JP2014233891A - Plated laminate and method for manufacturing the same - Google Patents

Plated laminate and method for manufacturing the same Download PDF

Info

Publication number
JP2014233891A
JP2014233891A JP2013116185A JP2013116185A JP2014233891A JP 2014233891 A JP2014233891 A JP 2014233891A JP 2013116185 A JP2013116185 A JP 2013116185A JP 2013116185 A JP2013116185 A JP 2013116185A JP 2014233891 A JP2014233891 A JP 2014233891A
Authority
JP
Japan
Prior art keywords
liquid crystal
plating
film
crystal polymer
polymer film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2013116185A
Other languages
Japanese (ja)
Other versions
JP6119433B2 (en
Inventor
寛人 渡邉
Hiroto Watanabe
寛人 渡邉
裕規 丹波
Hironori Tamba
裕規 丹波
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013116185A priority Critical patent/JP6119433B2/en
Publication of JP2014233891A publication Critical patent/JP2014233891A/en
Application granted granted Critical
Publication of JP6119433B2 publication Critical patent/JP6119433B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

PROBLEM TO BE SOLVED: To provide, by targeting a plated laminate of a liquid crystal polymer film consisting of a fully aromatic polyester and a metallic layer, etc., a plated laminate entailing, while preserving interfacial smoothness, scarce dimensional variations after the etching of the metallic layer and thermal dimensional variations; and a method for manufacturing the same.SOLUTION: The provided plated laminate is a plated laminate obtained by configuring a plating layer on at least one surface of a long liquid crystal polymer film without using an interposing adhesive wherein the long liquid crystal polymer film is a film made of a fully aromatic polyester and extruded from an extrusion mold by using a melt extrusion molding method, wherein the plated laminate exhibits, following an etching operation of partially removing the plating layer, dimensional variation behaviors of shrinking or stretching along length and width directions thereof in a state where ratios of the dimensional variations are being confined to -0.05% to +0.05%, and wherein the plated laminate exhibits, following a 150°C×30 min post-etching heat treatment, dimensional variation ratios confined to a range of -0.1% to +0.1%.

Description

本発明は、全芳香族ポリエステルからなる液晶ポリマーフィルム表面にめっき層を設けためっき積層体とその製造方法に関する。   The present invention relates to a plating laminate in which a plating layer is provided on the surface of a liquid crystal polymer film made of wholly aromatic polyester, and a method for producing the same.

移動体通信をはじめ、携帯用電子機器の小型・軽量化の要求が強くなり、高密度実装に対する期待が一段と強まっている。これに伴いプリント配線基板の多層化、配線ピッチの狭幅化、ビアホールの微細化、ICパッケージの小型多ピン化が進められ、またコンデンサや抵抗の受動素子についても小型化と表面実装化が合わせて進められている。
特に、これらの部品を直接にプリント配線基板などの表面または内部に形成する技術は、高密度実装を達成することができるだけでなく、信頼性の向上にも寄与することから、プリント配線基板の寸法精度、すなわち配線ピッチの精度も要求レベルが高度になり、さらに寸法の熱的安定性も要求されてきている。
The demand for miniaturization and weight reduction of portable electronic devices such as mobile communication has become stronger, and the expectation for high-density mounting has further increased. Along with this, multilayered printed wiring boards, narrowing of wiring pitch, miniaturization of via holes, miniaturization of IC packages and miniaturization of pins have been promoted, and miniaturization and surface mounting of passive elements such as capacitors and resistors have been combined. It is being advanced.
In particular, the technology that directly forms these components on the surface or inside of a printed wiring board can not only achieve high-density mounting, but also contribute to improving reliability. The required level of accuracy, that is, the accuracy of the wiring pitch, has become higher, and further, thermal stability of dimensions has been required.

ところで、全芳香族ポリエステルからなる液晶ポリマーフィルムは、低吸水性、高周波における誘電損失が低いといった電気特性に優れていることから、銅張積層板などプリント配線基板向けの絶縁フィルムへの展開が検討されている。
この液晶ポリマーフィルムを基板とした銅張積層板の製造方法としては、回路を形成する導体に用いられる電解銅箔と液晶ポリマーフィルムを熱圧着(ラミネート)法にて貼り合わせる方法、もしくは液晶ポリマーフィルム上に乾式めっき法(例えば、スパッタリング法、イオンプレーティング法、真空蒸着法など)により液晶ポリマーフィルム上に薄膜の下地金属層を形成し、その上に電気銅めっきにて銅層を形成するメタライジング法の2つが代表的な製造方法として挙げられる。
By the way, liquid crystal polymer films made of wholly aromatic polyesters have excellent electrical properties such as low water absorption and low dielectric loss at high frequencies, so we are considering expanding into insulating films for printed wiring boards such as copper-clad laminates. Has been.
As a method for producing a copper-clad laminate using the liquid crystal polymer film as a substrate, a method of laminating an electrolytic copper foil used for a conductor forming a circuit and a liquid crystal polymer film by a thermocompression bonding (laminate) method, or a liquid crystal polymer film A thin metal film is formed on a liquid crystal polymer film by dry plating (for example, sputtering, ion plating, vacuum deposition, etc.), and a copper layer is formed thereon by electrolytic copper plating. Two of the rising methods are listed as typical manufacturing methods.

メタライジング法については、特許文献1に液晶ポリマー支持基体にNi−Cr合金をスパッタリングした後、銅をスパッタリングし、さらに銅スパッタリング膜の表面に電解メッキ法で銅を成膜する技術が開示されている。なお、液晶ポリマーの様なフィルムを支持基体に用いスパッタリング成膜などの乾式めっき処理を行う場合はスパッタリングフィルムコータを用いることが一般的である。   Regarding the metallizing method, Patent Document 1 discloses a technique in which a Ni—Cr alloy is sputtered on a liquid crystal polymer support base, then copper is sputtered, and copper is formed on the surface of the copper sputtering film by electrolytic plating. Yes. When a film such as a liquid crystal polymer is used as a support substrate and a dry plating process such as sputtering film formation is performed, a sputtering film coater is generally used.

また、熱圧着法に比べてメタライジング法で製造される銅張積層板においては、銅層−液晶ポリマーフィルム界面が平滑である為、高速伝送における伝送損失が低くなる。非特許文献1に界面の表面粗さと伝送損失の関係が示されており、界面が平滑なほど伝送損失が低い結果が得られている。また、特許文献2には熱圧着法に比べてメタライジング法は伝送損失が低いことが報告されている。   Moreover, in the copper clad laminated board manufactured by the metalizing method compared with the thermocompression bonding method, since the copper layer-liquid crystal polymer film interface is smooth, the transmission loss in high-speed transmission becomes low. Non-Patent Document 1 shows the relationship between the surface roughness of the interface and the transmission loss. The smoother the interface, the lower the transmission loss. Patent Document 2 reports that the metalizing method has a lower transmission loss than the thermocompression bonding method.

