JP2022106279A - 樹脂組成物 - Google Patents

樹脂組成物 Download PDF

Info

Publication number
JP2022106279A
JP2022106279A JP2021196945A JP2021196945A JP2022106279A JP 2022106279 A JP2022106279 A JP 2022106279A JP 2021196945 A JP2021196945 A JP 2021196945A JP 2021196945 A JP2021196945 A JP 2021196945A JP 2022106279 A JP2022106279 A JP 2022106279A
Authority
JP
Japan
Prior art keywords
group
olefin
cyclopentadienyl
resin
methylene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2021196945A
Other languages
English (en)
Inventor
誠也 菊地
Seiya Kikuchi
春佳 齋藤
Haruka Saito
真路 井上
Shinji Inoue
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsui Chemicals Inc
Original Assignee
Mitsui Chemicals Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsui Chemicals Inc filed Critical Mitsui Chemicals Inc
Publication of JP2022106279A publication Critical patent/JP2022106279A/ja
Pending legal-status Critical Current

Links

Abstract

【解決手段】ASTM D1238Eに準拠して得られた230℃、2.16kg荷重でのメルトフローレート(MFR)が0.1~500g/10minであるプロピレン系重合体(α)と、エチレンと炭素数3から20のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとの共重合体から構成される主鎖、及び、エチレンと少なくとも1種の環状オレフィンとの共重合体から構成される側鎖を有するグラフト型オレフィン系重合体[R1]を含むオレフィン系樹脂(β)とを含有することを特徴とする樹脂組成物。【効果】本発明に係る樹脂組成物は、高い耐衝撃性と高い透明性を有する。【選択図】なし

