JP2022053025A - Metal-clad laminate and manufacturing method thereof - Google Patents

Metal-clad laminate and manufacturing method thereof Download PDF

Info

Publication number
JP2022053025A
JP2022053025A JP2020159600A JP2020159600A JP2022053025A JP 2022053025 A JP2022053025 A JP 2022053025A JP 2020159600 A JP2020159600 A JP 2020159600A JP 2020159600 A JP2020159600 A JP 2020159600A JP 2022053025 A JP2022053025 A JP 2022053025A
Authority
JP
Japan
Prior art keywords
metal
layer
clad laminate
thermosetting
heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020159600A
Other languages
Japanese (ja)
Inventor
政波 北束
Manami Kitatsuka
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ube Exsymo Co Ltd
Original Assignee
Ube Exsymo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ube Exsymo Co Ltd filed Critical Ube Exsymo Co Ltd
Priority to JP2020159600A priority Critical patent/JP2022053025A/en
Priority to TW110134667A priority patent/TW202215918A/en
Priority to PCT/JP2021/034374 priority patent/WO2022065250A1/en
Priority to CN202180064712.8A priority patent/CN116234700A/en
Priority to KR1020237009776A priority patent/KR20230074140A/en
Publication of JP2022053025A publication Critical patent/JP2022053025A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • B32B15/088Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/30Layered products comprising a layer of synthetic resin comprising vinyl (co)polymers; comprising acrylic (co)polymers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/34Layered products comprising a layer of synthetic resin comprising polyamides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/06Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by the heating method
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/02Physical, chemical or physicochemical properties
    • B32B7/027Thermal properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B7/00Layered products characterised by the relation between layers; Layered products characterised by the relative orientation of features between layers, or by the relative values of a measurable parameter between layers, i.e. products comprising layers having different physical, chemical or physicochemical properties; Layered products characterised by the interconnection of layers
    • B32B7/04Interconnection of layers
    • B32B7/12Interconnection of layers using interposed adhesives or interposed materials with bonding properties
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B37/00Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding
    • B32B37/12Methods or apparatus for laminating, e.g. by curing or by ultrasonic bonding characterised by using adhesives
    • B32B37/1207Heat-activated adhesive
    • B32B2037/1215Hot-melt adhesive
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B2379/00Other polymers having nitrogen, with or without oxygen or carbon only, in the main chain
    • B32B2379/08Polyimides

Abstract

To provide a metal-clad laminate and a manufacturing method thereof capable of suppressing a decrease in the adhesiveness of a metal layer to an insulating layer having a thermosetting polyimide layer in a long-term use accompanied by a temperature change.SOLUTION: A metal-clad laminate 11 includes an insulating layer 12 and a metal layer 13 laminated on one or both sides of the insulating layer 12. The insulating layer 12 includes a thermosetting polyimide layer 21 and a thermosetting resin layer 31 provided between the thermosetting polyimide layer 21 and the metal layer 13. The water absorption rate of the thermosetting resin layer 31 is lower than the water absorption rate of the thermosetting polyimide layer 21.SELECTED DRAWING: Figure 1

Description

本発明は、金属張積層板及びその製造方法に関する。 The present invention relates to a metal-clad laminate and a method for manufacturing the same.

近年、IoT(Internet of Things)の活用に伴って、センサー等の電子機器は、様々な環境で使用される傾向にある。例えば、センサー等で用いられるミリ波は、光、天候、環境に対する安定性が高いため、自動車のミリ波レーダー等で使用されている他、より過酷な環境での使用が想定されている。このように近年の電子機器は、より過酷な環境で使用される場合があり、これに伴って電子機器の耐環境性能の向上が求められている。ここで、電子機器に装備されるプリント配線板には、例えば、特許文献1に開示されるような金属張積層板が用いられている。金属張積層板は、例えば、絶縁層としてのポリイミド層と、金属層としての銅層との積層構造を有している。このような金属張積層板についても、電子機器の耐環境性能を向上するという観点から、絶縁層と金属層との接着性について耐環境性能が求められる傾向にある。 In recent years, with the utilization of IoT (Internet of Things), electronic devices such as sensors tend to be used in various environments. For example, millimeter waves used in sensors and the like are highly stable to light, weather, and the environment, so they are used in millimeter wave radars of automobiles and are expected to be used in harsher environments. As described above, recent electronic devices may be used in more harsh environments, and along with this, improvement in the environmental resistance performance of the electronic devices is required. Here, for the printed wiring board installed in the electronic device, for example, a metal-clad laminated board as disclosed in Patent Document 1 is used. The metal-clad laminate has, for example, a laminated structure of a polyimide layer as an insulating layer and a copper layer as a metal layer. Even for such metal-clad laminates, there is a tendency that environmental resistance is required for the adhesiveness between the insulating layer and the metal layer from the viewpoint of improving the environmental resistance of electronic devices.

特開2016-187913号公報Japanese Unexamined Patent Publication No. 2016-187913

上記のような金属張積層板において、絶縁層に熱硬化性ポリイミド層を用いる場合、金属張積層板の寸法安定性を容易に確保することができるものの、温度変化を伴う長期の使用において熱硬化性ポリイミド層と金属層との接着性が低下するおそれがあった。 When a thermosetting polyimide layer is used as the insulating layer in the above-mentioned metal-clad laminate, the dimensional stability of the metal-clad laminate can be easily ensured, but the thermosetting is performed in a long-term use accompanied by temperature change. There was a risk that the adhesiveness between the polyimide layer and the metal layer would decrease.

上記課題を解決する金属張積層板は、絶縁層と、前記絶縁層の片面又は両面に積層される金属層とを備える金属張積層板であって、前記絶縁層は、熱硬化性ポリイミド層と、前記熱硬化性ポリイミド層と前記金属層との間に設けられる熱融着樹脂層とを備え、前記熱融着樹脂層の吸水率は、熱硬化性ポリイミド層の吸水率よりも低い。 The metal-clad laminate that solves the above problems is a metal-clad laminate comprising an insulating layer and a metal layer laminated on one or both sides of the insulating layer, and the insulating layer is a thermosetting polyimide layer. A thermosetting resin layer provided between the thermosetting polyimide layer and the metal layer is provided, and the water absorption rate of the thermosetting resin layer is lower than that of the thermosetting polyimide layer.

この構成によれば、金属層と接着される熱融着樹脂層の吸水や脱水を抑えることにより、金属層と熱融着樹脂層との界面の状態変化を抑えることができると推測される。これにより、温度変化を伴う長期の使用において、熱硬化性ポリイミド層を有する絶縁層に対する金属層の接着性の低下を抑えることができる。 According to this configuration, it is presumed that by suppressing water absorption and dehydration of the heat-sealed resin layer bonded to the metal layer, it is possible to suppress a change in the state of the interface between the metal layer and the heat-sealed resin layer. As a result, it is possible to suppress a decrease in the adhesiveness of the metal layer to the insulating layer having the thermosetting polyimide layer in long-term use accompanied by a temperature change.

上記金属張積層板において、熱融着樹脂層は、0.1%以下の吸水率を有することが好ましい。この構成によれば、温度変化を伴う長期の使用において、熱硬化性ポリイミド層を有する絶縁層に対する金属層の接着性の低下をより抑えることができる。 In the metal-clad laminate, the heat-sealed resin layer preferably has a water absorption rate of 0.1% or less. According to this configuration, it is possible to further suppress a decrease in the adhesiveness of the metal layer to the insulating layer having the thermosetting polyimide layer in long-term use accompanied by a temperature change.

上記金属張積層板において、前記熱融着樹脂層は、280℃以上の融点を有することが好ましい。この構成によれば、金属張積層板の半田耐熱性を容易に高めることができる。
上記金属張積層板において、前記金属層は、前記熱融着樹脂層と接着される主面の十点平均粗さ(Rzjis)が2.0以下の金属箔から構成されることが好ましい。この構成によれば、金属箔の主面の平滑性を高めることで、高周波帯域の電流が金属層の表面に集中する表皮効果を抑えることができるため、金属層において、高周波帯域の電気特性を十分に発揮させることができる。
In the metal-clad laminate, the heat-sealed resin layer preferably has a melting point of 280 ° C. or higher. According to this configuration, the solder heat resistance of the metal-clad laminate can be easily increased.
In the metal-clad laminate, the metal layer is preferably composed of a metal foil having a ten-point average roughness (Rzjis) of 2.0 or less on the main surface to be adhered to the heat-sealed resin layer. According to this configuration, by improving the smoothness of the main surface of the metal foil, it is possible to suppress the skin effect in which the current in the high frequency band concentrates on the surface of the metal layer. It can be fully demonstrated.

上記金属張積層板において、前記熱硬化性ポリイミド層の線膨張係数は、10ppm/K以上、26ppm/K以下の範囲内であることが好ましい。この構成によれば、例えば、金属張積層板の寸法安定性を向上させることができる。 In the metal-clad laminate, the coefficient of linear expansion of the thermosetting polyimide layer is preferably in the range of 10 ppm / K or more and 26 ppm / K or less. According to this configuration, for example, the dimensional stability of the metal-clad laminate can be improved.