しかし、液晶ポリマーフィルムは、ポリイミド等の他のプリント配線基板用の樹脂フィルムに比べて長手方向、幅方向の寸法安定性が異なるという寸法異方性の課題がある。この寸法異方性の課題はプリント配線基板では、素子など部品の実装での位置ずれなどの不具合につながる。   However, the liquid crystal polymer film has a problem of dimensional anisotropy that the dimensional stability in the longitudinal direction and the width direction are different from those of other printed wiring board resin films such as polyimide. This problem of dimensional anisotropy leads to problems such as misalignment in mounting components such as elements in printed wiring boards.

そこで、熱圧着法による金属張積層体の製造において、液晶ポリマーフィルムの寸法異方性を改善する方法として、特許文献3に凹凸のついた熱ロールによる熱処理が提案されている。しかし、凹凸のついた熱ロールで熱処理を行うと液晶ポリマーフィルムの表面粗さにも影響することが懸念され、界面の平滑性による伝送損失が低いプリント配線基板を得ることは期待できない。   Therefore, in the production of a metal-clad laminate by a thermocompression bonding method, Patent Document 3 proposes a heat treatment using a heated roll with irregularities as a method for improving the dimensional anisotropy of the liquid crystal polymer film. However, when heat treatment is performed with a heated roll having irregularities, there is concern that the surface roughness of the liquid crystal polymer film may be affected, and it is not expected to obtain a printed wiring board with low transmission loss due to the smoothness of the interface.

特許4341023号公報Japanese Patent No. 4341023 特開2012−140552号公報JP 2012-140552 A 特開2002−331589号公報JP 2002-331589 A

M.M.R.Howlader,et. al,Journal of Materials Science,vol.40(2005)3177−3184.M.M. M.M. R. Howlader, et. al, Journal of Materials Science, vol. 40 (2005) 3177-3184.

このような状況に鑑み、本発明は全芳香族ポリエステルからなる液晶ポリマーフィルムと金属層等のめっき積層体において、界面の平滑性を維持しつつ、金属層のエッチング後の寸法変化および熱的な寸法変化が小さいめっき積層体とその製造方法の提供を目的とする。   In view of such a situation, the present invention provides a liquid crystal polymer film made of wholly aromatic polyester and a plating laminate such as a metal layer, while maintaining the smoothness of the interface, and the dimensional change after etching of the metal layer and thermal An object of the present invention is to provide a plated laminate having a small dimensional change and a method for producing the same.

本発明の第1の発明は、長尺液晶ポリマーフィルムの少なくとも一方の表面に、接着剤を介することなくめっき層を設けためっき積層体であって、その長尺液晶ポリマーフィルムが、溶融押出成型法を用いて押出金型から押し出された全芳香族ポリエステル製フィルムで、めっき積層体のめっき層の一部を、エッチング処理により除去した後のエッチング後めっき積層体が、エッチング処理前のめっき積層体に対して長手方向および幅方向において収縮あるいは伸張する寸法変化挙動を示し、その寸法変化挙動におけるエッチング後めっき積層体の長手方向及び幅方向の寸法変化率が、−0.05%〜+0.05%の範囲で、エッチング後めっき積層体を150℃×30分間熱処理した後の熱処理めっき積層体の長手方向および幅方向の寸法変化率が、−0.1%〜+0.1%の範囲であることを特徴とするめっき積層体である。   A first invention of the present invention is a plating laminate in which a plating layer is provided on at least one surface of a long liquid crystal polymer film without using an adhesive, and the long liquid crystal polymer film is melt-extruded. In the wholly aromatic polyester film extruded from the extrusion mold using the method, the plating laminate after etching after removing a part of the plating layer of the plating laminate by etching treatment is the plating lamination before etching treatment It shows a dimensional change behavior that contracts or expands in the longitudinal direction and the width direction with respect to the body, and the dimensional change rate in the longitudinal direction and the width direction of the post-etch plating laminate in the dimensional change behavior is −0.05% to +0. Dimensions in the longitudinal direction and width direction of the heat-treated plated laminate after heat-treating the plated laminate after etching at 150 ° C. for 30 minutes in the range of 05% Ratio is a plated laminate, which is a range of -0.1% + 0.1%.

本発明の第2の発明は、第1の発明におけるめっき層が金属層であり、第3の発明は、第2の発明におけるめっき層が、長尺液晶ポリマーフィルム側からニッケル、クロム、ニッケルを含む合金又はクロムを含む合金からなる第1金属層を備え、前記第1金属層の表面に銅層の第2金属層を備える構造であることを特徴とするめっき積層体である。   In the second invention of the present invention, the plating layer in the first invention is a metal layer, and in the third invention, the plating layer in the second invention is made of nickel, chromium, nickel from the long liquid crystal polymer film side. A plating laminate comprising a first metal layer made of an alloy containing or an alloy containing chromium, and having a second metal layer of a copper layer on the surface of the first metal layer.

本発明の第4の発明は、液晶ポリマーフィルムの表面に接着剤を介することなく備えられた配線層を有するプリント配線基板であって、第2及び第3の発明に記載のめっき積層体のめっき層を、エッチング処理による配線加工によって配線層としたことを特徴とするプリント配線基板である。   A fourth invention of the present invention is a printed wiring board having a wiring layer provided on the surface of a liquid crystal polymer film without an adhesive, and plating the plating laminate according to the second and third inventions The printed wiring board is characterized in that the layer is formed into a wiring layer by wiring processing by an etching process.

本発明の第5の発明は、溶融押出成型法を用いてフィルム化された全芳香族ポリエステルからなる液晶ポリマーフィルムを、長手方向に張力80〜4000kN/mを印加しつつ、液晶ポリマーフィルムの温度を120℃以上、動的粘弾性装置でのMD方向の引っ張りモードにより測定したその液晶ポリマーフィルムのα緩和温度より20℃低い温度以下の温度範囲での熱処理後、熱処理された液晶ポリエステルフィルムの少なくとも片面に乾式めっき法を用いて成膜処理を行うことを特徴とするめっき積層体の製造方法である。 According to a fifth aspect of the present invention, a liquid crystal polymer film comprising a wholly aromatic polyester filmed using a melt extrusion molding method is applied to a liquid crystal polymer film while applying a tension of 80 to 4000 kN / m 2 in the longitudinal direction. The temperature of the liquid crystal polyester film after the heat treatment in a temperature range of 120 ° C. or higher and 20 ° C. lower than the α relaxation temperature of the liquid crystal polymer film measured by a tensile mode in the MD direction with a dynamic viscoelastic device. It is a method for producing a plated laminate, wherein film formation is performed on at least one surface using a dry plating method.

本発明の第6の発明は、第5の発明における熱処理から成膜処理までの処理工程を減圧雰囲気下で行い、且つ、その熱処理と成膜処理との処理の間に表面改質処理を行うことを特徴とするめっき積層体の製造方法である。   In a sixth aspect of the present invention, the processing steps from the heat treatment to the film formation process in the fifth aspect are performed in a reduced-pressure atmosphere, and a surface modification process is performed between the heat treatment and the film formation process. It is a manufacturing method of the plating laminated body characterized by the above-mentioned.

