JP2022089453A - 温度検出装置、および電子機器 - Google Patents

温度検出装置、および電子機器 Download PDF

Info

Publication number
JP2022089453A
JP2022089453A JP2020201860A JP2020201860A JP2022089453A JP 2022089453 A JP2022089453 A JP 2022089453A JP 2020201860 A JP2020201860 A JP 2020201860A JP 2020201860 A JP2020201860 A JP 2020201860A JP 2022089453 A JP2022089453 A JP 2022089453A
Authority
JP
Japan
Prior art keywords
temperature detection
temperature
current
drive current
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020201860A
Other languages
English (en)
Inventor
紳介 藤川
Shinsuke Fujikawa
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2020201860A priority Critical patent/JP2022089453A/ja
Priority to CN202111470241.9A priority patent/CN114608715A/zh
Priority to US17/541,874 priority patent/US11585702B2/en
Publication of JP2022089453A publication Critical patent/JP2022089453A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/16Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using resistive elements
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01KMEASURING TEMPERATURE; MEASURING QUANTITY OF HEAT; THERMALLY-SENSITIVE ELEMENTS NOT OTHERWISE PROVIDED FOR
    • G01K7/00Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements
    • G01K7/01Measuring temperature based on the use of electric or magnetic elements directly sensitive to heat ; Power supply therefor, e.g. using thermoelectric elements using semiconducting elements having PN junctions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/13306Circuit arrangements or driving methods for the control of single liquid crystal cells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/133382Heating or cooling of liquid crystal cells other than for activation, e.g. circuits or arrangements for temperature control, stabilisation or uniform distribution over the cell
    • GPHYSICS
    • G09EDUCATION; CRYPTOGRAPHY; DISPLAY; ADVERTISING; SEALS
    • G09FDISPLAYING; ADVERTISING; SIGNS; LABELS OR NAME-PLATES; SEALS
    • G09F9/00Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements
    • G09F9/30Indicating arrangements for variable information in which the information is built-up on a support by selection or combination of individual elements in which the desired character or characters are formed by combining individual elements
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K7/00Constructional details common to different types of electric apparatus
    • H05K7/20Modifications to facilitate cooling, ventilating, or heating
    • H05K7/20954Modifications to facilitate cooling, ventilating, or heating for display panels
    • H05K7/20972Forced ventilation, e.g. on heat dissipaters coupled to components

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Thermal Sciences (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Theoretical Computer Science (AREA)
  • Control Of Indicators Other Than Cathode Ray Tubes (AREA)
  • Liquid Crystal (AREA)
  • Measuring Temperature Or Quantity Of Heat (AREA)

Abstract

【課題】定電流回路から温度検出素子に供給される駆動電流の変化を感度良く監視することができる温度検出装置、電気光学装置、および電子機器を提供すること。【解決手段】温度検出装置50は、温度検出素子15と、温度検出素子15に駆動電流Ifを供給する定電流回路55と、駆動電流Ifが温度検出素子15に供給されたときの温度検出素子15の電圧Vpを温度信号Dtに変換する温度信号生成部75とを有している。温度検出装置50は、定電流回路55から出力される駆動電流Ifの変化を監視する駆動電流監視回路52を備えている。駆動電流監視回路52は、駆動電流Ifの変化に対応して電圧Vgが変化する電流-電圧変換部54を有しており、切り替え回路53によって、定電流回路55から電流-電圧変換部54に駆動電流Ifが供給されたときの電圧Vgを出力する。【選択図】図5