Description

本発明は、プロピレン系重合体を含む樹脂組成物および該樹脂組成物を含む成形体に関する。
ポリプロピレン樹脂は、日用雑貨、台所用品、包装用フィルム、家電製品、機械部品、電気部品、自動車部品など、種々の分野で利用されており、要求される性能に応じて種々の改質材や添加剤が配合されたプロピレン系樹脂組成物が使用されている。また、循環型社会を形成するための3R(Reduce、Reuse、Recycle)への取り組みとして、最近各産業分野で薄肉成形品による軽量化が試みられている。成形品を軽量化または薄肉化しても充分な耐衝撃性が得られるようにプロピレン系樹脂組成物の改良が進められている。また、加飾による意匠性材料やセンサー向け材料への応用の要求として透明性の高いプロピレン系樹脂組成物の開発が望まれている。
一般に、ポリプロピレン樹脂の改質材として、エチレン・α-オレフィン系共重合体からなる軟質オレフィン系樹脂が配合される。更なる性能向上のため、結晶性のポリエチレンセグメントと非晶性あるいは低結晶性のエチレン・α-オレフィン系共重合体セグメントとが化学的に結合した、オレフィン系ブロックポリマーの改質材としての応用に期待が持たれている。
このようなオレフィン系ブロックポリマーに関する技術としては、特許文献1に開示のリビング重合触媒を用いて得られるポリエチレンセグメントとエチレン・α-オレフィン系共重合体セグメントとからなる直鎖状ブロックポリマーに関する技術や、特許文献2に開示の2種の触媒間の可逆的な連鎖移動反応を利用したマルチブロック構造のポリマーの製造に関する技術が挙げられる。
このような直鎖状のブロックポリマーとは別に、特許文献3~8には、主鎖および側鎖からなり、その一方がソフトセグメント、他方がハードセグメントである異種組成セグメントからなるグラフト型共重合体を得る方法が提案されている。これらの開示は、総じて、末端にビニル基を有するポリエチレン等のハードセグメントを合成し、その合成に次いで、あるいはその合成と同時に、このポリエチレン等ハードセグメントを、エチレンや炭素数3以上のα-オレフィンと共重合させることによって主鎖であるソフトセグメントに導入する技術がベースになっている。
たとえば、特許文献3や特許文献4には、特定のメタロセン触媒を用いて生成した末端ビニルポリエチレンをエチレンと共重合させてグラフト型オレフィンポリマーを得る方法が開示されている。本開示技術では、末端にビニル基を有すポリエチレンが得られるものの、末端ビニル生成効率が低く、そのため、側鎖として取り込まれなかったポリエチレンが多量に残ってしまう。このグラフトポリマーをポリプロピレン樹脂に配合した際には、多量に含まれる未反応ポリエチレンが耐衝撃性等の機械物性を悪化させるので、このグラフトポリマーの改質樹脂としての性能には改善の余地があり、このグラフトポリマーを使用しても所望の物性を発現するポリプロピレン樹脂組成物を得るに至っていない。
一方、特許文献5~7では、特定の非メタロセン系錯体触媒を用いることによって高い生成率にて側鎖用の末端ビニルポリエチレンを合成する技術が開示されている。本発明者らは、これら特許文献5または7の実施例に開示された主鎖生成用の触媒を用いて追試を行ってみたところ、一定量の末端ビニルポリエチレンが主鎖中に共重合されるものの、末端ビニルポリエチレンを高効率に取り込む高温条件での生産性が低いことを確認している。このようにして得られるブロックポリマーでは側鎖導入量も限定されるので、このブロックポリマーをポリプロピレンの改質樹脂として活用しようとしてもその改質性能は不十分である。
特許文献8には、共担持触媒系により、高効率に側鎖を導入する手法が開示されているが、主鎖が結晶性の重合体に限定され、プロピレン系樹脂の改質用に適した非晶または低結晶領域の重合体を製造することは困難であった。
このように、公知技術に開示された、異種ポリマーが化学的に連結したブロックポリマーやグラフトポリマーをポリプロピレン樹脂の改質材として適用しても、耐衝撃性と透明性に優れたプロピレン系樹脂組成物を得るに至っていない。
特開2007-84806号公報 特開2012-237013号公報 特表1996-502303号公報 特表2001-527589号公報 特開2002-105132号公報 特開2007-39540号公報 特開2007-39541号公報 特開2009-144148号公報
本発明は、高い耐衝撃性と高い透明性を有するプロピレン系樹脂組成物を提供することを課題とする。
本発明者らは、上記問題を解決すべく鋭意検討した結果、エチレンとα-オレフィンとの共重合体から構成される主鎖、及び、エチレンと環状オレフィンとの共重合体から構成される側鎖を有するグラフト型オレフィン系重合体を含むオレフィン系樹脂をプロピレン系樹脂に配合することにより、前記課題を解決することができることを見出し、本発明を完成させるに至った。
すなわち本発明は、以下の[1]~[6]に関する。
[1]
ASTM D1238Eに準拠して得られた230℃、2.16kg荷重でのメルトフローレート(MFR)が0.1~500g/10minであるプロピレン系重合体(α)と、
エチレンと炭素数3から20のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとの共重合体から構成される主鎖、及び、エチレンと少なくとも1種の環状オレフィンとの共重合体から構成される側鎖を有するグラフト型オレフィン系重合体[R1]を含むオレフィン系樹脂(β)と
を含有することを特徴とする樹脂組成物。
[2]
前記グラフト型オレフィン系重合体[R1]の主鎖を構成する前記共重合体が、以下の要件(i)および(ii)を満たす[1]に記載の樹脂組成物。
(i)エチレンから導かれる繰り返し単位が10~90mol%の範囲にある。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)よりスチレン換算値として求められる重量平均分子量が10000~500000の範囲にある。
[3]
前記グラフト型オレフィン系重合体[R1]の側鎖を構成する前記共重合体が、以下の要件(iii)および(iv)を満たす[1]または[2]に記載の樹脂組成物。
(iii)エチレンから導かれる繰り返し単位が50~95mol%の範囲にある。
(iv)ゲルパーミエーションクロマトグラフィー(GPC)よりスチレン換算値として求められる重量平均分子量が10000~100000の範囲にある。
[4]
前記オレフィン系樹脂(β)に含まれる環状オレフィン系共重合体の割合が、5~70質量%〔ただし、オレフィン系樹脂(β)を100質量%とする。〕の範囲である[1]~[3]のいずれかに記載の樹脂組成物。
[5]
前記プロピレン系重合体(α)を1~99質量部および前記オレフィン系樹脂(β)を1~99質量部〔プロピレン系重合体(α)とオレフィン系樹脂(β)との合計は100質量部である。〕 を含有する[1]~[4]のいずれかに記載の樹脂組成物。
[6]
[1]~[5]のいずれかに記載の樹脂組成物を含む成形体。
本発明の樹脂組成物は、高い耐衝撃性と高い透明性を有する。
以下、本発明の樹脂組成物に含有されるプロピレン系重合体(α)およびオレフィン系樹脂(β)について説明する。
<プロピレン系重合体(α)>
本発明の樹脂組成物に含有される成分の一つであるプロピレン系重合体(α)は、プロピレンの単独重合体、プロピレンとエチレンおよびα-オレフィンから選ばれる少なくとも1種との共重合体である。前述のα-オレフィンの具体例としては、1-ブテン、2-メチル-1-プロペン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等を挙げることができる。この中でも1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンのα-オレフィンを好ましく用いることができる。
本発明に係わるプロピレン系重合体(α)は、ASTM D1238に準拠した得られた230℃、荷重2.16kgでのメルトフローレート(MFR)が、0.1~500g/10分であり、好ましくは0.2~400g/10分、さらに好ましくは0.3~300g/10分である。プロピレン系重合体のMFRが上記範囲よりも低い場合、樹脂組成物中のプロピレン系重合体とオレフィン系樹脂(β)との分散性が悪化し、機械強度が低下する場合がある。また、プロピレン系重合体のMFRが上記範囲よりも高い場合、プロピレン系重合体自体の強度が低下し、得られた樹脂組成物の機械的強度が低くなる場合がある。
<オレフィン系樹脂(β)>
本発明の樹脂組成物に含有される成分の一つであるオレフィン系樹脂(β)は、後述のグラフト型オレフィン系重合体[R1]を必須の構成成分として含む。
本発明に係わるグラフト型オレフィン系重合体[R1]は、エチレンと炭素数3から20のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとの共重合体(以下、「エチレン・α-オレフィン共重合体」と呼称する場合がある。)からなる主鎖およびエチレンと少なくとも1種の環状オレフィンとの共重合体(以下、「環状オレフィン系共重合体」と呼称する場合がある。)からなる側鎖を有するグラフト共重合体である。
なお、本発明において「グラフト(共)重合体」あるいは「グラフト型重合体」という語は、主鎖に対し側鎖が1本以上結合したポリマーを意味する。
本発明に係わるグラフト型オレフィン系重合体[R1]は、非晶性または低結晶性のエチレン・α-オレフィン共重合体からなる主鎖に環状オレフィン系共重合体からなる側鎖が化学的に結合した構造であるので、グラフト型オレフィン系重合体[R1]を含むオレフィン系樹脂(β)は、環状オレフィン樹脂に対する相溶性が、通常のエチレン・α-オレフィン共重合体に比べて高い。
本発明に係わるオレフィン系樹脂(β)中にグラフト型オレフィン系重合体[R1]が含まれることは、得られたオレフィン系樹脂(β)中のエチレン・α-オレフィン共重合体/環状オレフィン系共重合体の含有量比およびGPCのピーク分離を組み合わせることにより確認することができる。例えばGPCを用いて測定した分子量分布曲線からピーク分離を行うことで環状オレフィン系共重合体の反応率を求めることができ、そこからグラフト型オレフィン系重合体[R1]の生成を確認することができる。このほか種々分析手法を用いることにより確認することができ、特段手段が限定されるものではない。
前記オレフィン系樹脂(β)は、下記要件(I)~(III)のうち、要件(II)を満たすことが好ましく、さらに要件(I)および(III)の少なくとも一つを満たすことがより好ましい。
(I)135℃のデカリン中で測定した極限粘度[η]が0.1~10.0dl/gの範囲である。
(II)前記オレフィン系樹脂(β)に含まれる環状オレフィン系共重合体の割合が5~70質量%の範囲である。
(III)熱キシレン不溶解量が3質量%未満である。
以下、これらの要件(I)~(III)について具体的に説明する。
〔要件(I)〕
本発明に係わるオレフィン系樹脂(β)は、135℃のデカリン中で測定した極限粘度[η]が0.1~10.0dl/gの範囲にあることが好ましく、より好ましくは0.7~4.0dl/g、さらに好ましくは0.8~3.0dl/gである。前記極限粘度[η]が前記範囲にあることにより、オレフィン系樹脂(β)を含んだ樹脂組成物は、耐衝撃性に加え、良好な剛性や機械強度を有し、さらに良好な成形加工性も有する。
〔要件(II)〕
前記オレフィン系樹脂(β)に含まれる環状オレフィン系共重合体の割合は、5~70質量%の範囲にあることが好ましく、より好ましくは8~60質量%、さらに好ましくは10~55質量%、とりわけ好ましくは20~55質量%である。
ここで、本発明に係わるオレフィン系樹脂(β)に含まれる環状オレフィン系共重合体は、グラフト型オレフィン系重合体[R1]の側鎖を構成する環状オレフィン系共重合体と、グラフト型オレフィン系重合体[R1]の側鎖を構成していない環状オレフィン系共重合体との両方を意味し、例えば後述するオレフィン系樹脂(β)の製造方法における重合工程(B)において、環状オレフィン系共重合体とエチレンおよびα-オレフィンとを共重合したとき、グラフト型オレフィン系重合体[R1]の側鎖として取り込まれた環状オレフィン系共重合体と主鎖に取り込まれなかった環状オレフィン系共重合体との両方を示す。
本発明に係わるオレフィン系樹脂(β)に含まれる環状オレフィン系共重合体の割合が上記範囲にあると、環状オレフィン系共重合体とオレフィン系樹脂(β)に含まれるエチレン・α-オレフィン共重合体との相溶性が高まり、プロピレン系重合体(α)とオレフィン系樹脂(β)とを含む樹脂組成物の耐衝撃性がより良好に発現される。
前記環状オレフィン系共重合体の割合が5質量%より小さいと、オレフィン系樹脂(β)とプロピレン系重合体(α)との密度差が大きく、得られる樹脂組成物は透明性に優れない場合がある。前記環状オレフィン系共重合体の割合が70質量%より大きいと、オレフィン系樹脂(β)に占める相対的なエチレン・α-オレフィン共重合体の含量が少ないことにより、得られる樹脂組成物が耐衝撃性において良好な物性を発現しない場合がある。
オレフィン系樹脂(β)に含まれる環状オレフィン系共重合体の割合は、たとえば後述する重合工程(B)に用いる環状オレフィン系共重合体の質量と、得られたオレフィン系樹脂(β)の質量との比率から求められる。
〔要件(III)〕
本発明に係わるオレフィン系樹脂(β)は、熱キシレン不溶解量が3.0質量%未満であることが好ましく、より好ましくは2.5質量%未満、さらに好ましくは2.0質量%未満である。
熱キシレン不溶解量は、次の方法で算出される値である。
試料を熱プレス(180℃、加熱5分間、冷却1分間)により厚み0.4mmのシート状にし、細かく裁断する。それを約100mg秤量し、325メッシュのスクリーンに包んで、密閉容器中にて30mlのp-キシレンに140℃で3時間浸漬する。次に、そのスクリーンを取り出し、80℃にて2時間以上、恒量になるまで乾燥する。熱キシレン不溶解量(質量%)は、次式で表わされる。
熱キシレン不溶解量(質量%)=100×[(W3-W2)/(W1-W2)]
W1:試験前のスクリーンおよびサンプルの合計の質量、W2:スクリーン質量、W3:試験後のスクリーンおよびサンプルの合計の質量
本発明に係わるオレフィン系樹脂(β)が要件(III)を満たすと、オレフィン系樹脂(β)は、上記の通り、熱キシレン不溶解量を全く含まないか、含んでも少量であるので、外観に優れるとともに、プロピレン系重合体(α)により良好に分散することができ、その結果、得られた樹脂組成物において耐衝撃性の効果をより強く発現する。一方、熱キシレン不溶部量が3質量%以上であると、オレフィン系樹脂(β)あるいは樹脂組成物から得られた成形体においてブツと呼ばれる外観不良が生じる場合がある。
後述する製造方法に示した通り、重合工程から直接グラフト型オレフィン系重合体を得る方法を採用することで、熱キシレン不溶解成分が上記範囲であるオレフィン系樹脂(β)を得ることができる。
本発明に係わるグラフト型オレフィン系重合体[R1]の主鎖は、エチレン・α-オレフィン共重合体から構成され、グラフト型オレフィン系重合体[R1]において、改質材として要求される耐衝撃性などの特性を担う部位となる。そのような特性を担保するために、グラフト型オレフィン系重合体[R1]の主鎖は、エチレンから導かれる繰り返し単位と、炭素原子数3~20のα-オレフィンから選ばれる少なくとも1種のα-オレフィンから導かれる繰り返し単位とからなる。
ここでエチレン・α-オレフィン共重合体においてエチレンと共重合している炭素原子数3~20のα-オレフィンの具体例としてはプロピレン、1-ブテン、2-メチル-1-プロペン、2-メチル-1-ブテン、3-メチル-1-ブテン、1-ヘキセン、2-エチル-1-ブテン、2,3-ジメチル-1-ブテン、2-メチル-1-ペンテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、3,3-ジメチル-1-ブテン、1-ヘプテン、メチル-1-ヘキセン、ジメチル-1-ペンテン、エチル-1-ペンテン、トリメチル-1-ブテン、メチルエチル-1-ブテン、1-オクテン、メチル-1-ペンテン、エチル-1-ヘキセン、ジメチル-1-ヘキセン、プロピル-1-ヘプテン、メチルエチル-1-ヘプテン、トリメチル-1-ペンテン、プロピル-1-ペンテン、ジエチル-1-ブテン、1-ノネン、1-デセン、1-ウンデセン、1-ドデセン等を挙げることができる。
より好ましくは、炭素原子数3~10のα-オレフィンであり、さらより好ましくは炭素原子数3~8のα-オレフィンである。具体的には、プロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテン、1-デセンなどの直鎖状オレフィン、および4-メチル-1-ペンテン、3-メチル-1-ペンテン、3-メチル-1-ブテン等の分岐状オレフィンを挙げることができ、中でもプロピレン、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンが好ましく、1-ブテン、1-ペンテン、1-ヘキセン、1-オクテンが更に好ましい。エチレンと共重合する炭素原子数3~20のα-オレフィンとして1-ブテン、1-ペンテン、1-ヘキセン、または1-オクテンを用いることで、耐衝撃性が良好な樹脂組成物が得られる。
本発明に係わるグラフト型オレフィン系重合体[R1]の主鎖を構成する共重合体は下記要件(i)および(ii)を満たすことが好ましい。
(i)エチレンから導かれる繰り返し単位が10~90mol%の範囲にある。
(ii)ゲルパーミエーションクロマトグラフィー(GPC)よりスチレン換算値として求められる重量平均分子量が10000~500000の範囲にある。
以下、これらの要件(i)および(ii)について具体的に説明する。
〔要件(i)〕
グラフト型オレフィン系重合体[R1]の主鎖を構成する共重合体中のエチレンから導かれる繰り返し単位の割合は、主鎖に含まれる全繰り返し単位に対し10~90mol%であることが好ましく、より好ましくは50~90mol%、さらに好ましくは60~90mol%の範囲である。また、α-オレフィンから導かれる繰り返し単位の割合は、主鎖に含まれる全繰り返し単位に対し10~90mol%であることが好ましく、より好ましくは10~50mol%、より好ましくは10~40mol%の範囲である。
主鎖中のエチレンおよびα-オレフィンから導かれる繰り返し単位の割合が上記範囲にあることで、オレフィン系樹脂(β)は柔軟性に富み耐衝撃性に優れた性質となるので、オレフィン系樹脂(β)を含む樹脂組成物は耐衝撃性により優れる。一方、α-オレフィンから導かれる繰り返し単位が10mol%より少ないと、得られるオレフィン系樹脂が柔軟性に劣る樹脂となる傾向があるため、該樹脂を含む樹脂組成物は耐衝撃性に劣る場合がある。
主鎖中のエチレンおよびα-オレフィンから導かれる繰り返し単位のモル比は、主鎖を製造する工程で、重合反応系中に存在させるエチレンの濃度とα-オレフィンの濃度との割合を制御することにより調整できる。
なお、主鎖に含まれるα-オレフィンから導かれる繰り返し単位のモル比(mol%)、すなわち主鎖中のα-オレフィン組成は、例えば、後述する末端不飽和環状オレフィン系共重合体を含まない条件下で得られるエチレン・α-オレフィン共重合体のα-オレフィン組成を常法により求めることや、オレフィン系樹脂(β)のα-オレフィン組成から環状オレフィン系共重合体や側鎖に由来する影響を差し引くことから求められる。
〔要件(ii)〕
本発明に係わるグラフト型オレフィン系重合体[R1]の主鎖を構成する前記エチレン・α-オレフィン共重合体の重量平均分子量は10000~500000の範囲にあることが好ましく、より好ましくは100000~450000の範囲である。
本発明に係わるグラフト型オレフィン系重合体[R1]の主鎖を構成するエチレン・α-オレフィン共重合体の重量平均分子量が上記範囲にあると、オレフィン系樹脂(β)を含む樹脂組成物は、耐衝撃性、剛性および靭性のバランスがより良好になる傾向がある。一方、前記重量平均分子量が10000より小さいと、耐衝撃性や靭性が低下し、500000より大きいと、環状オレフィン系樹脂へのエチレン・α-オレフィン共重合体の分散不良がおこり、所望の物性バランスを得ることが困難になる場合がある。
本発明に係わるグラフト型オレフィン系重合体[R1]の主鎖を構成するエチレン・α-オレフィン共重合体の重量平均分子量は、後述する製造工程において、重合系中のエチレン濃度を制御することで調整できる。エチレン濃度の制御方法としては、エチレン分圧調整や重合温度の調整が挙げられる。主鎖を構成するエチレン・α-オレフィン共重合体の重量平均分子量の調整は重合系中に水素を供給することでも可能である。
前記重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)によって求められるポリスチレン換算の重量平均分子量である。主鎖を構成するエチレン・α-オレフィン共重合体の重量平均分子量は、例えば、後述する末端不飽和環状オレフィン系共重合体を含まない条件下で製造した場合のエチレン・α-オレフィン共重合体を分析することや、オレフィン系樹脂(β)を分析し、環状オレフィン系共重合体や側鎖に由来する影響を差し引くことから求められる。
本発明に係わるグラフト型オレフィン系重合体[R1]の側鎖は、エチレンと環状オレフィンとの共重合体から構成される。
前記環状オレフィンは、環構造内に二重結合を有する、置換基を有していてもよい炭化水素類である。具体的には、シクロブテン、シクロペンテン、シクロオクテンなどの単環の環状オレフィン;ノルボルネン、ジシクロペンタジエンなどのノルボルネン環構造を有する化合物(以下、単に「ノルボルネン化合物」と言う。);を挙げることができる。
前記環状オレフィンの具体例としては、たとえば、下記一般式(2)で示される環状オレフィンが挙げられる。
Figure 2022106279000001
(式(2)中、R1~R4は、それぞれ独立に、水素原子、ハロゲン原子または炭化水素基であり、R1とR4とは互いに結合して単環または多環を形成していてもよく、かつ該単環または多環が二重結合を有してもよく、また、R1とR2とでアルキリデンを形成してもよく、R3とR4とでアルキリデンを形成してもよい。mは0または1である。)
このようなノルボルネン化合物の具体的例を挙げると、m=0であるノルボルネン類としては、2-ノルボルネン;5-クロロ-2-ノルボルネン、5-ブロモ-2-ノルボルネンなどのハロゲン原子を有するノルボルネン類;5-メチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-デシル-2-ノルボルネンなどのアルキル基を有するノルボルネン類;5-ビニル-2-ノルボルネン、5-プロペニル-2-ノルボルネンなどのアルケニル基を有するノルボルネン類;5-シクロヘキシル-2-ノルボルネン、5-シクロペンチル-2-ノルボルネンなどのシクロアルキル基を有するノルボルネン類;5-シクロペンテニル-2-ノルボルネン、5-シクロヘキセニル-2-ノルボルネンなどのシクロアルケニル基を有するノルボルネン類;5-フェニル-2-ノルボルネン、p-メチル-5-フェニル-2-ノルボルネン、o-メチル-5-フェニル-2-ノルボルネン、m-メチル-5-フェニル-2-ノルボルネンなどの芳香族炭化水素基を有するノルボルネン類;5-クロロメチル-2-ノルボルネン、p-クロロ-5-フェニル-2-ノルボルネンなどのハロゲン原子が置換された炭化水素基を有するノルボルネン類;を挙げることができる。
m=0であり、R1とR4とが互いに結合して単環または多環を形成するものとして、ジシクロペンタジエン、メチルジシクロペンタジエン、ジヒドロジシクロペンタジエン(トリシクロ[5.2.1.02,6]デカ-8-エン)、テトラシクロ[9.2.1.02,10.03,8]テトラデカ-3,5,7,12-テトラエン(1,4-メタノ-1,4,4a,9a-テトラヒドロ-9H-フルオレンともいう)、テトラシクロ[10.2.1.02,11.04,9]ペンタデカ-4,6,8,13-テトラエン(1,4-メタノ-1,4,4a,9,9a,10-ヘキサヒドロアントラセンともいう)などを挙げることができる。
また、m=0であり、R1とR2とで、またはR3とR4とでアルキリデンを形成するものとしては、5-メチリデン-2-ノルボルネン、5-エチリデン-2-ノルボルネン、5-プロピリデン-2-ノルボルネン、5-イソプロピリデン-2-ノルボルネンなどを挙げることができる。
m=1であるテトラシクロドデセン類としては、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン;9-クロロテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ブロモテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのハロゲン原子を有するテトラシクロドデセン類;9-メチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ブチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-ヘキシルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-デシルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのアルキル基を有するテトラシクロドデセン類;9-ビニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-プロペニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのアルケニル基を有するテトラシクロドデセン類;9-シクロヘキシルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロペンチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのシクロアルキル基を有するテトラシクロドデセン類;9-シクロペンテニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-シクロヘキセニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのシクロアルケニル基を有するテトラシクロドデセン類;9-フェニルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどの芳香族炭化水素基を有するテトラシクロドデセン類;9-クロロメチルテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどのハロゲン原子が置換された炭化水素基を有するテトラシクロドデセン類;を挙げることができる。