本発明の第7の発明は、第5及び第6の発明における成膜処理が、スパッタリング成膜処理であり、その成膜処理により形成される成膜が金属層であることを特徴とするめっき積層体の製造方法である。   The seventh invention of the present invention is a plating characterized in that the film forming process in the fifth and sixth inventions is a sputtering film forming process, and the film formed by the film forming process is a metal layer. It is a manufacturing method of a laminated body.

本発明によれば、全芳香族型ポリエステルからなる液晶ポリマーフィルムと金属のめっき層からなり、寸法変化率の小さいめっき積層体およびその製造方法を提供でき、よって高性能なプリント配線板を得ることを可能とし、工業上顕著な効果を奏するものである。   ADVANTAGE OF THE INVENTION According to this invention, it can provide the plating laminated body which consists of the liquid crystal polymer film which consists of a wholly aromatic type polyester, and a metal plating layer, and has a small dimensional change rate, and its manufacturing method, Therefore Obtaining a high performance printed wiring board And has a significant industrial effect.

本発明におけるめっき積層体は、全芳香族ポリエステルを主成分とするサーモトロピック液晶ポリマーフィルムの片面または両面にめっき層が形成されているもので、このめっき層の表面が銅で形成された銅層からなる銅張積層板を例に本発明にかかるめっき積層体を説明する。
この銅張積層板はフィルムの表面に接着剤を介することなくスパッタリング法で成膜される下地層となる2nm〜30nmの膜厚の第1の金属層、および第2の金属層としてスパッタリング法または電解めっき法、或いはその両者により形成される0.1〜20μmの膜厚の銅層とから構成されている。
The plated laminate in the present invention has a plated layer formed on one side or both sides of a thermotropic liquid crystal polymer film containing a wholly aromatic polyester as a main component, and a copper layer in which the surface of the plated layer is formed of copper. A plated laminate according to the present invention will be described by taking a copper clad laminate made of as an example.
The copper-clad laminate is a first metal layer having a thickness of 2 nm to 30 nm that serves as an underlayer formed by sputtering on the surface of the film without using an adhesive, and a second metal layer formed by sputtering or It is comprised from the electroplating method or the copper layer with a film thickness of 0.1-20 micrometers formed of both.

本発明におけるめっき積層体に使用する液晶ポリマー基板の主成分である全芳香族ポリエステルは、電気・電子部品として使用する際に必須である半田耐熱性を考慮し、230℃以上の融点を持つ、下記に例示する「共重合体化合物(I)」、「共重合体化合物(II)」から選ばれるポリエステルを使用することができる。   The wholly aromatic polyester, which is the main component of the liquid crystal polymer substrate used in the plating laminate of the present invention, has a melting point of 230 ° C. or higher in consideration of solder heat resistance, which is essential when used as an electric / electronic component. A polyester selected from “copolymer compound (I)” and “copolymer compound (II)” exemplified below can be used.

Figure 2014233891
Figure 2014233891

Figure 2014233891
Figure 2014233891

本発明が使用する全芳香族型ポリエステルを主成分とする液晶ポリマーフィルムには、必要に応じ、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリアリレート、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリカーボネート等の重合体;滑剤、酸化防止剤等の添加剤;無機粒子、繊維等の充填材などを配合することができる。   For the liquid crystal polymer film mainly composed of wholly aromatic polyester used in the present invention, polyether ether ketone, polyether sulfone, polyimide, polyether imide, polyamide, polyamide imide, polyarylate, polytetra Polymers such as fluoroethylene, polyvinylidene fluoride and polycarbonate; additives such as lubricants and antioxidants; fillers such as inorganic particles and fibers can be blended.

本発明におけるめっき積層体に使用する全芳香族型ポリエステルを主成分とする液晶ポリマーフィルムの厚みは、特に限定されるものではないが、10μm以上であることが好ましい。10μm未満の場合、フィルムの厚みが薄すぎる為に、金属層を形成するめっき搬送時にシワが発生しやすく、生産性が低下する。   The thickness of the liquid crystal polymer film mainly composed of wholly aromatic polyester used in the plating laminate in the present invention is not particularly limited, but is preferably 10 μm or more. When the thickness is less than 10 μm, the film is too thin, so that wrinkles are easily generated during plating conveyance for forming the metal layer, and productivity is lowered.

本発明におけるめっき積層体に使用する全芳香族ポリエステルを主成分とする液晶ポリマーフィルムは、その両面の二乗平均粗さ(RMS)及び算術平均粗さ(Ra)が50nm未満であることが必要である。   The liquid crystal polymer film mainly composed of wholly aromatic polyester used in the plated laminate of the present invention must have a root mean square roughness (RMS) and an arithmetic mean roughness (Ra) of less than 50 nm. is there.

本発明におけるめっき積層体に使用する液晶ポリマーフィルムは、押出金型を用いたTダイ法、インフレーション法等の押出成形方法などの公知の方法によって製造されたものが良く、熱変形温度や融点に代表される耐熱性を高めたる目的で熱処理を施された液晶ポリマーフィルムを使用してもよい。
特に、本発明ではTダイ法でフィルム化された液晶ポリマーに対して良好な効果を発揮する。
The liquid crystal polymer film used for the plating laminate in the present invention is preferably produced by a known method such as an extrusion method such as a T-die method or an inflation method using an extrusion die, and has a heat deformation temperature and a melting point. You may use the liquid crystal polymer film heat-processed for the purpose of improving the heat resistance represented.
In particular, the present invention exhibits a good effect on a liquid crystal polymer formed into a film by the T-die method.

ところで、液晶ポリマーフィルムは、液晶ポリマー分子の配向が強いためにフィルム化が難しかった。具体的には、液晶ポリマーフィルムの製法過程では、ポリイミドフィルムの製造過程で行われる2軸延伸が難しく、その結果、得られたフィルムは、長手方向と幅方向で寸法安定性に差がある異方性を有していた。   By the way, the liquid crystal polymer film is difficult to be formed into a film due to the strong alignment of the liquid crystal polymer molecules. Specifically, in the process of producing a liquid crystal polymer film, biaxial stretching performed in the process of producing a polyimide film is difficult, and as a result, the obtained film has a difference in dimensional stability between the longitudinal direction and the width direction. It had a direction.

この液晶ポリマーフィルムの製造方法は、溶剤に溶解した原料から溶剤を揮発させる溶剤キャスト法、Tダイより押し出してフィルム化するTダイ法と、インフレーションダイから原料を押し出し気体注入し風船のように膨らませてフィルム化するインフレーション法が知られている。   This liquid crystal polymer film is produced by a solvent casting method in which the solvent is volatilized from the raw material dissolved in the solvent, a T-die method in which the solvent is extruded from a T-die, and a raw material is extruded from an inflation die and injected into a gas to inflate like a balloon Inflation methods for film formation are known.