Description

本発明は、温度検出素子に駆動電流を供給する定電流回路を備えた温度検出装置、および電子機器に関するものである。
液晶装置や有機エレクトロルミネッセンス表示装置等の電気光学装置では、画像を表示した際に電気光学装置の温度が上昇する。特に、電気光学装置のうち、投射型表示装置においてライトバルブとして用いられる液晶装置では、照明光が高強度で液晶パネルに照射されるため、液晶パネルの温度が上昇しやすい。このような場合、液晶層の変調特性や応答特性が変化する。従って、液晶パネルの温度を検出した結果に基づいて、投射型表示装置を制御すれば、画像に対する温度の影響を緩和することができる。例えば、液晶パネルの温度を検出した結果に基づいて、投射型表示装置に設けた冷却ファンの制御等を行えば、画像に対する温度の影響を緩和することができる。
一方、温度検出装置として、特許文献1には、温度検出素子としてのダイオードと定電流回路とを用いた構成が開示されている。特許文献2には温度検出素子としての抵抗素子と定電圧回路を用いた構成が開示されている。
特開平8-29265号公報 特開2009-236536号公報
特許文献1には、定電流回路からの駆動電流の監視についての構成について開示はない。従って、駆動電流に無視し得ない経年変動や故障があると適切な温度検出ができなくなる課題がある。温度検出素子としたダイオード自体で、駆動電流を監視することもある程度可能ではあるが、駆動電流の監視時にダイオードを定められた温度環境に置く必要があるので現実的ではない。さらに、ダイオードは駆動電流の変化に対して、順方向電圧の変化が小さい非線形素子であるので、駆動電流の変化のモニタリングには不適である。特許文献2は、温度検出素子となる抵抗素子の分圧値によって温度検出を行うものであり、温度検出素子の抵抗値範囲内の抵抗を有する診断用抵抗素子を用いて、温度検出回路の故障診断を行う構成が開示されている。しかしながら、温度検出素子の抵抗値範囲内の抵抗を有する診断用抵抗素子であるから、定電圧源の電圧変動を検出する感度は温度検出素子と比べて大きくはならない。構成を線形素子である抵抗素子の定電流駆動に拡張しても、駆動電流の変化に対する診断用抵抗素子の電圧値変化は温度検出素子の電圧値変化よりも大きくはならない。従って、温度検出素子にダイオードを用い、定電流駆動する場合について、感度良く駆動電流の変化を監視する構成が求められていた。
上記課題を解決するため、本発明に係る温度検出装置は、温度検出素子と、前記温度検出素子に駆動電流を供給する定電流回路と、前記駆動電流が前記温度検出素子に供給されたときの前記温度検出素子の電圧を検出する電圧検出部と、前記定電流回路に電気的に接続される駆動電流監視回路と、を備えることを特徴とする。
本発明に係る温度検出装置を備えた電子機器は、前記温度検出素子を介して温度が検出
される電気光学パネルを備えた電気光学装置を有することを特徴とする。
本発明を適用した電子機器の概略構成図。 図1に示す電気光学装置の電気光学パネルの一態様を示す説明図。 図1に示す電子機器に設けられる温度検出装置等の説明図。 図3に示す温度検出素子の温度特性を示す説明図。 本発明の実施形態1に係る温度検出装置の回路構成を示す説明図。 図5に示す電流―電圧変換部等の電流-電圧特性を示す説明図。 本発明の実施形態1の変形例に係る温度検出装置の回路構成を示す説明図。 本発明の実施形態2に係る温度検出装置の回路構成を示す説明図。 本発明の実施形態2の変形例に係る温度検出装置の回路構成を示す説明図。 本発明の実施形態3に係る温度検出装置の説明図。 本発明の実施形態4に係る温度検出装置の説明図。
図面を参照して、本発明の実施の形態を説明する。なお、以下の説明で参照する図においては、各部材等を図面上で認識可能な程度の大きさとするため、各部材の縮尺を相違させるともに、部材の数を減らしてある。
[実施形態1]
1.電子機器の構成例
図1は、本発明を適用した電子機器2100の概略構成図である。図1には、本発明を適用した電子機器2100の一例として投射型表示装置を示してある。なお、図1では、電気光学装置1の入射側や出射側に配置される偏光板等の光学素子の図示を省略してある。
図1において、電子機器2100は、投射型表示装置であり、ハロゲンランプ等の白色光源を有するランプユニット2102が光源部として設けられている。ランプユニット2102から射出された投射光は、内部に配置された3枚のミラー2106、および2枚のダイクロイックミラー2108によって、赤色R、緑色G、青色Bの3原色の光に分離される。分離された光は、各色に対応する電気光学装置1(R)、1(G)、1(B)にそれぞれ導かれる。電気光学装置1(R)、1(G)、1(B)はいずれも液晶装置である。青色Bの光は、他の赤色Rや緑色Gと比較すると光路が長いので、その損失を防ぐために、入射レンズ2122、リレーレンズ2123および出射レンズ2124を有するリレーレンズ系2121を介して導かれる。
電子機器2100においては、各色の階調レベルを指定する画像信号が各々、外部の上位回路から電子機器2100に供給された後、電子機器2100の処理回路で処理され、電気光学装置1(R)、1(G)、1(B)に供給される。そして、電気光学装置1(R)、1(G)、1(B)は、画像信号に基づいて入射光を変調する。電気光学装置1(R)、1(G)、1(B)から出射された変調光は、ダイクロイックプリズム2112に3方向から入射する。ダイクロイックプリズム2112において、赤色Rの光および青色Bの光は90度に反射し、緑色Gの光は透過する。従って、各色の変調光がダイクロイックプリズム2112で合成された後、投射光学系2114によってスクリーン2120等の被投射部材にカラー画像として投射される。なお、投射型表示装置については、光源部として、各色の光を出射するLED光源等を用い、かかるLED光源等から出射された色光を各々、電気光学装置1(R)、1(G)、1(B)に供給するように、構成してもよい。
2.電気光学パネル100の基本構成
図2は、図1に示す電気光学装置1の電気光学パネル100の一態様を示す説明図である。図2では、x軸、y軸およびz軸からなる直交座標系を用いて各方向を表す。z軸方向は、電気光学パネル100の厚さ方向であり、y軸方向は、電気光学装置1が具備する配線基板の延在方向であり、x軸方向は、配線基板の延在方向に対して直交する幅方向である。なお、図1に示す電気光学装置1(R)、1(G)、1(B)はいずれも、同一構造を有していることから、以下の説明では。電気光学装置1(R)、1(G)、1(B)を区別する必要がない場合、対応する色を示す(R)、(G)、(B)を省略する。
図2において、電気光学装置1は液晶装置であり、電気光学パネル100としての液晶パネルを備えている。電気光学装置1は、第1基板10に形成された複数の画素電極16と、第2基板20に形成された共通電極(図示せず)と、画素電極16と共通電極との間に設けられた液晶層からなる電気光学層(図示せず)とを備えている。画素電極16は、電気光学層を介して共通電極と対向することによって、画素17を構成している。電気光学装置1では、第1基板10に対して、第2基板20がシール材(図示せず)によって貼り合わされている。電気光学装置1において、シール材で囲まれた領域に電気光学層が設けられている。電気光学パネル100において、画素17がx軸方向およびy軸方向に配列されている領域が表示領域110である。
本形態の電気光学装置1は、透過型の液晶装置である。従って、第1基板10の基板本体、および第2基板20の基板本体は、耐熱ガラスや石英基板等の透光性基板からなる。透過型の電気光学装置1では、例えば、第1基板10および第2基板20のうちの一方の基板から入射した照明光が他方の基板の側から出射する間に変調され、表示光として出射される。本形態においては、第2基板20から入射した照明光が第1基板10から出射する間に変調され、表示光として出射される。
第1基板10は、第2基板20の端部からy軸方向に張り出した張出部105を有している。張出部105には、第1基板10の幅方向であるx軸方向に延在する第1辺101に沿って複数の端子111が所定のピッチで配列された端子領域が設けられている。電気光学装置1は、端子111に接続された可撓性の配線基板60を有しており、配線基板60は、第1基板10から離間するようにy軸方向に延在している。
図3を参照して後述するように、図1に示す電子機器2100を構成する際、図2に示す電気光学装置1が各々、電気光学装置1(R)、1(G)、1(B)として搭載される。その際、3つの電気光学装置1(R)、1(G)、1(B)の配線基板60は各々、共通の配線基板70に電気的に接続される。
3.電気光学装置1の構成
図3は、図1に示す電子機器2100に設けられる温度検出装置50等の説明図である。なお、本形態の温度検出装置50は、複数の電気光学装置1(R)、1(G)、1(B)の各電気光学パネル100(R)、100(G)、100(B)の各々の温度を検出する。従って、温度検出装置50の構成要素のうち、電気光学装置1(R)、1(G)、1(B)毎に設けられた構成要素の符号には、対応する色を示す(R)、(G)、(B)を付し、電気光学装置1(R)、1(G)、1(B)に対して共通の構成要素の符号には、対応する色を示す(R)、(G)、(B)を付していない。また、電気光学装置1(R)、1(G)、1(B)はいずれも、同一の構成を有することから、以下の説明では、電気光学装置1(R)を中心に説明し、電気光学装置1(G)、1(B)の詳細な説明を省略する。但し、電気光学装置1(R)を説明する際でも、電気光学装置1(R)、1(G)、1(B)を区別する必要がない場合、対応する色を示す(R)、(G)、(B)を省略する。
図3に示すように、電気光学パネル100(R)において、第2基板20には枠状の遮光部25が形成されており、遮光部25の内側が表示領域110になっている。第1基板10の第2基板20の角部と重なる位置には複数の基板間導通部106が設けられている。基板間導通部106同士は配線112によって互いに電気的に接続され、図示省略した配線によって端子111のいずれかに電気的に接続されている。従って、基板間導通部106を介して第1基板10の側から第2基板20の共通電極に共通電圧LCCOMが供給される。
第1基板10において、表示領域110に対して張出部105の側にはデータ線駆動回路108が設けられている。データ線駆動回路108は、図2に示す複数の画素電極16にデータ線(図示せず)、および画素スイッチング素子(図示せず)を介して画像信号を供給する。図2に示す個々の画素17には、典型的には一方の電極が画素電極16に電気的に接続され、他方の電極が共通電圧LCCOMに電気的に接続された補助容量(図示せず)を備える。第1基板10において、第1辺101と対向する第2辺102と表示領域110との間には検査回路(図示せず)が設けられることもある。第1基板10において、第1辺101の両端からy軸方向に延在する第3辺103、および第4辺104のうち、第3辺103と表示領域110との間には、走査線駆動回路109が設けられている。走査線駆動回路109は走査線(図示せず)を介して画素スイッチング素子に走査信号を供給する。走査線駆動回路109は、第3辺103と表示領域110との間、および第4辺104と表示領域110との間の双方に設けられることもある。本形態において、データ線駆動回路108および走査線駆動回路109は遮光部25と平面視で重なっている。
3.温度検出装置50の基本構成
図4は、図3に示す温度検出素子15の温度特性を示す説明図である。図3に示すように、図1に示す電子機器2100には、電気光学装置1(R)、1(G)、1(B)の各電気光学パネル100(R)、100(G)、100(B)の温度を検出する温度検出装置50が設けられている。温度検出装置50は、電気光学パネル100(R)の温度を検出するための温度検出素子15(R)と、温度検出素子15(R)に駆動電流Ifを供給する定電流回路55(R)と、温度検出素子15(R)に駆動電流Ifを印加した際の温度検出素子15(R)からの出力電圧に基づいて温度信号Dt(R)を生成する温度信号生成部75とを有している。また、電気光学装置1(R)には、温度信号生成部75から出力される温度信号Dt(R)に基づいて電気光学パネル100の温度を調節する温度調整装置200(R)が設けられている。本形態において、定電流回路55(R)から出力された駆動電流Ifは、切り替え回路53によって所定のタイミングで温度検出素子15(R)に供給される。
温度検出素子15(R)は、電気光学パネル100(R)の第1基板10において、遮光部25と平面視で重なる位置に設けられており、表示領域110に近接している。従って、温度検出素子15(R)は、電気光学パネル100(R)のうち、表示領域110の近傍で電気光学パネル100(R)の温度を検出することができる。