上記金属張積層板において、前記熱融着樹脂層は、フッ素系樹脂から構成されることが好ましい。この構成によれば、絶縁層の誘電率を低く抑えることができるため、例えば、高周波帯域の電気特性を十分に発揮させることができる。 In the metal-clad laminate, the heat-sealed resin layer is preferably composed of a fluororesin. According to this configuration, the dielectric constant of the insulating layer can be suppressed to a low level, so that, for example, the electrical characteristics in the high frequency band can be sufficiently exhibited.

上記金属張積層板において、温度範囲が-50℃~150℃であり、保持時間が0分であり、昇温及び降温の繰り返し数が3000回の条件のヒートサイクル試験を行った後に測定した前記金属層の剥離強度は、前記ヒートサイクル試験を行う前の前記金属層の剥離強度を100%としたとき、80%以上であることが好ましい。 The above-mentioned metal-clad laminate was measured after performing a heat cycle test under the conditions that the temperature range was -50 ° C to 150 ° C, the holding time was 0 minutes, and the number of repetitions of temperature raising and lowering was 3000 times. The peel strength of the metal layer is preferably 80% or more when the peel strength of the metal layer before the heat cycle test is 100%.

金属張積層板の製造方法は、絶縁層と、前記絶縁層の片面又は両面に積層される金属層とを備え、前記絶縁層は、熱硬化性ポリイミド層と、前記熱硬化性ポリイミド層と前記金属層との間に設けられる熱融着樹脂層とを備え、前記熱融着樹脂層の吸水率は、熱硬化性ポリイミド層の吸水率よりも低い金属張積層板を製造する金属張積層板の製造方法であって、前記熱硬化性ポリイミド層となる熱硬化性ポリイミドフィルムと、前記金属層となる金属箔との間に、前記熱融着樹脂層となる熱可塑性樹脂フィルムを配置した積層体を熱圧着する工程を備えることが好ましい。 The method for manufacturing a metal-clad laminate includes an insulating layer and a metal layer laminated on one side or both sides of the insulating layer, and the insulating layer includes a thermosetting polyimide layer, the thermosetting polyimide layer, and the above. A metal-clad laminate provided with a heat-sealed resin layer provided between the metal layer and the metal-clad laminate having a water absorption rate lower than that of the thermosetting polyimide layer. The method for producing the above method, wherein the thermoplastic resin film to be the heat-sealed resin layer is arranged between the heat-curable polyimide film to be the heat-curable polyimide layer and the metal foil to be the metal layer. It is preferable to include a step of heat-pressing the body.

本発明によれば、温度変化を伴う長期の使用において、熱硬化性ポリイミド層を有する絶縁層に対する金属層の接着性の低下を抑えることができる。 According to the present invention, it is possible to suppress a decrease in the adhesiveness of a metal layer to an insulating layer having a thermosetting polyimide layer in a long-term use accompanied by a temperature change.

本実施形態の金属張積層板を示す断面図である。It is sectional drawing which shows the metal-clad laminated board of this embodiment. 金属張積層板の製造方法を説明する概略図である。It is a schematic diagram explaining the manufacturing method of a metal-clad laminated board.

以下、金属張積層板及びその製造方法の一実施形態について説明する。なお、図面では、金属張積層板を構成する各層の厚さを誇張して表現する場合もある。
図1に示すように、金属張積層板11は、絶縁層12と、絶縁層12に積層される金属層13とを備えている。本実施形態の金属層13は、絶縁層12の一方の主面に積層される第1金属層13aと、絶縁層12の他方の主面に積層される第2金属層13bとから構成されている。
Hereinafter, an embodiment of a metal-clad laminate and a method for manufacturing the same will be described. In the drawings, the thickness of each layer constituting the metal-clad laminate may be exaggerated.
As shown in FIG. 1, the metal-clad laminate 11 includes an insulating layer 12 and a metal layer 13 laminated on the insulating layer 12. The metal layer 13 of the present embodiment is composed of a first metal layer 13a laminated on one main surface of the insulating layer 12 and a second metal layer 13b laminated on the other main surface of the insulating layer 12. There is.

絶縁層12は、熱硬化性ポリイミド層21と熱融着樹脂層31とを備えている。熱融着樹脂層31は、熱硬化性ポリイミド層21と第1金属層13aとの間に設けられる第1熱融着樹脂層31aと、熱硬化性ポリイミド層21と第2金属層13bとの間に設けられる第2熱融着樹脂層31bとから構成されている。このように本実施形態の金属張積層板11は、熱硬化性ポリイミド層21と第1熱融着樹脂層31aと第2熱融着樹脂層31bとからなる3層構造の絶縁層12を有し、その絶縁層12の両面にそれぞれ積層された金属層13を有する5層構造の両面金属張積層板である。 The insulating layer 12 includes a thermosetting polyimide layer 21 and a thermosetting resin layer 31. The thermosetting resin layer 31 is composed of a first thermosetting resin layer 31a provided between the thermosetting polyimide layer 21 and the first metal layer 13a, and the thermosetting polyimide layer 21 and the second metal layer 13b. It is composed of a second thermosetting resin layer 31b provided between them. As described above, the metal-clad laminate 11 of the present embodiment has the insulating layer 12 having a three-layer structure composed of the thermosetting polyimide layer 21, the first thermosetting resin layer 31a, and the second thermosetting resin layer 31b. It is a double-sided metal-clad laminate having a five-layer structure having metal layers 13 laminated on both sides of the insulating layer 12.

<熱硬化性ポリイミド層21>
熱硬化性ポリイミド層21は、熱硬化性ポリイミドフィルムから構成することができる。熱硬化性ポリイミドフィルムは、酸成分とジアミン成分とから得られる。酸成分としては、例えば、3,3´,4,4´-ビフェニルテトラカルボン酸二無水物(s-BPDA)、ピロメリット酸等が挙げられる。ジアミン成分としては、p-フェニレンジアミン(PPD)、4,4-ジアミノジフェニルエーテル、m-トリジン、4,4´-ジアミノベンズアニリド等が挙げられる。熱硬化性ポリイミドフィルムの市販品としては、例えば、宇部興産株式会社製のユーピレックス-S(商品名)、ユーピレックス-SGA(商品名)等が挙げられる。
<Thermosetting polyimide layer 21>
The thermosetting polyimide layer 21 can be made of a thermosetting polyimide film. The thermosetting polyimide film is obtained from an acid component and a diamine component. Examples of the acid component include 3,3', 4,4'-biphenyltetracarboxylic dianhydride (s-BPDA), pyromellitic acid and the like. Examples of the diamine component include p-phenylenediamine (PPD), 4,4-diaminodiphenyl ether, m-tridin, 4,4'-diaminobenzanilide and the like. Examples of commercially available thermosetting polyimide films include Upirex-S (trade name) and Upirex-SGA (trade name) manufactured by Ube Kosan Co., Ltd.

熱硬化性ポリイミド層21は、低誘電率、低誘電正接等の低誘電特性に優れるという観点から、3,3´,4,4´-ビフェニルテトラカルボン酸二無水物とp-フェニレンジアミンとを共重合成分として含有することが好ましい。熱硬化性ポリイミド層21中における3,3´,4,4´-ビフェニルテトラカルボン酸二無水物の含有量は、酸成分全体を100モル%とした場合、50モル%以上であることが好ましく、より好ましくは、70モル%以上である。熱硬化性ポリイミド層21中におけるp-フェニレンジアミンの含有量は、ジアミン成分全体を100モル%とした場合、50モル%以上であることが好ましく、より好ましくは、70モル%以上である。なお、3,3´,4,4´-ビフェニルテトラカルボン酸二無水物とp-フェニレンジアミンとを共重合成分として含有する熱硬化性ポリイミドフィルムの市販品としては、例えば、宇部興産株式会社製のユーピレックス-SGA(商品名)が挙げられる。 The thermosetting polyimide layer 21 contains 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride and p-phenylenediamine from the viewpoint of excellent low dielectric constant, low dielectric loss tangent and other low dielectric properties. It is preferably contained as a copolymerization component. The content of 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride in the thermosetting polyimide layer 21 is preferably 50 mol% or more when the total acid component is 100 mol%. , More preferably 70 mol% or more. The content of p-phenylenediamine in the thermosetting polyimide layer 21 is preferably 50 mol% or more, more preferably 70 mol% or more, when the total diamine component is 100 mol%. As a commercially available thermosetting polyimide film containing 3,3', 4,4'-biphenyltetracarboxylic acid dianhydride and p-phenylenediamine as a copolymerization component, for example, Ube Kosan Co., Ltd. Upirex-SGA (trade name) can be mentioned.