溶剤キャスト法は、フィルムの厚みの変動は抑制されるが溶剤が残留するので残留溶剤の問題がある。
Tダイ法は、フィルムの厚みの変動は抑制されるが、ダイの一種のTダイより原料が一方方向に押し出されるため、液晶ポリマー分子が押し出し方向(長手方向)に配向する傾向があり、長手方向と幅方向で収縮または伸張に異方性を備えてしまう問題がある。
また、インフレーション法は、フィルムの厚みの変動が大きい問題と、ダイの一種のインフレーションダイからの押し出されとインフレーション方向によるTダイ法と同様の寸法安定性の異方性の問題がある。
The solvent casting method has a problem of residual solvent because the solvent remains, although fluctuations in the thickness of the film are suppressed.
In the T-die method, fluctuations in film thickness are suppressed, but since the raw material is extruded in one direction from a kind of T-die, the liquid crystal polymer molecules tend to be oriented in the extrusion direction (longitudinal direction). There is a problem of providing anisotropy in shrinkage or extension in the direction and width direction.
Further, the inflation method has a problem that the thickness of the film varies greatly and a problem of anisotropy in dimensional stability similar to the T-die method in which the die is extruded from a kind of inflation die and the inflation direction.

このような従来の製造方法により製造された液晶ポリマーに発生する寸法安定性の異方性は、プリント配線基板で実装した素子の脱離などの不具合につながってしまう。   The anisotropy of dimensional stability generated in the liquid crystal polymer produced by such a conventional production method leads to problems such as detachment of elements mounted on the printed wiring board.

そこで、Tダイ法およびインフレーション法ともに、液晶ポリマーフィルムは、ダイから押し出されて溶融製膜の後に適宜選択される方向への延伸を施し、分子の配向制御を行ってフィルム化されるが、フィルム内部に残留歪みを残している。
従って、液晶ポリマーの分子配向が制御されても、この残留歪が、液晶ポリマーフィルムの長手方向と幅方向の寸法安定性に影響を及ぼすことになる。即ち、残留歪による液晶ポリマーフィルムの寸法安定性は、液晶ポリマー固有の問題である。
なお、インフレーション法でフィルム化された液晶ポリマーは、長手方向および幅方向に延伸をかけやすいので、Tダイ法でフィルム化された液晶ポリマーよりも寸法安定性の異方性が低い。
Therefore, in both the T-die method and the inflation method, the liquid crystal polymer film is extruded from the die and stretched in the direction selected as appropriate after melt film formation, and the film is formed into a film by controlling the molecular orientation. Residual strain is left inside.
Therefore, even if the molecular orientation of the liquid crystal polymer is controlled, this residual strain affects the dimensional stability in the longitudinal and width directions of the liquid crystal polymer film. That is, the dimensional stability of the liquid crystal polymer film due to residual strain is a problem inherent to the liquid crystal polymer.
In addition, since the liquid crystal polymer formed into a film by the inflation method is easily stretched in the longitudinal direction and the width direction, the anisotropy of dimensional stability is lower than that of the liquid crystal polymer formed into a film by the T-die method.

本発明に係るめっき積層体の一例である銅張積層板では、上記の平滑性を有する全芳香族ポリエステルからなる液晶ポリマーフィルムに加熱処理を行い、片面またはその両面に、プラズマ照射等の表面改質処理を行った後にスパッタリング法にて第一金属層を形成し、続いてスパッタリング法により銅層の一部を構成する銅薄膜層を成膜し、さらに前記銅薄膜層の表面に電解銅めっき法により銅層の一部を構成する銅電解めっき層を成膜して、銅薄膜層と銅電解めっき層とで第二金属層を形成する構造を有している。   In the copper clad laminate as an example of the plated laminate according to the present invention, the liquid crystal polymer film composed of the above-described smoothness wholly aromatic polyester is subjected to heat treatment, and surface modification such as plasma irradiation is performed on one side or both sides thereof. After the quality treatment, a first metal layer is formed by a sputtering method, and subsequently a copper thin film layer constituting a part of the copper layer is formed by a sputtering method. Further, electrolytic copper plating is applied to the surface of the copper thin film layer. A copper electrolytic plating layer constituting a part of the copper layer is formed by a method, and the second metal layer is formed by the copper thin film layer and the copper electrolytic plating layer.

液晶ポリマーフィルムは、液晶ポリマー分子が硬直であることに起因し、ポリイミドフィルムが示すような屈曲性が乏しい。ポリイミドフィルム等であれば4000kN/m以上の張力で120℃以上の高温にフィルム温度を上げる加熱乾燥処理を行ってもポリイミド分子が絡み合い張力に対応することができる。
一方、液晶ポリマーフィルムでは、高温で4000kN/m以上の張力を加えると、液晶ポリマー分子は張力が加えられる方向に配向しようとする。そのため液晶ポリマーフィルムを加熱し延伸する際は、支持体で挟持しながら延伸処理を行うことが知られている。
The liquid crystal polymer film has poor flexibility as shown by the polyimide film due to the fact that the liquid crystal polymer molecules are rigid. If it is a polyimide film etc., even if it performs the heat drying process which raises film temperature to 120 degreeC or more with the tension | tensile_strength of 4000 kN / m < 2 > or more, a polyimide molecule can entangle and can respond | correspond to tension | tensile_strength.
On the other hand, in the liquid crystal polymer film, when a tension of 4000 kN / m 2 or more is applied at a high temperature, the liquid crystal polymer molecules tend to be aligned in the direction in which the tension is applied. Therefore, it is known that when the liquid crystal polymer film is heated and stretched, the stretching treatment is performed while being sandwiched by a support.

しかし、本発明のめっき積層体の製造方法では、熱処理と連続して成膜処理を行うことが望ましく、支持体を用いることはできないが、液晶ポリマーフィルムの表面に金属層を設けた積層体である銅張積層板の熱処理では、金属層がめっき層で成膜されていたとしても、金属層が支持体になり、熱処理条件の選択の自由度は高い利点を有する。   However, in the method for producing a plated laminate of the present invention, it is desirable to perform a film forming process continuously with the heat treatment, and a support cannot be used, but a laminate in which a metal layer is provided on the surface of a liquid crystal polymer film. In the heat treatment of a certain copper clad laminate, even if the metal layer is formed as a plating layer, the metal layer becomes a support, and the degree of freedom in selecting the heat treatment conditions is high.

そこで、本発明では、加熱処理の温度を、フィルムの温度が120℃以上、液晶ポリマーフィルムのα緩和温度より20℃低い温度以下、さらに好ましくは、180℃以上、液晶ポリマーフィルムのα緩和温度より40℃低い温度以下とするのが好ましい。
なお、α緩和温度は、液晶ポリマーフィルムの主鎖セグメントのミクロブラウン運動に由来する温度であり、動的粘弾性装置(Dynamic Thermomechanometry:DMA)にて測定した値を用いる。
Therefore, in the present invention, the temperature of the heat treatment is such that the film temperature is 120 ° C. or higher and 20 ° C. or less lower than the α relaxation temperature of the liquid crystal polymer film, more preferably 180 ° C. or higher than the α relaxation temperature of the liquid crystal polymer film. The temperature is preferably 40 ° C. or lower.
The α relaxation temperature is a temperature derived from the micro-Brownian motion of the main chain segment of the liquid crystal polymer film, and a value measured by a dynamic thermoelastic device (DMA) is used.