温度検出素子15(R)は、ダイオードからなり、定電流回路55(R)は、ダイオードのアノード側に電気的に接続され、ダイオードのカソード側は、配線基板60を介してグランドに電気的に接続されている。従って、温度検出素子15(R)に駆動電流Ifを印加した際、温度検出素子15(R)からの出力電圧は、順方向の電圧Vp(R)である。かかるダイオードは、第1基板10に画素スイッチング素子等を形成する工程を利用して形成される。本形態において、温度検出素子15(R)は、温度変化の検出感度を高めるために直列に電気的に接続された複数のダイオードからなる。従って、温度検出素子15(R)から出力される電圧Vp(R)は、(ダイオードの1個当たりの順方向電圧)×
(ダイオードの数)に相当する。ダイオードはPN接合のみならず、トランジスターをダイオード接続とした形態としてもよい。
このように構成した温度検出装置50では、温度検出素子15(R)に対して、定電流回路55から100nA~数μA程度の微小な順方向の駆動電流Ifを供給すると、駆動電流Ifが温度検出素子15(R)を流れる。ここで、温度検出素子15(R)の順方向の電圧Vpは、図4に実線P0で示すように、温度によって略直線的に変化する。例えば、温度検出素子15(R)において、5個のダイオードを直列接続した場合、温度が1℃上昇すると、順方向電圧が約10mV低下する。従って、温度検出素子15(R)の電圧Vpは、電気光学パネル100(R)の温度によって変化する。それ故、温度信号生成部75は、温度検出素子15(R)の電圧Vpに基づいて温度信号Dt(R)を生成して、温度制御部79に出力することができ、温度調整装置200(R)は、温度制御部79の制御の下、電気光学パネル100(R)の温度を調整する。
温度調整装置200(R)としては、電気光学パネル100(R)を冷却する機構、あるいは電気光学パネル100(R)を加熱する機構(図示せず)が用いられる。本形態において、温度調整装置200(R)は、流路220を介して電気光学パネル100に冷却空気を供給する冷却ファン210を有しており、温度制御部79は、温度調整装置200(R)の冷却ファン210の回転を制御し、電気光学パネル100(R)に供給される冷却空気の流量等を制御する。なお、図3では、説明上、電気光学パネル100(R)の第4辺104側から送風するように描いているが、典型的には第2辺102側から電気光学パネル100(R)に送風される。なお、加熱機構を採用する場合では、温度制御部79からの制御信号に基づいて、例えば電気光学パネル100(R)を保持するホルダーに装着されたヒータ線等への電力供給を制御する。また、図3では個々の電気光学パネル100について、独立した温度調整装置200を設けているがこれを強制するものではない。例えば、冷却ファン210と流路220を3個の電気光学パネル100で共通化した構成としてもよい。
なお、電気光学装置1(R)に対しては、中央制御部72からの制御信号に基づいて、画像信号に温度補正を行うことによって、画像への温度の影響を補償することもある。
本形態において、定電流回路55(R)、温度信号生成部75および温度制御部79は、共通の配線基板70に設けられている。なお、電気光学装置1(G)、1(B)は各々、温度検出素子15(R)や温度調整装置200(R)も含めて電気光学装置1(R)と同様に構成されているため、説明を省略する。なお、定電流回路55(R)の機能の少なくとも一部を配線基板60(R)に実装された駆動用IC(図示せず)に設ける構成としてもよい。
4.駆動電流監視回路52等の構成
図5は、本発明の実施形態1に係る温度検出装置50の回路構成を示す説明図である。図5に示すように、本形態の温度検出装置50は、複数の温度検出素子15(R)、15(G)、15(B)の各々に対応して複数の定電流回路55(R)、55(G)、55(B)が設けられている。従って、定電流回路55(R)で生成した駆動電流Ifは、温度検出回路51(R)を介して電気光学パネル100(R)に設けられた温度検出素子15(R)に供給される。これに対して、駆動電流Ifが印加された際の温度検出素子15(R)の電圧Vp(R)、駆動電流Ifが印加された際の温度検出素子15(G)の電圧Vp(G)、および駆動電流Ifが印加された際の温度検出素子15(B)の電圧Vp(B)はいずれも、温度信号生成部75に出力される。
温度信号生成部75は、温度検出素子15(R)の電圧Vp(R)を検出する電圧検出
手段71と、電圧検出手段71での検出結果に基づいて温度信号Dt(R)を生成する中央制御部72とを備えている。電圧検出手段71は、例えば、オペアンプを用いたボルテージフォロアと、A/Dコンバーターとを含む、中央制御部72は、EEPROM等の記憶部(図示せず)に予め格納されたプログラムに基づいて、温度信号Dt(R)を生成する処理等を行う。
本形態において、中央制御部72は、以下の温度算出式に基づいて、電気光学パネル100(R)の温度を算出し、温度の算出結果に対応する温度信号Dt(R)を温度制御部79に出力する。なお、温度算出式の係数A、Bは、EEPROM等からなる校正値記憶手段73に記憶されている。他の電気光学パネル100(G)、100(B)に設けられた温度検出素子15(G)、(B)の電圧Vp(G)、Vp(B)も、温度信号生成部75において同様に処理される。定電流回路55(R)や温度検出素子15(R)には製造上のばらつきがあるので、恒温槽などを用いて温度特性を測定することによって校正値を求めて温度検出精度を改善する。図4に示したように、ダイオードでは温度の上昇に伴って電圧Vp(R)は低下するので、係数Aは典型的には負の値である。
温度=A×α(Vp(R))+B
上式において、
A、B:係数
α(Vp(R)):電圧Vp(R)に対応するA/Dコンバーター値
また、温度検出装置50には、定電流回路55(R)に電気的に接続される駆動電流監視回路52(R)が設けられており、駆動電流監視回路52(R)は、定電流回路55(Rから出力される駆動電流Ifの変化を監視する。本形態において、駆動電流監視回路52(R)は、駆動電流Ifの変化に対応して、出力電圧である電圧Vg(R)が変化する電流-電圧変換部54(R)を含み、駆動電流Ifが電流-電圧変換部54(R)に供給されたときの電圧Vg(R)を出力する。かかる電圧Vg(R)は、電圧検出手段71を介して中央制御部72に入力される。従って、定電流回路55(R)で生成した駆動電流Ifは、温度検出素子15(R)に供給されるとともに、電流-電圧変換部54(R)にも供給されることになる。それ故、温度検出装置50には、定電流回路55(R)から温度検出素子15(R)に駆動電流Ifが供給される状態と定電流回路55(R)から電流-電圧変換部54(R)に駆動電流Ifが供給される状態とに電流経路を切り替える切り替え回路53が設けられている。切り替え回路53は中央制御部72によって制御される。従って中央制御部72は温度検出素子15(R)、15(G)、15(B)による温度の監視、および電流-電圧変換部54(R)、54(G)、54(B)による駆動電流Ifの監視を順次行うタイミングも制御する。これらのタイミング制御は、EEPROM等に格納されたプログラムによって実行されるが、診断命令外部入力手段78によって実行されることもある。切り替え回路53は、例えば、互いに独立して制御できる複数個のトランスファスイッチを内蔵したスイッチICを用いることができる。
本形態において、切り替え回路53は、第1切り替え回路531と第2切り替え回路532とを有している。第1切り替え回路531は、定電流回路55(R)から温度検出素子15(R)に至る温度検出回路51(R)の配線の途中位置に設けられたスイッチSW1Aと、駆動電流監視回路52(R)において定電流回路55(R)から電流-電圧変換部54(R)に至る配線の途中位置に設けられたスイッチSW1Bとを備えている。第2切り替え回路532は、温度検出素子15から電圧検出手段71に至る出力線の途中位置に設けられたスイッチSW2Aと、電流-電圧変換部54(R)から電圧検出手段71に至る出力線の途中位置に設けられたスイッチSW2Bとを備えている。
また、温度検出装置50は、駆動電流Ifを診断するための診断命令を外部から入力する診断命令外部入力手段78を有しており、診断命令外部入力手段78は、中央制御部7
2に駆動電流Ifの診断を実行するための指令を出力する。診断命令外部入力手段78は、例えば、配線基板70に設けられた制御スイッチや、電子機器2100に設けられた制御スイッチ、あるいは電子機器2100によって表示される電子機器2100の制御プログラムメニューの選択項目として実装される。
5.動作の一例
本形態において、中央制御部72は、全てのスイッチSW1A、SW2A、SW1B、SW2Bをオフとした待機状態から、予め設定されたタイミングで、温度検出を実行させる指令信号を第1切り替え回路531および第2切り替え回路532に出力する。より具体的には、中央制御部72は、温度検出回路51(R)のスイッチSW1A、SW2Aをオンとし、他のスイッチをオフとする指令信号を第1切り替え回路531および第2切り替え回路532に出力する。その結果、定電流回路55(R)から温度検出素子15(R)に駆動電流Ifが一定期間、印加され、その間、温度検出素子15(R)の電圧Vp(R)は、電圧検出手段71を介して中央制御部72に入力される。それ故、中央制御部72は、電気光学パネル100(R)の温度に対応する温度信号Dt(R)を温度制御部79に出力し、温度調整装置200(R)による電気光学パネル100(R)の温度調整が行われる。かかる温度の検出は、電気光学装置1(R)を稼働している期間中、定期的に実行される。
一方、診断命令外部入力手段78を介して中央制御部72に、定電流回路55(R)から出力される駆動電流Ifを監視するとの命令が入力されると、中央制御部72は、駆動電流監視を実行させる指令信号を第1切り替え回路531および第2切り替え回路532に出力する。より具体的には、中央制御部72は、駆動電流監視回路52(R)のスイッチSW1B、SW2Bをオンとし、他のスイッチをオフとする指令信号を第1切り替え回路531および第2切り替え回路532に出力する。その結果、定電流回路55(R)から温度検出素子15(R)への駆動電流Ifの印加が停止され、駆動電流Ifが電流-電圧変換部54(R)に一定期間、印加される。その間、電流-電圧変換部54(R)の電圧Vg(R)は、電圧検出手段71を介して中央制御部72に入力される。初期状態の駆動電流Ifのときの電圧Vg(R)を予め定めておけば、中央制御部72は、駆動電流Ifの変化量を電圧値として算出できる。駆動電流Ifの変化量は電流-電圧変換部54の出力電圧を参照して算出される電圧値であるが、以降の説明では単に駆動電流Ifの変化量と記述することがある。
ここで、中央制御部72は、駆動電流Ifの変化量に基づいて、前記した温度算出式の係数A、Bを補正し、それ以降、補正した後の係数A、Bを用いて電気光学パネル100の温度を算出する。より具体的には、温度信号生成部75は、EEPROM等からなる補正値記憶手段74を有しており、補正値記憶手段74には、駆動電流Ifの変化量に対応する電圧値と係数A、Bに対する補正値との関係がルックアップテーブルとして記憶されている。例えば、駆動電流Ifが減少すると、算出される温度が真値より上昇してしまうので、係数Bを減少させて上昇分を相殺するルックアップテーブルにする。なお、厳密には駆動電流Ifが減少すると、温度検出素子の温度に対する感度がわずかに増加するので係数Aを変えるべきだが、実用上は係数Bの変更だけとしても十分な場合がある。従って、中央制御部72は、駆動電流Ifの変化量を検出した後、補正値記憶手段74に記憶されているルックアップテーブルに基づいて係数A、Bを補正し、それ以降、補正した後の係数A、Bを用いて電気光学パネル100(R)の温度を算出する。このようにして、温度検出装置50には、補正値記憶手段74を利用して、駆動電流監視回路52(R)による駆動電流Ifの監視結果に基づいて温度検出素子15(R)の出力電圧に補正を行う補正手段が構成されている。それ故、駆動電流Ifがある程度変化しても、電気光学パネル100(R)の温度を適正に調整することができる。よって、図1に示す電子機器2100では、品位の高い画像を表示することができる。
また、温度検出装置50は、駆動電流監視回路52(R)による駆動電流Ifの監視結果に基づいて異常を報知するアラート回路76を備えており、その結果が診断結果表示手段77に表示される。例えば、中央制御部72は、EEPROM等からなる補正値記憶手段74に予め格納されていた設定値から駆動電流Ifの変化量が逸脱した場合に、アラート回路76を通じて異常の発生を診断結果表示手段77に表示する。診断結果表示手段77は、例えば配線基板70または電子機器2100に備えたLED(Light Emission Diode)や、電子機器2100が表示するメンテナンスプログラムメニューの中の表示項目のような態様とすることができる。従って、それらのLEDの点灯や、メンテナンスプログラムメニューの表示によって、ユーザーは駆動電流Ifの異常の発生を知ることができる。