熱硬化性ポリイミドフィルムにおいて、熱融着樹脂層31と接着される主面には、熱硬化性ポリイミド層21と熱融着樹脂層31と接着性を高めるという観点から、放電処理が施されていることが好ましい。放電処理としては、例えば、コロナ放電処理、大気圧プラズマ放電処理、真空プラズマ放電処理等が挙げられる。放電処理は、熱融着樹脂層31と接着される主面の水接触角が20°以下となるように行われることが好ましく、より好ましくは、17°以下であり、さらに好ましくは、14°以下である。熱硬化性ポリイミドフィルムの水接触角は、例えば、生産性等の観点から、5°以上であることが好ましく、より好ましくは6°以上である。水接触角は、接触角計を用いた液滴法により測定することができる。 In the thermosetting polyimide film, the main surface to be adhered to the thermosetting resin layer 31 is subjected to a discharge treatment from the viewpoint of enhancing the adhesiveness between the thermosetting polyimide layer 21 and the thermosetting resin layer 31. It is preferable to have. Examples of the discharge treatment include corona discharge treatment, atmospheric pressure plasma discharge treatment, vacuum plasma discharge treatment, and the like. The discharge treatment is preferably performed so that the water contact angle of the main surface to be adhered to the heat-sealed resin layer 31 is 20 ° or less, more preferably 17 ° or less, still more preferably 14 °. It is as follows. The water contact angle of the thermosetting polyimide film is preferably 5 ° or more, more preferably 6 ° or more, for example, from the viewpoint of productivity and the like. The water contact angle can be measured by the sessile drop method using a contact angle meter.

熱硬化性ポリイミド層21の厚さは、例えば、125μm以下であることが好ましい。熱硬化性ポリイミド層21の吸水率は、例えば、1.0%以上、2.0%以下の範囲内であることが好ましい。 The thickness of the thermosetting polyimide layer 21 is preferably 125 μm or less, for example. The water absorption rate of the thermosetting polyimide layer 21 is preferably in the range of, for example, 1.0% or more and 2.0% or less.

<熱融着樹脂層31>
熱融着樹脂層31の吸水率は、熱硬化性ポリイミド層21の吸水率よりも低い。熱融着樹脂層31の吸水率は、0.1%以下であることが好ましく、より好ましくは、0.07%以下であり、さらに好ましくは、0.05%以下である。
<Heat fusion resin layer 31>
The water absorption rate of the thermosetting resin layer 31 is lower than the water absorption rate of the thermosetting polyimide layer 21. The water absorption rate of the heat-sealed resin layer 31 is preferably 0.1% or less, more preferably 0.07% or less, and further preferably 0.05% or less.

熱融着樹脂層31は、例えば、半田耐熱性を容易に高めるという観点から、280℃以上の融点を有することが好ましい。熱融着樹脂層31の融点は、熱融着の容易性の観点から、320℃以下であることが好ましい。 The heat-sealed resin layer 31 preferably has a melting point of 280 ° C. or higher, for example, from the viewpoint of easily increasing the heat resistance of the solder. The melting point of the heat-sealed resin layer 31 is preferably 320 ° C. or lower from the viewpoint of ease of heat-sealing.

第1熱融着樹脂層31aの厚さ及び第2熱融着樹脂層31bの厚さは、それぞれ5μm以上であることが好ましく、より好ましくは、10μm以上であり、さらに好ましくは、12.5μm以上である。第1熱融着樹脂層31aの厚さ及び第2熱融着樹脂層31bの厚さは、それぞれ150μm以下であることが好ましく、より好ましくは、120μm以下であり、さらに好ましくは、100μm以下である。第1熱融着樹脂層31aの厚さ及び第2熱融着樹脂層31bの厚さは、互いに同じであってもよいし、異なってもよい。金属張積層板11のねじれや反りを抑えるという観点から、第1熱融着樹脂層31aの厚さと第2熱融着樹脂層31bの厚さの差は、3μm以下であることが好ましく、より好ましくは、2μm以下であり、さらに好ましくは、1μm以下である。 The thickness of the first heat-sealed resin layer 31a and the thickness of the second heat-sealed resin layer 31b are preferably 5 μm or more, more preferably 10 μm or more, still more preferably 12.5 μm. That is all. The thickness of the first heat-sealed resin layer 31a and the thickness of the second heat-sealed resin layer 31b are preferably 150 μm or less, more preferably 120 μm or less, still more preferably 100 μm or less. be. The thickness of the first heat-sealed resin layer 31a and the thickness of the second heat-sealed resin layer 31b may be the same or different from each other. From the viewpoint of suppressing twisting and warping of the metal-clad laminate 11, the difference between the thickness of the first heat-sealed resin layer 31a and the thickness of the second heat-sealed resin layer 31b is preferably 3 μm or less. It is preferably 2 μm or less, and more preferably 1 μm or less.

本実施形態の絶縁層12の厚さは、10μm以上であることが好ましく、より好ましくは20μm以上であり、さらに好ましくは、25μm以上である。本実施形態の絶縁層12の厚さは、例えば、フレキシブル性をより高めるという観点から、400μm以下であることが好ましく、300μm以下であることがより好ましい。 The thickness of the insulating layer 12 of the present embodiment is preferably 10 μm or more, more preferably 20 μm or more, still more preferably 25 μm or more. The thickness of the insulating layer 12 of the present embodiment is preferably 400 μm or less, more preferably 300 μm or less, for example, from the viewpoint of further enhancing flexibility.

熱融着樹脂層31は、例えば、誘電率を低く抑えるという観点から、フッ素系樹脂から構成することが好ましい。フッ素系樹脂の中でも、良好な低誘電特性や良好な接着性を有するという観点から、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、又はテトラフルオロエチレン・パーフルオロアルキルビニルエーテル共重合体(PFA)が好ましい。 The heat-sealed resin layer 31 is preferably made of a fluororesin, for example, from the viewpoint of keeping the dielectric constant low. Among fluororesins, tetrafluoroethylene-hexafluoropropylene copolymer (FEP) or tetrafluoroethylene / perfluoroalkyl vinyl ether copolymer (PFA) is used from the viewpoint of having good low dielectric properties and good adhesiveness. ) Is preferable.

<金属層13>
金属層13の金属としては、例えば、金、銀、銅、銅合金、アルミニウム、アルミニウム合金等が挙げられる。第1金属層13a及び第2金属層13bは、互いに同じ金属から構成されてもよいし、異なる金属から構成されてもよい。金属層13は、例えば、銅箔を用いて形成することができる。銅箔としては、例えば、電解銅箔、及び圧延銅箔が挙げられる。第1金属層13aを形成する金属箔及び第2金属層13bを形成する金属箔は、互いに同じ製法で得られたものであってもよいし、異なる製法で得られたものであってもよい。
<Metal layer 13>
Examples of the metal of the metal layer 13 include gold, silver, copper, copper alloys, aluminum, and aluminum alloys. The first metal layer 13a and the second metal layer 13b may be made of the same metal or may be made of different metals. The metal layer 13 can be formed by using, for example, a copper foil. Examples of the copper foil include electrolytic copper foil and rolled copper foil. The metal foil forming the first metal layer 13a and the metal foil forming the second metal layer 13b may be obtained by the same manufacturing method or may be obtained by different manufacturing methods. ..

第1金属層13aの厚さ及び第2金属層13bの厚さは、それぞれ2μm以上、105μm以下の範囲内であることが好ましく、より好ましくは、2μm以上、35μm以下の範囲内である。第1金属層13aの厚さ及び第2金属層13bの厚さは、互いに同じ厚さであってもよいし、互いに異なる厚さであってもよい。 The thickness of the first metal layer 13a and the thickness of the second metal layer 13b are preferably in the range of 2 μm or more and 105 μm or less, and more preferably in the range of 2 μm or more and 35 μm or less, respectively. The thickness of the first metal layer 13a and the thickness of the second metal layer 13b may be the same as each other or may be different from each other.

ここで、金属層13と熱融着樹脂層31との接着強度は、金属箔において、熱融着樹脂層31と接着される主面の表面粗さが粗いほど高くなる傾向にある。一方、上記金属箔の主面は、より平滑であることで、高周波帯域の電流が金属層13の表面に集中する表皮効果が抑えられることにより、高周波帯域の電気特性を十分に発揮させることができる。近年、5Gスマートフォン等の電子機器の高周波化に伴い、より小さい伝送損失を有するプリント配線板の需要が増大している。このため、金属張積層板11を高周波帯域に対応したプリント配線板として用いる場合、金属層13は、熱融着樹脂層31と接着される主面の十点平均粗さ(Rzjis)が2.0以下の金属箔から構成されることが好ましい。十点平均粗さ(Rzjis)は、JIS B0601(2001)に規定される。金属箔の上記主面における十点平均粗さ(Rzjis)は、1.5以下であることがより好ましく、さらに好ましくは、1.0以下である。 Here, the adhesive strength between the metal layer 13 and the heat-sealed resin layer 31 tends to increase as the surface roughness of the main surface to be adhered to the heat-sealed resin layer 31 becomes coarser in the metal foil. On the other hand, since the main surface of the metal foil is smoother, the skin effect in which the current in the high frequency band is concentrated on the surface of the metal layer 13 is suppressed, so that the electrical characteristics in the high frequency band can be fully exhibited. can. In recent years, as the frequency of electronic devices such as 5G smartphones has increased, the demand for printed wiring boards having a smaller transmission loss has increased. Therefore, when the metal-clad laminate 11 is used as a printed wiring board corresponding to a high frequency band, the metal layer 13 has a ten-point average roughness (Rzjis) of a main surface bonded to the heat-sealed resin layer 31. It is preferably composed of a metal foil of 0 or less. The ten-point average roughness (Rzjis) is defined in JIS B0601 (2001). The ten-point average roughness (Rzjis) on the main surface of the metal foil is more preferably 1.5 or less, still more preferably 1.0 or less.