また、m=1であり、R1とR2とで、またはR3とR4とでアルキリデンを形成するものとしては、9-メチレンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エン、9-エチリデンテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンなどを挙げることができる。
上記式(2)で示される環状オレフィンとしては、2-ノルボルネンおよびテトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンから選ばれる少なくとも一種が好ましい。
本発明に係わるグラフト型オレフィン系重合体[R1]の側鎖を構成する共重合体は下記要件(iii)、(iv)のうち少なくとも1つを満たすことが好ましい。
(iii)エチレンから導かれる繰り返し単位が50~95mol%の範囲にある。
(iv)ゲルパーミエーションクロマトグラフィー(GPC)よりスチレン換算値として求められる重量平均分子量が10000~100000の範囲にある。
以下、これらの要件(iii)および(iv)について具体的に説明する。
〔要件(iii)〕
側鎖を構成する共重合体に含まれるエチレンから導かれる繰り返し単位の割合は、側鎖に含まれる全繰り返し単位に対し50~95mol%であることが好ましく、より好ましくは60~90mol%の範囲である。また、環状オレフィンから導かれる繰り返し単位の割合は側鎖に含まれる全繰り返し単位に対し5~50mol%が好ましく、より好ましくは10~40mol%の範囲である。
〔要件(iv)〕
本発明に係わるグラフト型オレフィン系重合体[R1]の側鎖を構成する環状オレフィン系共重合体の重量平均分子量は10000~100000の範囲にあることが好ましい。後述するプロピレン系重合体(α)との相溶性と耐衝撃性向上の観点から10000~70000の範囲であることが好ましい。
一方、前記重量平均分子量が10000より小さいと、環状オレフィン樹脂の脆性から耐衝撃性が低下し、100000より大きいと、プロピレン系重合体(α)へのオレフィン系樹脂(β)の分散不良がおこり、耐衝撃効果を得ることが困難になる場合がある。
本発明に係わるグラフト型オレフィン系重合体[R1]の側鎖を構成する前記環状オレフィン系共重合体の重量平均分子量は、後述する製造工程において、重合系中のエチレン濃度を制御することで調整できる。エチレン濃度の制御方法としては、エチレン分圧調整や重合温度の調整が挙げられる。
前記重量平均分子量はゲルパーミエーションクロマトグラフィー(GPC)によって求められるポリスチレン換算の重量平均分子量である。側鎖を構成する環状オレフィン系共重合体の重量平均分子量は、例えば、後述するオレフィン系樹脂の製造方法の工程Aから得られる重合体を分析することから求められる。
<オレフィン系樹脂(β)の製造方法>
本発明に係わるオレフィン系樹脂(β)は、たとえば下記工程(A)および工程(B)の各工程を含む製造方法により製造される。
工程(A):下記一般式(1)で表される周期表第4族の遷移金属化合物[A]を含むオレフィン重合用触媒存在下でエチレンと環状オレフィンを重合し、末端不飽和環状オレフィン系共重合体を製造する工程。
工程(B):周期表第4族の遷移金属化合物[B]を含むオレフィン重合用触媒存在下で、工程(A)で得られた末端不飽和環状オレフィン系共重合体と、エチレンおよび炭素数3~20のオレフィンから選ばれる少なくとも1種のα-オレフィンとを共重合する工程。
Figure 2022106279000002
(一般式(1)中、Mは周期表第4族の遷移金属を示し、mは1~4の整数を示し、R1およびR6は、炭素原子数1~30の炭化水素基であり、R2~R5は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、環状不飽和炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、また、mが2以上の場合にはR2~R6で示される基のうち2個の基が連結されていてもよく、nは、Mの価数を満たす数であり、Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、nが2以上の場合には、互いに同一であっても、異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。)
以下、(A)、(B)の工程について順に説明する。
〔工程(A)〕
工程(A)は、本発明に係わるグラフト型オレフィン系重合体[R1]の側鎖の原料となる末端不飽和環状オレフィン系共重合体を製造する工程である。
本工程は、後述する周期表第4族の遷移金属化合物[A]の存在下で、エチレンと環状オレフィンを重合し末端不飽和環状オレフィン系共重合体を製造する工程である。
ここで、工程(A)で生成される末端不飽和環状オレフィン系共重合体は、ポリマー鎖の片末端にビニル基をもつ環状オレフィン系共重合体を含む。
工程(A)で生成される末端不飽和環状オレフィン系共重合体は、片末端にビニル基をもつ環状オレフィン系共重合体以外として、ビニレン基やビニリデン基等の不飽和炭素-炭素結合を有する環状オレフィン系共重合体や両末端不飽和環状オレフィン系共重合体を含む場合がある。これらは、工程(B)を経て得られる樹脂(β)中にそのまま含まれる。なお、これらは、樹脂(β)において、工程(B)でグラフト型重合体の生成に寄与しなかった片末端にビニル基をもつ環状オレフィン系共重合体とともに、上述した主鎖に取り込まれなかった環状オレフィン系共重合体を構成する。
なお、工程(A)で生成される共重合体のうち、ビニレン基を有する共重合体における不飽和炭素-炭素結合の位置は、共重合体の末端付近にあると考えられ、本発明ではビニレン基を有する共重合体も含めて工程(A)で生成される共重合体を「末端不飽和環状オレフィン系共重合体」と称する。
末端不飽和環状オレフィン系共重合体の末端ビニル率(全不飽和炭素-炭素結合に対するビニル基数の割合)は、通常は40%以上、好ましくは50%、より好ましくは60%以上、さらに好ましくは70%以上である。
末端不飽和環状オレフィン系共重合体における末端ビニル基の割合は1000炭素原子あたり、通常0.1~20個であるが、好ましくは、0.4~20個の範囲にある。末端ビニル率(全不飽和炭素-炭素結合に対するビニル基数の割合)および、1000炭素原子あたりの末端ビニル基の割合が少ない場合、後工程(B)における当該末端不飽和環状オレフィン系共重合体(具体的には片末端にビニル基をもつ環状オレフィン系共重合体)の主鎖への導入量が低くなり、グラフト型オレフィン系重合体の生成量が少なくなるため所望の効果が得られない場合がある。
末端ビニル率(全不飽和炭素-炭素結合に対するビニル基数の割合)および、1000炭素原子あたりの末端ビニル基の割合は、1H-NMR測定によるポリマー構造解析により常法にて算出することが出来る。
[遷移金属化合物[A]]
本発明で用いられる遷移金属化合物[A]は、下記一般式(1)で表される構造を有する特定の化合物であり、オレフィン重合用触媒として機能し、後述する化合物(C)の存在下でより好適に機能する。
遷移金属化合物[A]を含むオレフィン重合用触媒は、主にエチレンと前述の環状オレフィンから選ばれる少なくとも1種の環状オレフィンを重合し、末端不飽和環状オレフィン系共重合体を生成する特徴を有している。
以下、本発明で用いられる遷移金属化合物[A]の化学構造上の特徴について説明する。
本発明で用いられる遷移金属化合物[A]は、下記一般式(1)で表される遷移金属化合物である。
Figure 2022106279000003
一般式(1)中、N……Mは、一般的には配位していることを示すが、本発明においては配位していてもしていなくてもよい。
一般式(1)において、Mは周期表第4族の遷移金属原子を示し、具体的にはチタン、ジルコニウム、ハフニウムなどであり、好ましくはジルコニウムである。
mは1~4の整数を示し、好ましくは1または2であり、特に好ましくは2である。
1は、炭素原子数1~30の炭化水素基を示す。炭化水素基として具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数が1~30、好ましくは1~20の直鎖状または分岐状のアルキル基;ビニル基、アリル基、イソプロペニル基などの炭素原子数が2~30、好ましくは2~20の直鎖状または分岐状のアルケニル基;エチニル基、プロパルギル基など炭素原子数が2~30、好ましくは2~20の直鎖状または分岐状のアルキニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基などの炭素原子数が3~30、好ましくは3~20の環状飽和炭化水素基;シクロペンタジエニル基、インデニル基、フルオレニル基などの炭素原子数5~30の環状不飽和炭化水素基;フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数が6~30、好ましくは6~20のアリール基;トリル基、イソプロピルフェニル基、t-ブチルフェニル基、ジメチルフェニル基、ジ-t-ブチルフェニル基などのアルキル置換アリール基などが挙げられる。
上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル基、ペンタフルオロフェニル基、ビス(トリフルオロメチル)フェニル基、クロロフェニル基などの炭素原子数1~30、好ましくは1~20のハロゲン化炭化水素基が挙げられる。また、上記炭化水素基は、他の炭化水素基で置換されていてもよく、たとえば、ベンジル基、クミル基などのアリール基置換アルキル基などが挙げられる。
2~R5は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭化水素基、ヘテロ環式化合物残基、酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示し、これらのうちの2個以上が互いに連結して環を形成していてもよく、また、mが2以上の場合にはR2~R5で示される基のうち2個の基が連結されていてもよく、ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭化水素基として具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数が1~30、好ましくは1~20の直鎖状または分岐状のアルキル基;ビニル基、アリル基、イソプロペニル基などの炭素原子数が2~30、好ましくは2~20の直鎖状または分岐状のアルケニル基;エチニル基、プロパルギル基など炭素原子数が2~30、好ましくは2~20の直鎖状または分岐状のアルキニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基などの炭素原子数が3~30、好ましくは3~20の環状飽和炭化水素基;シクロペンタジエニル基、インデニル基、フルオレニル基などの炭素原子数5~30の環状不飽和炭化水素基;フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数が6~30、好ましくは6~20のアリール基;トリル基、イソプロピルフェニル基、t-ブチルフェニル基、ジメチルフェニル基、ジ-t-ブチルフェニル基などのアルキル置換アリール基などが挙げられる。
上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル基、ペンタフルオロフェニル基、クロロフェニル基などの炭素原子数1~30、好ましくは1~20のハロゲン化炭化水素基が挙げられる。また、上記炭化水素基は、他の炭化水素基で置換されていてもよく、たとえば、ベンジル基、クミル基などのアリール基置換アルキル基などが挙げられる。
さらにまた、上記炭化水素基は、ヘテロ環式化合物残基;アルコキシ基、アリーロキシ基、エステル基、エーテル基、アシル基、カルボキシル基、カルボナート基、ヒドロキシ基、ペルオキシ基、カルボン酸無水物基などの酸素含有基;アミノ基、イミノ基、アミド基、イミド基、ヒドラジノ基、ヒドラゾノ基、ニトロ基、ニトロソ基、シアノ基、イソシアノ基、シアン酸エステル基、アミジノ基、ジアゾ基、アミノ基がアンモニウム塩となったものなどの窒素含有基;ボランジイル基、ボラントリイル基、ジボラニル基などのホウ素含有基;メルカプト基、チオエステル基、ジチオエステル基、アルキルチオ基、アリールチオ基、チオアシル基、チオエーテル基、チオシアン酸エステル基、イソチアン酸エステル基、スルホンエステル基、スルホンアミド基、チオカルボキシル基、ジチオカルボキシル基、スルホ基、スルホニル基、スルフィニル基、スルフェニル基などのイオウ含有基;ホスフィド基、ホスホリル基、チオホスホリル基、ホスファト基などのリン含有基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を有していてもよい。
これらのうち、特に、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数1~30、好ましくは1~20の直鎖状または分岐状のアルキル基;フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数6~30、好ましくは6~20のアリール基;これらのアリール基にハロゲン原子、炭素原子数1~30、好ましくは1~20のアルキル基またはアルコキシ基、炭素原子数6~30、好ましくは6~20のアリール基またはアリーロキシ基などの置換基が1~5個置換した置換アリール基などが好ましい。
酸素含有基、窒素含有基、ホウ素含有基、イオウ含有基、リン含有基としては、上記例示したものと同様のものが挙げられる。ヘテロ環式化合物残基としては、ピロール、ピリジン、ピリミジン、キノリン、トリアジンなどの含窒素化合物、フラン、ピランなどの含酸素化合物、チオフェンなどの含硫黄化合物などの残基、およびこれらのヘテロ環式化合物残基に炭素原子数が1~30、好ましくは1~20のアルキル基、アルコキシ基などの置換基がさらに置換した基などが挙げられる。
ケイ素含有基としては、シリル基、シロキシ基、炭化水素置換シリル基、炭化水素置換シロキシ基など、具体的には、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジフェニルメチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基、ジメチル-t-ブチルシリル基、ジメチル(ペンタフルオロフェニル)シリル基などが挙げられる。これらの中では、メチルシリル基、ジメチルシリル基、トリメチルシリル基、エチルシリル基、ジエチルシリル基、トリエチルシリル基、ジメチルフェニルシリル基、トリフェニルシリル基などが好ましい。特にトリメチルシリル基、トリエチルシリル基、トリフェニルシリル基、ジメチルフェニルシリル基が好ましい。炭化水素置換シロキシ基として具体的には、トリメチルシロキシ基などが挙げられる。
ゲルマニウム含有基およびスズ含有基としては、前記ケイ素含有基のケイ素をゲルマニウムおよびスズに置換したものが挙げられる。
次に上記で説明したR2~R5の例について、より具体的に説明する。アルコキシ基として具体的には、メトキシ基、エトキシ基、n-プロポキシ基、イソプロポキシ基、n-ブトキシ基、イソブトキシ基、t-ブトキシ基などが挙げられる。
アルキルチオ基として具体的には、メチルチオ基、エチルチオ基等が挙げられる。アリーロキシ基として具体的には、フェノキシ基、2,6-ジメチルフェノキシ基、2,4,6-トリメチルフェノキシ基などが挙げられる。アリールチオ基として具体的には、フェニルチオ基、メチルフェニルチオ基、ナフチルチオ基等が挙げられる。
アシル基として具体的には、ホルミル基、アセチル基、ベンゾイル基、p-クロロベンゾイル基、p-メトキシベンゾイル基などが挙げられる。エステル基として具体的には、アセチルオキシ基、ベンゾイルオキシ基、メトキシカルボニル基、フェノキシカルボニル基、p-クロロフェノキシカルボニル基などが挙げられる。
チオエステル基として具体的には、アセチルチオ基、ベンゾイルチオ基、メチルチオカルボニル基、フェニルチオカルボニル基などが挙げられる。アミド基として具体的には、アセトアミド基、N-メチルアセトアミド基、N-メチルベンズアミド基などが挙げられる。イミド基として具体的には、アセトイミド基、ベンズイミド基などが挙げられる。アミノ基として具体的には、ジメチルアミノ基、エチルメチルアミノ基、ジフェニルアミノ基などが挙げられる。
イミノ基として具体的には、メチルイミノ基、エチルイミノ基、プロピルイミノ基、ブチルイミノ基、フェニルイミノ基などが挙げられる。スルホンエステル基として具体的には、スルホン酸メチル基、スルホン酸エチル基、スルホン酸フェニル基などが挙げられる。スルホンアミド基として具体的には、フェニルスルホンアミド基、N-メチルスルホンアミド基、N-メチル-p-トルエンスルホンアミド基などが挙げられる。
6は、炭素原子数1~30の炭化水素基を示す。 炭化水素基として具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などの炭素原子数が1~30、好ましくは1~20の直鎖状または分岐状のアルキル基;ビニル基、アリル基、イソプロペニル基などの炭素原子数が2~30、好ましくは2~20の直鎖状または分岐状のアルケニル基;エチニル基、プロパルギル基など炭素原子数が2~30、好ましくは2~20の直鎖状または分岐状のアルキニル基;シクロプロピル基、シクロブチル基、シクロペンチル基、シクロヘキシル基、アダマンチル基などの炭素原子数が3~30、好ましくは3~20の環状飽和炭化水素基;シクロペンタジエニル基、インデニル基、フルオレニル基などの炭素原子数5~30の環状不飽和炭化水素基;フェニル基、ナフチル基、ビフェニル基、ターフェニル基、フェナントリル基、アントラセニル基などの炭素原子数が6~30、好ましくは6~20のアリール基;トリル基、イソプロピルフェニル基、t-ブチルフェニル基、ジメチルフェニル基、ジ-t-ブチルフェニル基などのアルキル置換アリール基などが挙げられる。
上記炭化水素基は、水素原子がハロゲンで置換されていてもよく、たとえば、トリフルオロメチル基、ペンタフルオロフェニル基、クロロフェニル基などの炭素原子数1~30、好ましくは1~20のハロゲン化炭化水素基が挙げられる。また、上記炭化水素基は、他の炭化水素基で置換されていてもよく、たとえば、ベンジル基、クミル基などのアリール基置換アルキル基などが挙げられる。
特に、炭素原子数が6~20のアリール基で置換した基であるフェニルエチル基、ジフェニルメチル基、クミル基、ジフェニルエチル基、トリフェニルメチル基、更にアダマンチル、シクロプロピル、シクロブチル、シクロペンチル、シクロヘキシルなどの炭素原子数が3~30、好ましくは3~20の環状飽和炭化水素基から選ばれる基であることが好ましい。特に好ましくはフェニル、ナフチル、フルオレニル、アントラニル、フェナントリルなどの炭素原子数6~30、好ましくは6~20のアリール基、または炭化水素置換シリル基であり、R6が上記置換基であることにより、工程(A)における環状オレフィンの共重合性が向上する。
2~R6は、これらのうちの2個以上の基、好ましくは互いに隣接する2個以上の基が互いに連結して脂肪環、芳香環または、窒素原子などの異原子を含む炭化水素環を形成していてもよく、これらの環はさらに置換基を有していてもよい。また、mが2以上の場合には、R2~R6で示される基のうち2個の基が連結されていてもよい。さらに、mが2以上の場合にはR1同士、R2同士、R3同士、R4同士、R5同士、R6同士は、互いに同一でも異なっていてもよい。
nは、Mの価数を満たす数であり、具体的には0~5、好ましくは1~4、より好ましくは1~3の整数である。
Xは、水素原子、ハロゲン原子、炭化水素基、酸素含有基、イオウ含有基、窒素含有基、ホウ素含有基、アルミニウム含有基、リン含有基、ハロゲン含有基、ヘテロ環式化合物残基、ケイ素含有基、ゲルマニウム含有基、またはスズ含有基を示す。なお、nが2以上の場合には、互いに同一であっても、異なっていてもよい。
ハロゲン原子としては、フッ素、塩素、臭素、ヨウ素が挙げられる。
炭化水素基としては、前記R2~R5で例示したものと同様のものが挙げられる。具体的には、メチル基、エチル基、プロピル基、ブチル基、ヘキシル基、オクチル基、ノニル基、ドデシル基、アイコシル基などのアルキル基;シクロペンチル基、シクロヘキシル基、ノルボルニル基、アダマンチル基などの炭素原子数が3~30のシクロアルキル基;ビニル基、プロペニル基、シクロヘキセニル基などのアルケニル基;ベンジル基、フェニルエチル基、フェニルプロピル基などのアリールアルキル基;フェニル基、トリル基、ジメチルフェニル基、トリメチルフェニル基、エチルフェニル基、プロピルフェニル基、ビフェニル基、ナフチル基、メチルナフチル基、アントリル基、フェナントリル基などのアリール基などが挙げられるが、これらに限定されるものではない。また、これらの炭化水素基には、ハロゲン化炭化水素、具体的には炭素原子数1~20の炭化水素基の少なくとも一つの水素がハロゲンに置換した基も含まれる。
これらのうち、炭素原子数が1~20のものが好ましい。
ヘテロ環式化合物残基としては、前記R2~R6で例示したものと同様のものが挙げられる。
酸素含有基としては、前記R2~R5で例示したものと同様のものが挙げられ、具体的には、ヒドロキシ基;メトキシ基、エトキシ基、プロポキシ基、ブトキシ基などのアルコキシ基;フェノキシ基、メチルフェノキシ基、ジメチルフェノキシ基、ナフトキシ基などのアリーロキシ基;フェニルメトキシ基、フェニルエトキシ基などのアリールアルコキシ基;アセトキシ基;カルボニル基などが挙げられるが、これらに限定されるものではない。
イオウ含有基としては、前記R2~R6で例示したものと同様のものが挙げられ、具体的には、メチルスルフォネート基、トリフルオロメタンスルフォネート基、フェニルスルフォネート基、ベンジルスルフォネート基、p-トルエンスルフォネート基、トリメチルベンゼンスルフォネート基、トリイソブチルベンゼンスルフォネート基、p-クロルベンゼンスルフォネート基、ペンタフルオロベンゼンスルフォネート基などのスルフォネート基;メチルスルフィネート基、フェニルスルフィネート基、ベンジルスルフィネート基、p-トルエンスルフィネート基、トリメチルベンゼンスルフィネート基、ペンタフルオロベンゼンスルフィネート基などのスルフィネート基;アルキルチオ基;アリールチオ基などが挙げられるが、これらに限定されるものではない。
窒素含有基として具体的には、前記R2~R5で例示したものと同様のものが挙げられ、具体的には、アミノ基;メチルアミノ基、ジメチルアミノ基、ジエチルアミノ基、ジプロピルアミノ基、ジブチルアミノ基、ジシクロヘキシルアミノ基などのアルキルアミノ基;フェニルアミノ基、ジフェニルアミノ基、ジトリルアミノ基、ジナフチルアミノ基、メチルフェニルアミノ基などのアリールアミノ基またはアルキルアリールアミノ基などが挙げられるが、これらに限定されるものではない。
ホウ素含有基として具体的には、BR4(Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられる。リン含有基として具体的には、トリメチルホスフィン基、トリブチルホスフィン基、トリシクロヘキシルホスフィン基などのトリアルキルホスフィン基;トリフェニルホスフィン基、トリトリルホスフィン基などのトリアリールホスフィン基;メチルホスファイト基、エチルホスファイト基、フェニルホスファイト基などのホスファイト基(ホスフィド基);ホスホン酸基;ホスフィン酸基などが挙げられるが、これらに限定されるものではない。
ケイ素含有基として具体的には、前記R2~R5で例示したものと同様のものが挙げられ、具体的には、フェニルシリル基、ジフェニルシリル基、トリメチルシリル基、トリエチルシリル基、トリプロピルシリル基、トリシクロヘキシルシリル基、トリフェニルシリル基、メチルジフェニルシリル基、トリトリルシリル基、トリナフチルシリル基などの炭化水素置換シリル基;トリメチルシリルエーテル基などの炭化水素置換シリルエーテル基;トリメチルシリルメチル基などのケイ素置換アルキル基;トリメチルシリルフェニル基などのケイ素置換アリール基などが挙げられる。
ゲルマニウム含有基として具体的には、前記R2~R5で例示したものと同様のものが挙げられ、具体的には、前記ケイ素含有基のケイ素をゲルマニウムに置換した基が挙げられる。スズ含有基として具体的には、前記R2~R5で例示したものと同様のものが挙げられ、より具体的には、前記ケイ素含有基のケイ素をスズに置換した基が挙げられる。
ハロゲン含有基として具体的には、PF6、BF4などのフッ素含有基、ClO4、SbCl6などの塩素含有基、IO4などのヨウ素含有基が挙げられるが、これらに限定されるものではない。アルミニウム含有基として具体的には、AlR4(Rは水素、アルキル基、置換基を有してもよいアリール基、ハロゲン原子等を示す)が挙げられるが、これらに限定されるものではない。
なお、nが2以上の場合は、Xで示される複数の基は互いに同一でも異なっていてもよく、またXで示される複数の基は互いに結合して環を形成してもよい。
以上のような、上記一般式(1)で表される遷移金属化合物[A]は、1種単独でまたは2種以上組み合わせて用いることができる。
このような遷移金属化合物は、末端のビニル基の占める割合および環状オレフィンの共重合性の点で好ましい。特に好ましくは、下記式で表される化合物が挙げられる。
Figure 2022106279000004
工程(A)は、溶液(溶解)重合において実施可能であり、重合条件については、オレフィン系ポリマーを製造する溶液重合プロセスを用いれば、特に限定されないが、下記重合反応液を得る工程を有することが好ましい。
重合反応液を得る工程とは、脂肪族炭化水素または芳香族炭化水素を重合溶媒として用いて、上述した遷移金属化合物の存在下に、エチレンと環状オレフィンとの共重合体の重合反応液を得る工程である。
工程(A)の重合溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素などが挙げられる。具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上組み合わせて用いることができる。また、工程(A)の重合溶媒は、後述する工程(B)の重合溶媒と同一でも異なっていてもよい。