なお、温度検出装置50には、複数の電気光学パネル100(R)、100(G)、100(B)に対応して複数の温度検出素子15(R)、15(G)、15(B)が設けられている。従って、温度検出装置50には、複数の温度検出素子15(R)、15(G)、15(B)に対応して、複数の定電流回路55(R)、55(G)、55(B)、複数の温度検出回路51(R)、51(G)、51(B)、および複数の駆動電流監視回路52(R)、52(G)、52(B)が設けられている。これに対して、温度信号生成部75、温度制御部79、診断命令外部入力手段78、診断結果表示手段77は、複数の電気光学パネル100(R)、100(G)、100(B)に対して共通である。
従って、中央制御部72および切り替え回路53の制御の下、複数の電気光学パネル100(R)、100(G)、100(B)の温度の検出は、例えば、以下のようにして実行する。例えば、温度検出回路51(R)について、切り替え回路53のスイッチSW1AとスイッチSW2Aをオンとし、スイッチSW1BとスイッチSW2Bをオフとする測温期間を1秒毎に0.5秒間設定する。温度検出回路51(G)も同様にスイッチ制御し、測温期間は温度検出回路51(R)の測温期間終了から0.5秒後に開始する。温度検出回路51(B)も同様にスイッチ制御し、測温期間は温度検出回路51(G)の測温期間終了から0.5秒後に開始する。すなわち、1秒間隔で温度検出回路51(R)、51(G)、51(B)による温度検出のサイクルを繰り返すことで、電気光学パネル100(R)、100(G)、100(B)の温度を監視することができる。なお、温度検出間隔や測温期間は上記に限定されるものではない。
一方、駆動電流Ifの監視は温度検出回路51による測温期間外に実施する。例えば、温度検出回路51(R)についての測温期間終了後の0.5秒間を定電流回路55(R)の駆動電流Ifの監視期間とする。この監視期間では、切り替え回路53のスイッチSW1AとスイッチSW2Aをオフとし、スイッチSW1BとスイッチSW2Bをオンとする。温度検出回路51(G)も同様にして測温期間終了後の0.5秒間を定電流回路55(G)の駆動電流Ifの監視期間とする。温度検出回路51(B)も同様にして測温期間終了後の0.5秒間を定電流回路55(B)の駆動電流Ifの監視期間とする。すなわち、1秒間隔で駆動電流監視回路52(R)、52(G)、52(B)による駆動電流Ifの監視のサイクルを繰り返すことで、定電流回路55(R)、55(G)、55(B)の駆動電流Ifを監視することができる。従って、測温期間と駆動電流Ifの監視期間が時間的にずれているから電気光学パネル100(R)、100(G)、100(B)の温度測定と定電流回路55(R)、55(G)、55(B)の駆動電流Ifの監視を両立できる。なお駆動電流Ifの監視間隔や監視期間は上記に限定されるものではない。測温期間と駆動電流Ifの監視期間が時間的にずれていれば、任意に設定可能である。
6.電流-電圧変換部54の構成
図6は、図5に示す電流―電圧変換部54等の電流-電圧特性を示す説明図である。図
6には、温度検出素子15の電流-電圧特性を実線L15で示し、電流―電圧変換部54の電流-電圧特性を実線L54で示してある。
本形態においては、図6に示すように、駆動電流IfがΔI変化したとき、電流―電圧変換部54の電圧の変化量ΔVrが温度検出素子15の電圧の変化量ΔVdより大きい。本形態において、温度検出素子15は、ダイオードであり、電流-電圧変換部54は、固定抵抗からなる。例えば、温度検出素子15では、5個のダイオードが直列接続されており、3V付近から急激に電流が増加する非線形特性を有するため、駆動電流IfがΔI変化しても、温度検出素子15の電圧Vpの変化量ΔVdは小さい。従って、駆動電流Ifを温度検出素子15に印加したときの電圧Vpから駆動電流Ifの変化を監視することが困難である。
一方、電流-電圧変換部54は、例えば、抵抗値が5MΩの固定抵抗であり、電流は電圧に比例する線形特性を有するため、駆動電流IfがΔI変化した場合、電流-電圧変換部54の電圧Vgの変化量ΔVrは、電圧Vpの変化量ΔVdより大きい。上記の特徴を定量的に説明すると、以下に示す通り、電流-電圧変換部54は、駆動電流Ifの変化に対する電圧の変化量がn・N・K・T/q・Ifより大きいと表現することもできる。なお、以下の説明で用いる式において、各パラメーターの内容は以下の通りである。飽和電流Isや放射係数Nの値は、例えば、室温(300K)においてダイオードの電気特性を測定して、理論式にフィッティングさせることで得ることができる。例えば、マイクロソフト社製のExcelなどに代表される表計算ソフトウェアに実装されたソルバーなどの解析ツール用いて、測定値と理論式の誤差の二乗和を最小化するIsとNを求めることができる。
Is:ダイオードの飽和電流
If:駆動電流(ダイオードの順方向電流)
Vf:ダイオードの順方向電圧
K:ボルツマン定数
T:温度[K]
q:電子の電荷量
N:放射係数
n:ダイオードの直列数
Vp:n個の直列ダイオードの全順方向電圧
まず、ダイオードにおける順方向電圧Vfと順方向電流(駆動電流If)との関係は、以下の式(1)で示される。
If=Is{exp(q・Vf/N・K・T)-1}・・式(1)
式(1)を下式のように近似してVfについて解くと、式(2)が得られる。
If=Is{exp(q・Vf/N・K・T)}
Vf=N・K・T/q・ln(If)-N・K・T/q・ln(Is)・・式(2)
式(2)をIfで偏微分すると、式(3)が得られる。
δVf/δIf=N・K・T/q・If・・式(3)
5個直列のダイオードにすると全体の電圧Vpは下式となるから、式(4)が得られる。
Vp=n・Vf=5・Vf
δVp/δIf=5・N・K・T/q・If・・式(4)
ここで、電気光学パネル100の製造に使われる高温ポリシリコンプロセスで形成した
ダイオードにおける値としてN=1.6程度を用い、Tを室温(=300[K])とすると、式(5)が得られる。
5・N・K・T/q≒0.2[V]・・式(5)
従って、駆動電流Ifを0.5[μA]とすれば、駆動電流Ifの変化に対する電圧Vpの変化は式(6)に示す通りとなる。
δVp/δIf=0.2[V]/0.5[μA]=0.4M[V/A]・・・式(6)
それ故、駆動電流Ifが10%(0.05μA)変化すると、電圧Vpは約20mV変動する。すなわち、温度検出素子15が5個直列のダイオードで構成された場合では、温度変化に対する電圧Vpの感度は、概ね-10mV/℃であるから、約2℃の誤差になる。
これは、固定抵抗における駆動電流Ifの変化に対する電圧の変化として直すと式(6)でも明らかなように、式(7)に示す通りとなる。
R=20[mV]/0.05[μA]=400[kΩ]・・・式(7)
従って、駆動電流Ifを0.5μAとし、電流-電圧変換部54に5MΩの固定抵抗を用いると、駆動電流Ifの10%の変化に対する電圧変化感度は、温度検出素子15の10倍以上となる。
また、固定抵抗であれば、抵抗値の経年変化が±0.5%程度であり、極めて小さい。また、固定抵抗は、温度依存性が数100ppmであり、極めて小さい。固定抵抗は電気光学パネル100より温度変化が小さい配線基板70に配置されることを鑑みると、固定抵抗の抵抗値の変動は主に経年変化分を考慮すればよい。例えば、5MΩの固定抵抗であれば経年変化分は±25kΩ程度となる。駆動電流Ifが0.5μAであるならば、抵抗値の経年変化による影響は±15mV未満である。この程度であれば駆動電流Ifの10%の変化に対応する電圧変化量(200mV以上)の検出に大きな影響は与えない。それ故、駆動電流Ifの変化を検出するための電流-電圧変換部54に適している。従って駆動電流Ifの変化を感度よく監視できるので、電気光学パネル100について適切な温度検出を管理できる。
[実施形態1の変形例]
図7は、本発明の実施形態1の変形例に係る温度検出装置50の回路構成を示す説明図である。なお、本形態の基本的な構成は実施形態1と同様であるため、共通する部分には同一の符号を付して、それらの説明を省略する。
図7に示すように、本形態の温度検出装置50は、実施形態1と同様、複数の電気光学装置1(R)、1(G)、1(B)の各電気光学パネル100(R)、100(G)、100(B)の各々に対応して温度検出素子15(R)、15(G)、15(B)が設けられている。従って、各電気光学パネル100(R)、100(G)、100(B)の各々に対応して、温度検出回路51(R)、51(G)、51(B)、および駆動電流監視回路52(R)、52(G)、52(B)が設けられている。また、温度信号生成部75、温度制御部79、診断命令外部入力手段78、および診断結果表示手段77は、3つの電気光学パネル100(R)、100(G)、100(B)に対して共通である。
ここで、定電流回路55は、温度検出回路51を介して複数の温度検出素子15の各々に駆動電流Ifを供給する。従って、定電流回路55の数が温度検出素子15の数より少ないので、回路構成の簡素化を図ることができるとともに、定電流回路55を原因とする不具合が発生する確率を低減することができる。また、複数の温度検出素子15の各々に
対応して駆動電流監視回路52が設けられており、定電流回路55は、複数の駆動電流監視回路52の電流-電圧変換部54の各々に駆動電流Ifを供給する。
また、温度検出装置50は、定電流回路55から温度検出素子15に駆動電流Ifが供給される状態と定電流回路55から電流-電圧変換部54に駆動電流Ifが供給される状態とに電流経路を切り替える切り替え回路53を備えている。より具体的には、温度検出回路51において定電流回路55から温度検出素子15に至る配線の途中位置にスイッチSW1Aが設けられ、駆動電流監視回路52において、定電流回路55から電流-電圧変換部54に至る配線の途中位置にはスイッチSW1Bが設けられている。
従って、温度検出回路51の電圧Vpを観測するときはSW1Aの電圧降下が含まれ、電流-電圧変換部54の電圧Vgを観測するときにはSW1Bの電圧降下が含まれる。しかしながら駆動電流Ifは極めて小さく、またスイッチSW1A、SW1Bのオン抵抗値も十分小さいものであるので、温度検出回路51の電圧Vpや電流-電圧変換部54の電圧Vgに与える誤差は小さいものにできる。
従って、温度検出時において、中央制御部72は、電気光学パネル100(R)に対応するスイッチSW1Aをオンとし、他のスイッチをオフとする指令信号を切り替え回路53に出力する。その結果、定電流回路55から温度検出素子15(R)に駆動電流Ifが一定期間、印加され、その間、温度検出素子15(R)の電圧Vp(R)は、電圧検出手段71を介して中央制御部72に入力される。それ故、中央制御部72は、温度検出回路51(R)での監視結果に基づいて、電気光学パネル100(R)の温度を検出することができる。また、電気光学パネル100(R)の温度の検出の後、電気光学パネル100(R)の温度の検出、および電気光学パネル100(B)の温度の検出を順次、行うことができる。
また、駆動電流監視時において、中央制御部72は、電気光学パネル100(R)に対応するスイッチSW1Bをオンとし、他のスイッチをオフとする指令信号を切り替え回路53に出力する。その結果、定電流回路55から温度検出素子15(R)等への駆動電流Ifの印加が停止され、駆動電流Ifが電流-電圧変換部54(R)に一定期間、印加される。その間、電流-電圧変換部54(R)の電圧Vg(R)は、電圧検出手段71を介して中央制御部72に入力される。それ故、中央制御部72は、駆動電流監視回路52(R)での監視結果に基づいて、駆動電流Ifの変化量を算出することができる。また、駆動電流監視回路52(R)での駆動電流Ifの監視の後、駆動電流監視回路52(G)での駆動電流Ifの監視、および駆動電流監視回路52(B)での駆動電流Ifの監視を順次、行うことができる。
本形態では、3つの温度検出素子15(R)、15(G)、15(B)に対して定電流回路55が共通であるが、温度検出素子15(R)、15(G)、15(B)に対応して3つの駆動電流監視回路52(R)、52(G)、52(B)が設けられている。このため、3個の電流-電圧変換部54を用いて監視を行えば、電流-電圧変換部54の異常による誤判定を排除することもできる。例えば定電流回路55が共通であるから、1個の電流-電圧変換部54による監視結果が異常であり、残りの2個の電流-電圧変換部54による監視結果が正常であれば、1個の電流-電圧変換部54が故障したものとして誤判定を回避することができる。電流-電圧変換部54の異常判定は、例えば以下のように実施できる。駆動電流Ifが0.5μAのとき、5MΩの固定抵抗による電流-電圧変換部54の出力電圧の経年変化の例として、初期状態を基準とした±15mV程度の変化が見込まれることを説明した。従って、例えば、初期状態を基準として±20mVを超える電圧変動を検出したら電流-電圧変換部54が故障したものとするといった判定を行うことができる。
また、複数の温度検出回路51および駆動電流監視回路52の各々において、スイッチSW1Aを経由して温度検出素子15の電圧Vpを電圧検出手段71へ入力し、スイッチSW1Bを経由して電流-電圧変換部54の電圧Vgを電圧検出手段71へ入力する構成にしたので、切り替え回路53のスイッチの数を減らすことができる等、回路構成の簡素化を図ることができる。