<線膨張係数>
絶縁層12の線膨張係数を金属層13の線膨張係数に近づけることで、金属張積層板11の寸法安定性を向上させることができる。例えば、銅の線膨張係数は、18ppm/Kである。金属層13が銅層の場合、絶縁層12の線膨張係数は、例えば、10ppm/K以上、40ppm/K以下の範囲内であることが好ましい。絶縁層12を構成する熱硬化性ポリイミド層21の線膨張係数は、10ppm/K以上、26ppm/K以下の範囲内であることが好ましい。例えば、熱融着樹脂層31の線膨張係数が熱硬化性ポリイミド層21の線膨張係数よりも大きい場合であっても、熱硬化性ポリイミド層21の線膨張係数を上記範囲とすることで、金属張積層板11の寸法安定性を向上させることができる。
<Linear expansion coefficient>
By making the coefficient of linear expansion of the insulating layer 12 close to the coefficient of linear expansion of the metal layer 13, the dimensional stability of the metal-clad laminate 11 can be improved. For example, the coefficient of linear expansion of copper is 18 ppm / K. When the metal layer 13 is a copper layer, the coefficient of linear expansion of the insulating layer 12 is preferably in the range of, for example, 10 ppm / K or more and 40 ppm / K or less. The coefficient of linear expansion of the thermosetting polyimide layer 21 constituting the insulating layer 12 is preferably in the range of 10 ppm / K or more and 26 ppm / K or less. For example, even when the coefficient of linear expansion of the thermosetting resin layer 31 is larger than the coefficient of linear expansion of the thermosetting polyimide layer 21, the coefficient of linear expansion of the thermosetting polyimide layer 21 can be set within the above range. The dimensional stability of the metal-clad laminate 11 can be improved.

<金属層の剥離強度>
本実施形態の金属張積層板11において、下記の条件でヒートサイクル試験を行った後に測定した金属層13の剥離強度は、ヒートサイクル試験を行う前の金属層13の剥離強度を100%としたとき、80%以上であることが好ましい。
<Peeling strength of metal layer>
In the metal-clad laminate 11 of the present embodiment, the peel strength of the metal layer 13 measured after performing the heat cycle test under the following conditions is 100% of the peel strength of the metal layer 13 before the heat cycle test. When it is, it is preferably 80% or more.

(ヒートサイクル試験の条件)
温度範囲:-50℃~150℃
保持時間:0分
昇温時間:2時間
降温時間:2時間
昇温及び降温の繰り返し数:3000回
<金属張積層板11の製造方法>
次に、金属張積層板11の製造方法について説明する。
(Conditions for heat cycle test)
Temperature range: -50 ° C to 150 ° C
Holding time: 0 minutes Raising time: 2 hours Temperature lowering time: 2 hours Number of repetitions of raising and lowering temperature: 3000 times <Manufacturing method of metal-clad laminate 11>
Next, a method for manufacturing the metal-clad laminate 11 will be described.

図2に示すように、金属張積層板11の製造方法は、熱硬化性ポリイミドフィルム121と金属箔113との間に熱可塑性樹脂フィルム131を配置した積層体111を熱圧着する工程を備えている。熱硬化性ポリイミドフィルム121は、上述した熱硬化性ポリイミド層21を形成する。第1熱可塑性樹脂フィルム131a及び第2熱可塑性樹脂フィルム131bは、それぞれ第1熱融着樹脂層31a及び第2熱融着樹脂層31bを形成する。第1金属箔113a及び第2金属箔113bは、それぞれ第1金属層13a及び第2金属層13bを形成する。 As shown in FIG. 2, the method for manufacturing the metal-clad laminate 11 includes a step of thermocompression bonding the laminate 111 in which the thermoplastic resin film 131 is arranged between the thermosetting polyimide film 121 and the metal foil 113. There is. The thermosetting polyimide film 121 forms the thermosetting polyimide layer 21 described above. The first thermoplastic resin film 131a and the second thermoplastic resin film 131b form a first heat-sealing resin layer 31a and a second heat-sealing resin layer 31b, respectively. The first metal foil 113a and the second metal foil 113b form the first metal layer 13a and the second metal layer 13b, respectively.

積層体111を熱圧着する工程では、熱可塑性樹脂フィルム131が融点以上の温度となるように積層体111を加熱する。積層体111を熱圧着する工程の最高温度は、熱可塑性樹脂フィルム131の融点をTm℃としたとき、Tm+70℃以下であることが好ましい。 In the step of thermocompression bonding the laminate 111, the laminate 111 is heated so that the temperature of the thermoplastic resin film 131 is equal to or higher than the melting point. The maximum temperature in the step of thermocompression bonding the laminate 111 is preferably Tm + 70 ° C. or lower when the melting point of the thermoplastic resin film 131 is Tm ° C.

積層体111を熱圧着する工程の圧力は、例えば、0.5N/mm以上、10N/mm以下の範囲内であることが好ましく、より好ましくは2N/mm以上、6N/mm以下の範囲内である。 The pressure in the step of thermocompression bonding the laminate 111 is preferably in the range of, for example, 0.5 N / mm 2 or more and 10 N / mm 2 or less, and more preferably 2 N / mm 2 or more and 6 N / mm 2 or less. Is within the range of.

積層体111を熱圧着する工程の加熱時間は、例えば、10秒以上、600秒以下の範囲であることが好ましく、より好ましくは30秒以上、500秒以下の範囲内である。
積層体111を熱圧着する工程は、ダブルベルトプレス装置51を用いて行うことが好ましい。ダブルベルトプレス装置51は、積層体111を搬送しながら加熱及び加圧する。ダブルベルトプレス装置51は、積層体111の搬送方向の上流側に位置する第1搬送部52と、下流側に位置する第2搬送部53とを有している。
The heating time in the step of thermocompression bonding the laminate 111 is preferably in the range of, for example, 10 seconds or more and 600 seconds or less, and more preferably 30 seconds or more and 500 seconds or less.
The step of thermocompression bonding the laminated body 111 is preferably performed by using a double belt press device 51. The double belt press device 51 heats and pressurizes while conveying the laminated body 111. The double belt press device 51 has a first transport unit 52 located on the upstream side in the transport direction of the laminated body 111, and a second transport unit 53 located on the downstream side.

第1搬送部52には、上側第1ドラム52a及び下側第1ドラム52bが装着されている。第2搬送部53には、上側第2ドラム53a及び下側第2ドラム53bが装着されている。上側第1ドラム52a及び上側第2ドラム53aには、無端状の上側ベルト54が架け渡されている。下側第1ドラム52b及び下側第2ドラム53bには、無端状の下側ベルト55が架け渡されている。そして、各第1ドラム52a,52bは、各第2ドラム53a,53bの駆動により各ベルト54,55を介して従動されるように構成されている。各ベルト54,55は、例えばステンレス鋼等の金属から形成される。 The upper first drum 52a and the lower first drum 52b are mounted on the first transport unit 52. The upper second drum 53a and the lower second drum 53b are mounted on the second transport unit 53. An endless upper belt 54 is bridged to the upper first drum 52a and the upper second drum 53a. An endless lower belt 55 is bridged to the lower first drum 52b and the lower second drum 53b. The first drums 52a and 52b are configured to be driven via the belts 54 and 55 by the drive of the second drums 53a and 53b. Each belt 54, 55 is formed of a metal such as stainless steel.

第1搬送部52と第2搬送部53との間には、上側温度調節装置56及び下側温度調節装置57が各ベルト54,55を介在させて対向するように配置されている。上側温度調節装置56及び下側温度調節装置57は、上側ベルト54及び下側ベルト55を介して積層体111を加熱及び加圧する。上側温度調節装置56及び下側温度調節装置57は、例えば、オイル等の熱媒体により上側ベルト54及び下側ベルト55を加熱及び加圧する。 An upper temperature control device 56 and a lower temperature control device 57 are arranged between the first transport unit 52 and the second transport unit 53 so as to face each other with the belts 54 and 55 interposed therebetween. The upper temperature control device 56 and the lower temperature control device 57 heat and pressurize the laminate 111 via the upper belt 54 and the lower belt 55. The upper temperature control device 56 and the lower temperature control device 57 heat and pressurize the upper belt 54 and the lower belt 55 with a heat medium such as oil, for example.