フィルム温度が120℃より低い場合は、脱水の向上の効果はもとよりフィルム中の歪の除去も不十分となる。一方液晶ポリマーフィルムのα緩和温度より20℃低い温度を超えると熱収縮によりフィルムが変形することがある。これは、液晶ポリマー分子の剛直性によるもので、温度が高くなるにつれてフィルムが柔らかくなると液晶ポリマー分子の絡み合いがさらに弱くなり、張力の方向へ配向しやすくなることに起因する。特に、温度が高い場合、ロールツーロールでフィルムを搬送する場合には、張力がかかり破断することもある。   When the film temperature is lower than 120 ° C., not only the effect of improving dehydration but also the removal of distortion in the film becomes insufficient. On the other hand, if the temperature exceeds 20 ° C. lower than the α relaxation temperature of the liquid crystal polymer film, the film may be deformed by heat shrinkage. This is due to the rigidity of the liquid crystal polymer molecules, and as the film becomes softer as the temperature increases, the entanglement of the liquid crystal polymer molecules becomes weaker and it becomes easier to align in the direction of tension. In particular, when the temperature is high, when a film is conveyed by roll-to-roll, tension may be applied and the film may be broken.

そのため上記理由から、印加する張力は4000kN/m以下、好ましくは2500kN/m以下がよい。また、張力は80kN/m以上が望ましい。張力が弱すぎると、歪の除去に偏りが生じるばかりか加熱中のフィルムが波を打つことがある。
また張力はフィルムの幅や厚みによっても考慮する必要があり、フィルムの幅が狭いほど、フィルムの厚みが薄いほど低くする必要がある。加熱処理時間に特に制限はなく、温度が高くなるにつれて短く設定することが可能である。
For this reason, the tension applied is 4000 kN / m 2 or less, preferably 2500 kN / m 2 or less. The tension is desirably 80 kN / m 2 or more. If the tension is too weak, there will be a bias in removing the strain and the film being heated may wave.
Further, the tension needs to be taken into consideration by the width and thickness of the film. The narrower the width of the film, the lower the thickness of the film. There is no restriction | limiting in particular in heat processing time, It can be set short as temperature rises.

フィルム温度が120℃から液晶ポリマーフィルムのα緩和温度より20℃低い温度の範囲になる時間が2〜200秒間、好ましくは2〜60秒間の範囲内である。
一方、液晶ポリマーフィルムの吸水率は約0.04%であり、ポリイミドフィルムやポリエチレンテレフタレートフィルムに比べて低いが、真空中での処理中に揮発するため、スパッタリング膜を酸化させることが懸念される。そのため加熱処理の雰囲気は、大気中(大気圧)でも良いが、減圧雰囲気下で真空ポンプにより排気しながら行うことが望ましい。
The time when the film temperature is in the range of 120 ° C. to 20 ° C. lower than the α relaxation temperature of the liquid crystal polymer film is 2 to 200 seconds, preferably 2 to 60 seconds.
On the other hand, the water absorption of the liquid crystal polymer film is about 0.04%, which is lower than that of a polyimide film or a polyethylene terephthalate film. However, since it volatilizes during processing in vacuum, there is a concern that the sputtering film may be oxidized. . Therefore, the atmosphere for the heat treatment may be in the air (atmospheric pressure), but it is desirable to perform the heat treatment while exhausting with a vacuum pump in a reduced pressure atmosphere.

銅張積層板の製造では、液晶ポリマーフィルム表面に金属層を形成する前に、表面改質処理をすることが望ましい。
方法としては、プラズマ処理、イオンビーム照射あるいは紫外線照射を用いることができる。これらの処理によって液晶ポリマーフィルム表面をエッチングすることで清浄すると共に脆弱な層を除去し、極性基の導入を行うことで界面の密着力を高めることができる。ただし、表面処理後の表面粗さは、表面処理前とほぼ同等であることが望ましい。
In the production of a copper clad laminate, it is desirable to perform a surface modification treatment before forming a metal layer on the surface of the liquid crystal polymer film.
As a method, plasma treatment, ion beam irradiation, or ultraviolet irradiation can be used. By these treatments, the surface of the liquid crystal polymer film can be cleaned by etching, the fragile layer can be removed, and the polar group can be introduced to enhance the adhesion at the interface. However, it is desirable that the surface roughness after the surface treatment is almost the same as that before the surface treatment.

第1金属層(下地金属層)を形成する金属としては、例えば、ニッケル、クロム、モリブデン、チタン、バナジウム、錫、金、銀、亜鉛、パラジウム、ルテニウム、ロジウム、鉄、アルミニウム、鉛−錫系はんだ合金などが挙げられ、これらの金属を1種以上含む合金であることが望ましい。さらには、これらの中でも、ニッケル、クロム、ニッケルを含む合金、クロムを含む合金、ニッケル及びクロムを含む合金から選ばれる一種であることがより望ましい。
また第1金属層は、蒸着やスパッタリング等の乾式めっきで形成し、特にスパッタリングで形成することが望ましい。
Examples of the metal forming the first metal layer (underlying metal layer) include nickel, chromium, molybdenum, titanium, vanadium, tin, gold, silver, zinc, palladium, ruthenium, rhodium, iron, aluminum, and lead-tin. Examples thereof include a solder alloy, and an alloy containing one or more of these metals is desirable. Furthermore, among these, it is more desirable that it is a kind selected from nickel, chromium, an alloy containing nickel, an alloy containing chromium, and an alloy containing nickel and chromium.
The first metal layer is preferably formed by dry plating such as vapor deposition or sputtering, particularly by sputtering.

第1金属層の厚みは、2nm以上であることが望ましく、上限としては30nm以下であることが望ましい。
第1金属層の厚みが、2nm未満ではスパッタリングによる膜成長の初期段階は島状であるため、液晶ポリマーフィルムと金属層界面における表皮効果(周波数が高くなる程、界面に信号が集中する現象)により、伝送損失が大きくなる可能性が高くなる。また、周波数が高いほど、表皮効果が発生する膜厚は薄くなる(例えば10GHzの時、約50〜60nm)為、膜厚バラツキを考慮し、第1金属層は30nm未満とすることが望ましい。
The thickness of the first metal layer is desirably 2 nm or more, and the upper limit is desirably 30 nm or less.
When the thickness of the first metal layer is less than 2 nm, the initial stage of film growth by sputtering is island-like, so the skin effect at the interface between the liquid crystal polymer film and the metal layer (a phenomenon in which signals concentrate at the interface as the frequency increases) This increases the possibility that transmission loss will increase. In addition, the higher the frequency, the thinner the film thickness at which the skin effect occurs (for example, about 50 to 60 nm at 10 GHz), so that the first metal layer is preferably less than 30 nm in consideration of film thickness variation.

