JP2022057509A - Laser processing device and laser processing method - Google Patents

Laser processing device and laser processing method Download PDF

Info

Publication number
JP2022057509A
JP2022057509A JP2020165805A JP2020165805A JP2022057509A JP 2022057509 A JP2022057509 A JP 2022057509A JP 2020165805 A JP2020165805 A JP 2020165805A JP 2020165805 A JP2020165805 A JP 2020165805A JP 2022057509 A JP2022057509 A JP 2022057509A
Authority
JP
Japan
Prior art keywords
printed wiring
wiring board
scan area
laser processing
path
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020165805A
Other languages
Japanese (ja)
Other versions
JP7451049B2 (en
Inventor
修 久世
Osamu Kuze
和夫 前田
Kazuo Maeda
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Via Mechanics Ltd
Original Assignee
Via Mechanics Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Via Mechanics Ltd filed Critical Via Mechanics Ltd
Priority to JP2020165805A priority Critical patent/JP7451049B2/en
Publication of JP2022057509A publication Critical patent/JP2022057509A/en
Application granted granted Critical
Publication of JP7451049B2 publication Critical patent/JP7451049B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To improve the processing accuracy of a drilling process in a laser processing device performing a drilling process on a thin printed wiring board using a laser.SOLUTION: A drilling process on a printed wiring board includes: generating a route of a galvano scan area so as to pass through a circular orbit centering on the barycentric position of the above board to go around from the outer peripheral part of the printed wiring board toward the inner peripheral part thereof; measuring the telescopic motion amount of the board in the in-plane direction of the printed wiring board using the alignment mark provided on the printed wiring board as a reference every circuit of the route of a galvano scan area; and correcting a processing position in response to the telescopic motion amount of the printed wiring board in the in-plane direction to process.SELECTED DRAWING: Figure 2

Description

本発明は、レーザパルスを用いてプリント基板のような被加工物に穴あけ等を行うレーザ加工の加工位置を補正する方法に関するものである。 The present invention relates to a method of correcting a machining position of laser machining in which a workpiece such as a printed circuit board is drilled by using a laser pulse.

プリント配線板の回路形成では、薄い絶縁層の両面に薄い銅箔を配置した薄い両面板に貫通穴をあける加工が行われている。レーザ加工で貫通穴をあける場合、プリント配線板の表側および裏側の両面からレーザ光を照射し、形成される加工穴を接続させて貫通穴を形成する。この際、表側の穴と裏側の穴の位置を一致させる必要があるため、穴あけ加工の位置の補正が重要である。 In the circuit formation of the printed wiring board, a through hole is formed in a thin double-sided plate in which thin copper foils are arranged on both sides of the thin insulating layer. When making a through hole by laser processing, laser light is irradiated from both the front side and the back side of the printed wiring board, and the formed processed holes are connected to form a through hole. At this time, since it is necessary to match the positions of the holes on the front side and the holes on the back side, it is important to correct the position of the drilling process.

また、プリント配線板は温度変化等の影響により伸縮等の歪が生じるため、プリント配線板のレーザ穴あけ加工では、加工前に加工位置の補正を行っている。
例えば、特許文献1に開示されている技術においては、プリント配線板の伸縮等の歪が発生した場合、プリント配線板の四隅に設けられたアライメントマークを基準として、アライメントマークの位置のずれからプリント配線板の変形量を算出し、変形量に応じた補正値をXYテーブルの位置決め位置と加工プログラムの加工位置座標に加えてから、プリント基板の全体面にレーザ穴あけ加工を行っている。
Further, since the printed wiring board is distorted such as expansion and contraction due to the influence of temperature change and the like, the processing position is corrected before the processing in the laser hole drilling processing of the printed wiring board.
For example, in the technique disclosed in Patent Document 1, when distortion such as expansion and contraction of the printed wiring board occurs, printing is performed from the deviation of the position of the alignment mark with reference to the alignment marks provided at the four corners of the printed wiring board. After calculating the amount of deformation of the wiring board and adding the correction value according to the amount of deformation to the positioning position of the XY table and the processing position coordinates of the processing program, laser drilling is performed on the entire surface of the printed circuit board.

プリント配線板のレーザ穴あけ加工では、ガルバノのスキャンエリアの移動の経路を生成している。例えば、特許文献2に開示されている技術においては、加工時間を短縮するために、加工経路が最短となるように、ガルバノスキャンエリアの移動経路として渦巻き状の経路を生成している。 Laser drilling of printed wiring boards creates a path of movement for the galvano scan area. For example, in the technique disclosed in Patent Document 2, in order to shorten the processing time, a spiral path is generated as a moving path of the galvanoscan area so that the machining path is the shortest.