ダブルベルトプレス装置51を用いることで、連続して金属張積層板11を得ることができる。長尺状の金属張積層板11を巻き取ることで、金属張積層板11のロール品として保管又は輸送される。金属張積層板11は、例えば、フレキシブルプリント配線板等のプリント配線板に用いることができる。 By using the double belt press device 51, the metal-clad laminate 11 can be continuously obtained. By winding up the long metal-clad laminate 11, it is stored or transported as a roll product of the metal-clad laminate 11. The metal-clad laminate 11 can be used for, for example, a printed wiring board such as a flexible printed wiring board.

次に、本実施形態の作用及び効果について説明する。
(1)金属張積層板11の絶縁層12は、熱硬化性ポリイミド層21と、熱硬化性ポリイミド層21と金属層13との間に設けられる熱融着樹脂層31とを備えている。熱融着樹脂層31の吸水率は、熱硬化性ポリイミド層21の吸水率よりも低い。
Next, the operation and effect of this embodiment will be described.
(1) The insulating layer 12 of the metal-clad laminate 11 includes a thermosetting polyimide layer 21 and a thermosetting resin layer 31 provided between the thermosetting polyimide layer 21 and the metal layer 13. The water absorption rate of the thermosetting resin layer 31 is lower than the water absorption rate of the thermosetting polyimide layer 21.

この構成によれば、金属層13と接着される熱融着樹脂層31の吸水や脱水を抑えることにより、金属層13と熱融着樹脂層31との界面の状態変化を抑えることができると推測される。これにより、温度変化を伴う長期の使用において、熱硬化性ポリイミド層21を有する絶縁層12に対する金属層13の接着性の低下を抑えることができる。また、絶縁層12は、熱硬化性ポリイミド層21を有するため、金属張積層板11の寸法安定性を容易に確保することもできる。 According to this configuration, by suppressing water absorption and dehydration of the heat-sealed resin layer 31 bonded to the metal layer 13, it is possible to suppress a change in the state of the interface between the metal layer 13 and the heat-sealed resin layer 31. Guessed. As a result, it is possible to suppress a decrease in the adhesiveness of the metal layer 13 to the insulating layer 12 having the thermosetting polyimide layer 21 in a long-term use accompanied by a temperature change. Further, since the insulating layer 12 has the thermosetting polyimide layer 21, the dimensional stability of the metal-clad laminate 11 can be easily ensured.

(2)熱融着樹脂層31は、0.1%以下の吸水率を有することが好ましい。この場合、温度変化を伴う長期の使用において、熱硬化性ポリイミド層21を有する絶縁層12に対する金属層13の接着性の低下をより抑えることができる。 (2) The heat-sealed resin layer 31 preferably has a water absorption rate of 0.1% or less. In this case, it is possible to further suppress a decrease in the adhesiveness of the metal layer 13 to the insulating layer 12 having the thermosetting polyimide layer 21 in a long-term use accompanied by a temperature change.

(3)熱融着樹脂層31は、280℃以上の融点を有することが好ましい。この場合、金属張積層板11の半田耐熱性を容易に高めることができる。
(4)金属層13は、熱融着樹脂層31と接着される主面の十点平均粗さ(Rzjis)が2.0以下の金属箔から構成されることが好ましい。この場合、金属箔の主面の平滑性を高めることで、高周波帯域の電流が金属層13の表面に集中する表皮効果を抑えることができるため、金属層13において、高周波帯域の電気特性を十分に発揮させることができる。
(3) The heat-sealed resin layer 31 preferably has a melting point of 280 ° C. or higher. In this case, the solder heat resistance of the metal-clad laminate 11 can be easily increased.
(4) The metal layer 13 is preferably made of a metal foil having a ten-point average roughness (Rzjis) of 2.0 or less on the main surface to be adhered to the heat-sealed resin layer 31. In this case, by increasing the smoothness of the main surface of the metal foil, it is possible to suppress the skin effect in which the current in the high frequency band concentrates on the surface of the metal layer 13, so that the electrical characteristics in the high frequency band are sufficiently satisfied in the metal layer 13. Can be demonstrated.

(5)熱硬化性ポリイミド層21の線膨張係数は、10ppm/K以上、26ppm/K以下の範囲内であることが好ましい。この場合、金属張積層板11の寸法安定性を向上させることができる。 (5) The coefficient of linear expansion of the thermosetting polyimide layer 21 is preferably in the range of 10 ppm / K or more and 26 ppm / K or less. In this case, the dimensional stability of the metal-clad laminate 11 can be improved.

(6)熱融着樹脂層31は、フッ素系樹脂から構成されることが好ましい。この場合、絶縁層12の誘電率を低く抑えることができるため、例えば、高周波帯域の電気特性を十分に発揮させることができる。 (6) The heat-sealed resin layer 31 is preferably made of a fluororesin. In this case, since the dielectric constant of the insulating layer 12 can be suppressed to a low level, for example, the electrical characteristics in the high frequency band can be sufficiently exhibited.

(7)上記ヒートサイクル試験を行った後に測定した金属層13の剥離強度は、ヒートサイクル試験を行う前の金属層13の剥離強度を100%としたとき、80%以上であることが好ましい。このように熱融着樹脂層31に対する金属層13の接着性の低下を抑えた金属張積層板11を提供することができる。 (7) The peel strength of the metal layer 13 measured after the heat cycle test is preferably 80% or more when the peel strength of the metal layer 13 before the heat cycle test is 100%. As described above, it is possible to provide the metal-clad laminate 11 in which the deterioration of the adhesiveness of the metal layer 13 to the heat-sealed resin layer 31 is suppressed.

(8)金属張積層板11の製造方法は、熱硬化性ポリイミド層21となる熱硬化性ポリイミドフィルム121と金属層13となる金属箔113との間に熱融着樹脂層31となる熱可塑性樹脂フィルム131を配置した積層体111を熱圧着する工程を備えている。この場合、金属張積層板11を効率的に製造することができる。また、積層体111を熱圧着する工程では、ダブルベルトプレス装置51を用いることで、金属張積層板11を連続して製造することができるため、金属張積層板11の製造効率を容易に高めることができる。 (8) The method for manufacturing the metal-clad laminate 11 is a thermoplastic method in which a thermosetting resin layer 31 is formed between a thermosetting polyimide film 121 to be a thermosetting polyimide layer 21 and a metal foil 113 to be a metal layer 13. It is provided with a step of heat-pressing the laminated body 111 on which the resin film 131 is arranged. In this case, the metal-clad laminate 11 can be efficiently manufactured. Further, in the step of thermocompression bonding the laminated body 111, the metal-clad laminate 11 can be continuously manufactured by using the double belt press device 51, so that the manufacturing efficiency of the metal-clad laminate 11 can be easily improved. be able to.

(変更例)
上記実施形態を次のように変更して構成してもよい。上記実施形態及び以下の変更例は、技術的に矛盾しない範囲で互いに組み合わせて実施することができる。
(Change example)
The above embodiment may be modified as follows. The above embodiment and the following modified examples can be implemented in combination with each other within a technically consistent range.

・金属張積層板11は、ダブルベルトプレス装置51以外のラミネート装置等を用いて製造することもできる。また、上記実施形態では、連続的に長尺状の金属張積層板11を製造しているが、所定の寸法の金属張積層板を1枚ずつ製造してもよい。 The metal-clad laminate 11 can also be manufactured by using a laminating device other than the double belt press device 51. Further, in the above embodiment, the long metal-clad laminate 11 is continuously manufactured, but the metal-clad laminate 11 having a predetermined size may be manufactured one by one.

・上記実施形態では、一段階の熱圧着により金属張積層板11を製造しているが、複数段階の熱圧着により製造することもできる。例えば、熱硬化性ポリイミドフィルム121と熱可塑性樹脂フィルム131とを熱圧着することで積層フィルムを得る工程と、この積層フィルムと金属箔113とを熱圧着する工程とにより金属張積層板11を製造してもよい。 -In the above embodiment, the metal-clad laminate 11 is manufactured by one-step thermocompression bonding, but it can also be manufactured by a plurality of steps of thermocompression bonding. For example, a metal-clad laminate 11 is manufactured by a step of obtaining a laminated film by heat-pressing a thermosetting polyimide film 121 and a thermoplastic resin film 131, and a step of heat-pressing the laminated film and a metal foil 113. You may.

・上記金属張積層板11において、第1熱融着樹脂層31aと第1金属層13aとからなる積層構造、及び第2熱融着樹脂層31bと第2金属層13bとからなる積層構造のいずれか一方の積層構造を省略してもよい。すなわち、金属張積層板は、熱硬化性ポリイミド層及び熱融着樹脂層の二層構造の絶縁層を有し、その絶縁層の片面に積層された金属層を有する片面金属張積層板であってもよい。片面金属張積層板の場合、絶縁層の厚さは、5μm以上であることが好ましく、より好ましくは10μm以上であり、さらに好ましくは、12.5μm以上である。片面金属張積層板の場合、絶縁層の厚さは、例えば、フレキシブル性をより高めるという観点から、200μm以下であることが好ましく、150μm以下であることがより好ましい。 In the metal-clad laminate 11, a laminated structure composed of a first heat-sealed resin layer 31a and a first metal layer 13a, and a laminated structure composed of a second heat-sealed resin layer 31b and a second metal layer 13b. Either one of the laminated structures may be omitted. That is, the metal-clad laminate has an insulating layer having a two-layer structure of a thermosetting polyimide layer and a thermosetting resin layer, and is a single-sided metal-clad laminate having a metal layer laminated on one side of the insulating layer. You may. In the case of a single-sided metal-clad laminate, the thickness of the insulating layer is preferably 5 μm or more, more preferably 10 μm or more, still more preferably 12.5 μm or more. In the case of a single-sided metal-clad laminate, the thickness of the insulating layer is preferably 200 μm or less, more preferably 150 μm or less, for example, from the viewpoint of further enhancing flexibility.