次に、スパッタリング法または電解銅めっき法、或いはその両者により形成される第2金属層の銅層において、その厚みは、0.1〜20μmの範囲内とすることが望ましい。
厚みが0.1μmよりも薄い場合、セミアディティブ法で配線加工する際に湿式めっき工程で給電がし辛くなるため好ましくない。20μmよりも厚くなると、エッチングによる配線加工の生産性が低下するばかりでなく、基板としての総厚も厚くなってしまうので、好ましくない。なお、スパッタリング法の銅薄膜層の膜厚は、上記銅層の膜厚の範囲にあればよい。
Next, in the copper layer of the second metal layer formed by the sputtering method or the electrolytic copper plating method, or both, the thickness is preferably in the range of 0.1 to 20 μm.
When the thickness is thinner than 0.1 μm, it is not preferable because power supply is difficult in the wet plating process when wiring is processed by the semi-additive method. When the thickness is greater than 20 μm, not only the productivity of wiring processing by etching is lowered, but also the total thickness as a substrate is increased, which is not preferable. In addition, the film thickness of the copper thin film layer of sputtering method should just be in the range of the film thickness of the said copper layer.

プリント配線基板の配線はサブトラクティブ法又はセミアディティブ法で形成することができる。
サブトラクティブ法とは、銅張積層板の銅層を化学エッチング処理して不要部分を除去する方法である。即ち、銅張積層板の銅層のうち導体配線として残したい部分の表面にレジストを設け、銅に対応するエッチング液による化学エッチング処理と水洗を経て、銅層の不要部分を選択的に除去して導体配線を形成するものである。
The wiring of the printed wiring board can be formed by a subtractive method or a semi-additive method.
The subtractive method is a method of removing unnecessary portions by performing a chemical etching process on the copper layer of the copper clad laminate. That is, a resist is provided on the surface of the copper layer of the copper clad laminate to be left as a conductor wiring, and unnecessary portions of the copper layer are selectively removed through chemical etching treatment and water washing with an etching solution corresponding to copper. Thus, the conductor wiring is formed.

また、セミアディティブ法とは、銅張積層板の下地金属層および銅層の上にレジスト層を形成し、フォトリソグラフィーにより、レジスト層をパターニングし、配線を形成したい箇所のレジスト層を除去して得られる銅層が露出した開口部に銅めっきを施し、配線を形成する。配線を形成後、レジスト除去を行い、不要な銅層および下地金属層を化学エッチング処理して極薄銅層および下地金属層部分を除去する方法である。   The semi-additive method is to form a resist layer on the base metal layer and copper layer of the copper clad laminate, pattern the resist layer by photolithography, and remove the resist layer where the wiring is to be formed. Copper plating is performed on the opening where the obtained copper layer is exposed to form a wiring. In this method, after the wiring is formed, the resist is removed, and the unnecessary copper layer and the base metal layer are chemically etched to remove the ultrathin copper layer and the base metal layer portion.

本発明の製造方法によって得られるめっき積層体は、プリント配線基板に対して有用であり、例えば、リード付部品を穴を通して基板に実装するピン挿入実装法、ケース付部品を穴を通さず表面で基板に実装する表面実装法、裸のICチップを基板に実装するICチップ実装法などの公知の方法により、表面実装部品を装着することができる。   The plated laminate obtained by the production method of the present invention is useful for a printed wiring board, for example, a pin insertion mounting method in which a leaded component is mounted on a substrate through a hole, and a cased component on the surface without passing through a hole. Surface-mounted components can be mounted by a known method such as a surface mounting method for mounting on a substrate or an IC chip mounting method for mounting a bare IC chip on a substrate.

これまで、本発明に係るめっき積層体を、めっき層が金属層である銅張積層板を例に説明してきた。めっき層は、金属層に限定されず、酸化物や窒化物を乾式めっき法で形成しためっき積層体にも適用できる。長手方向および幅方向の寸法安定性が改善された酸化物のめっき層が積層されためっき積層体を求める場合は、本発明は有益である。   So far, the plated laminate according to the present invention has been described by taking a copper clad laminate in which the plated layer is a metal layer as an example. The plating layer is not limited to a metal layer, and can also be applied to a plating laminate in which an oxide or a nitride is formed by a dry plating method. The present invention is useful when a plating laminate in which an oxide plating layer having improved dimensional stability in the longitudinal direction and the width direction is obtained.

以下に本発明の実施例、比較例を示して詳細に説明するが、本発明は以下の実施例により何ら制限されることはない。   EXAMPLES Hereinafter, examples and comparative examples of the present invention will be described in detail, but the present invention is not limited by the following examples.

[加熱処理]
液晶ポリマーフィルムをロールツーロール機構を有する真空装置内に設置し、真空ポンプで圧力が1Pa以下になるまで排気した真空チャンバー内で、液晶ポリマーフィルムを搬送し、赤外線ヒーターを用いた加熱法により搬送される液晶ポリマーフィルムの両側から加熱した。
加熱状態の制御は、予め液晶ポリマーフィルムに極細の熱電対を設置し、赤外線ヒーターとフィルム温度との関係を把握した後、実際の加熱処理は赤外線ヒーターの設定温度で制御した。
[Heat treatment]
The liquid crystal polymer film is installed in a vacuum device having a roll-to-roll mechanism, and the liquid crystal polymer film is transported in a vacuum chamber evacuated to a pressure of 1 Pa or less by a vacuum pump, and transported by a heating method using an infrared heater. The liquid crystal polymer film was heated from both sides.
The heating state was controlled by setting an ultrafine thermocouple on the liquid crystal polymer film in advance and grasping the relationship between the infrared heater and the film temperature, and then controlling the actual heat treatment at the set temperature of the infrared heater.

[プラズマ処理による表面改質]
プラズマによるフィルムの表面処理量は、ガス種、印加電圧、電流、処理時間にも依存する。さらに印加電圧を変化させると電流も変化するため、プラズマ処理強度Jを下記(1)式に示すように定めた。
[Surface modification by plasma treatment]
The surface treatment amount of the film by plasma also depends on the gas type, applied voltage, current, and treatment time. Further, since the current also changes when the applied voltage is changed, the plasma processing intensity J is determined as shown in the following equation (1).

Figure 2014233891
Figure 2014233891

先ず、真空装置内の圧力が1×10−4Pa以下となるまで真空引きした後、ガスを導入し、上記(1)式により設定したプラズマ処理強度Jになるように印加電圧V、電流I、処理時間t、及び電極表面積Aを適宜設定した後、直流放電プラズマにより、液晶ポリマーフィルム表面にプラズマ処理を施した。 First, after evacuating until the pressure in the vacuum apparatus becomes 1 × 10 −4 Pa or less, the gas is introduced, and the applied voltage V and current I are set to the plasma processing intensity J set by the above equation (1). Then, after appropriately setting the treatment time t and the electrode surface area A, the surface of the liquid crystal polymer film was subjected to plasma treatment by DC discharge plasma.