また、工程(A)の重合温度は、15℃~200℃の範囲が好ましく、より好ましくは、20℃~150℃の範囲である。
工程(A)の重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。
工程(A)の反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常0.5分間~5時間、好ましくは5分間~3時間である。
得られる末端不飽和環状オレフィン系共重合体の分子量は、重合系内に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、後述の化合物[C1]の使用量により調節することもできる。具体的には、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等が挙げられる。水素を添加する場合、その量はオレフィン1kgあたり0.001~100NL程度が適当である。末端のビニル基の含有量向上のためには、無水素条件で行うことが好ましい。
〔工程(B)〕
工程(B)は、周期表第4族の遷移金属化合物[B]を含むオレフィン重合用触媒存在下で、工程(A)で得られた末端不飽和環状オレフィン系共重合体と、エチレンおよび炭素数3~20のオレフィンから選ばれる少なくとも1種のα-オレフィンとを共重合する工程である。
[周期表第4族の遷移金属化合物[B]]
本発明で用いられる周期表第4族の遷移金属化合物[B]は下記一般式[B0]で表される構造を有することが好ましい。
下記一般式[B0]で表される構造を有する化合物(以下、架橋メタロセン化合物[B0]ともいう)[B0]は、架橋メタロセン化合物であり、工程(A)で製造される末端不飽和環状オレフィン系共重合体と、エチレンと、炭素原子数3~20のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとを共重合するオレフィン重合用触媒として機能し、後述する化合物[C]と組み合わせて用いることでより好適に機能する。
以下、本発明で用いられる架橋メタロセン化合物[B0]の化学構造上の特徴について説明する。
Figure 2022106279000005
架橋メタロセン化合物[B0]は、構造上、次の特徴[m1]および[m2]を備える。
[m1]二つの配位子のうち、一つは置換基を有していてもよいシクロペンタジエニル基であり、他の一つは置換基を有するフルオレニル基(以下「置換フルオレニル基」ともいう。)である。
[m2]二つの配位子が、アリール(aryl)基を有する炭素原子またはケイ素原子からなるアリール基含有共有結合架橋部(以下「架橋部」ともいう。)によって結合されている。
以下、架橋メタロセン化合物[B0]が有する、置換基を有していてもよいシクロペンタジエニル基、置換フルオレニル基、架橋部およびその他特徴について、順次説明する。
(置換基を有していてもよいシクロペンタジエニル基)
式[B0]中、R1、R2、R3およびR4はそれぞれ独立に水素原子、炭化水素基、ケイ素含有基またはケイ素含有基以外のヘテロ原子含有基を示すものであり、マクロモノマーを良好に取り込む構造として、R1、R2、R3およびR4は全て水素原子であるか、またはR1、R2、R3およびR4のいずれか一つ以上がメチル基である構造が特に好ましい。
(置換フルオレニル基)
式[B0]中、R5、R8、R9およびR12はそれぞれ独立に水素原子、炭化水素基、ケイ素含有基またはケイ素含有基以外のヘテロ原子含有基を示し、水素原子、炭化水素基またはケイ素含有基が好ましい。R6およびR11は水素原子、炭化水素基、ケイ素含有基およびケイ素含有基以外のヘテロ原子含有基から選ばれる同一の原子または同一の基であり、水素原子、炭化水素基およびケイ素含有基が好ましく;R7およびR10は水素原子、炭化水素基、ケイ素含有基およびケイ素含有基以外のヘテロ原子含有基から選ばれる同一の原子または同一の基であり、水素原子、炭化水素基およびケイ素含有基が好ましく;R6およびR7は互いに結合して環を形成していてもよく、R10およびR11は互いに結合して環を形成していてもよく;ただし、R6、R7、R10およびR11が全て水素原子であることはない。
重合活性の視点からは、R6およびR11がいずれも水素原子でないことが好ましく;R6、R7、R10およびR11がいずれも水素原子ではないことがさらに好ましく;R6およびR11が炭化水素基およびケイ素含有基から選ばれる同一の基であり、且つR7とR10が炭化水素基およびケイ素含有基から選ばれる同一の基であることが特に好ましい。また、R6およびR7が互いに結合して脂環または芳香環を形成し、R10およびR11が互いに結合して脂環または芳香環を形成していることも好ましい。
5~R12における炭化水素基の例示および好ましい基としては、例えば、炭化水素基(好ましくは炭素原子数1~20の炭化水素基、以下「炭化水素基(f1)」として参照することがある。)またはケイ素含有基(好ましくは炭素原子数1~20のケイ素含有基、以下「ケイ素含有基(f2)」として参照することがある。)が挙げられる。その他、置換シクロペンタジエニル基における置換基としては、ハロゲン化炭化水素基、酸素含有基、窒素含有基などのヘテロ原子含有基(ケイ素含有基(f2)を除く)を挙げることもできる。
炭化水素基(f1)としては、具体的には、メチル基、エチル基、n-プロピル基、n-ブチル基、n-ペンチル基、n-ヘキシル基、n-ヘプチル基、n-オクチル基、n-ノニル基、n-デカニル基、アリル(allyl)基などの直鎖状炭化水素基;イソプロピル基、イソブチル基、sec-ブチル基、t-ブチル基、アミル基、3-メチルペンチル基、ネオペンチル基、1,1-ジエチルプロピル基、1,1-ジメチルブチル基、1-メチル-1-プロピルブチル基、1,1-プロピルブチル基、1,1-ジメチル-2-メチルプロピル基、1-メチル-1-イソプロピル-2-メチルプロピル基などの分岐状炭化水素基;シクロペンチル基、シクロヘキシル基、シクロヘプチル基、シクロオクチル基、ノルボルニル基、アダマンチル基などの環状飽和炭化水素基;フェニル基、ナフチル基、ビフェニル基、フェナントリル基、アントラセニル基などの環状不飽和炭化水素基およびこれらの核アルキル置換体;ベンジル基、クミル基などの、飽和炭化水素基が有する少なくとも1つの水素原子がアリール基で置換された基が挙げられる。R5~R12におけるケイ素含有基(f2)としては、好ましくは炭素原子数1~20のケイ素含有基であり、例えば、シクロペンタジエニル基の環炭素にケイ素原子が直接共有結合している基が挙げられ、具体的には、アルキルシリル基(例:トリメチルシリル基)、アリールシリル基(例:トリフェニルシリル基)が挙げられる。
ヘテロ原子含有基(ケイ素含有基(f2)を除く)としては、具体的には、メトキシ基、エトキシ基、フェノキシ基N-メチルアミノ基、トリフルオロメチル基、トリブロモメチル基、ペンタフルオロエチル基、ペンタフルオロフェニル基が挙げられる。
炭化水素基(f1)の中でも、炭素原子数1~20の直鎖状または分岐状の脂肪族炭化水素基、具体的には、メチル基、エチル基、n-プロピル基、イソプロピル基、n-ブチル基、イソブチル基、sec-ブチル基、t-ブチル基、ネオペンチル基、n-ヘキシル基などが好適な例として挙げられる。
6およびR7(R10およびR11)が互いに結合して脂環または芳香環を形成した場合の置換フルオレニル基としては、後述する一般式[II]~[VI]で表される化合物に由来する基が好適な例として挙げられる。
(架橋部)
式[B0]中、R13およびR14はそれぞれ独立にアリール基を示し、Y1は炭素原子またはケイ素原子を示す。オレフィン重合体の製造方法において重要な点は、架橋部の架橋原子Y1に、互いに同一でも異なっていてもよいアリール(aryl)基であるR13およびR14を有することである。製造上の容易性から、R13およびR14は互いに同一であることが好ましい。
アリール基としては、例えば、フェニル基、ナフチル基、アントラセニル基およびこれらが有する芳香族水素(sp2型水素)の一つ以上が置換基で置換された基が挙げられる。置換基としては、上記炭化水素基(f1)およびケイ素含有基(f2)や、ハロゲン原子およびハロゲン化炭化水素基が挙げられる。
アリール基の具体例としては、フェニル基、ナフチル基、アントラセニル基、ビフェニル基などの炭素原子数6~14、好ましくは6~10の非置換アリール基;トリル基、イソプロピルフェニル基、n-ブチルフェニル基、t-ブチルフェニル基、ジメチルフェニル基などのアルキル基置換アリール基;シクロヘキシルフェニル基などのシクロアルキル基置換アリール基;クロロフェニル基、ブロモフェニル基、ジクロロフェニル基、ジブロモフェニル基などのハロゲン化アリール基;(トリフルオロメチル)フェニル基、ビス(トリフルオロメチル)フェニル基などのハロゲン化アルキル基置換アリール基が挙げられる。置換基の位置は、メタ位および/またはパラ位が好ましい。これらの中でも、置換基がメタ位および/またはパラ位に位置する置換フェニル基がさらに好ましい。
(架橋メタロセン化合物[B0]のその他の特徴)
式[B0]中、Qはハロゲン原子、炭化水素基、ハロゲン化炭化水素基、炭素原子数4~10の中性の共役もしくは非共役ジエン、アニオン配位子または孤立電子対で配位可能な中性配位子を示し、jは1~4の整数を示し、jが2以上の整数の場合は複数あるQはそれぞれ同一でも異なっていてもよい。
Qにおける炭化水素基としては、例えば、炭素原子数1~10の直鎖状または分岐状の脂肪族炭化水素基、炭素原子数3~10の脂環族炭化水素基が挙げられる。脂肪族炭化水素基としては、例えば、メチル基、エチル基、n-プロピル基、イソプロピル基、2-メチルプロピル基、1,1-ジメチルプロピル基、2,2-ジメチルプロピル基、1,1-ジエチルプロピル基、1-エチル-1-メチルプロピル基、1,1,2,2-テトラメチルプロピル基、sec-ブチル基、tert-ブチル基、1,1-ジメチルブチル基、1,1,3-トリメチルブチル基、ネオペンチル基が挙げられる。脂環族炭化水素基としては、例えば、シクロヘキシル基、シクロヘキシルメチル基、1-メチル-1-シクロヘキシル基が挙げられる。
Qにおけるハロゲン化炭化水素基としては、Qにおける上記炭化水素基が有する少なくとも一つの水素原子がハロゲン原子で置換された基が挙げられる。
式[B0]中、M1はジルコニウム原子またはハフニウム原子を示し、ハフニウム原子が末端不飽和環状オレフィン系共重合体を高効率で共重合し、また高分子量に制御出来る点でも好ましい。末端不飽和環状オレフィン系共重合体を高効率で共重合し、また高分子量に制御出来る性能を備えた触媒を用いることは、高い生産性を確保するために重要である。なぜなら、高い生産性を確保するために高温条件下で反応を行うことが望ましいが、高温条件下では生成分子量の低下が起こる傾向となるためである。
(好ましい架橋メタロセン化合物[B0]の例示)
以下に架橋メタロセン化合物[B0]の具体例を示す。なお、例示化合物中、オクタメチルオクタヒドロジベンゾフルオレニルとは式[II]で示される構造の化合物に由来する基を指し、オクタメチルテトラヒドロジシクロペンタフルオレニルとは式[III]で示される構造の化合物に由来する基を指し、ジベンゾフルオレニルとは式[IV]で示される構造の化合物に由来する基を指し、1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニルとは式[V]で示される構造の化合物に由来する基を指し、1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニルとは式[VI]で示される構造の化合物に由来する基を指す。
Figure 2022106279000006
Figure 2022106279000007
Figure 2022106279000008
Figure 2022106279000009
Figure 2022106279000010
架橋メタロセン化合物[B0]としては、例えば、
ジフェニルメチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルメチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラメチルフルオレニル)ハフニウムジクロリド、ジ(p-トリル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-クロロフェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-クロロフェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ブロモフェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-トリフルオロメチル-フェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-tert-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-n-ブチル-フェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-ビフェニル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(1-ナフチル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(2-ナフチル)メチレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(2,7-ジメチルフルオレニル)ハフニウムジクロリド、ジ(m-トリル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、
ジ(p-イソプロピルフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-イソプロピルフェニル)メチレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジ(p-イソプロピルフェニル)メチレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジ(p-イソプロピルフェニル)メチレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、
ジフェニルシリレン(シクロペンタジエニル)(2,7-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(オクタメチルオクタヒドロジベンゾフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(オクタメチルテトラヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(ジベンゾフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(1,1',3,6,8,8'-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(1,3,3',6,6',8-ヘキサメチル-2,7-ジヒドロジシクロペンタフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(2,7-ジフェニル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(2,7-ジメチル-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(2,7-(トリメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(2,7-(ジメチルフェニル)-3,6-ジtert-ブチルフルオレニル)ハフニウムジクロリド、ジフェニルシリレン(シクロペンタジエニル)(2,3,6,7-テトラtert-ブチルフルオレニル)ハフニウムジクロリドが挙げられる。
架橋メタロセン化合物[B0]としては、上記例示の化合物の「ジクロリド」を「ジフロライド」、「ジブロミド」、「ジアイオダイド」、「ジメチル」または「メチルエチル」などに代えた化合物、「シクロペンタジエニル」を「3-tert-ブチル-5-メチル-シクロペンタジエニル」、「3,5-ジメチル-シクロペンタジエニル」、「3-tert-ブチル-シクロペンタジエニル」または「3-メチル-シクロペンタジエニル」などに替えた化合物を挙げることもできる。
以上の架橋メタロセン化合物は公知の方法によって製造可能であり、特に製造方法が限定されるわけではない。公知の方法としては、例えば、本出願人による国際公開第01/27124号パンフレット、国際公開第04/029062号パンフレットに記載の方法が挙げられる。
また本発明で用いられる周期表第4族の遷移金属化合物[B]として、以上の架橋メタロセン化合物[B0]以外に、特表2015-500920号公報の段落[0024]~[0037]に記載の遷移金属化合物を例示できる。
以上のような遷移金属化合物[B]は、1種単独でまたは2種以上組み合わせて用いられる。
工程(B)は、溶液(溶解)重合において実施可能であり、重合条件については、オレフィン系ポリマーを製造する溶液重合プロセスを用いれば、特に限定されないが、下記重合反応液を得る工程を有することが好ましい。
重合反応液を得る工程とは、脂肪族炭化水素または芳香族炭化水素を重合溶媒として用いて、周期表第4族の遷移金属化合物[B]、好ましくは、メタロセン触媒である架橋メタロセン化合物[B0]の存在下に、エチレンと、炭素原子数3~20のα-オレフィンと、工程(A)にて製造される末端不飽和環状オレフィン系共重合体との共重合体の重合反応液を得る工程である。
工程(B)では、工程(A)にて製造される末端不飽和環状オレフィン系共重合体が溶液状またはスラリー状にて工程(B)における反応器にフィードされる。フィード方法は、特段限定されるものではなく、工程(A)にて得られた重合液を連続的に工程(B)の反応器にフィードしても、工程(A)の重合液を一旦バッファータンクに溜めたのちに、工程(B)にフィードしても良い。
工程(B)の重合溶媒としては、例えば、脂肪族炭化水素、芳香族炭化水素などが挙げられる。具体的には、プロパン、ブタン、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、灯油などの脂肪族炭化水素、シクロペンタン、シクロヘキサン、メチルシクロペンタンなどの脂環族炭化水素、ベンゼン、トルエン、キシレンなどの芳香族炭化水素、エチレンクロリド、クロルベンゼン、ジクロロメタンなどのハロゲン化炭化水素が挙げられ、1種単独で、あるいは2種以上組み合わせて用いることができる。また、工程(B)の重合溶媒は、工程(A)の重合溶媒と同一でも異なっていてもよい。
また、工程(B)の重合温度は、50℃~200℃の範囲が好ましく、より好ましくは、80℃~200℃の範囲である。このような温度が好ましいのは、末端不飽和環状オレフィン系共重合体が良好に溶解する温度が50℃以上であるためである。より高温であることが末端不飽和環状オレフィン系共重合体の導入量を向上させる上で好ましい。さらに生産性向上の観点からもより高温であることが好ましい。
工程(B)の重合圧力は、通常常圧~10MPaゲージ圧、好ましくは常圧~5MPaゲージ圧の条件下であり、重合反応は、回分式、半連続式、連続式のいずれの方法においても行うことができる。
工程(B)の反応時間(共重合が連続法で実施される場合には平均滞留時間)は、触媒濃度、重合温度などの条件によっても異なるが、通常0.5分間~5時間、好ましくは5分間~3時間である。
工程(B)における、ポリマー濃度は、定常運転時は、0.5~30質量%であり、好ましくは、1~25質量%である。重合能力における粘度制限、後処理工程(脱溶媒)負荷及び生産性の観点から、1.5~20質量%であることが好ましい。
得られる共重合体の分子量は、重合系内に水素を存在させるか、または重合温度を変化させることによっても調節することができる。さらに、後述の化合物[C1]の使用量により調節することもできる。具体的には、トリイソブチルアルミニウム、メチルアルミノキサン、ジエチル亜鉛等が挙げられる。水素を添加する場合、その量はオレフィン1kgあたり0.001~100NL程度が適当である。
[化合物[C]]
本発明に係わるオレフィン系樹脂(β)の製造方法では、上述した工程(A),(B)においてオレフィン重合用触媒として用いられる遷移金属化合物[A]および遷移金属化合物[B]と共に、後述する化合物[C]を用いることが好ましい。
化合物[C]は、遷移金属化合物[A]および遷移金属化合物[B]と反応して、オレフィン重合用触媒として機能するものであり、具体的には、[C1]有機金属化合物、[C2]有機アルミニウムオキシ化合物、および、[C3]遷移金属化合物[A]または遷移金属化合物[B]と反応してイオン対を形成する化合物、から選ばれるものである。以下、[C1]~[C3]の化合物について順次説明する。
([C1]有機金属化合物)
本発明で用いられる[C1]有機金属化合物として、具体的には下記の一般式(C1-a)で表わされる有機アルミニウム化合物、一般式(C1-b)で表わされる周期表第1族金属とアルミニウムとの錯アルキル化物、および一般式(C1-c)で表わされる周期表第2族または第12族金属のジアルキル化合物が挙げられる。なお、[C1]有機金属化合物には、後述する[C2]有機アルミニウムオキシ化合物は含まないものとする。
Figure 2022106279000011
(上記一般式(C1-a)中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Yはハロゲン原子を示し、pは0<p≦3、qは0≦q<3、rは0≦r<3、sは0≦s<3の数であり、かつp+q+r+s=3である。)
Figure 2022106279000012
(上記一般式(C1-b)中、M3はLi、NaまたはKを示し、Rcは炭素原子数が1~15、好ましくは1~4の炭化水素基を示す。)
Figure 2022106279000013
(上記一般式(C1-c)中、RdおよびReは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、M4はMg、ZnまたはCdである。)
前記一般式(C1-a)で表わされる有機アルミニウム化合物としては、次のような一般式(C-1a-1)~(C-1a-4)で表わされる化合物を例示できる。
Figure 2022106279000014
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、pは好ましくは1.5≦p≦3の数である。)
Figure 2022106279000015
(式中、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Yはハロゲン原子を示し、pは好ましくは0<p<3の数である。)
Figure 2022106279000016
(式中、Raは炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、pは好ましくは2≦p<3の数である。)
Figure 2022106279000017
(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示し、Yはハロゲン原子を示し、pは0<p≦3、qは0≦q<3、sは0≦s<3の数であり、かつp+q+s=3である。)
一般式(C1-a)に属する有機アルミニウム化合物としてより具体的には、トリメチルアルミニウム、トリエチルアルミニウム、トリn-ブチルアルミニウム、トリプロピルアルミニウム、トリペンチルアルミニウム、トリヘキシルアルミニウム、トリオクチルアルミニウム、トリデシルアルミニウムなどのトリn-アルキルアルミニウム;トリイソプロピルアルミニウム、トリイソブチルアルミニウム、トリsec-ブチルアルミニウム、トリtert-ブチルアルミニウム、トリ2-メチルブチルアルミニウム、トリ3-メチルブチルアルミニウム、トリ2-メチルペンチルアルミニウム、トリ3-メチルペンチルアルミニウム、トリ4-メチルペンチルアルミニウム、トリ2-メチルヘキシルアルミニウム、トリ3-メチルヘキシルアルミニウム、トリ2-エチルヘキシルアルミニウムなどのトリ分岐鎖アルキルアルミニウム;トリシクロヘキシルアルミニウム、トリシクロオクチルアルミニウムなどのトリシクロアルキルアルミニウム;トリフェニルアルミニウム、トリトリルアルミニウムなどのトリアリールアルミニウム;ジイソブチルアルミニウムハイドライドなどのジアルキルアルミニウムハイドライド;(i-C49xAly(C510z(式中、x、y、zは正の数であり、z≧2xである。)などで表されるトリイソプレニルアルミニウムなどのトリアルケニルアルミニウム;イソブチルアルミニウムメトキシド、イソブチルアルミニウムエトキシド、イソブチルアルミニウムイソプロポキシドなどのアルキルアルミニウムアルコキシド;ジメチルアルミニウムメトキシド、ジエチルアルミニウムエトキシド、ジブチルアルミニウムブトキシドなどのジアルキルアルミニウムアルコキシド;エチルアルミニウムセスキエトキシド、ブチルアルミニウムセスキブトキシドなどのアルキルアルミニウムセスキアルコキシド;Ra 2.5Al(ORb0.5で表される平均組成を有する部分的にアルコキシ化されたアルキルアルミニウム(式中、RaおよびRbは、互いに同一でも異なっていてもよく、炭素原子数が1~15、好ましくは1~4の炭化水素基を示す);ジエチルアルミニウムフェノキシド、ジエチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、エチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)、ジイソブチルアルミニウム(2,6-ジ-t-ブチル-4-メチルフェノキシド)、イソブチルアルミニウムビス(2,6-ジ-t-ブチル-4-メチルフェノキシド)などのジアルキルアルミニウムアリーロキシド;ジメチルアルミニウムクロリド、ジエチルアルミニウムクロリド、ジブチルアルミニウムクロリド、ジエチルアルミニウムブロミド、ジイソブチルアルミニウムクロリドなどのジアルキルアルミニウムハライド;エチルアルミニウムセスキクロリド、ブチルアルミニウムセスキクロリド、エチルアルミニウムセスキブロミドなどのアルキルアルミニウムセスキハライド;エチルアルミニウムジクロリド、プロピルアルミニウムジクロリド、ブチルアルミニウムジブロミドなどのアルキルアルミニウムジハライドなどの部分的にハロゲン化されたアルキルアルミニウム;ジエチルアルミニウムヒドリド、ジブチルアルミニウムヒドリドなどのジアルキルアルミニウムヒドリド;エチルアルミニウムジヒドリド、プロピルアルミニウムジヒドリドなどのアルキルアルミニウムジヒドリドなどその他の部分的に水素化されたアルキルアルミニウム;エチルアルミニウムエトキシクロリド、ブチルアルミニウムブトキシクロリド、エチルアルミニウムエトキシブロミドなどの部分的にアルコキシ化およびハロゲン化されたアルキルアルミニウムなどを挙げることができる。