また、定電流回路55を個別に設けた場合と比較すると、駆動電流Ifの差異による各電気光学パネル100間の測温誤差がなくなるから、電気光学パネル100間の相対温度制御を重視する場合に好適である。例えば、表示精細度を高めるためにプロジェクターの出射光路上に配置した光学部品の周期的揺動によって表示座標をずらす画素シフト駆動がある。その場合、電気光学パネル100間の温度差が大きいと色づき等が問題になることがある。しかしながら本形態のように3つの温度検出素子15(R)、15(G)、15(B)に対して定電流回路55が共通化されることで、駆動電流Ifの差異による各電気光学パネル100間の測温誤差がなくなり、温度管理が容易となる。
[実施形態2]
図8は、本発明の実施形態2に係る温度検出装置50の回路構成を示す説明図である。なお、本形態の基本的な構成は実施形態1と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
図8に示すように、本形態の温度検出装置50は、実施形態1と同様、複数の電気光学装置1(R)、1(G)、1(B)の各電気光学パネル100(R)、100(G)、100(B)の各々に対応して複数の温度検出素子15(R)、15(G)、15(B)が設けられている。また、温度信号生成部75、温度制御部79、診断命令外部入力手段78、および診断結果表示手段77は、3つの電気光学パネル100(R)、100(G)、100(B)に対して共通である。
本形態において、定電流回路55は、実施形態1の変形例と同様、温度検出回路51を介して複数の温度検出素子15の各々に駆動電流Ifを供給する。従って、定電流回路55の数が温度検出素子15の数より少ないので、回路構成の簡素化を図ることができる等の効果を奏する。
本形態では、複数の温度検出素子15の何れかに対応して駆動電流監視回路52が設けられている。また、複数の温度検出素子15の何れかに対して駆動電流監視回路52が複数、設けられており、定電流回路55は、駆動電流監視回路52の複数の電流-電圧変換部54の各々に駆動電流Ifを供給する。本形態では、複数の温度検出素子15(R)、15(G)、15(B)のうち、温度検出素子15(R)に対応して、駆動電流監視回路52(R)が第1駆動電流監視回路521(R)および第2駆動電流監視回路522(R)として設けられており、定電流回路55は、第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)、および第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)の各々に駆動電流Ifを順次供給する。また、第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)の電圧Vg1(R)、および第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)の電圧Vg2(R)はいずれも、共通の温度信号生成部75に順次出力される。
また、切り替え回路53の第1切り替え回路531では、温度検出回路51において定電流回路55から温度検出素子15に至る配線の途中位置にスイッチSW1Aが設けられている。また、第1切り替え回路531では、第1駆動電流監視回路521(R)において定電流回路55から第1電流-電圧変換部541に至る配線の途中位置にスイッチSW
1Bが設けられ、第2駆動電流監視回路522(R)において定電流回路55から第2電流-電圧変換部542に至る配線の途中位置にスイッチSW1Cが設けられている。
また、切り替え回路53の第2切り替え回路532では、温度検出素子15から電圧検出手段71に至る温度検出回路51(R)の配線の途中位置にスイッチSW2Aが設けられている。また、第2切り替え回路532では、第1駆動電流監視回路521(R)において第1電流-電圧変換部541から電圧検出手段71に至る配線の途中位置にスイッチSW2Bが設けられ、第2駆動電流監視回路522(R)において第2電流-電圧変換部542から電圧検出手段71に至る配線の途中位置にスイッチSW2Cが設けられている。
従って、温度検出時において、中央制御部72は、電気光学パネル100(R)に対応するスイッチSW1A、SW2Aをオンとし、他のスイッチをオフとする指令信号を第1切り替え回路531および第2切り替え回路532に出力する。その結果、定電流回路55から温度検出素子15(R)に駆動電流Ifが一定期間、印加され、その間、温度検出素子15(R)の電圧Vpは、電圧検出手段71を介して中央制御部72に入力される。それ故、中央制御部72は、温度検出回路51(R)での監視結果に基づいて、電気光学パネル100(R)の温度を検出することができる。また、電気光学パネル100(R)の温度の検出の後、電気光学パネル100(G)の温度の検出、および電気光学パネル100(B)の温度の検出を順次、行うことができる。
また、駆動電流監視時において、中央制御部72は、電気光学パネル100(R)に対応するスイッチSW1B、SW2Bをオンとし、他のスイッチをオフとする指令信号を第1切り替え回路531および第2切り替え回路532に出力する。その結果、定電流回路55から温度検出素子15(R)への駆動電流Ifの印加が停止され、駆動電流Ifが第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)に一定期間、印加される。その間、第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)への駆動電流Ifの印加が停止される。それ故、第1電流-電圧変換部541(R)の電圧Vg1(R)は、電圧検出手段71を介して中央制御部72に入力される。
次に、中央制御部72は、スイッチSW1C、SW2Cをオンとし、他のスイッチをオフとする指令信号を第1切り替え回路531および第2切り替え回路532に出力する。その結果、定電流回路55から温度検出素子15(R)への駆動電流Ifの印加が停止されたまま、駆動電流Ifが第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)に一定期間、印加される。その間、第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)への駆動電流Ifの印加が停止される。それ故、第2電流-電圧変換部542の電圧Vg2(R)は、電圧検出手段71を介して中央制御部72に入力される。
従って、中央制御部72は、第1電流-電圧変換部541(R)の電圧Vg1(R)、および第2電流-電圧変換部542(R)の電圧Vg2(R)に基づいて、予め設定された電流値からの駆動電流Ifの変化量を算出する。例えば、中央制御部72は、第1電流-電圧変換部541の電圧Vg1に基づいて算出された駆動電流Ifの変化量と、第2電流-電圧変換部542の電圧Vg2に基づいて算出された駆動電流Ifの変化量との平均値を駆動電流Ifの変化量と決定する。また、中央制御部72は、第1電流-電圧変換部541の電圧Vg1に基づいて算出された駆動電流Ifの変化量と、第2電流-電圧変換部542の電圧Vg2に基づいて算出された駆動電流Ifの変化量との差が、予め設定された値より大きい場合、診断結果表示手段77等のアラート回路76によって異常を報知する。その他の構成や動作は実施形態1と同様であるため、説明を省略する。
本形態において、第1電流-電圧変換部541および第2電流-電圧変換部542については、抵抗値が同一の固定抵抗、および抵抗値が異なる固定抵抗のいずれであってもよい。ここで、第1電流-電圧変換部541と第2電流-電圧変換部542とでは、抵抗値が異なることが好ましい。例えば、第1電流-電圧変換部541の抵抗値は5MΩであり、第2電流-電圧変換部542の抵抗値は7MΩである。従って、駆動電流Ifを0.5μAとすれば、第1電流-電圧変換部541から2.5Vの出力を得ることができ、第2電流-電圧変換部542から3.5Vの出力を得ることができる。かかる構成によれば、駆動電流Ifの変化量に加えて、定電流回路55の動作点電圧を変えたときの定電流特性の安定性を監視することができる。従って、駆動電流Ifが大きく変化した場合に加えて、定電流特性の安定性が低下した場合にも、定電流回路55の故障を検出することができ、定電流回路55の修理等を行うことができる。
[実施形態2の変形例]
図9は、本発明の実施形態2の変形例に係る温度検出装置50の回路構成を示す説明図である。なお、本形態の基本的な構成は実施形態1と同様であるため、共通する部分には同一の符号を付してそれらの説明を省略する。
図9に示すように、本形態の温度検出装置50は、実施形態1と同様、複数の電気光学装置1(R)、1(G)、1(B)の各電気光学パネル100(R)、100(G)、100(B)の各々に対応して複数の温度検出素子15(R)、15(G)、15(B)が設けられている。また、温度信号生成部75、温度制御部79、診断命令外部入力手段78、および診断結果表示手段77は、3つの電気光学パネル100(R)、100(G)、100(B)に対して共通である。本形態において、定電流回路55は、実施形態1の変形例と同様、温度検出回路51を介して複数の温度検出素子15の各々に駆動電流Ifを供給する。従って、定電流回路55の数が温度検出素子15の数より少ないので、回路構成の簡素化を図ることができる等の効果を奏する。
本形態では、実施形態2と同様、複数の温度検出素子15の何れかに対応して駆動電流監視回路52が設けられている。また、複数の温度検出素子15の何れかに対して駆動電流監視回路52が複数、設けられており、定電流回路55は、駆動電流監視回路52の複数の電流-電圧変換部54の各々に駆動電流Ifを供給する。本形態では、複数の温度検出素子15(R)、15(G)、15(B)のうち、温度検出素子15(R)に対応して、駆動電流監視回路52(R)が第1駆動電流監視回路521(R)および第2駆動電流監視回路522(R)として設けられており、定電流回路55は、第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)、および第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)の各々に駆動電流Ifを順次供給する。また、第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)の電圧Vg1(R)、および第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)の電圧Vg2(R)はいずれも、共通の温度信号生成部75に順次出力される。
本形態において、切り替え回路53では、温度検出回路51(R)において定電流回路55から温度検出素子15に至る配線の途中位置にスイッチSW1Aが設けられている。また、切り替え回路53では、第1駆動電流監視回路521(R)において定電流回路55からの第1電流-電圧変換部541に至る配線の途中位置にスイッチSW1Bが設けられ、第2駆動電流監視回路522(R)において定電流回路55から第2電流-電圧変換部542に至る配線の途中位置にスイッチSW1Cが設けられている。
従って、温度検出回路51の電圧Vpを観測するときはスイッチSW1Aの電圧降下が含まれ、第1電流-電圧変換部541(R)の電圧Vg1(R)を観測するときにはスイッチSW1Bの電圧降下が含まれる。第2電流-電圧変換部542(R)の電圧Vg2(
R)を観測するときにはスイッチSW1Cの電圧降下が含まれる。しかしながら駆動電流Ifは極めて小さく、またスイッチSW1A,SW1B、SW1Cのオン抵抗値も十分小さいものであるので、温度検出回路51の電圧Vp(R)、第1電流-電圧変換部541(R)の電圧Vg1(R)、および第2電流-電圧変換部542(R)の電圧Vg2(R)に与える誤差は小さいものにできる。
それ故、温度検出時において、中央制御部72は、電気光学パネル100(R)に対応するスイッチSW1Aをオンとし、他のスイッチをオフとする指令信号を切り替え回路53に出力する。その結果、定電流回路55から温度検出素子15(R)に駆動電流Ifが一定期間、印加され、その間、温度検出素子15(R)の電圧Vp(R)は、電圧検出手段71を介して中央制御部72に入力される。よって、中央制御部72は、温度検出回路51(R)での監視結果に基づいて、電気光学パネル100(R)の温度を検出することができる。また、電気光学パネル100(R)の温度の検出の後、電気光学パネル100(G)の温度の検出、および電気光学パネル100(B)の温度の検出を順次、行うことができる。
また、駆動電流監視時において、中央制御部72は、スイッチSW1Bをオンとし、他のスイッチをオフとする指令信号を切り替え回路53に出力する。その結果、定電流回路55から温度検出素子15(R)への駆動電流Ifの印加が停止され、駆動電流Ifが第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)に一定期間、印加される。その間、第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)への駆動電流Ifの印加が停止される。それ故、第1電流-電圧変換部541(R)の電圧Vg1(R)は、電圧検出手段71を介して中央制御部72に入力される。