特開2013-125915 号公報Japanese Unexamined Patent Publication No. 2013-125915 特開2011-140057 号公報Japanese Unexamined Patent Publication No. 2011-140057

従来の技術では、図4中の矢印に示すようにプリント配線板9の外周部分の経路始点D45から、渦巻き状のスキャンエリアの経路に沿って加工していた。しかし、穴あけ加工中のプリント配線板の伸縮は、プリント基板の中心部よりも外周部が大きくなるため、従来の渦巻き状の経路で経路の方向が変化するスキャンエリアA25,スキャンエリアB26,スキャンエリアC27,スキャンエリアD28では、経路の途中で、伸縮量のより大きい部分を通過することになり、穴加工位置のずれが大きくなる問題があった。このように、従来技術では、穴加工位置のずれを小さくする加工経路を生成する配慮がなされていなかった。 In the conventional technique, as shown by an arrow in FIG. 4, processing is performed along the path of the spiral scan area from the path start point D45 of the outer peripheral portion of the printed wiring board 9. However, since the expansion and contraction of the printed wiring board during the drilling process has a larger outer peripheral portion than the central portion of the printed circuit board, the scan area A25, the scan area B26, and the scan area change the direction of the path by the conventional spiral path. In C27 and the scan area D28, there is a problem that a portion having a larger expansion / contraction amount is passed in the middle of the path, and the deviation of the hole drilling position becomes large. As described above, in the prior art, consideration has not been given to generating a machining path for reducing the deviation of the hole drilling position.

また、従来技術ではプリント配線板のレーザ穴あけ加工中に穴加工位置を補正しないので、レーザ穴あけ加工中に生ずるプリント配線板の伸縮により穴あけ加工位置がずれる問題があった。 Further, in the prior art, since the hole drilling position is not corrected during the laser drilling process of the printed wiring board, there is a problem that the hole drilling position shifts due to the expansion and contraction of the printed wiring board generated during the laser hole drilling process.

上記課題を解決するため、本願の発明においては、プリント配線板の重心を中心とした伸縮量が同一の領域に沿ったスキャンエリアの経路を生成し、生成したスキャンエリアの経路を周回する。さらに、生成したスキャンエリアの経路の1周回ごとに、アライメントマークを基準として加工位置の補正を行う。 In order to solve the above problems, in the present invention, a path of a scan area along a region having the same amount of expansion and contraction centered on the center of gravity of the printed wiring board is generated, and the path of the generated scan area is circulated. Furthermore, the machining position is corrected with reference to the alignment mark for each round of the generated scan area path.

なお、本願において開示される発明の代表的な特徴は以上のとおりであるが、ここで説明していない特徴については、以下に説明する実施例に適用されており、また特許請求の範囲にも示したとおりである。 The typical features of the invention disclosed in the present application are as described above, but the features not described here are applied to the examples described below, and are also included in the claims. As shown.

本発明によれば、絶縁層が薄く、表層銅箔の薄いプリント配線板に対し表裏から レーザを照射し貫通穴を形成する表裏加工に於いて、周回するスキャンエリアごとに加工位置補正することで加工位置のずれを軽減し、加工穴位置の精度が高い穴を加工できる。 According to the present invention, in the front and back processing in which a printed wiring board having a thin insulating layer and a thin surface copper foil is irradiated with a laser from the front and back to form a through hole, the processing position is corrected for each orbiting scan area. It is possible to reduce the deviation of the machined position and machine a hole with high accuracy of the machined hole position.

本発明を適用したレーザ加工装置の一例の全体を示す模式図である。It is a schematic diagram which shows the whole of the example of the laser processing apparatus to which this invention is applied. 本発明を適用したガルバノスキャンエリアの経路の一例を表す図である。It is a figure which shows an example of the route of the galvanoscan area to which this invention is applied. 本発明を適用したプリント基板の一例の断面図である。It is sectional drawing of an example of the printed circuit board to which this invention was applied. 従来のレーザ加工装置のガルバノスキャンエリアの経路を表す図である。It is a figure which shows the path of the galvanoscan area of the conventional laser processing apparatus.