また(C1-a)に類似する化合物も本発明に使用することができ、そのような化合物として例えば、窒素原子を介して2以上のアルミニウム化合物が結合した有機アルミニウム化合物を挙げることができる。このような化合物として具体的には、(C252AlN(C25)Al(C252などを挙げることができる。
前記一般式(C1-b)で表される化合物としては、LiAl(C254、LiAl(C7154などを挙げることができる。
前記一般式(C1-c)で表される化合物としては、ジメチルマグネシウム、ジエチルマグネシウム、ジブチルマグネシウム、ブチルエチルマグネシウム、ジメチル亜鉛、ジエチル亜鉛、ジフェニル亜鉛、ジ-n-プロピル亜鉛、ジイソプロピル亜鉛、ジ-n-ブチル亜鉛、ジイソブチル亜鉛、ビス(ペンタフルオロフェニル)亜鉛、ジメチルカドミウム、ジエチルカドミウムなどを挙げることができる。
またその他にも、[C1]有機金属化合物としては、メチルリチウム、エチルリチウム、プロピルリチウム、ブチルリチウム、メチルマグネシウムブロミド、メチルマグネシウムクロリド、エチルマグネシウムブロミド、エチルマグネシウムクロリド、プロピルマグネシウムブロミド、プロピルマグネシウムクロリド、ブチルマグネシウムブロミド、ブチルマグネシウムクロリドなどを使用することもできる。
また重合系内で上記有機アルミニウム化合物が形成されるような化合物、例えばハロゲン化アルミニウムとアルキルリチウムとの組み合わせ、またはハロゲン化アルミニウムとアルキルマグネシウムとの組み合わせなどを、前記[C1]有機金属化合物として使用することもできる。
上記のような[C1]有機金属化合物は、1種類単独でまたは2種以上組み合わせて用いられる。
([C2]有機アルミニウムオキシ化合物)
本発明で用いられる[C2]有機アルミニウムオキシ化合物は、従来公知のアルミノキサンであってもよく、また特開平2-78687号公報に例示されているようなベンゼン不溶性の有機アルミニウムオキシ化合物であってもよい。[C2]有機アルミニウムオキシ化合物としては、具体的には、メチルアルミノキサン、エチルアルミノキサン、イソブチルアルミノキサン等が挙げられる。
従来公知のアルミノキサンは、例えば下記のような方法によって製造することができ、通常、炭化水素溶媒の溶液として得られる。
(1)吸着水を含有する化合物または結晶水を含有する塩類、例えば塩化マグネシウム水和物、硫酸銅水和物、硫酸アルミニウム水和物、硫酸ニッケル水和物、塩化第1セリウム水和物などの炭化水素媒体懸濁液に、トリアルキルアルミニウムなどの有機アルミニウム化合物を添加して、吸着水または結晶水と有機アルミニウム化合物とを反応させる方法。
(2)ベンゼン、トルエン、エチルエーテル、テトラヒドロフランなどの媒体中で、トリアルキルアルミニウムなどの有機アルミニウム化合物に直接水、氷または水蒸気を作用させる方法。
(3)デカン、ベンゼン、トルエンなどの媒体中でトリアルキルアルミニウムなどの有機アルミニウム化合物に、ジメチルスズオキシド、ジブチルスズオキシドなどの有機スズ酸化物を反応させる方法。
なお前記アルミノキサンは、少量の有機金属成分を含有してもよい。また回収された上記のアルミノキサンの溶液から溶媒または未反応有機アルミニウム化合物を蒸留して除去した後、得られたアルミノキサンを溶媒に再溶解またはアルミノキサンの貧溶媒に懸濁させてもよい。
アルミノキサンを調製する際に用いられる有機アルミニウム化合物として具体的には、前記一般式(C1-a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
これらのうち、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、トリメチルアルミニウムが特に好ましい。
上記のような有機アルミニウム化合物は、1種単独でまたは2種以上組み合せて用いられる。
アルミノキサンの調製に用いられる溶媒としては、ベンゼン、トルエン、キシレン、クメン、シメンなどの芳香族炭化水素、ペンタン、ヘキサン、ヘプタン、オクタン、デカン、ドデカン、ヘキサデカン、オクタデカンなどの脂肪族炭化水素、シクロペンタン、シクロヘキサン、シクロオクタン、メチルシクロペンタンなどの脂環族炭化水素、ガソリン、灯油、軽油などの石油留分または上記芳香族炭化水素、脂肪族炭化水素、脂環族炭化水素のハロゲン化物とりわけ、塩素化物、臭素化物などの炭化水素溶媒が挙げられる。さらにエチルエーテル、テトラヒドロフランなどのエーテル類を用いることもできる。これらの溶媒のうち特に芳香族炭化水素または脂肪族炭化水素が好ましい。
また本発明で用いられるベンゼン不溶性の有機アルミニウムオキシ化合物は、60℃のベンゼンに溶解するAl成分がAl原子換算で通常10%以下、好ましくは5%以下、特に好ましくは2%以下であるもの、すなわち、ベンゼンに対して不溶性または難溶性であることが好ましい。
本発明で用いられる[C2]有機アルミニウムオキシ化合物としては、下記一般式(III)で表されるボロンを含んだ有機アルミニウムオキシ化合物を挙げることもできる。
Figure 2022106279000018
(一般式(III)中、R17は炭素原子数が1~10の炭化水素基を示し、4つのR18は、互いに同一でも異なっていてもよく、水素原子、ハロゲン原子、炭素原子数が1~10の炭化水素基を示す。)
前記一般式(III)で表されるボロンを含んだ有機アルミニウムオキシ化合物は、下記一般式(IV)で表されるアルキルボロン酸と、有機アルミニウム化合物とを、不活性ガス雰囲気下に不活性溶媒中で、-80℃~室温の温度で1分~24時間反応させることにより製造できる。
Figure 2022106279000019
(一般式(IV)中、R19は前記一般式(III)におけるR17と同じ基を示す。)
前記一般式(IV)で表されるアルキルボロン酸の具体的な例としては、メチルボロン酸、エチルボロン酸、イソプロピルボロン酸、n-プロピルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、n-ヘキシルボロン酸、シクロヘキシルボロン酸、フェニルボロン酸、3,5-ジフルオロフェルニルボロン酸、ペンタフルオロフェニルボロン酸、3,5-ビス(トリフルオロメチル)フェニルボロン酸などが挙げられる。これらの中では、メチルボロン酸、n-ブチルボロン酸、イソブチルボロン酸、3,5-ジフルオロフェニルボロン酸、ペンタフルオロフェニルボロン酸が好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
このようなアルキルボロン酸と反応させる有機アルミニウム化合物として具体的には、前記一般式(C1-a)に属する有機アルミニウム化合物として例示したものと同様の有機アルミニウム化合物を挙げることができる。
前記有機アルミニウム化合物としては、トリアルキルアルミニウム、トリシクロアルキルアルミニウムが好ましく、特にトリメチルアルミニウム、トリエチルアルミニウム、トリイソブチルアルミニウムが好ましい。これらは1種単独でまたは2種以上組み合わせて用いられる。
上記のような[C2]有機アルミニウムオキシ化合物は、1種単独でまたは2種以上組み合せて用いられる。
遷移金属化合物[A]、遷移金属化合物[B]に加えて、助触媒成分としてのメチルアルミノキサンなどの[C2]有機アルミニウムオキシ化合物を併用すると、オレフィン化合物に対して非常に高い重合活性を示す。
([C3]遷移金属化合物[A]または遷移金属化合物[B]と反応してイオン対を形成する化合物)
本発明で用いられる、遷移金属化合物[A]または遷移金属化合物[B]と反応してイオン対を形成する化合物[C3](以下、「イオン化イオン性化合物」という。)としては、特表平1-501950号公報、特表平1-502036号公報、特開平3-179005号公報、特開平3-179006号公報、特開平3-207703号公報、特開平3-207704号公報、USP-5321106号などに記載されたルイス酸、イオン性化合物、ボラン化合物およびカルボラン化合物などを挙げることができる。さらに、ヘテロポリ化合物およびイソポリ化合物も挙げることができる。
具体的には、前記ルイス酸としては、BR3(Rは、フッ素、メチル基、トリフルオロメチル基などの置換基を有していてもよいフェニル基またはフッ素である。)で示される化合物が挙げられ、例えばトリフルオロボロン、トリフェニルボロン、トリス(4-フルオロフェニル)ボロン、トリス(3,5-ジフルオロフェニル)ボロン、トリス(4-フルオロメチルフェニル)ボロン、トリス(ペンタフルオロフェニル)ボロン、トリス(p-トリル)ボロン、トリス(o-トリル)ボロン、トリス(3,5-ジメチルフェニル)ボロンなどである。
前記イオン性化合物としては、例えば下記一般式(V)で表される化合物が挙げられる。
Figure 2022106279000020
(一般式(V)中、R20はH+、カルボニウムカチオン、オキソニウムカチオン、アンモニウムカチオン、ホスホニウムカチオン、シクロヘプチルトリエニルカチオンまたは遷移金属を有するフェロセニウムカチオンであり、R21~R24は、互いに同一でも異なっていてもよく、有機基、好ましくはアリール基または置換アリール基である。)。
前記カルボニウムカチオンとして具体的には、トリフェニルカルボニウムカチオン、トリ(メチルフェニル)カルボニウムカチオン、トリ(ジメチルフェニル)カルボニウムカチオンなどの三置換カルボニウムカチオンなどが挙げられる。
前記アンモニウムカチオンとして具体的には、トリメチルアンモニウムカチオン、トリエチルアンモニウムカチオン、トリプロピルアンモニウムカチオン、トリブチルアンモニウムカチオン、トリ(n-ブチル)アンモニウムカチオンなどのトリアルキルアンモニウムカチオン;N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオン、N,N-2,4,6-ペンタメチルアニリニウムカチオンなどのN,N-ジアルキルアニリニウムカチオン;ジ(イソプロピル)アンモニウムカチオン、ジシクロヘキシルアンモニウムカチオンなどのジアルキルアンモニウムカチオンなどが挙げられる。
前記ホスホニウムカチオンとして具体的には、トリフェニルホスホニウムカチオン、トリ(メチルフェニル)ホスホニウムカチオン、トリ(ジメチルフェニル)ホスホニウムカチオンなどのトリアリールホスホニウムカチオンなどが挙げられる。
15としては、カルボニウムカチオンおよびアンモニウムカチオンが好ましく、特にトリフェニルカルボニウムカチオン、N,N-ジメチルアニリニウムカチオン、N,N-ジエチルアニリニウムカチオンが好ましい。
またイオン性化合物として、トリアルキル置換アンモニウム塩、N,N-ジアルキルアニリニウム塩、ジアルキルアンモニウム塩、トリアリールホスフォニウム塩などを挙げることもできる。
前記トリアルキル置換アンモニウム塩として具体的には、例えばトリエチルアンモニウムテトラ(フェニル)ホウ素、トリプロピルアンモニウムテトラ(フェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(フェニル)ホウ素、トリメチルアンモニウムテトラ(p-トリル)ホウ素、トリメチルアンモニウムテトラ(o-トリル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、トリプロピルアンモニウムテトラ(o,p-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(m,m-ジメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(p-トリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(3,5-ジトリフルオロメチルフェニル)ホウ素、トリ(n-ブチル)アンモニウムテトラ(o-トリル)ホウ素などが挙げられる。
前記N,N-ジアルキルアニリニウム塩として具体的には、例えばN,N-ジメチルアニリニウムテトラ(フェニル)ホウ素、N,N-ジエチルアニリニウムテトラ(フェニル)ホウ素、N,N,2,4,6-ペンタメチルアニリニウムテトラ(フェニル)ホウ素などが挙げられる。
前記ジアルキルアンモニウム塩として具体的には、例えばジ(1-プロピル)アンモニウムテトラ(ペンタフルオロフェニル)ホウ素、ジシクロヘキシルアンモニウムテトラ(フェニル)ホウ素などが挙げられる。
さらにイオン性化合物として、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート、N,N-ジメチルアニリニウムテトラキス(ペンタフルオロフェニル)ボレート、フェロセニウムテトラ(ペンタフルオロフェニル)ボレート、トリフェニルカルベニウムペンタフェニルシクロペンタジエニル錯体、N,N-ジエチルアニリニウムペンタフェニルシクロペンタジエニル錯体、下記式(VI)または(VII)で表されるホウ素化合物などを挙げることもできる。
Figure 2022106279000021
(式(VI)中、Etはエチル基を示す。)
Figure 2022106279000022
(式(VII)中、Etはエチル基を示す。)
イオン化イオン性化合物(化合物[C3])の例であるボラン化合物として具体的には、例えば、デカボラン;ビス〔トリ(n-ブチル)アンモニウム〕ノナボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ウンデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕デカクロロデカボレート、ビス〔トリ(n-ブチル)アンモニウム〕ドデカクロロドデカボレートなどのアニオンの塩;トリ(n-ブチル)アンモニウムビス(ドデカハイドライドドデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ドデカハイドライドドデカボレート)ニッケル酸塩(III)などの金属ボランアニオンの塩などが挙げられる。
イオン化イオン性化合物の例であるカルボラン化合物として具体的には、例えば4-カルバノナボラン、1,3-ジカルバノナボラン、6,9-ジカルバデカボラン、ドデカハイドライド-1-フェニル-1,3-ジカルバノナボラン、ドデカハイドライド-1-メチル-1,3-ジカルバノナボラン、ウンデカハイドライド-1,3-ジメチル-1,3-ジカルバノナボラン、7,8-ジカルバウンデカボラン、2,7-ジカルバウンデカボラン、ウンデカハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボラン、ドデカハイドライド-11-メチル-2,7-ジカルバウンデカボラン、トリ(n-ブチル)アンモニウム1-カルバデカボレート、トリ(n-ブチル)アンモニウム1-カルバウンデカボレート、トリ(n-ブチル)アンモニウム1-カルバドデカボレート、トリ(n-ブチル)アンモニウム1-トリメチルシリル-1-カルバデカボレート、トリ(n-ブチル)アンモニウムブロモ-1-カルバドデカボレート、トリ(n-ブチル)アンモニウム6-カルバデカボレート、トリ(n-ブチル)アンモニウム6-カルウンバデカボレート、トリ(n-ブチル)アンモニウム7-カルバウンデカボレート、トリ(n-ブチル)アンモニウム7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウム2,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムドデカハイドライド-8-メチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-エチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-ブチル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-8-アリル-7,9-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-9-トリメチルシリル-7,8-ジカルバウンデカボレート、トリ(n-ブチル)アンモニウムウンデカハイドライド-4,6-ジブロモ-7-カルバウンデカボレートなどのアニオンの塩;
トリ(n-ブチル)アンモニウムビス(ノナハイドライド-1,3-ジカルバノナボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)ニッケル酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)銅酸塩(III)、トリ(n-ブチル)アンモニウムビス(ウンデカハイドライド-7,8-ジカルバウンデカボレート)金酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)鉄酸塩(III)、トリ(n-ブチル)アンモニウムビス(ノナハイドライド-7,8-ジメチル-7,8-ジカルバウンデカボレート)クロム酸塩(III)、トリ(n-ブチル)アンモニウムビス(トリブロモオクタハイドライド-7,8-ジカルバウンデカボレート)コバルト酸塩(III)、トリス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)クロム酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)マンガン酸塩(IV)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)コバルト酸塩(III)、ビス〔トリ(n-ブチル)アンモニウム〕ビス(ウンデカハイドライド-7-カルバウンデカボレート)ニッケル酸塩(IV)などの金属カルボランアニオンの塩などが挙げられる。
イオン化イオン性化合物の例であるヘテロポリ化合物は、ケイ素、リン、チタン、ゲルマニウム、ヒ素および錫から選ばれる原子と、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種または2種以上の原子とを含む化合物である。具体的には、リンバナジン酸、ゲルマノバナジン酸、ヒ素バナジン酸、リンニオブ酸、ゲルマノニオブ酸、シリコノモリブデン酸、リンモリブデン酸、チタンモリブデン酸、ゲルマノモリブデン酸、ヒ素モリブデン酸、錫モリブデン酸、リンタングステン酸、ゲルマノタングステン酸、錫タングステン酸、リンモリブドバナジン酸、リンタングストバナジン酸、ゲルマノタングストバナジン酸、リンモリブドタングストバナジン酸、ゲルマノモリブドタングストバナジン酸、リンモリブドタングステン酸、リンモリブドニオブ酸、およびこれらの酸の塩が挙げられるが、この限りではない。また、前記塩としては、前記酸の、例えば周期表第1族または2族の金属、具体的には、リチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等の有機塩が挙げられる。
イオン化イオン性化合物の例であるイソポリ化合物は、バナジウム、ニオブ、モリブデンおよびタングステンから選ばれる1種の原子の金属イオンから構成される化合物であり、金属酸化物の分子状イオン種であるとみなすことができる。具体的には、バナジン酸、ニオブ酸、モリブデン酸、タングステン酸、およびこれらの酸の塩が挙げられるが、この限りではない。また、前記塩としては、前記酸の例えば周期表第1族または第2族の金属、具体的にはリチウム、ナトリウム、カリウム、ルビジウム、セシウム、ベリリウム、マグネシウム、カルシウム、ストロンチウム、バリウム等との塩、トリフェニルエチル塩等の有機塩が挙げられる。
上記のようなイオン化イオン性化合物([C3]遷移金属化合物[A]、遷移金属化合物[B]と反応してイオン対を形成する化合物)は、1種単独でまたは2種以上組み合せて用いられる。
上記のような[C3]イオン化イオン性化合物は、1種単独でまたは2種以上組み合せて用いられる。
有機金属化合物[C1]は、有機金属化合物[C1]と、工程(A)においては遷移金属化合物[A]中の遷移金属原子(M)とのモル比(C1/M)が、工程(B)においては遷移金属化合物[B]中の遷移金属原子(M)とのモル比(C1/M)が、通常0.01~100000、好ましくは0.05~50000となるような量で用いられる。
有機アルミニウムオキシ化合物[C2]は、有機アルミニウムオキシ化合物[C2]中のアルミニウム原子と、工程(A)においては遷移金属化合物[A]中の遷移金属原子(M)とのモル比(C2/M)が、工程(B)においては遷移金属化合物[B]中の遷移金属原子(M)とのモル比(C2/M)が、通常10~500000、好ましくは20~100000となるような量で用いられる。
イオン化イオン性化合物[C3]は、イオン化イオン性化合物[C3]と、工程(A)においては遷移金属化合物[A]中の遷移金属原子(M)とのモル比(C3/M)が、工程(B)においては遷移金属化合物[B]中の遷移金属原子(M)(ハフニウム原子)とのモル比(C2/M)が、通常1~10、好ましくは1~5となるような量で用いられる。
〔工程(C)〕
オレフィン系樹脂(β)の製造方法は、工程(A)および(B)に加え、必要に応じて、工程(A)または(B)、もしくは工程(A)および(B)両方の工程で生成する重合体を回収する工程(C)を含んでも良い。本工程は、工程(A)(B)において用いられる有機溶剤を分離してポリマーを取り出す工程であり、溶媒濃縮、押し出し脱気、ペレタイズ、晶析等の公知の工程であれば特段制限はない。
<樹脂組成物>
本発明の樹脂組成物は、前記プロピレン系重合体(α)およびオレフィン系樹脂(β)を含有することを特徴とする。本発明の樹脂組成物は、プロピレン系重合体(α)およびオレフィン系樹脂(β)を含有することにより、耐衝撃性および透明性に優れる。プロピレン系重合体(α)にオレフィン系樹脂(β)を配合することにより透明性が向上する理由は明らかでないが、プロピレン系重合体(α)にオレフィン系樹脂(β)を配合すると、オレフィン系樹脂(β)の側鎖が主鎖内に入り込むことにより、オレフィン系樹脂(β)がサラミ状となり、密度が増大するため、組成物全体の透明性が向上するのであろうと想像される。
前述のオレフィン系樹脂(β)は、任意の配合割合にて、プロピレン系重合体(α)と良好に相容化することから、本発明の樹脂組成物におけるプロピレン系重合体(α)とオレフィン系樹脂(β)との含有割合に特段の制限はないが、耐衝撃性および透明性をより良好にする含有割合として、プロピレン系重合体(α)は50~98質量部であることが好ましく、より好ましくは60~95質量部、さらに好ましくは65~95質量部である。また、オレフィン系樹脂(β)は2~50質量部が好ましく、より好ましくは5~40質量部、さらに好ましくは5~35質量部である。ただし、プロピレン系重合体(α)とオレフィン系樹脂(β)との各質量部の合計は100質量部である。
プロピレン系重合体(α)とオレフィン系樹脂(β)の含有割合が上記範囲にあることにより、本発明の樹脂組成物は、耐衝撃性および透明性に優れ、さらに各種成形品の製造に好適に使用することができる。
さらに、本発明の樹脂組成物は、本発明の目的を損なわない範囲で、他の樹脂、ゴム、無機充填剤、有機充填剤などを配合することができ、また耐候性安定剤、耐熱安定剤、帯電防止剤、スリップ防止剤、アンチブロッキング剤、防曇剤、滑剤、顔料、染料、可塑剤、老化防止剤、塩酸吸収剤、酸化防止剤等、結晶核剤などの添加剤を配合することができる。本発明にかかる樹脂組成物においては、前記他の樹脂、他のゴム、無機充填剤、添加剤等の添加量は本発明の目的を損なわない範囲であれば、特に限定されるものではない。
本発明の樹脂組成物の調製方法は、溶融法、溶液法等、特に限定されないが、実用的には溶融混練方法が好ましい。溶融混練方法としては、熱可塑性樹脂について一般に実用されている溶融混練方法が適用できる。例えば、粉状または粒状の各成分を、必要であれば付加的成分の項に記載の添加物等と共に、ヘンシェルミキサー、リボンブレンダー、V型ブレンダー等により均一に混合した後、一軸または多軸混練押出機、混練ロール、バッチ混練機、ニーダー、バンバリーミキサー等で混練することにより調製することができる。
各成分の溶融混練温度(例えば、押出機ならシリンダー温度)は、通常170~250℃、好ましくは180~230℃である。さらに各成分の混練順序および方法は、特に限定されるものではない。
<成形体>
本実施形態に係る成形体は、本発明の樹脂組成物を、公知の成形方法により成形して得られる。例えば、押出成形、射出成形、インフレーション成形、ブロー成形、押出ブロー成形、射出ブロー成形、プレス成形、真成形、パウダースラッシュ成形、カレンダー成形、発泡成形等の公知の熱成形方法により得られる。
得られる成形体の用途は特に限定されないが、本発明の樹脂組成物が有する高い耐衝撃性および透明性を利用して、例えば自動車内外装材などへの用途が好適である。
以下、実施例を参照して本発明を具体的に説明するが、本発明は実施例に限定されるものではない。なお、以下で、テトラシクロ[6.2.1.13,6.02,7]ドデカ-4-エンを「TD」と略記する。
以下の実施例および比較例において、各物性は、以下の方法により測定あるいは評価した。
[分子量測定]
ポリマーサンプルの分子量および分子量分布は、カラムとして東ソー株式会社製TSKgel GMH6-HTを2本、および、TSKgel GMH6-HTLを2本(カラムサイズはいずれも内径7.5mm、長さ300mm)を直列接続した、ゲル浸透クロマトグラフ(東ソー株式会社製HLC-8321 GPC/HT型)を用いて測定した。移動相媒体は、o-ジクロロベンゼンに酸化防止剤としてBHT(和光純薬工業)0.025質量%を添加した媒体を用い、試料濃度0.15%(W/V)、流速1.0ml/分、140℃で測定した。標準ポリスチレンは、分子量が590~20,600,000については東ソー社製を用いた。得られたクロマトグラムはWaters製データ処理ソフトEmpower3を用いて、公知の方法によって、標準ポリスチレンサンプルを使用した検量線を用いて解析することで、数平均分子量Mn、重量平均分子量Mwおよび分散度Mw/Mnを算出した。