次に、中央制御部72は、スイッチSW1Cをオンとし、他のスイッチをオフとする指令信号を切り替え回路53に出力する。その結果、定電流回路55から温度検出素子15(R)への駆動電流Ifの印加が停止されたまま、駆動電流Ifが第2駆動電流監視回路522(R)の第2電流-電圧変換部542(R)に一定期間、印加される。その間、第1駆動電流監視回路521(R)の第1電流-電圧変換部541(R)への駆動電流Ifの印加が停止される。それ故、第2電流-電圧変換部542(R)の電圧Vg2(R)は、電圧検出手段71を介して中央制御部72に入力される。
従って、中央制御部72は、第1電流-電圧変換部541(R)の電圧Vg1(R)、および第2電流-電圧変換部542(R)の電圧Vg2(R)に基づいて、予め設定された電流値からの駆動電流Ifの変化量を算出することができる。
本形態において、第1電流-電圧変換部541および第2電流-電圧変換部542については、抵抗値が同一の固定抵抗、および抵抗値が異なる固定抵抗のいずれであってもよい。ここで、第1電流-電圧変換部541と第2電流-電圧変換部542とでは、抵抗値が異なることが好ましい。例えば、第1電流-電圧変換部541の抵抗値は5MΩであり、第2電流-電圧変換部542の抵抗値は6.5MΩである。従って、駆動電流Ifを0.5μAとすれば、第1電流-電圧変換部541から2.5Vの出力を得ることができ、第2電流-電圧変換部542から3.25Vの出力を得ることができる。2.5Vの電圧は温度検出素子15(R)が約75℃のときの動作点電圧である。3.25Vの電圧は温度検出素子15(R)が約0℃のときの動作点電圧である。かかる構成によれば、駆動電流Ifの変化量に加えて、温度検出素子15(R)が約0℃から約75℃におかれたときの定電流回路55の定電流特性の安定性を監視することができる。従って、駆動電流Ifが大きく変化した場合に加えて、定電流特性の安定性が低下した場合にも、定電流回路55の故障として検出することができ、定電流回路55の部品を交換する修理等を行うことができる。
[実施形態3]
図10は、本発明の実施形態3に係る温度検出装置50の説明図である。実施形態1、2およびそれらの変形例において、電流-電圧変換部54が固定抵抗であったが、図10に示すように、電流-電圧変換部54がオペアンプ546を備えた構成であってもよい。より具体的には、オペアンプ546の非反転入力端子+は、グランドに電気的に接続され、オペアンプ546の反転入力端子-と出力端子との間には帰還抵抗R1が電気的に接続されている。ここで、非反転入力端子+と反転入力端子-とは同電位であるため、オペアンプ546から温度信号生成部75には、-If/R1に相当する電圧Vgが出力される。また、帰還抵抗R1を大きくすれば、電流変化に対する感度を高めることができる。例えば、駆動電流Ifの10%の変化を20mVの超の差として出力する場合には、以下の条件を満たすように設計する。
If×0.1×R1>20[mV]
従って、駆動電流Ifを0.5μAとした場合、帰還抵抗R1を400kΩより大きくすれば、駆動電流Ifの変化に対する感度を温度検出素子15よりも大きくできる。なお、定電流回路55の動作点電圧は入力抵抗R2によって設定できる。例えば、駆動電流Ifを0.5μAとし、動作点電圧を3Vとしたいときは、入力抵抗R2を6MΩとすればよい。
図10では、定電流回路55から温度信号生成部75までの構成の要点を抽出して説明したが、実施形態1に適用する場合について詳細に説明する。なおオペアンプ546の電源接続については説明を省略する。電流-電圧変換部54として図10に示したオペアンプ546を備えた構成とする場合、例えば実施形態1の図5において、SW1Bの一端とSW2Bの一端との結線を削除し、さらに電流-電圧変換部54のシンボルと結線を3端子構成に置き換える。即ち、第1の端子はSW1Bの一端へ接続され、第2の端子はSW2Bの一端へ接続され、第3の端子はグランドに接続される。ここで第1の端子はオペアンプ546の反転入力端子-であり、第2の端子はオペアンプ546の出力端子であり、第3の端子はオペアンプ54の非反転入力端子+となる。
実施形態2に適用する場合について詳細に説明する。なおオペアンプ546の電源接続については説明を省略する。電流-電圧変換部54として図10に示したオペアンプ546を備えた構成とする場合、実施形態2の図8において、SW1Bの一端とSW2Bの一端との結線を削除し、第1電流-電圧変換部541(R)のシンボルと結線を3端子構成に置き換える。即ち、第1の端子はSW1Bの一端へ接続され、第2の端子の一端はSW2Bへ接続され、第3の端子はグランドに接続される。ここで第1の端子はオペアンプ546の反転入力端子-であり、第2の端子はオペアンプ546の出力端子であり、第3の端子はオペアンプ54の非反転入力端子+となる。同様にしてSW1Cの一端とSW2Cの一端との結線を削除し、第2電流-電圧変換部542(R)のシンボルと結線を3端子構成に置き換える。即ち、第1の端子はSW1Cの一端へ接続され、第2の端子はSW2Cの一端へ接続され、第3の端子はグランドに接続される。ここで第1の端子はオペアンプ546の反転入力端子-であり、第2の端子はオペアンプ546の出力端子であり、第3の端子はオペアンプ54の非反転入力端子+となる。
電流-電圧変換部54として図10に示したオペアンプ546を備えた構成とする場合、実施形態1の図5や実施形態2の図8における電圧検出手段71は負電圧に対応したものに変更する。例えばA/Dコンバーターを搭載したマイクロコンピュータ等の集積回路には参照電圧として正電圧と負電圧を入力できるものが存在するので容易に実現することができる。
[実施形態4]
図11は、本発明の実施形態4に係る温度検出装置50の説明図である。図11に示すように、本形態において、電流-電圧変換部54は、静電容量Cを有するキャパシタ547を備えており、駆動電流Ifによってキャパシタ547に一定時間、充電したときの電圧Vgがボルテージフォロワ548を介して温度信号生成部75に出力される。かかる電流-電圧変換部54では、中央制御部72からの制御信号によってスイッチSW1オフとし、スイッチSW0をオンにして電圧VgをOVに初期化した後、スイッチSW0をオフとし、スイッチSW1をオンにして駆動電流Ifによる電荷をキャパシタ547に蓄積する。
ここで、一定の時間tが経過した後のキャパシタ547の電圧は、Is・t/Cで求められる。従って、温度信号生成部75は、グランドレベルからIs・t/Cに相当する電圧がモニタリングされる。従って、一定の時間tが経過した後の電圧Vgを、予め設定された値と比較すれば、駆動電流Ifの変化を検出することができる。また、駆動電流Ifの変化に対する感度を高めるには時間tを長くする。
駆動電流Ifの10%の変化を20mVを超える電圧差として出力する場合、以下の条件を満たすように設計する。
If×0.1×t/C>20[mV]
従って、駆動電流Ifを0.5μAとした場合、t/Cを400kV/Aより大きくすればよい。
図11では、定電流回路55から温度信号生成部75までの構成の要点を抽出して説明したが、実施形態1に適用する場合について詳細に説明する。なおオペアンプ546の電源接続については説明を省略する。電流-電圧変換部54として図11に示したオペアンプ546を備えた構成とする場合、例えば実施形態1の図5において、SW1Bの一端とSW2Bの一端との結線を削除し、さらに電流-電圧変換部54のシンボルと結線を3端子構成に置き換える。即ち、第1の端子はSW1Bの一端へ接続され、第2の端子はSW2Bの一端へ接続され、第3の端子はグランドに接続される。ここで第1の端子はオペアンプ546の非反転入力端子+であり、第2の端子はオペアンプ546の出力端子であり、第3の端子はキャパシタ547の一端とスイッチSW0の一端が接続される端子である。
実施形態2に適用する場合について詳細に説明する。なお、オペアンプ546の電源接続については説明を省略する。電流-電圧変換部54として図11に示したオペアンプ546を備えた構成とする場合、実施形態2の図8において、SW1Bの一端とSW2Bの一端との結線を削除し、第1電流-電圧変換部541(R)のシンボルと結線を3端子構成に置き換える。即ち、第1の端子はSW1Bの一端へ接続され、第2の端子はSW2Bの一端へ接続され、第3の端子はグランドに接続される。ここで第1の端子はオペアンプ546の非反転入力端子+であり、第2の端子はオペアンプ546の出力端子であり、第3の端子はキャパシタ547の一端とスイッチSW0の一端が接続される端子である。同様にしてSW1Cの一端とSW2Cの一端との結線を削除し、第2電流-電圧変換部542(R)のシンボルと結線を3端子構成に置き換える。即ち、第1の端子はSW1Cの一端へ接続され、第2の端子はSW2Cの一端へ接続され、第3の端子はグランドに接続される。ここで第1の端子はオペアンプ546の非反転入力端子+であり、第2の端子はオペアンプ546の出力端子であり、第3の端子はキャパシタ547の一端とスイッチSW0の一端が接続される端子である。
[他の実施の形態]
上記実施の形態では、温度検出装置50に複数の温度検出素子15が設けられていたが、温度検出素子15が1つ設けられている場合に本発明を適用してもよい。例えば、複数の電気光学パネル100のいずれか1つの電気光学パネル100に温度検出素子15が設けられている場合に本発明を適用してもよい。また、電子機器2100に電気光学パネル100が1つ設けられている場合に本発明を適用してもよい。
また、例えば、実施形態1では、温度検出と駆動電流監視を交互に繰り返す態様としたが、これに限定されない。温度検出の頻度と駆動電流の監視の頻度を異ならせてよい。駆動電流の監視は、例えば、電子機器2100の電源オン操作時、あるいは電源オフ操作時に1回実施する構成でもよい。あるいは電子機器2100に設けられた制御ボタンで構成される診断命令外部入力手段78によって駆動電流の監視を実行してもよい。
また、図8に示した実施形態2において、スイッチSW1Cと電流-電圧変換部542(R)を削除し、電流-電圧変換部542(R)を中央制御部72によって制御される可変抵抗素子(デジタルボリュームとも称される)としてもよい。このようにすると可変抵抗素子によって、定電流回路55について複数の動作点電圧での挙動を監視することができる。具体的には第1の駆動電流の監視時に中央制御部72によって、スイッチSW1BとスイッチSW2Bをオンとし他をオフとする。その時、中央制御部72は電流-電圧変換部542(R)の可変抵抗素子を第1抵抗として設定して駆動電流の監視を実行する。第2の駆動電流の監視時には同様にして、可変抵抗素子を第1抵抗とは異なる抵抗値の第2抵抗の設定として駆動電流の監視を実行する。このような第1の駆動電流監視と第2の駆動電流監視を組にして定電流回路55の挙動を調べることができる。
上記実施の形態では、電気光学装置1が透過型の液晶装置であったが、電気光学装置1が反射型の液晶装置である場合や、電気光学装置1が有機エレクトロルミネッセンス装置である場合に本発明を適用してもよい。また、画素については、DMD(Digital
Micromirror Device)等の表示素子(MEMSデバイス)を採用した構成としてもよい。
[他の電子機器]
本発明を適用した電気光学装置1を備えた電子機器は、上記実施形態の電子機器2100に限定されない。例えば、投射型のHUD(ヘッドアップディスプレイ)や直視型のHMD(ヘッドマウントディスプレイ)、パーソナルコンピューター、デジタルスチルカメラ、液晶テレビ等の電子機器に用いてもよい。
1…電気光学装置、10…第1基板、15…温度検出素子、16…画素電極、17…画素、20…第2基板、50…温度検出装置、51…温度検出回路、52…駆動電流監視回路、53…切り替え回路、5…電流-電圧変換部、55…定電流回路、60,70…配線基板、71…電圧検出手段、72…中央制御部、73…校正値記憶手段、74…補正値記憶手段、75…温度信号生成部、76…アラート回路、77…診断結果表示手段、78…診断命令外部入力手段、79…温度制御部、100…電気光学パネル、110…表示領域、200…温度調整装置、210…冷却ファン、220…流路、521…第1駆動電流監視回路、522…第2駆動電流監視回路、531…第1切り替え回路、532…第2切り替え回路、541…第1電流-電圧変換部、542…第2電流-電圧変換部、546…オペアンプ、547…キャパシタ、548…ボルテージフォロワ、2100…電子機器、2102…ランプユニット、2114…投射光学系、R1…帰還抵抗、R2…入力抵抗、If…駆動電流、SW0,SW1,SW1A,SW1B,SW1C,SW2A,SW2B,SW2C…スイッチ、Dt…温度信号、Vg,Vg1,Vg2,Vp…電圧。