[スパッタリング]
真空装置内の圧力が1×10−4Pa以下となるまで真空引きした後、アルゴンガスを真空チャンバー内に導入して真空装置内の圧力を0.3Paとし、プラズマ処理を施した液晶ポリマーフィルム表面に、スパッタリング法を用いてNi−20%Cr合金層、次いで銅層からなるスパッタ層を積層した。
[Sputtering]
A liquid crystal polymer film that has been subjected to plasma treatment after evacuating until the pressure in the vacuum apparatus becomes 1 × 10 −4 Pa or less, and then introducing argon gas into the vacuum chamber to set the pressure in the vacuum apparatus to 0.3 Pa. On the surface, a sputtering layer made of a Ni-20% Cr alloy layer and then a copper layer was laminated using a sputtering method.

[電気銅めっき]
電流密度2A/dmで電気銅めっき(めっき液:硫酸銅溶液)を行ない、スパッタ層上に膜厚8μmの銅めっき層を形成した。
[Electro copper plating]
Electro copper plating (plating solution: copper sulfate solution) was performed at a current density of 2 A / dm 2 to form a copper plating layer having a thickness of 8 μm on the sputtered layer.

[特性評価]
・寸法安定性
本発明におけるめっき積層体の長さ方向:MD(Machine Direction)及びめっき積層体の幅方向:TD(Traverse Direction)の寸法変化率は、「IPC−TM−650,2.2.4,Method B及びC」に準拠して実施した。
ここで、「寸法変化率」という指標では、収縮はマイナス値、伸張がプラス値で表される。
金属層をエッチングした際の寸法変化率は、「IPC−TM−650,2.2.4,Method B」に従って測定した。
さらに、150℃×30分の熱処理後の寸法変化率は、「IPC−TM−650,2.2.4,Method C」に従って測定した。
[Characteristic evaluation]
Dimensional stability In the present invention, the dimensional change rate in the length direction of the plated laminate: MD (Machine Direction) and the width direction of the plated laminate: TD (Traverse Direction) is “IPC-TM-650, 2.2. 4, Method B and C ".
Here, in the index “dimensional change rate”, the contraction is expressed by a negative value and the expansion is expressed by a positive value.
The dimensional change rate when the metal layer was etched was measured according to “IPC-TM-650, 2.2.4, Method B”.
Furthermore, the dimensional change rate after heat treatment at 150 ° C. for 30 minutes was measured according to “IPC-TM-650, 2.2.4, Method C”.

Tダイ法でフィルム化されたプライマテック社製ポリエステル系液晶ポリマーフィルム「BIAC(共重合体化合物IIの構造を有する全芳香族型ポリエステル、膜厚25μm α緩和温度300℃)」を真空装置内で張力800kN/mを印加した状態で、フィルム温度が150℃になるように加熱処理を行った。
その後、この液晶ポリマーフィルム両面に、プラズマ処理強度83kJ/mにて酸素プラズマ処理を行った。続いてスパッタリング法によりNi−20%Cr合金を8nm、銅を100nmの層厚で積層し、続いて電解銅めっき法を用いて、銅めっき層を8μm形成し、実施例1に係るめっき積層体を作製した。
Polyester-based liquid crystal polymer film “BIAC (fully aromatic polyester having the structure of copolymer compound II, film thickness 25 μm α relaxation temperature 300 ° C.)” manufactured by Primatec Co., Ltd. formed into a film by the T-die method in a vacuum apparatus In a state where a tension of 800 kN / m 2 was applied, heat treatment was performed so that the film temperature was 150 ° C.
Thereafter, oxygen plasma treatment was performed on both surfaces of the liquid crystal polymer film at a plasma treatment strength of 83 kJ / m 2 . Subsequently, a Ni-20% Cr alloy is laminated with a thickness of 8 nm and copper with a layer thickness of 100 nm by a sputtering method, and subsequently a copper plating layer is formed to 8 μm by using an electrolytic copper plating method. Was made.

作製した実施例1に係るめっき積層体の金属層のエッチング除去による寸法変化率(method B)を測定した。
さらに150℃×30分加熱による寸法変化率(method C)を測定した。
測定結果を纏めて表1に示す。
The dimensional change rate (method B) due to etching removal of the metal layer of the plated laminate according to Example 1 was measured.
Furthermore, the dimensional change rate (method C) by heating at 150 ° C. for 30 minutes was measured.
The measurement results are summarized in Table 1.

実施例1と同じ液晶ポリマーフィルムを用いて、真空装置内で張力400kN/mを印加した状態で、フィルム温度が200℃になるように加熱処理を行った。続いて実施例1と同様の操作によってめっき積層体を作製し、エッチング除去による寸法変化率及び150℃×30分加熱による寸法変化率を測定した。
測定結果を表1に纏めて示す。
Using the same liquid crystal polymer film as in Example 1, heat treatment was performed so that the film temperature was 200 ° C. while applying a tension of 400 kN / m 2 in a vacuum apparatus. Then, the plating laminated body was produced by the same operation as Example 1, and the dimensional change rate by etching removal and the dimensional change rate by 150 degreeC x 30 minute heating were measured.
The measurement results are summarized in Table 1.

膜厚が50μmである以外は、実施例1と同じ種類の液晶ポリマーフィルムを、真空装置内で張力1200kN/mを印加した状態で、フィルム温度が150℃になるように加熱処理を行った。続いて実施例1と同様の操作によってめっき積層体を作製し、エッチング除去による寸法変化率及び150℃×30分加熱による寸法変化率を測定した。
測定結果を表1に纏めて示す。
Except for the film thickness being 50 μm, the same type of liquid crystal polymer film as in Example 1 was subjected to heat treatment so that the film temperature was 150 ° C. with a tension of 1200 kN / m 2 applied in a vacuum apparatus. . Then, the plating laminated body was produced by the same operation as Example 1, and the dimensional change rate by etching removal and the dimensional change rate by 150 degreeC x 30 minute heating were measured.
The measurement results are summarized in Table 1.

実施例3と同じ液晶ポリマーフィルムを、真空装置内で張力200kN/mを印加した状態で、フィルム温度が240℃になるように加熱処理を行った。続いて実施例1と同様の操作によってめっき積層体を作製し、エッチング除去による寸法変化率及び150℃×30分加熱による寸法変化率を測定した。
測定結果を表1に纏めて示す。
The same liquid crystal polymer film as in Example 3 was heat-treated so that the film temperature was 240 ° C. while applying a tension of 200 kN / m 2 in a vacuum apparatus. Then, the plating laminated body was produced by the same operation as Example 1, and the dimensional change rate by etching removal and the dimensional change rate by 150 degreeC x 30 minute heating were measured.
The measurement results are summarized in Table 1.

プラズマ処理を行わなかった以外は、実施例1と同様の操作を行い、めっき積層体を作製し、エッチング除去による寸法変化率及び150℃×30分加熱による寸法変化率を測定した。
測定結果を表1に纏めて示す。
Except for not performing the plasma treatment, the same operation as in Example 1 was performed to prepare a plated laminate, and the dimensional change rate by etching removal and the dimensional change rate by heating at 150 ° C. for 30 minutes were measured.
The measurement results are summarized in Table 1.