図1は本発明のレーザ加工装置の概要を示す模式図である。レーザ加工装置は、レーザ発振器1、制御装置3、第1及び第2の反射ミラー4、5、第1及び第2のガルバノスキャナ6、7、fシータレンズ8、fシータレンズ8と同時に移動可能な図示されないプレートに固定されたアライメントマーク認識用カメラシステム11、XYテーブル15から基本的に構成されている。 FIG. 1 is a schematic diagram showing an outline of the laser processing apparatus of the present invention. The laser processing device can move at the same time as the laser oscillator 1, the control device 3, the first and second reflection mirrors 4, 5, the first and second galvano scanners 6, 7, the f theta lens 8, and the f theta lens 8. It is basically composed of an alignment mark recognition camera system 11 and an XY table 15 fixed to a plate (not shown).

プリント配線板9の四隅には穴明け位置の基準となるアライメントマーク10が形成されている。12は、ガルバノスキャナ6、7の位置決め動作で加工されるガルバノスキャンエリア、13は、12の次に加工するガルバノスキャンエリア、15は機械正面から見て17の前後方向に図示されない送り系に機構により支持されたXYテーブルである。 Alignment marks 10 that serve as a reference for drilling positions are formed at the four corners of the printed wiring board 9. 12 is a galvanoscan area processed by the positioning operation of the galvano scanners 6 and 7, 13 is a galvanoscan area processed next to 12, and 15 is a mechanism in a feed system (not shown) in the front-rear direction of 17 when viewed from the front of the machine. XY table supported by.

レーザ発信器1から発振されたレーザビーム2は、ミラー4及びミラー5で反射され、ガルバノスキャナ6及びガルバノスキャナ7に入射し、fシータレンズ8を介して、プリント配線板9の表面に照射される。 The laser beam 2 oscillated from the laser transmitter 1 is reflected by the mirror 4 and the mirror 5, is incident on the galvano scanner 6 and the galvano scanner 7, and is irradiated on the surface of the printed wiring board 9 via the f-theta lens 8. Ru.

アライメントマーク認識用カメラシステム11で被加工物であるプリント配線板9の四隅に配置されたアライメントマーク10を認識し、プリント配線板9のレーザ加工機に対するアライメントマーク10の位置を測定し、加工位置の補正処理を行った後、ガルバノスキャナ6,7及びXYテーブル15に移動指令を与え、加工位置の位置決めを行う。 The camera system 11 for recognizing the alignment mark recognizes the alignment marks 10 arranged at the four corners of the printed wiring board 9 which is the workpiece, measures the position of the alignment mark 10 with respect to the laser processing machine of the printed wiring board 9, and processes the processing position. After performing the correction processing of, a movement command is given to the galvano scanners 6 and 7 and the XY table 15, and the machining position is positioned.

図2は本発明のレーザ加工装置によって生成されたガルバノスキャンエリアの経路の一例を示す模式図である。図2のプリント配線板9には、穴あけ位置の基準となるアライメントマーク10がプリント基板の四隅に1か所ずつ(P1,P2,P3,P4)配置されている。 FIG. 2 is a schematic diagram showing an example of a path of a galvanoscan area generated by the laser processing apparatus of the present invention. On the printed wiring board 9 of FIG. 2, alignment marks 10 that serve as a reference for drilling positions are arranged at four corners of the printed circuit board (P1, P2, P3, P4).

プリント配線板重心20を中心として、プリント配線板9の伸縮量が同一となる領域の一例として、同心円状の領域A21、領域B22、領域C23、領域D24を図示している。 As an example of a region in which the amount of expansion and contraction of the printed wiring board 9 is the same centering on the center of gravity 20 of the printed wiring board, a concentric region A21, a region B22, a region C23, and a region D24 are shown.

次に、図2を用いて本発明のレーザ加工装置によるガルバノスキャンエリアの経路生成の手順を説明する。まず、最外周の領域A21を通過するスキャンエリアA25、スキャンエリアB26、スキャンエリアC27、スキャンエリアD28を経路とする。次に、領域A21の内周にある領域B22を通過するスキャンエリアの経路の経路始点A29にスキャンエリアを移動し、図2の右方向に向かってスキャンエリアを移動し、スキャンエリアが外周の領域A21に含まれる手前で上方のスキャンエリアに移動したのち、次にスキャンエリアが内周の領域C23に含まれる前に右のスキャンエリアに移動したのち、再び上方のスキャンエリアに移動し、以後同様にして、領域A22を通過するスキャンエリアの周回経路を定める。 Next, the procedure of path generation of the galvanoscan area by the laser processing apparatus of the present invention will be described with reference to FIG. First, the scan area A25, the scan area B26, the scan area C27, and the scan area D28 that pass through the outermost region A21 are used as routes. Next, the scan area is moved to the path start point A29 of the route of the scan area passing through the region B22 on the inner circumference of the region A21, the scan area is moved toward the right in FIG. 2, and the scan area is the outer peripheral region. After moving to the upper scan area before being included in A21, then moving to the right scan area before the scan area is included in the inner peripheral area C23, then moving to the upper scan area again, and so on. Then, the circuit path of the scan area passing through the area A22 is determined.

