738547B2 (en) Insulated wire and cable
JP6795481B2 (en) Insulated wire
JP7037280B2 (en) Insulated wire
JP6699074B2 (en) Insulating resin composition and insulated wire
JP2017188248A (en) Insulated wire
JP2018045885A (en) Insulated wire
JP2012246349A (en) Flame-retardant electrically insulating composition
EP3524428B1 (en) Multi-layer insulated wire and method of manufacturing the same
JP7064697B2 (en) Flame-retardant electrical insulation composition and electric wire
JP6460509B2 (en) Insulated wire

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240327