次に、実施例及び比較例を説明する。
(実施例1)
実施例1では、絶縁層の両面に金属層を積層した金属張積層板を製造した。絶縁層の熱硬化性ポリイミド層は、熱硬化性ポリイミドフィルム(宇部興産株式会社製、商品名:ユーピレックス-SGA)の両面に放電量155W・min/mの条件でコロナ放電処理を施したものを用いて形成した。絶縁層の第1熱融着樹脂層及び第2熱融着樹脂層は、いずれもフッ素系樹脂フィルム(AGC株式会社製、商品名:EA-2000、融点:298℃)を用いて形成した。金属層は、銅箔(三井金属鉱業株式会社製、商品名:TQ-M4-VSP)を用いて形成した。フィルム及び銅箔を熱圧着する工程には、ダブルベルトプレス装置を用いた。各層の物性及び熱圧着の条件を表1に示す。
Next, Examples and Comparative Examples will be described.
(Example 1)
In Example 1, a metal-clad laminate in which metal layers were laminated on both sides of the insulating layer was manufactured. The thermosetting polyimide layer of the insulating layer is a thermosetting polyimide film (manufactured by Ube Kosan Co., Ltd., trade name: UPIREX-SGA) on which both sides are subjected to corona discharge treatment under the condition of a discharge amount of 155 W · min / m 2 . Was formed using. Both the first heat-fused resin layer and the second heat-fused resin layer of the insulating layer were formed by using a fluorine-based resin film (manufactured by AGC Inc., trade name: EA-2000, melting point: 298 ° C.). The metal layer was formed by using a copper foil (manufactured by Mitsui Mining & Smelting Co., Ltd., trade name: TQ-M4-VSP). A double belt press device was used in the process of thermocompression bonding the film and the copper foil. Table 1 shows the physical characteristics of each layer and the conditions of thermocompression bonding.

表1に示される熱硬化性ポリイミド層及び熱融着樹脂層の吸水率は、JIS K7209:2000(ASTM D570)に準じて、各層を形成するフィルムを23℃の水中に24時間浸漬後の重量変化率の測定値から求めた値である。 The water absorption rates of the thermosetting polyimide layer and the thermosetting resin layer shown in Table 1 are based on JIS K7209: 2000 (ASTM D570), and the weight of the film forming each layer after being immersed in water at 23 ° C. for 24 hours. It is a value obtained from the measured value of the rate of change.

(実施例2)
実施例2では、実施例1と同様に、絶縁層の両面に金属層を積層した金属張積層板を製造した。実施例2の熱硬化性ポリイミド層は、実施例1とは異なる熱硬化性ポリイミドフィルム(宇部興産株式会社製、商品名:ユーピレックス-S)の両面に放電量520W・min/mの条件で真空プラズマ放電処理を施したものを用いて形成した。実施例2の第1熱融着樹脂層及び第2熱融着樹脂層は、実施例1とは厚さの異なるフッ素系樹脂フィルム(AGC株式会社製、商品名:EA-2000、融点:298℃)を用いて形成した。実施例2の金属層は、実施例1と同じ銅箔を用いて形成した。フィルム及び銅箔を熱圧着する工程には、実施例1と同じダブルベルトプレス装置を用いた。各層の物性及び熱圧着の条件を表1に示す。
(Example 2)
In Example 2, similarly to Example 1, a metal-clad laminate in which metal layers were laminated on both sides of the insulating layer was manufactured. The thermosetting polyimide layer of Example 2 is a thermosetting polyimide film (manufactured by Ube Kosan Co., Ltd., trade name: UPIREX-S) different from that of Example 1 under the condition of a discharge amount of 520 W · min / m 2 on both sides. It was formed by using a vacuum plasma discharge treatment. The first heat-fused resin layer and the second heat-fused resin layer of Example 2 are fluororesin films having different thicknesses from those of Example 1 (manufactured by AGC Inc., trade name: EA-2000, melting point: 298). ℃) was formed. The metal layer of Example 2 was formed by using the same copper foil as that of Example 1. In the step of thermocompression bonding the film and the copper foil, the same double belt press device as in Example 1 was used. Table 1 shows the physical characteristics of each layer and the conditions of thermocompression bonding.

(実施例3)
実施例3では、実施例1と同様に、絶縁層の両面に金属層を積層した金属張積層板を製造した。実施例3の熱硬化性ポリイミド層は、実施例1とは異なる熱硬化性ポリイミドフィルム(宇部興産株式会社製、商品名:ユーピレックス-S)の両面に放電量520W・min/mの条件で真空プラズマ放電処理を施したものを用いて形成した。実施例3の第1熱融着樹脂層及び第2熱融着樹脂層は、実施例1とは厚さの異なるフッ素系樹脂フィルム(AGC株式会社製、商品名:EA-2000、融点:298℃)を用いて形成した。実施例3では、金属層を実施例1の銅箔とは十点平均粗さ(Rzjis)の異なる銅箔を用いて形成した。フィルム及び銅箔を熱圧着する工程には、実施例1と同じダブルベルトプレス装置を用いた。各層の物性及び熱圧着の条件を表1に示す。
(Example 3)
In Example 3, similarly to Example 1, a metal-clad laminate in which metal layers were laminated on both sides of the insulating layer was manufactured. The thermosetting polyimide layer of Example 3 is a thermosetting polyimide film (manufactured by Ube Kosan Co., Ltd., trade name: UPIREX-S) different from that of Example 1 under the condition of a discharge amount of 520 W · min / m 2 on both sides. It was formed by using a vacuum plasma discharge treatment. The first heat-fused resin layer and the second heat-fused resin layer of Example 3 are fluororesin films having different thicknesses from those of Example 1 (manufactured by AGC Inc., trade name: EA-2000, melting point: 298). ℃) was formed. In Example 3, the metal layer was formed by using a copper foil having a ten-point average roughness (Rzjis) different from that of the copper foil of Example 1. In the step of thermocompression bonding the film and the copper foil, the same double belt press device as in Example 1 was used. Table 1 shows the physical characteristics of each layer and the conditions of thermocompression bonding.

(比較例1)
比較例1では、熱融着樹脂層を省略し、熱硬化性ポリイミド層の両面に金属層を積層した金属張積層板を製造した。比較例1の熱硬化性ポリイミド層は、実施例1の熱硬化性ポリイミドフィルムとは、吸水率等が異なる熱硬化性ポリイミドフィルム(宇部興産株式会社製、商品名:ユーピレックス-VT)を用いて形成した。比較例3の金属箔は、実施例1と同じ銅箔を用いて形成した。フィルム及び銅箔を熱圧着する工程には、実施例1と同じダブルベルトプレス装置を用いた。各層の物性及び熱圧着の条件を表1に示す。
(Comparative Example 1)
In Comparative Example 1, the thermosetting resin layer was omitted, and a metal-clad laminate in which a metal layer was laminated on both sides of the thermosetting polyimide layer was manufactured. The thermosetting polyimide layer of Comparative Example 1 uses a thermosetting polyimide film (manufactured by Ube Kosan Co., Ltd., trade name: Upirex-VT) having a different water absorption rate and the like from the thermosetting polyimide film of Example 1. Formed. The metal foil of Comparative Example 3 was formed by using the same copper foil as that of Example 1. In the step of thermocompression bonding the film and the copper foil, the same double belt press device as in Example 1 was used. Table 1 shows the physical characteristics of each layer and the conditions of thermocompression bonding.

(比較例2)
比較例2では、熱硬化性ポリイミドフィルムを省略し、熱融着樹脂層の両面に金属層を積層した金属張積層板を製造した。比較例2の熱融着樹脂層は、実施例1のフッ素系樹脂フィルムとは厚さが異なるフッ素系樹脂フィルム(AGC株式会社製、商品名:EA-2000、融点:298℃)を用いて形成した。比較例2の金属層は、実施例1と同じ銅箔を用いて形成した。フィルム及び銅箔を熱圧着する工程には、実施例1と同じダブルベルトプレス装置を用いて行った。各層の物性及び熱圧着の条件を表1に示す。
(Comparative Example 2)
In Comparative Example 2, the thermosetting polyimide film was omitted, and a metal-clad laminate in which a metal layer was laminated on both sides of the thermosetting resin layer was manufactured. For the heat-sealed resin layer of Comparative Example 2, a fluorine-based resin film (manufactured by AGC Inc., trade name: EA-2000, melting point: 298 ° C.) having a thickness different from that of the fluorine-based resin film of Example 1 was used. Formed. The metal layer of Comparative Example 2 was formed by using the same copper foil as in Example 1. The step of thermocompression bonding the film and the copper foil was performed using the same double belt press device as in Example 1. Table 1 shows the physical characteristics of each layer and the conditions of thermocompression bonding.