以後、同様にして経路始点B30から、領域C23を通過するスキャンエリアの経路を生成し、経路始点C31から、領域D24を通過するスキャンエリアの経路を生成し、プリント配線板20の中心のエリアに至る周回経路を生成する。 After that, in the same manner, the route of the scan area passing through the area C23 is generated from the route starting point B30, and the route of the scanning area passing through the area D24 is generated from the route starting point C31, and the route is generated in the central area of the printed wiring board 20. Generate an orbital route to reach.

次に、以上で説明した、プリント配線板の重心を中心とした伸縮量が同一の領域に沿って生成した、プリント配線板の面内を周回する、ガルバノスキャンエリアの経路に沿って穴加工を行った結果を説明する。図3は、本発明のレーザ加工装置による加工結果を示す図である。プリント配線板の加工穴中心位置40を基準としてプリント配線板9の表側に表側穴41を形成し、裏側に裏側穴42を形成した。表側穴41及び裏側穴42は加工穴中心位置40を同軸中心とした、プリント配線板を貫通する穴が形成される。 Next, as described above, drilling is performed along the path of the galvanoscan area, which is generated along the same region with the amount of expansion and contraction centered on the center of gravity of the printed wiring board, orbits in the plane of the printed wiring board. Explain the result of the work. FIG. 3 is a diagram showing a processing result by the laser processing apparatus of the present invention. A front side hole 41 was formed on the front side of the printed wiring board 9 and a back side hole 42 was formed on the back side with reference to the machined hole center position 40 of the printed wiring board. The front side hole 41 and the back side hole 42 are formed with holes penetrating the printed wiring board with the center position 40 of the machined hole as the coaxial center.

次に、本発明に係る他の実施の形態について図2を用いて説明する。まず、領域A21を通過するスキャンエリアA25,スキャンエリアB26,スキャンエリアC27,スキャンエリアD28に対する加工位置を、アライメントマーク10を基準として、補正した後、スキャンエリアA25,スキャンエリアB26,スキャンエリアC27,スキャンエリアD28を加工する。次に、領域B22を通過する、経路始点A29からの周回経路のスキャンエリア内の加工位置をアライメントマーク10を基準として補正した後、経路始点A29からの周回経路に沿って加工する。以降、同様にして、領域C23を通過する経路始点B30からの周回経路、領域D24を通過する経路始点C31からの周回経路に沿って、プリント配線板9の中心部分まで加工する。 Next, another embodiment of the present invention will be described with reference to FIG. First, the processing positions with respect to the scan area A25, the scan area B26, the scan area C27, and the scan area D28 passing through the area A21 are corrected with reference to the alignment mark 10, and then the scan area A25, the scan area B26, and the scan area C27, The scan area D28 is processed. Next, the processing position in the scan area of the circuit path from the route start point A29 passing through the region B22 is corrected with reference to the alignment mark 10, and then processing is performed along the circuit path from the route start point A29. Hereinafter, in the same manner, the circuit is processed up to the central portion of the printed wiring board 9 along the circuit path from the path start point B30 passing through the region C23 and the circuit path from the path start point C31 passing through the region D24.

以上で説明した、加工の結果においても、図3に示すように、表側穴41及び裏側穴42は加工穴中心位置40を同軸中心とした、プリント配線板を貫通する穴が形成される。 Also in the processing results described above, as shown in FIG. 3, the front side hole 41 and the back side hole 42 are formed with holes penetrating the printed wiring board with the processing hole center position 40 as the coaxial center.

なお、本実施例では一例として4周回の軌跡としたが、プリント配線板の寸法、スキャンエリアの寸法に応じて任意の周回数を設定してよい。 In this embodiment, the locus is set to 4 laps as an example, but an arbitrary number of laps may be set according to the dimensions of the printed wiring board and the dimensions of the scan area.