Claims (16)

  1. 温度検出素子と、
    前記温度検出素子に駆動電流を供給する定電流回路と、
    前記駆動電流が前記温度検出素子に供給されたときの前記温度検出素子の電圧を検出する電圧検出手段と、
    前記定電流回路に電気的に接続される駆動電流監視回路と、
    を備えることを特徴とする温度検出装置。
  2. 請求項1に記載の温度検出装置において、
    前記温度検出素子は、ダイオードであることを特徴とする温度検出装置。
  3. 請求項1または2に記載の温度検出装置において、
    前記駆動電流監視回路は、前記駆動電流の変化に対応して出力電圧が変化する電流-電圧変換部を含み、前記駆動電流が前記電流-電圧変換部に供給されたときの電圧を出力することを特徴とする温度検出装置。
  4. 請求項3に記載の温度検出装置において、
    前記電流-電圧変換部は、前記駆動電流の変化に対応する出力電圧の変化量が、前記温度検出素子の前記駆動電流の変化に対応する出力電圧の変化量より大きいことを特徴とする温度検出装置。
  5. 請求項4に記載の温度検出装置において、
    前記電流-電圧変換部は、抵抗素子であることを特徴とする温度検出装置。
  6. 請求項3から5までの何れか一項に記載の温度検出装置において、
    前記定電流回路から前記温度検出素子に前記駆動電流が供給される状態と前記定電流回路から前記電流-電圧変換部に前記駆動電流が供給される状態とに電流経路を切り替える切り替え回路を備えることを特徴とする温度検出装置。
  7. 請求項1から6までの何れか一項に記載の温度検出装置において、
    前記駆動電流監視回路による前記駆動電流の監視結果に基づいて前記温度検出素子の出力電圧に補正を行う補正手段を備えることを特徴とする温度検出装置。
  8. 請求項1から7までの何れか一項に記載の温度検出装置において、
    前記駆動電流監視回路による前記駆動電流の監視結果に基づいて異常を報知するアラート回路を備えることを特徴とする温度検出装置。
  9. 請求項1から8までの何れか一項に記載の温度検出装置において、
    前記温度検出素子を複数、備え、
    前記複数の温度検出素子の各々に対応して前記定電流回路および前記駆動電流監視回路が設けられていることを特徴とする温度検出装置。
  10. 請求項1から8までの何れか一項に記載の温度検出装置において、
    前記温度検出素子を複数、備え、
    前記定電流回路は、前記複数の温度検出素子の各々に前記駆動電流を出力し、
    前記複数の温度検出素子の各々に対応して前記駆動電流監視回路が設けられていることを特徴とする温度検出装置。
  11. 請求項1から8までの何れか一項に記載の温度検出装置において、
    前記温度検出素子を複数、備え、
    前記定電流回路は、前記複数の温度検出素子の各々に前記駆動電流を出力し、
    前記複数の温度検出素子の何れかに対応して前記駆動電流監視回路が設けられていることを特徴とする温度検出装置。
  12. 請求項1から8までの何れか一項に記載の温度検出装置において、
    前記温度検出素子に対応して前記駆動電流監視回路が複数、設けられていることを特徴とする温度検出装置。
  13. 請求項1から12までの何れか一項に記載の温度検出装置を備えた電子機器であって、
    前記温度検出素子を介して温度が検出される電気光学パネルを備えた電気光学装置を有することを特徴とする電子機器。
  14. 請求項13に記載の電子機器において、
    前記電気光学パネルは、表示領域に複数の画素電極が設けられた第1基板を備え、
    前記第1基板における前記表示領域の外側に前記温度検出素子が設けられていることを特徴とする電子機器。
  15. 請求項14に記載の電子機器において、
    前記電気光学パネルは、前記第1基板に対向する第2基板と、前記第1基板と前記第2基板との間に配置された電気光学層と、を備えることを特徴とする電子機器。
  16. 請求項13から15までの何れか一項に記載の電子機器において、
    前記電気光学装置は、前記電気光学パネルの温度を調整する温度調整装置を備え、
    前記温度調整装置は、前記電圧検出手段の検出結果に基づいて前記電気光学パネルに対する加熱および冷却のうちの少なくとも一方を行うことを特徴とする電子機器。
JP2020201860A 2020-12-04 2020-12-04 温度検出装置、および電子機器 Pending JP2022089453A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020201860A JP2022089453A (ja) 2020-12-04 2020-12-04 温度検出装置、および電子機器
CN202111470241.9A CN114608715A (zh) 2020-12-04 2021-12-03 温度检测装置和电子设备
US17/541,874 US11585702B2 (en) 2020-12-04 2021-12-03 Temperature detection device and electronic apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020201860A JP2022089453A (ja) 2020-12-04 2020-12-04 温度検出装置、および電子機器