<剥離強度>
各例で得られた金属張積層板を幅寸法3mmで切断することでサンプルを作製し、JIS C6471に規定される“方法A”(90°方向引きはがし方法)にて、金属層の剥離強度を測定した。金属層の剥離強度の値が0.6N/mm以上の場合を良好(○)とし、0.6N/mm未満の場合を不良(×)と判定した。その結果を表1中の“金属層の剥離強度(初期)”欄に示す。
<Peeling strength>
A sample is prepared by cutting the metal-clad laminate obtained in each example with a width dimension of 3 mm, and the peel strength of the metal layer is obtained by "Method A" (90 ° direction peeling method) specified in JIS C6471. Was measured. When the value of the peel strength of the metal layer was 0.6 N / mm or more, it was judged as good (◯), and when it was less than 0.6 N / mm, it was judged as defective (×). The results are shown in the "Peeling strength of metal layer (initial)" column in Table 1.

また、各例で得られた金属張積層板を幅寸法3mmで切断することでサンプルを作製した後、サンプルのヒートサイクル試験を上述した条件で行った。
ヒートサイクル試験後のサンプルの剥離強度を測定し、上記初期の剥離強度を100%としたときの剥離強度の保持率を算出した。剥離強度の保持率が80%以上の場合、良好(○)と判定し、剥離強度の保持率が80%未満の場合、不良(×)と判定した。その結果を表1中の“金属層の剥離強度(ヒートサイクル試験後)”欄に示す。
Further, after preparing a sample by cutting the metal-clad laminate obtained in each example with a width dimension of 3 mm, a heat cycle test of the sample was performed under the above-mentioned conditions.
The peel strength of the sample after the heat cycle test was measured, and the retention rate of the peel strength when the initial peel strength was 100% was calculated. When the retention rate of the peel strength was 80% or more, it was judged to be good (◯), and when the retention rate of the peel strength was less than 80%, it was judged to be defective (×). The results are shown in the "Peeling strength of metal layer (after heat cycle test)" column in Table 1.

<寸法変化率>
各例の金属張積層板を幅方向の中央と幅方向の両端の3ピースに分断し、各ピースを、MD:200mm、TD:160mmの寸法で切断することで、サンプルを準備した。各サンプルに電動ドリル又はパンチで複数の1mmφの穴(標点)を等間隔となるように形成した。標点の数は、合計16点とし、標点間の距離MD5点・TD5点とした。
<Dimensional change rate>
A sample was prepared by dividing the metal-clad laminate of each example into three pieces, the center in the width direction and both ends in the width direction, and cutting each piece to the dimensions of MD: 200 mm and TD: 160 mm. A plurality of 1 mmφ holes (mark points) were formed in each sample with an electric drill or a punch so as to be evenly spaced. The total number of reference points was 16, and the distance between the reference points was MD5 and TD5.

JIS C6471に準じて、MD方向の標点の5箇所、TD方向の標点の5箇所の距離を測定し、寸法変化率を測定した。
寸法変化率の測定は、金属層のエッチング後と150℃と250℃の加熱処理後に行い、以下の判定基準により判定した。
According to JIS C6471, the distances of 5 points in the MD direction and 5 points in the TD direction were measured, and the dimensional change rate was measured.
The dimensional change rate was measured after etching the metal layer and after heat treatment at 150 ° C. and 250 ° C., and judged according to the following criteria.

エッチング後の寸法変化率は、±0.10%以内を良好(○)、±0.10%の範囲外の場合を不良(×)と判定した。その結果を表1中の“寸法変化率(エッチング後)”欄に示す。 The dimensional change rate after etching was determined to be good (◯) within ± 0.10%, and defective (×) when it was outside the range of ± 0.10%. The results are shown in the "Dimensional change rate (after etching)" column in Table 1.

150℃で加熱後の寸法変化率は、±0.10%以内を良好(○)、±0.10%の範囲外の場合を不良(×)と判定した。その結果を表1中の“寸法変化率(150℃加熱後後)”欄に示す。 The dimensional change rate after heating at 150 ° C. was judged to be good (◯) when it was within ± 0.10%, and defective (×) when it was outside the range of ± 0.10%. The results are shown in the "Dimensional change rate (after heating at 150 ° C.)" column in Table 1.

250℃で加熱後の寸法変化率は、±0.15%以内を良好(○)、±0.15%の範囲外の場合を不良(×)と判定した。その結果を表1中の“寸法変化率(250℃加熱後後)”欄に示す。 The dimensional change rate after heating at 250 ° C. was judged to be good (◯) when it was within ± 0.15%, and defective (×) when it was outside the range of ± 0.15%. The results are shown in the "Dimensional change rate (after heating at 250 ° C.)" column in Table 1.

<半田耐熱性試験>
各例の金属張積層板について、TD方向で異なる位置のサンプルを2枚準備し、JIS C6471に準じて半田耐熱性試験を行った。まず、各サンプルを105℃にて60分以上乾燥した後、直ちに300℃の半田浴に60秒浸した。次に、サンプルを標準状態で1時間放置した後、サンプルの両面を観察し、発泡、色むら等の異常の有無を確認した。サンプルに異常がないものを良好(○)、サンプルに異常があるものを不良(×)と判定した。その結果を表1中の“半田耐熱性試験”欄に示す。
<Solder heat resistance test>
For the metal-clad laminates of each example, two samples at different positions in the TD direction were prepared, and a solder heat resistance test was performed according to JIS C6471. First, each sample was dried at 105 ° C. for 60 minutes or more, and then immediately immersed in a solder bath at 300 ° C. for 60 seconds. Next, after leaving the sample in a standard state for 1 hour, both sides of the sample were observed to confirm the presence or absence of abnormalities such as foaming and color unevenness. Those with no abnormality in the sample were judged to be good (◯), and those with abnormalities in the sample were judged to be defective (×). The results are shown in the "Solder heat resistance test" column in Table 1.

<高周波の伝送特性>
各例の金属張積層板における金属層をエッチングすることにより回路長さ100mm、インピーダンス50Ωのマイクロストリップ線路を形成したサンプルを準備した。このサンプルについて、ネットワーク・アナライザ(キーサイトテクノロジー社製、商品名:E8363B)にて40GHzの挿入損失(S21)を測定した。
<High frequency transmission characteristics>
A sample was prepared in which a microstrip line having a circuit length of 100 mm and an impedance of 50 Ω was formed by etching the metal layer in the metal-clad laminate of each example. For this sample, an insertion loss (S21) of 40 GHz was measured with a network analyzer (manufactured by Keysight Technology, trade name: E8633B).

挿入損失(S21)の絶対値が0.4dB/cm未満の場合を高周波の伝送特性が良好(○)、0.4dB/cm以上、0.5dB/cm未満を高周波の伝送特性がやや劣る(△)、0.5dB/cm以上の場合を高周波の伝送特性が劣る(×)と判定した。その結果を表1中の“高周波の伝送特性”欄に示す。 When the absolute value of the insertion loss (S21) is less than 0.4 dB / cm, the high frequency transmission characteristics are good (◯), and when it is 0.4 dB / cm or more and less than 0.5 dB / cm, the high frequency transmission characteristics are slightly inferior (◯). When it was 0.5 dB / cm or more, it was judged that the high frequency transmission characteristic was inferior (×). The results are shown in the "High frequency transmission characteristics" column in Table 1.

Figure 2022053025000002
表1に示すように、実施例1~3では、ヒートサイクル試験後の金属層の剥離強度について良好な評価結果が得られることが分かる。また、実施例1~3では、寸法変化率についても良好な評価結果が得られることが分かる。
Figure 2022053025000002
As shown in Table 1, it can be seen that in Examples 1 to 3, good evaluation results can be obtained for the peel strength of the metal layer after the heat cycle test. Further, in Examples 1 to 3, it can be seen that good evaluation results can be obtained with respect to the dimensional change rate.

実施例1,2では、平滑性の高い主面を有する金属箔を用いて金属層を形成しているため、高周波の伝送特性についても、良好な評価結果が得られることが分かる。
一方、比較例1に示すように、熱融着樹脂層を省略した場合、ヒートサイクル試験後の剥離強度について良好な評価結果が得られないことが分かる。また、比較例2に示すように、熱硬化性ポリイミド層を省略した場合、得られる金属張積層板の反りが大きく、剥離強度等の評価ができなかった。
In Examples 1 and 2, since the metal layer is formed by using a metal foil having a main surface having high smoothness, it can be seen that good evaluation results can be obtained also for high frequency transmission characteristics.
On the other hand, as shown in Comparative Example 1, it can be seen that when the heat-sealed resin layer is omitted, good evaluation results cannot be obtained for the peel strength after the heat cycle test. Further, as shown in Comparative Example 2, when the thermosetting polyimide layer was omitted, the obtained metal-clad laminate had a large warp, and the peel strength and the like could not be evaluated.