また、プリント配線板の1枚目の加工では、ガルバノスキャンエリアの移動経路の1周回毎に伸縮量を測定し補正量に反映して加工を行うが、プリント配線板の2枚目以降の加工では、1枚目で測定し把握した、ガルバノスキャンエリアの周回経路ごとに求めた補正係数を記憶して用いることで、周回ごとに新たにアライメント補正値毎回の測定を行わなくてもよい。
In addition, in the processing of the first printed wiring board, the amount of expansion and contraction is measured for each round of the movement path of the galvano scan area and reflected in the correction amount, but the processing of the second and subsequent printed wiring boards is performed. Then, by storing and using the correction coefficient obtained for each orbital path of the galvanoscan area, which is measured and grasped by the first sheet, it is not necessary to newly measure the alignment correction value for each orbit.

1:レーザ発振器
2:レーザビーム
3:制御装置
4:第1のコーナミラー
5:第2のコーナミラー
6:第1のガルバノスキャナ
7:第2のガルバノスキャナ
8:fシータレンズ
9:プリント配線板
10:アライメントマーク
11:アライメントマーク認識用カメラシステム
12:ガルバノスキャンエリア
13:次のガルバノスキャンエリア
15:XYテーブル
16:Y方向
17:X方向
20:プリント配線板重心
21:領域A
22:領域B
23:領域C
24:領域D
25:スキャンエリアA
26:スキャンエリアB
27:スキャンエリアC
28: スキャンエリアD
29:経路始点A
30:経路始点B
31:経路始点C
40:加工穴中心位置
41:表側穴
42:裏側穴
45:経路始点D
1: Laser oscillator 2: Laser beam 3: Control device 4: First corner mirror 5: Second corner mirror 6: First galvano scanner 7: Second galvano scanner 8: f Theta lens 9: Printed wiring board 10: Alignment mark 11: Camera system for alignment mark recognition 12: Galvano scan area 13: Next galvano scan area 15: XY table 16: Y direction 17: X direction 20: Printed wiring board center of gravity 21: Area A
22: Area B
23: Area C
24: Area D
25: Scan area A
26: Scan area B
27: Scan area C
28: Scan area D
29: Route start point A
30: Route start point B
31: Route start point C
40: Machined hole center position 41: Front side hole 42: Back side hole 45: Path start point D

Claims (4)

プリント配線板の重心位置を中心とする円軌道を通過し、プリント配線板の外周部から内周部に向かって周回するようにガルバノのスキャンエリアの経路を生成することを特徴とするレーザ加工装置。 A laser processing device characterized in that it passes through a circular orbit centered on the position of the center of gravity of the printed wiring board and generates a path of a galvano scan area so as to orbit from the outer peripheral portion to the inner peripheral portion of the printed wiring board. .. 請求項1に記載のレーザ加工装置において、前記ガルバノのスキャンエリアが前記スキャンエリアの経路を1周するごとに、前記プリント配線板に設けたアライメントマークを基準として前記プリント配線板の面内方向の伸縮量を測定し、前記プリント配線板の面内方向の伸縮量に応じて加工位置を補正して加工することを特徴とするレーザ加工装置。 In the laser processing apparatus according to claim 1, each time the scan area of the galvano makes one round of the path of the scan area, the alignment mark provided on the printed wiring board is used as a reference in the in-plane direction of the printed wiring board. A laser processing apparatus characterized in that the amount of expansion and contraction is measured and the processing position is corrected according to the amount of expansion and contraction in the in-plane direction of the printed wiring board. プリント配線板の重心位置を中心とする円軌道を通過し、プリント配線板の外周部から内周部に向かって周回するようにガルバノのスキャンエリアの経路を生成することを特徴とするレーザ加工方法。 A laser processing method characterized in that a path of a galvano scan area is generated so as to pass through a circular orbit centered on the position of the center of gravity of the printed wiring board and orbit from the outer peripheral portion to the inner peripheral portion of the printed wiring board. .. 請求項3に記載のレーザ加工方法において、前記ガルバノのスキャンエリアが前記スキャンエリアの経路を1周するごとに、前記プリント配線板に設けたアライメントマークを基準として前記プリント配線板の面内方向の伸縮量を測定し、前記プリント配線板の面内方向の伸縮量に応じて加工位置を補正して加工することを特徴とするレーザ加工方法。










In the laser processing method according to claim 3, every time the scan area of the galvano makes one round of the path of the scan area, the alignment mark provided on the printed wiring board is used as a reference in the in-plane direction of the printed wiring board. A laser processing method characterized by measuring the amount of expansion and contraction and correcting the processing position according to the amount of expansion and contraction in the in-plane direction of the printed wiring board.