[各モノマー成分の組成]
エチレンとα-オレフィンの共重合体の各モノマーから導かれる繰り返し単位、およびエチレンと環状オレフィンの共重合体の各モノマーから導かれる繰り返し単位は以下の方法により、ポリマーの核磁気共鳴スペクトルを分析することにより求めた。
(測定条件)
装置:日本電子製ECX400P型核磁気共鳴装置、
測定核:1H(400MHz);13C (125MHz)、
測定モード:シングルパルス、パルス幅:45°(5.25μ秒)、ポイント数:32k、
測定範囲:20ppm(-4~16ppm)、
繰り返し時間:7.0秒、
積算回数:64回、
測定溶媒:オルトジクロロベンゼン-d4、試料濃度:ca.20mg/0.6mL、
測定温度:120℃、
ウインドウ関数:exponential(BF:0.12Hz)、
ケミカルシフト基準:オルトジクロロベンゼン(7.1ppm)。
後述する実施例1に記載の工程(A)で得られる環状オレフィン系共重合体のエチレンおよび環状オレフィンの割合は125MHz 13C-NMR(日本電子ECX400P)から得られるエチレンに由来するピーク強度および環状オレフィンに由来するピーク強度(積分値)によって測定、定量した。また、工程(B)で得られるオレフィン系樹脂(β)のエチレンとα-オレフィン共重合体の各モノマーから導かれる繰り返し単位は125MHz 13C-NMR(日本電子ECX400P)から得られるエチレンに由来するピークおよびα-オレフィンに由来するピークの強度比(積分値)によって測定、定量した。
[末端ビニル率の測定]
末端不飽和環状オレフィン系共重合体の末端ビニル率の測定は、400MHz 1H-NMR(日本電子ECX400P)から得られる不飽和結合に由来するピークの強度比から末端の総不飽和量中のビニル基量として末端ビニル率を定量した。
[環状オレフィン系共重合体の割合]
オレフィン系樹脂(β)に含まれる環状オレフィン系共重合体の割合は、後述する実施例に記載の方法でオレフィン系樹脂を製造した際の、環状オレフィン系共重合体の仕込み量と得られたオレフィン系樹脂(β)の量との差分から算出した。
[グラフト型オレフィン系重合体[R1]の確認]
ゲル浸透クロマトグラフにより得られるクロマトグラムをピーク分離することにより、環状オレフィン系共重合体が消費されていることを確認し、グラフト型オレフィン系重合体[R1]が生成していることを確認した。
[メルトフローレート(MFR)]
メルトフローレート(MFR)は、ASTM D1238Eに準拠して、190℃または230℃、2.16kg荷重で求めた。
[アイソタクチックペンタド分率(mmmm)]
アイソタクチックペンタド分率(mmmm)は、プロピレン系重合体においてMacromolecules 8,687(1975)に基づいて帰属した13C-NMRスペクトルのピーク強度比より算出した。13C-NMRスペクトルは、日本電子製EX-400の装置を用い、TMSを基準とし、温度130℃、o-ジクロロベンゼン溶媒を用いて測定した。
[極限粘度[η]]
共重合体の極限粘度[η]は、測定装置としてウベローデ粘度計を用い、デカリン溶媒中、135℃で測定した。
約20mgの共重合体をデカリン25mlに溶解させた後、ウベローデ粘度計を用い、135℃のオイルバス中で比粘度ηspを測定した。このデカリン溶液にデカリンを5ml加えて希釈した後、上記と同様にして比粘度ηspを測定した。この希釈操作を更に2回繰り返し、濃度(C)を0に外挿した時のηsp/Cの値を極限粘度[η](単位:dl/g)として求めた(下記の式1参照)。
[η]=lim(ηsp/C) (C→0)・・・式1
[ガラス転移温度Tgの測定]
ガラス転移温度Tgの測定は、以下の条件でDSC測定を行い求めた。
示差走査熱量計〔SII社 RDC220〕を用いて、約10mgの試料を窒素雰囲気下で30℃から昇温速度50℃/minで200℃まで昇温し、その温度で10分間保持した。さらに降温速度10℃/minで-100℃まで冷却し、その温度で5分間保持した後、昇温速度10℃/minで200℃まで昇温した。ガラス転移温度Tgは、2度目の昇温の際に、比熱の変化によりDSC曲線が屈曲し、ベースラインが平行移動する形で感知される。この屈曲より低温のベースラインの接線と、屈曲した部分で傾きが最大となる点の接線との交点の温度をガラス転移温度Tgとした。
[引張試験]
引張試験は下記の条件で行った。この試験より弾性率を求めた。
<測定条件>
試験片:JIS K7162-BA ダンベル
5mm(幅)×2mm(厚さ)×75mm(長さ)
引張速度:500mm/分
スパン間距離:58mm
温度:23℃
[アイゾット衝撃試験]
アイゾット衝撃試験は、ASTM D256に従って、下記の条件で行った。この試験より、アイゾット(Izod)衝撃強度を求めた。
<試験条件>
ハンマー容量:3.92J
空振り角度:149.0℃
ノッチは機械加工である
温度:-40℃、23℃
[全光線透過率]
デジタル濁度計(日本電色工業社NDH-2000)、C光源を用いて1mm厚みプレスシートの全透過光量を測定し、下式により全光線透過率を求めた。全光線透過率(%)=100×(全透過光量)/(入射光量)
[合成例1]
(プロピレン系単独重合体樹脂(α-1)の製造)
(1)固体状チタン触媒成分の調製
無水塩化マグネシウム95.2g、デカン442mlおよび2-エチルヘキシルアルコール390.6gを130℃で2時間加熱反応を行って均一溶液とした後、この溶液中に無水フタル酸21.3gを添加し、さらに130℃にて1時間攪拌混合を行い、無水フタル酸を溶解させた。
このようにして得られた均一溶液を室温に冷却した後、-20℃に保持した四塩化チタン200ml中に、この均一溶液の75mlを1時間にわたって滴下した。滴化終了後、この混合液の温度を4時間かけて110℃に昇温し、110℃に達したところでフタル酸ジイソブチル(DIBP)5.22gを添加し、2時間同温度にて攪拌した。
2時間の反応終了後、熱濾過にて固体部を採取し、この固体部を275mlの四塩化チタンに再懸濁させた後、再び110℃で2時間加熱した。反応終了後、再び熱濾過にて固体部を採取し、110℃のデカンおよびヘキサンにて遊離のチタン化合物が検出されなくなるまで充分洗浄した。
ここで、この遊離チタン化合物の検出は次の方法で確認した。上記固体触媒成分の洗浄液10mlを注射器で採取して、予め窒素置換した100mlの枝付きシュレンクに入れた。次に、窒素気流にてヘキサンを乾燥し、さらに30分間真空乾燥した。これに、イオン交換水40ml、(1+1)硫酸10mlを入れ、30分間攪拌した。この水溶液をろ紙に通して100mlメスフラスコに移し、続いて鉄(II)イオンのマスキング剤として濃H3PO4 1mlとチタンの発色試薬として3%H22 5mlを加え、イオン交換水で100mlにメスアップした。このメスフラスコを振り混ぜ、20分後に、UV測定器を用い、420nmの吸光度を観測した。この吸光が観測されなくなるまで遊離チタンの洗浄除去を行った。
上記のように調製された固体状チタン触媒成分(A)は、デカンスラリーとして保存したが、この内の一部を、触媒組成を調べる目的で乾燥した。このようにして得られた固体状チタン触媒成分(A)の組成は、チタン2.3質量%、塩素61質量%、マグネシウム19質量%、DIBP 12.5質量%であった。
(2)前重合触媒の製造
固体状チタン触媒成分(A)100g、トリエチルアルミニウム39.3mL、ヘプタン100Lを内容量200Lの攪拌機付きオートクレーブに入れ、内温15~20℃に保ち、プロピレンを600g入れ、60分間攪拌しながら反応させ、触媒スラリーを得た。
(3)本重合
内容量58Lのジャケット付循環式管状重合器にプロピレンを43kg/時間、水素を177NL/時間、(2)で製造した触媒スラリーを固体触媒成分として0.58g/時間、トリエチルアルミニウムを3.1ml/時間、ジシクロペンチルジメトキシシランを3.3ml/時間で連続的に供給し、気相の存在しない満液の状態にて重合した。管状重合器の温度は70℃であり、圧力は3.53MPa/Gであった。
得られたスラリーは内容量100Lの攪拌機付きベッセル重合器へ送り、更に重合を行った。重合器へ、プロピレンを45kg/時間で供給し、水素を気相部の水素濃度が3.2mol%になるように供給した。重合温度70℃、圧力3.28MPa/Gで重合を行った。
得られたプロピレン系単独重合体樹脂(α-1)は、80℃で真空乾燥を行った。プロピレン系単独重合体樹脂(α-1)の物性は、230℃、2.16kg荷重におけるメルトフローレート(MFR)が30g/10分、アイソタクチックペンタッド分率(mmmm)が97.8%であった。
[合成例2]
以下、オレフィン系樹脂(β-1)の重合例について記載する。
工程(A)
触媒として使用した下記式(i)で示される化合物(i)は公知の方法によって合成した。
Figure 2022106279000023
充分に窒素置換した内容積2.0Lのガラス製反応器に、トルエン1500mlおよびTD 6.0 mL(0.038mmol)を入れたのち、25℃に保持し600rpmで重合器内部を撹拌しながら、エチレンそれぞれ198リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンを連続的に供給した状態で、MAOのトルエン溶液(1.39mol/L)を6.0mL(6.0mmol)、上記化合物(i)のトルエン溶液(0.006mol/L)を1.0mL(0.006mmol)、常圧下、25℃で4.5分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層を大量のメタノール/アセトン混合液に投入し末端不飽和環状オレフィン系共重合体を析出させた。ろ過により得られた該共重合体を130℃にて10時間減圧乾燥することにより、末端不飽和環状オレフィン系共重合体を4.1g得た。得られた末端不飽和環状オレフィン系共重合体のエチレンから導かれる繰り返し単位は61mol%、TDから導かれる繰り返し単位は39mol%、重量平均分子量は49,900であった。これを後述する樹脂(β-1)に含まれるグラフト型オレフィン系重合体[R1]の側鎖の組成および分子量とした。また、得られた末端不飽和環状オレフィン系共重合体の末端ビニル基は1000炭素原子あたり0.9個であり、末端ビニル率は90%であった。
工程(B)
触媒として使用した下記式(ii)で示される化合物(ii)は公知の方法によって合成した。
Figure 2022106279000024
充分に窒素置換した内容積1.0Lのガラス製反応器に、上記で合成した末端不飽和環状オレフィン系共重合体 3.0gを加え、キシレン500mlに溶解させたのち、97℃に昇温し600rpmで重合器内部を撹拌しながら、エチレンおよびブテンをそれぞれ99リットル/hr、18.0リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンおよびブテンを連続的に供給した状態で、トリイソブチルアルミニウム(iBu3Alとも記す)のトルエン溶液(1.0mol/L)を6.0mL(6.0mmol)、上記化合物(ii)のトルエン溶液(0.010mol/L)を1.5mL(0.015mmol)、ついでトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(0.010mol/L)を6.0mL(0.060mmol)加え、常圧下、97℃で20分間重合を行った。ゲル浸透クロマトグラフにより、末端不飽和環状オレフィン系共重合体が消費されていることを確認し、グラフト型オレフィン系重合体[R1]が生成していることを確認した。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層を大量のメタノールに投入し重合体を析出させた。ろ過により得られたオレフィン系樹脂を130℃にて10時間減圧乾燥することにより、12.2gの樹脂(β-1)を得た。樹脂(β-1)に含まれる環状オレフィン系共重合体の割合は25質量%であった。
上記工程(B)で生成するオレフィン系樹脂(β)の主鎖を構成するエチレン・ブテン共重合体の構造解析のため、末端不飽和環状オレフィン系共重合体を加えてない以外は、上記工程(B)と同様にして行い、4.4gのエチレン-ブテン共重合体(樹脂(γ-1))を得た。該エチレン・ブテン共重合体の主鎖のエチレンから導かれる繰り返し単位は81mol%、重量平均分子量は402,000であった。これを後述する樹脂(β-1)および(β-2)に含まれるグラフト型オレフィン系重合体[R1]の主鎖の組成および分子量とした。
[合成例3]
以下、オレフィン系樹脂(β-2)の重合例について記載する。
工程(A)
触媒として使用した下記式(iii)で示される化合物(iii)は公知の方法によって合成した。
Figure 2022106279000025
充分に窒素置換した内容積2.0Lのガラス製反応器に、トルエン1500mlおよびTD 4.5 mL(0.029mmol)を入れたのち、25℃に保持し600rpmで重合器内部を撹拌しながら、エチレンそれぞれ99リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンを連続的に供給した状態で、MAOのトルエン溶液(1.00mol/L)を2.0mL(2.0mmol)、上記化合物(iii)のトルエン溶液(0.003mol/L)を1.0mL(0.003mmol)、常圧下、25℃で4.5分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層を大量のメタノール/アセトン混合液に投入し末端不飽和環状オレフィン系共重合体を析出させた。ろ過により得られた該共重合体を130℃にて10時間減圧乾燥することにより、末端不飽和環状オレフィン系共重合体を2.5g得た。得られた末端不飽和環状オレフィン系共重合体のエチレンから導かれる繰り返し単位は88mol%、TDから導かれる繰り返し単位は12mol%、重量平均分子量は70,200であった。これを後述する樹脂(β-2)に含まれるグラフト型オレフィン系重合体[R1]の側鎖の組成および分子量とした。また、得られた末端不飽和環状オレフィン系共重合体の末端ビニル基は1000炭素原子あたり0.74個であり、末端ビニル率は90%であった。
工程(B)
充分に窒素置換した内容積1.0Lのガラス製反応器に、上記で合成した末端不飽和環状オレフィン系共重合体 2.7gを加え、キシレン500mlに溶解させたのち、97℃に昇温し600rpmで重合器内部を撹拌しながら、エチレンおよびブテンをそれぞれ99リットル/hr、18.0リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンおよびブテンを連続的に供給した状態で、トリイソブチルアルミニウム(iBu3Alとも記す)のトルエン溶液(1.0mol/L)を6.0mL(6.0mmol)、上記化合物(ii)のトルエン溶液(0.010mol/L)を1.5mL(0.015mmol)、ついでトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(0.010mol/L)を6.0mL(0.060mmol)加え、常圧下、97℃で20分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層を大量のメタノールに投入し重合体を析出させた。ろ過により得られたオレフィン系樹脂を130℃にて10時間減圧乾燥することにより、12.2gの樹脂(β-2)を得た。樹脂(β-2)に含まれる環状オレフィン系共重合体の割合は34質量%であった。
[合成例4]
(オレフィン樹脂(γ-2)の製造)
攪拌羽根を備えた内容積100Lのステンレス製重合器(攪拌回転数=250rpm、内温110℃、重合圧力1.0MPa・G)に、脱水生成したヘキサンを23L/hr、化合物(2)を0.0053mmol/hr、トリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレートを0.021mmol/hr、トリイソブチルアルミニウムを2.2mmol/hrの速度で連続的に供給し、気相重合器内のガス組成が、ブテン/エチレンとして0.23(モル比)、水素/エチレンとして0.017(モル比)になるようにブテン、エチレン、水素を連続的に供給し、生成する重合液を重合器側壁部に設けられた排出口を介して、重合器内溶液量28Lを維持するように液面制御弁の開度を調節しながら連続的に排出した。得られた重合溶液を加熱器に導いて180℃に昇温し、触媒失活剤として、毎時、メタノールを80mLで添加し重合を停止させ、減圧した脱揮工程に連続的に移送して乾燥することにより、オレフィン樹脂(γ-2)を2.1kg/hrの生産速度で得た。得られた樹脂を分析したところ、ガラス転移温度Tgは-65.2℃、極限粘度[η]は2.6dl/g、190℃、2.16kg荷重におけるMFRは0.2g/10min、1-ブテンの割合が19.0mol%のエチレンと1-ブテンの共重合体であった。
[合成例5]
以下、オレフィン系樹脂(β-3)の重合例について記載する。
工程(A)
合成例3(オレフィン系樹脂(β-2)の重合例)の工程Aにおいて、トルエンを500mlに変更した以外は同様に合成した。
工程(B)
触媒として使用した下記式(iv)で示される化合物(iv)は公知の方法によって合成した。
Figure 2022106279000026
充分に窒素置換した内容積1.0Lのガラス製反応器に、上記で合成した末端不飽和環状オレフィン系共重合体 2.7gを加え、キシレン200mlに溶解させたのち、95℃に昇温し600rpmで重合器内部を撹拌しながら、エチレンおよびブテンをそれぞれ120リットル/hr、15.6リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンおよびブテンを連続的に供給した状態で、トリイソブチルアルミニウム(iBu3Alとも記す)のトルエン溶液(1.0mol/L)を1.0mL(1.0mmol)、上記化合物(ii)のトルエン溶液(0.0025mol/L)を2.0mL(0.005mmol)、ついでトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(0.010mol/L)を2.0mL(0.020mmol)加え、常圧下、95℃で20分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層を大量のメタノールに投入し重合体を析出させた。ろ過により得られたオレフィン系樹脂を130℃にて10時間減圧乾燥することにより、11.7gの樹脂(β-3)を得た。樹脂(β-3)に含まれる環状オレフィン系共重合体の割合は23質量%であった。
[合成例6]
以下、オレフィン系樹脂(β-4)の重合例について記載する。
工程(A)
充分に窒素置換した内容積2.0Lのガラス製反応器に、トルエン1500mlおよびTD 5.4mL(0.035mmol)を入れたのち、25℃に保持し600rpmで重合器内部を撹拌しながら、エチレンそれぞれ240リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンを連続的に供給した状態で、MAOのトルエン溶液(1.39mol/L)を5.4mL(7.5mmol)、上記化合物(iii)のトルエン溶液(0.003mol/L)を2.0mL(0.006mmol)、常圧下、25℃で4.5分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層を大量のメタノール/アセトン混合液に投入し末端不飽和環状オレフィン系共重合体を3.1g得た。
工程(B)
充分に窒素置換した内容積1.0Lのガラス製反応器に、上記で合成した末端不飽和環状オレフィン系共重合体 3.0gを加え、キシレン200mlに溶解させたのち、95℃に昇温し600rpmで重合器内部を撹拌しながら、エチレンおよびブテンをそれぞれ120リットル/hr、15.6リットル/hrで連続的に供給し、液相および気相を飽和させた。引き続きエチレンおよびブテンを連続的に供給した状態で、トリイソブチルアルミニウム(iBu3Alとも記す)のトルエン溶液(1.0mol/L)を1.0mL(1.0mmol)、上記化合物(iv)のトルエン溶液(0.0025mol/L)を2.0mL(0.005mmol)、ついでトリフェニルカルベニウムテトラキス(ペンタフルオロフェニル)ボレート(Ph3CB(C654とも記す)のトルエン溶液(0.010mol/L)を2.0mL(0.020mmol)加え、常圧下、95℃で20分間重合を行った。重合の停止は少量のイソブタノールを添加することにより行った。得られた重合反応液を、希塩酸で洗浄し、分液して得られた有機層を大量のメタノールに投入し重合体を析出させた。ろ過により得られたオレフィン系樹脂を130℃にて10時間減圧乾燥することにより、10.8gの樹脂(β-4)を得た。樹脂(β-4)に含まれる環状オレフィン系共重合体の割合は28質量%であった。
[合成例7]
以下、オレフィン系樹脂(β-5)の重合例について記載する。
合成例3(オレフィン系樹脂(β-2)の重合例)の工程Bにおいて、末端不飽和環状オレフィン系共重合体を5.4gに変更した以外は同様に合成した。
[合成例8]
以下、オレフィン系樹脂(β-6)の重合例について記載する。
合成例2(オレフィン系樹脂(β-1)の重合例)の工程Bにおいて、末端不飽和環状オレフィン系共重合体 を6.0gに変更した以外は同様に合成した。
[合成例9]
以下、オレフィン系樹脂(β-7)の重合例について記載する。
合成例5(オレフィン系樹脂(β-3)の重合例)の工程Bにおいて、末端不飽和環状オレフィン系共重合体 を1.35gに変更した以外は同様に合成した。
上記合成例2~9で得られたオレフィン系樹脂(β-1)~(β-7)の物性を表1に示す。
Figure 2022106279000027
[実施例1]
(プロピレン系樹脂組成物の製造)
表2に示す実施例1の配合の記載の通り、プロピレン系単独重合体樹脂(α-1)80質量部と、オレフィン系樹脂(β―1)20質量部と、耐熱安定剤IRGANOX1010(チバガイギー(株)商標)0.1質量部、耐熱安定剤IRGAFOS168(チバガイギー(株)商標)0.1質量部 とを以下の条件にて溶融混練し、210℃に設定した油圧式熱プレス機を用い、7分間の余熱後、10MPa加圧下で3分間成形した後、20℃で10MPaの加圧下で3分間の冷却をすることによりプロピレン系樹脂組成物であるプレスシートを作製した。得られたプレスシートの物性を既述の方法で測定した。結果を表2に示す。
<溶融混練条件>
混練機:東洋精機社製ラボプラストミル(2軸バッチ式溶融混練装置)
混練温度:210℃
スクリュー回転数:60rpm
混練時間:5分間
樹脂量: 40g
[実施例2]
実施例2は、表2に示す実施例2の配合にしたがって、プロピレン系単独重合体樹脂(α-1)とオレフィン系樹脂(β-1)とを溶融混練した以外は、実施例1と同様に実施した。
[実施例3]
実施例3は、表2に示す実施例3の配合にしたがって、プロピレン系単独重合体樹脂(α-1)とオレフィン系樹脂(β-2)とを溶融混練した以外は、実施例1と同様に実施した。
[実施例4]
表2に示す実施例5の配合にしたがって、(株)プライムポリマー製プロピレン系樹脂(J2021GRP, MFR:25g/10分)(α-2)と、オレフィン系樹脂(β-3)を溶融混練した以外は、実施例1と同様に実施した。
[実施例5]
表2に示す実施例7の配合にしたがって、プロピレン系樹脂(α-2)と、オレフィン系樹脂(β-4)を溶融混練した以外は、実施例1と同様に実施した。
[実施例6]
表2に示す実施例9の配合にしたがって、プロピレン系樹脂(α-1)と、オレフィン系樹脂(β-5)を溶融混練した以外は、実施例1と同様に実施した。
[実施例7]
表2に示す実施例10の配合にしたがって、プロピレン系樹脂(α-1)と、オレフィン系樹脂(β-6)を溶融混練した以外は、実施例1と同様に実施した。
[実施例8]
表2に示す実施例11の配合にしたがって、プロピレン系樹脂(α-1)と、オレフィン系樹脂(β-4)を溶融混練した以外は、実施例1と同様に実施した。
[実施例9]
表2に示す実施例12の配合にしたがって、プロピレン系樹脂(α-1)と、オレフィン系樹脂(β-7)を溶融混練した以外は、実施例1と同様に実施した。
[比較例1]
比較例1は、表2に示す比較例1の配合にしたがって、プロピレン系単独重合体樹脂(α-1)とオレフィン系樹脂(γ-2)とを溶融混練した以外は、実施例1と同様に実施した。
[比較例2]
比較例2は、表2に示す比較例1の配合にしたがって、プロピレン系単独重合体樹脂(α-1)と、下記に記載の方法により合成例2の各工程で合成された環状オレフィン系共重合体およびオレフィン系共重合体を溶液ブレンドした溶液ブレンド(γ-3)とを溶融混練した以外は、実施例1と同様に実施した。
(溶液ブレンド(γ-3))
合成例2の工程Aに記載の末端不飽和環状オレフィン系共重合体30質量部と工程Bに記載の樹脂(γ-1)70質量部とをトルエン中に溶解し、80℃で1時間攪拌し、これに大量のメタノールに投入し樹脂組成物を析出させ、溶液ブレンド(γ-3)を得た。
[比較例3]
プロピレン系樹脂(α-1)を用いて実施した。
[比較例4]
プロピレン系樹脂(α-2)を用いて実施した。
実施例および比較例で得られた樹脂組成物の物性を表2に示す。
Figure 2022106279000028
表2より、実施例のプロピレン系樹脂組成物のアイゾッド衝撃のエネルギー値は、比較例1のプロピレン系樹脂より高く、さらにグラフト型オレフィン系重合体[R1]を含まないブレンド樹脂(γ-3)を配合した比較例2の樹脂組成物よりも高く、さらに比較例3のプロピレン系樹脂(α-1)単体よりも高かった。
また、光線透過率はグラフト型オレフィン共重合体[R1]を含む実施例とオレフィン系樹脂(γ-2)を比較すると、光線透過率が改善されている。さらに、グラフト型オレフィン系重合体[R1]を含まないブレンド樹脂(γ-3)を配合した比較例2で光線透過率が著しく低下している。
また、プロピレン系樹脂(α-2)を用いた場合においても、アイゾッド衝撃のエネルギー値は、比較例4のプロピレン系樹脂(α-2)単体よりも高かった。
以上の結果より、グラフト型オレフィン共重合体[R1]の存在により、プロピレン系樹脂組成物の耐衝撃性および透明性を同時に向上することが確認された。