Publications (1)

Publication Number Publication Date
JP2022089453A true JP2022089453A (ja) 2022-06-16

Family

ID=81850486

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020201860A Pending JP2022089453A (ja) 2020-12-04 2020-12-04 温度検出装置、および電子機器

Country Status (3)

Country Link
US (1) US11585702B2 (ja)
JP (1) JP2022089453A (ja)
CN (1) CN114608715A (ja)

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0829265A (ja) 1994-07-15 1996-02-02 Toshiba Corp 温度センサおよびそれを用いた液晶表示装置
US6333728B1 (en) * 1998-09-03 2001-12-25 International Business Machines Corporation Method and apparatus for real-time on-off contrast ratio optimization in liquid crystal displays
JP2009236536A (ja) 2008-03-26 2009-10-15 Calsonic Kansei Corp メータ自己診断装置
JP5790606B2 (ja) 2012-08-20 2015-10-07 株式会社デンソー 過熱保護回路
US10768057B2 (en) * 2017-03-30 2020-09-08 Oracle International Corporation Statistical temperature sensor calibration apparatus and methodology

Also Published As

Publication number Publication date
CN114608715A (zh) 2022-06-10
US11585702B2 (en) 2023-02-21
US20220178765A1 (en) 2022-06-09

Similar Documents

Publication Publication Date Title
CN111508405B (zh) 显示装置
KR100783666B1 (ko) 컬러 디스플레이 패널을 캘리브레이션하는 보정 방법, 이를 이용한 디스플레이 장치 및 이와 관련된 제조 방법
WO2005024766A1 (ja) 表示パネルの変換データ決定方法および測定装置
KR20120058393A (ko) 반도체 광원 장치, 반도체 광원 제어 방법 및 투영 장치
US7271790B2 (en) Combined temperature and color-temperature control and compensation method for microdisplay systems
KR101137387B1 (ko) 기준 전압 설정 장치를 포함한 조도 측정 장치와 디스플레이 장치
JP2006319950A (ja) 映像表示装置
US11217134B2 (en) Temperature detection circuit, electro-optical device, and electronic apparatus
JP2006323311A (ja) 表示装置
JP6277549B2 (ja) 面状照明装置及び液晶表示装置
JP2013160966A (ja) マルチ画面表示装置および輝度制御方法
KR20040032906A (ko) 자체 교정하는 이미지 디스플레이 디바이스
JP5714858B2 (ja) 表示装置の色度調整方法
CN105303999A (zh) 用于amoled显示器的像素电路的缺陷检测及修正
JP2022089453A (ja) 温度検出装置、および電子機器
US20200365103A1 (en) Adjusting Method and Device for Gate off Voltage and Display Device
JP2023085195A (ja) 表示装置及びその制御方法
CN115914592A (zh) 一种扫描器驱动方法、可读存储介质及装置
JP2020076882A (ja) 位置ずれ補正装置、プロジェクター及び位置ずれ補正方法
US11682327B2 (en) Substrate for electro-optical device, electro-optical device, and electronic apparatus, method for manufacturing electro-optical device, and inspection circuit
JP2017204799A (ja) 画像投射装置および画像表示システム
JP2022062887A (ja) 温度検出回路、電気光学装置および電子機器
US20240142811A1 (en) Liquid crystal device, electronic device, and diagnostic system
JP2007279213A (ja) 表示パネルの輝度検査装置、及びこれを用いた表示パネルの製造方法
JP4736356B2 (ja) プロジェクタおよびその制御方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20231115

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20240304

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20240409