JP2020165805A 2020-09-30 2020-09-30 Laser processing equipment and laser processing method Active JP7451049B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020165805A JP7451049B2 (en) 2020-09-30 2020-09-30 Laser processing equipment and laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020165805A JP7451049B2 (en) 2020-09-30 2020-09-30 Laser processing equipment and laser processing method

Publications (2)

Publication Number Publication Date
JP2022057509A true JP2022057509A (en) 2022-04-11
JP7451049B2 JP7451049B2 (en) 2024-03-18

Family

ID=81110640

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020165805A Active JP7451049B2 (en) 2020-09-30 2020-09-30 Laser processing equipment and laser processing method

Country Status (1)

Country Link
JP (1) JP7451049B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230408A (en) * 2003-01-29 2004-08-19 Mitsubishi Electric Corp Laser beam machining device
JP2004283998A (en) * 2003-03-25 2004-10-14 Sumitomo Heavy Ind Ltd Working position correction method
JP2007237199A (en) * 2006-03-06 2007-09-20 Sumitomo Heavy Ind Ltd Laser beam machining apparatus and method
JP2010162559A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Laser processing method, processing device and workpiece
JP6793892B1 (en) * 2020-02-10 2020-12-02 三菱電機株式会社 Laser processing method and laser processing equipment

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004230408A (en) * 2003-01-29 2004-08-19 Mitsubishi Electric Corp Laser beam machining device
JP2004283998A (en) * 2003-03-25 2004-10-14 Sumitomo Heavy Ind Ltd Working position correction method
JP2007237199A (en) * 2006-03-06 2007-09-20 Sumitomo Heavy Ind Ltd Laser beam machining apparatus and method
JP2010162559A (en) * 2009-01-13 2010-07-29 Mitsubishi Electric Corp Laser processing method, processing device and workpiece
JP6793892B1 (en) * 2020-02-10 2020-12-02 三菱電機株式会社 Laser processing method and laser processing equipment

Also Published As

Publication number Publication date
JP7451049B2 (en) 2024-03-18

Similar Documents

Publication Publication Date Title
KR100535426B1 (en) Machining device and machining method
WO2009122529A1 (en) Alignment device for planar element, manufacturing equipment for the same, alignment method for the same, and manufacturing method for the same
KR102192600B1 (en) Marking device and pattern generation device
JP6793892B1 (en) Laser processing method and laser processing equipment
US20030002055A1 (en) Method of calibrating the optical system of a laser machine for processing electrical circuit substrates
JPH08174256A (en) Laser beam machining method
US20080223839A1 (en) Laser Machining Apparatus
JP2010162559A (en) Laser processing method, processing device and workpiece
JPH10301052A (en) Method of correcting machining position deviation of laser beam machine
KR20220018980A (en) Laser processing apparatus and method, chip transfer apparatus and method
JP4048873B2 (en) Positioning method
JP2022057509A (en) Laser processing device and laser processing method
KR100541275B1 (en) Apparatus for cutting automatically a board and method therefor
JP2009039753A (en) Apparatus and method for laser marking
JP2005347552A (en) Method of determining position of reference point
JP2003088983A (en) Device for laser drilling, method for manufacturing multilayer wiring substrate and multilayer wiring substrate using the method
JP3177023B2 (en) Method and apparatus for processing external shape of flexible wiring board
JP2001300755A (en) Method and device for laser beam machining
WO2016117224A1 (en) Marking device and method, pattern generation device, and workpiece
JP3643104B2 (en) Processing position correction method in laser processing apparatus
KR100826344B1 (en) Via hole laser drilling scanning method
JP2014183152A (en) Via hole formation method and desmear device
JP2005088045A (en) Method and apparatus for laser drilling
JP2016172259A (en) Drawing device
JPH1058286A (en) Locating method and device for work to be processed

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230223

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20231031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20231114

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20240127

A603 Late request for extension of time limit during examination

Free format text: JAPANESE INTERMEDIATE CODE: A603

Effective date: 20240127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20240305

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20240305

R150 Certificate of patent or registration of utility model

Ref document number: 7451049

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150