Claims (6)

  1. ASTM D1238Eに準拠して得られた230℃、2.16kg荷重でのメルトフローレート(MFR)が0.1~500g/10minであるプロピレン系重合体(α)と、
    エチレンと炭素数3から20のα-オレフィンから選ばれる少なくとも1種のα-オレフィンとの共重合体から構成される主鎖、及び、エチレンと少なくとも1種の環状オレフィンとの共重合体から構成される側鎖を有するグラフト型オレフィン系重合体[R1]を含むオレフィン系樹脂(β)と
    を含有することを特徴とする樹脂組成物。
  2. 前記グラフト型オレフィン系重合体[R1]の主鎖を構成する前記共重合体が、以下の要件(i)および(ii)を満たす共重合体である請求項1に記載の樹脂組成物。
    (i)エチレンから導かれる繰り返し単位が10~90mol%の範囲にある。
    (ii)ゲルパーミエーションクロマトグラフィー(GPC)よりスチレン換算値として求められる重量平均分子量が10000~500000の範囲にある。
  3. 前記グラフト型オレフィン系重合体[R1]の側鎖を構成する前記共重合体が、以下の要件(iii)および(iv)を満たす共重合体である請求項1または2に記載の樹脂組成物。
    (iii)エチレンから導かれる繰り返し単位が50~95mol%の範囲にある。
    (iv)ゲルパーミエーションクロマトグラフィー(GPC)よりスチレン換算値として求められる重量平均分子量が10000~100000の範囲にある。
  4. 前記オレフィン系樹脂(β)に含まれる環状オレフィン系共重合体の割合が、5~70質量%〔ただし、オレフィン系樹脂(β)を100質量%とする。〕の範囲である請求項1~3のいずれかに記載の樹脂組成物。
  5. 前記プロピレン系重合体(α)を1~99質量部および前記オレフィン系樹脂(β)を1~99質量部〔プロピレン系重合体(α)とオレフィン系樹脂(β)との合計は100質量部である。〕を含有する請求項1~4のいずれかに記載の樹脂組成物。
  6. 請求項1~5のいずれかに記載の樹脂組成物を含む成形体。
JP2021196945A 2021-01-06 2021-12-03 樹脂組成物 Pending JP2022106279A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2021001100 2021-01-06
JP2021001100 2021-01-06