11…金属張積層板
12…絶縁層
13…金属層
21…熱硬化性ポリイミド層
31…熱融着樹脂層
111…積層体
113…金属箔
121…熱硬化性ポリイミドフィルム
131…熱可塑性樹脂フィルム
11 ... Metal-clad laminate 12 ... Insulation layer 13 ... Metal layer 21 ... Thermosetting polyimide layer 31 ... Heat-fused resin layer 111 ... Laminated 113 ... Metal leaf 121 ... Thermosetting polyimide film 131 ... Thermoplastic resin film

Claims (8)

絶縁層と、前記絶縁層の片面又は両面に積層される金属層とを備える金属張積層板であって、
前記絶縁層は、熱硬化性ポリイミド層と、前記熱硬化性ポリイミド層と前記金属層との間に設けられる熱融着樹脂層とを備え、
前記熱融着樹脂層の吸水率は、熱硬化性ポリイミド層の吸水率よりも低い、金属張積層板。
A metal-clad laminate comprising an insulating layer and a metal layer laminated on one or both sides of the insulating layer.
The insulating layer includes a thermosetting polyimide layer and a thermosetting resin layer provided between the thermosetting polyimide layer and the metal layer.
A metal-clad laminate in which the water absorption rate of the thermosetting resin layer is lower than the water absorption rate of the thermosetting polyimide layer.
前記熱融着樹脂層は、0.1%以下の吸水率を有する、請求項1に記載の金属張積層板。 The metal-clad laminate according to claim 1, wherein the heat-sealed resin layer has a water absorption rate of 0.1% or less. 前記熱融着樹脂層は、280℃以上の融点を有する、請求項1又は請求項2に記載の金属張積層板。 The metal-clad laminate according to claim 1 or 2, wherein the heat-sealed resin layer has a melting point of 280 ° C. or higher. 前記金属層は、前記熱融着樹脂層と接着される主面の十点平均粗さ(Rzjis)が2.0以下の金属箔から構成される、請求項1から請求項3のいずれか一項に記載の金属張積層板。 Any one of claims 1 to 3, wherein the metal layer is composed of a metal foil having a ten-point average roughness (Rzjis) of 2.0 or less on the main surface to be adhered to the heat-sealed resin layer. The metal-clad laminate described in the section. 前記熱硬化性ポリイミド層の線膨張係数は、10ppm/K以上、26ppm/K以下の範囲内である、請求項1から請求項4のいずれか一項に記載の金属張積層板。 The metal-clad laminate according to any one of claims 1 to 4, wherein the coefficient of linear expansion of the thermosetting polyimide layer is in the range of 10 ppm / K or more and 26 ppm / K or less. 前記熱融着樹脂層は、フッ素系樹脂から構成される、請求項1から請求項5のいずれか一項に記載の金属張積層板。 The metal-clad laminate according to any one of claims 1 to 5, wherein the heat-sealed resin layer is made of a fluororesin. 温度範囲が-50℃~150℃であり、保持時間が0分であり、昇温及び降温の繰り返し数が3000回の条件のヒートサイクル試験を行った後に測定した前記金属層の剥離強度は、前記ヒートサイクル試験を行う前の前記金属層の剥離強度を100%としたとき、80%以上である、請求項1から請求項6のいずれか一項に記載の金属張積層板。 The peel strength of the metal layer measured after performing a heat cycle test under the conditions that the temperature range is -50 ° C to 150 ° C, the holding time is 0 minutes, and the number of repeated temperature raising and lowering is 3000 times is determined. The metal-clad laminate according to any one of claims 1 to 6, wherein the peel strength of the metal layer before the heat cycle test is 80% or more. 絶縁層と、前記絶縁層の片面又は両面に積層される金属層とを備え、
前記絶縁層は、熱硬化性ポリイミド層と、前記熱硬化性ポリイミド層と前記金属層との間に設けられる熱融着樹脂層とを備え、前記熱融着樹脂層の吸水率は、熱硬化性ポリイミド層の吸水率よりも低い金属張積層板を製造する金属張積層板の製造方法であって、
前記熱硬化性ポリイミド層となる熱硬化性ポリイミドフィルムと、前記金属層となる金属箔との間に、前記熱融着樹脂層となる熱可塑性樹脂フィルムを配置した積層体を熱圧着する工程を備える、金属張積層板の製造方法。
The insulating layer is provided with a metal layer laminated on one side or both sides of the insulating layer.
The insulating layer includes a thermosetting polyimide layer and a thermosetting resin layer provided between the thermosetting polyimide layer and the metal layer, and the water absorption rate of the thermosetting resin layer is thermosetting. A method for manufacturing a metal-clad laminate having a water absorption rate lower than that of the sex polyimide layer.
A step of thermally pressure-bonding a laminate in which a thermoplastic resin film to be a thermosetting resin layer is arranged between a thermosetting polyimide film to be a thermosetting polyimide layer and a metal foil to be a metal layer. A method for manufacturing a metal-clad laminate.
JP2020159600A 2020-09-24 2020-09-24 Metal-clad laminate and manufacturing method thereof Pending JP2022053025A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020159600A JP2022053025A (en) 2020-09-24 2020-09-24 Metal-clad laminate and manufacturing method thereof
TW110134667A TW202215918A (en) 2020-09-24 2021-09-16 Metal-clad laminate and method for manufacturing the same
PCT/JP2021/034374 WO2022065250A1 (en) 2020-09-24 2021-09-17 Metal-clad laminate and method for producing same
CN202180064712.8A CN116234700A (en) 2020-09-24 2021-09-17 Metal-clad laminate and method for producing same
KR1020237009776A KR20230074140A (en) 2020-09-24 2021-09-17 Metal-clad laminate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020159600A JP2022053025A (en) 2020-09-24 2020-09-24 Metal-clad laminate and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2022053025A true JP2022053025A (en) 2022-04-05

Family

ID=80845338

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020159600A Pending JP2022053025A (en) 2020-09-24 2020-09-24 Metal-clad laminate and manufacturing method thereof

Country Status (5)

Country Link
JP (1) JP2022053025A (en)
KR (1) KR20230074140A (en)
CN (1) CN116234700A (en)
TW (1) TW202215918A (en)
WO (1) WO2022065250A1 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4029732B2 (en) * 2003-01-17 2008-01-09 宇部興産株式会社 Low dielectric constant polyimide substrate manufacturing method
JP2015122448A (en) * 2013-12-24 2015-07-02 住友電工プリントサーキット株式会社 Fluororesin base material, printed wiring board, biological information measurement device, and artificial organ
JP6603032B2 (en) 2015-03-30 2019-11-06 日鉄ケミカル&マテリアル株式会社 Copper-clad laminate and circuit board
WO2019008876A1 (en) * 2017-07-07 2019-01-10 Agc株式会社 Method for manufacturing laminated body, laminated body, and method for manufacturing flexible printed board

Also Published As

Publication number Publication date
WO2022065250A1 (en) 2022-03-31
KR20230074140A (en) 2023-05-26
TW202215918A (en) 2022-04-16
CN116234700A (en) 2023-06-06

Similar Documents

Publication Publication Date Title
JP6871910B2 (en) Manufacturing method of metal-clad laminate and metal-clad laminate
JP4866853B2 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
WO2012161162A1 (en) High-frequency circuit substrate
US7381901B2 (en) Hinge board and method for producing the same
JP6706013B1 (en) Copper clad laminate and method for manufacturing copper clad laminate
JP2009172996A (en) Flexible copper clad laminated board and its manufacturing method
JP5611355B2 (en) Metal-clad laminate
JP2014233891A (en) Plated laminate and method for manufacturing the same
US20160113109A1 (en) Radio-frequency printed circuit board and wiring material
JP2015008286A (en) Printed wiring board for high frequency use
WO2022065250A1 (en) Metal-clad laminate and method for producing same
JP4129627B2 (en) Laminated film for build-up wiring board and build-up wiring board
WO2022065251A1 (en) Metal-clad laminated board and method for manufacturing same
JP2020104517A (en) Method for manufacturing flexible metal-clad laminated plate
JP2023127191A (en) Metal-clad laminate and method for manufacturing the same
CN111757599B (en) Copper foil for flexible printed board
JP2012244056A (en) Method for manufacturing fluororesin substrate
JP2010258162A (en) Method of manufacturing flexible laminated board
JP7482104B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
WO2023145135A1 (en) Laminated body and metal-clad laminate having laminated body
JP2007080938A (en) Multilayer printed wiring board
JP2015012197A (en) Flexible printed wiring board
JP2016187893A (en) Method for producing metal foil laminated film and circuit board having metal foil laminated film produced by the same
JP2013256053A (en) Metal resin laminate and method of manufacturing the same
JP2022039457A (en) Circuit board and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230621