Publications (1)

Publication Number Publication Date
JP2022106279A true JP2022106279A (ja) 2022-07-19

Family

ID=82448878

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2021196945A Pending JP2022106279A (ja) 2021-01-06 2021-12-03 樹脂組成物

Country Status (1)

Country Link
JP (1) JP2022106279A (ja)

Similar Documents

Publication Publication Date Title
US9771448B2 (en) Olefin-based resin, method for producing same and propylene-based resin composition
CN108047568B (zh) 成型体和丙烯系树脂组合物
US9714306B2 (en) Olefin resin and method for producing same
JP6668023B2 (ja) プロピレン系樹脂組成物およびその製造方法、並びに成形体
JP7308011B2 (ja) プロピレン系樹脂組成物およびその製造方法、ならびに該プロピレン系樹脂組成物を用いた成形体
JP6564289B2 (ja) オレフィン系樹脂とその製造方法および組成物並びに成形体
US20190264014A1 (en) Thermoplastic elastomer composition, method for producing same and molded body
JP6594140B2 (ja) プロピレン系樹脂組成物の製造方法
JP6594137B2 (ja) プロピレン系樹脂組成物の製造方法
JP6594139B2 (ja) 造核剤含有プロピレン系樹脂組成物の製造方法
JP2022106279A (ja) 樹脂組成物
JP7011977B2 (ja) オレフィン系樹脂の製造方法
JP7483392B2 (ja) プロピレン系樹脂組成物
JP6615554B2 (ja) オレフィン系樹脂、その製造方法および組成物並びに成形体
JP6594138B2 (ja) プロピレン系樹脂組成物の製造方法
JP7370191B2 (ja) オレフィン系樹脂、その製造方法および組成物
JP6514618B2 (ja) プロピレン系樹脂組成物およびその製造方法、並びに成形体
JP2017036390A (ja) プロピレン系樹脂組成物および成形体
JP7483410B2 (ja) オレフィン系樹脂、オレフィン系樹脂組成物、成形体およびオレフィン系樹脂の製造方法
WO2023101004A1 (ja) オレフィン系樹脂、その製造方法および用途
JP6814272B2 (ja) オレフィン系樹脂、該樹脂の製造方法、ペレット、熱可塑性エラストマーおよび架橋ゴム
JP2020122145A (ja) プロピレン系樹脂組成物
JP6514617B2 (ja) プロピレン系樹脂組成物およびその製造方法、並びに成形体
WO2021200090A1 (ja) オレフィン系樹脂およびその製造方法、ならびにプロピレン系樹脂組成物および該プロピレン系樹脂組成物を用いた成形体
JP2022158972A (ja) オレフィン系樹脂およびその製造方法、プロピレン系樹脂組成物、ならびに成形体