(比較例1)
実施例1と同じ液晶ポリマーフィルムを、真空装置内で張力800kN/mを印加した状態で、フィルム温度が100℃になるように加熱処理を行った。続いて実施例1と同様の操作によってめっき積層体を作製し、エッチング除去による寸法変化率及び150℃×30分加熱による寸法変化率を測定した。
測定結果を表1に纏めて示す。
(Comparative Example 1)
The same liquid crystal polymer film as in Example 1 was heat-treated so that the film temperature was 100 ° C. in a state where a tension of 800 kN / m 2 was applied in a vacuum apparatus. Then, the plating laminated body was produced by the same operation as Example 1, and the dimensional change rate by etching removal and the dimensional change rate by 150 degreeC x 30 minute heating were measured.
The measurement results are summarized in Table 1.

(比較例2)
実施例1と同じ液晶ポリマーフィルムを真空装置内で張力6400kN/mを印加した状態で、フィルム温度が150℃になるように加熱処理を行った。続いて実施例1と同様の操作によってめっき積層体を作製し、エッチング除去による寸法変化率及び150℃×30分加熱による寸法変化率を測定した。
測定結果を表1に纏めて示す。
(Comparative Example 2)
The same liquid crystal polymer film as in Example 1 was subjected to heat treatment so that the film temperature was 150 ° C. while applying a tension of 6400 kN / m 2 in a vacuum apparatus. Then, the plating laminated body was produced by the same operation as Example 1, and the dimensional change rate by etching removal and the dimensional change rate by 150 degreeC x 30 minute heating were measured.
The measurement results are summarized in Table 1.

(比較例3)
実施例1と同じ液晶ポリマーフィルムに加熱処理を行わず、実施例1と同様の操作によってめっき積層体を作製し、エッチング除去による寸法変化率及び150℃×30分加熱による寸法変化率を測定した。
測定結果を表1に纏めて示す。
(Comparative Example 3)
The same liquid crystal polymer film as in Example 1 was not subjected to heat treatment, and a plated laminate was prepared by the same operation as in Example 1, and the dimensional change rate by etching removal and the dimensional change rate by heating at 150 ° C. for 30 minutes were measured. .
The measurement results are summarized in Table 1.

(比較例4)
実施例1と同じ液晶ポリマーフィルムを真空装置内で張力400kN/mを印加した状態で、フィルム温度が300℃になるように加熱処理を行ったところフィルムが変形した。
(Comparative Example 4)
When the same liquid crystal polymer film as in Example 1 was subjected to a heat treatment so that the film temperature was 300 ° C. in a state where a tension of 400 kN / m 2 was applied in a vacuum apparatus, the film was deformed.

Figure 2014233891
Figure 2014233891

Claims (7)

長尺液晶ポリマーフィルムの少なくとも一方の表面に、接着剤を介することなくめっき層を設けためっき積層体であって、
前記長尺液晶ポリマーフィルムが、溶融押出成型法を用いて押出金型から押し出された全芳香族ポリエステル製フィルムで、
前記めっき積層体の前記めっき層の一部を、エッチング処理により除去した後のエッチング後めっき積層体が、前記めっき積層体に対して長手方向および幅方向において収縮あるいは伸張する寸法変化挙動を示し、
前記寸法変化挙動における前記エッチング後めっき積層体の長手方向及び幅方向の寸法変化率が、−0.05%〜+0.05%の範囲で、
前記エッチング後めっき積層体を150℃×30分間熱処理した後の熱処理めっき積層体の長手方向および幅方向の寸法変化率が、−0.1%〜+0.1%の範囲であることを特徴とするめっき積層体。
A plating laminate in which a plating layer is provided on at least one surface of the long liquid crystal polymer film without using an adhesive,
The long liquid crystal polymer film is a wholly aromatic polyester film extruded from an extrusion mold using a melt extrusion molding method,
The post-etch plating laminate after removing a part of the plating layer of the plating laminate by an etching process exhibits a dimensional change behavior in which the plating laminate shrinks or extends in the longitudinal direction and the width direction,
The dimensional change rate in the longitudinal direction and the width direction of the post-etch plating laminate in the dimensional change behavior is in the range of -0.05% to + 0.05%,
The dimensional change rate in the longitudinal direction and the width direction of the heat-treated plated laminate after heat-treating the post-etched plated laminate for 30 minutes at 150 ° C. is in the range of −0.1% to + 0.1%. Plating laminate.
前記めっき層が金属層であることを特徴とする請求項1に記載のめっき積層体。 The plating laminate according to claim 1, wherein the plating layer is a metal layer. 前記めっき層が、長尺液晶ポリマーフィルム側からニッケル、クロム、ニッケルを含む合金又はクロムを含む合金からなる第1金属層を備え、前記第1金属層の表面に銅層の第2金属層を備える構造であることを特徴とする請求項2に記載のめっき積層体。 The plating layer includes a first metal layer made of nickel, chromium, an alloy containing nickel or an alloy containing chromium from the long liquid crystal polymer film side, and a second metal layer of a copper layer is formed on the surface of the first metal layer. The plated laminate according to claim 2, wherein the plated laminate is a structure provided. 液晶ポリマーフィルムの表面に接着剤を介することなく備えられた配線層を有するプリント配線基板であって、
請求項2また3に記載のめっき積層体のめっき層を、エッチング処理による配線加工によって配線層としたことを特徴とするプリント配線基板。
A printed wiring board having a wiring layer provided on the surface of a liquid crystal polymer film without using an adhesive,
4. A printed wiring board, wherein the plating layer of the plating laminate according to claim 2 is formed into a wiring layer by wiring processing by etching.
溶融押出成型法を用いてフィルム化された全芳香族ポリエステルからなる液晶ポリマーフィルムを、長手方向に張力80〜4000kN/mを印加しつつ、前記液晶ポリマーフィルムの温度を120℃以上、前記液晶ポリマーフィルムのα緩和温度より20℃低い温度以下の温度範囲での熱処理後、熱処理された液晶ポリエステルフィルムの少なくとも片面に乾式めっき法を用いて成膜処理を行うことを特徴とするめっき積層体の製造方法。 While applying a tension of 80 to 4000 kN / m 2 in the longitudinal direction to a liquid crystal polymer film made of wholly aromatic polyester formed into a film using a melt extrusion molding method, the temperature of the liquid crystal polymer film is 120 ° C. or more, and the liquid crystal After the heat treatment in a temperature range of 20 ° C. or lower than the α relaxation temperature of the polymer film, at least one surface of the heat-treated liquid crystal polyester film is subjected to film formation using a dry plating method. Production method. 前記熱処理から前記成膜処理までの処理工程を減圧雰囲気下で行い、且つ前記熱処理と前記成膜処理との処理の間に表面改質処理を行うことを特徴とする請求項5に記載のめっき積層体の製造方法。   6. The plating according to claim 5, wherein processing steps from the heat treatment to the film forming treatment are performed in a reduced pressure atmosphere, and a surface modification treatment is performed between the heat treatment and the film forming treatment. A manufacturing method of a layered product. 前記成膜処理が、スパッタリング成膜処理であり、前記成膜処理により形成される成膜が、金属層であることを特徴とする請求項5または6に記載のめっき積層体の製造方法。   The method for manufacturing a plated laminate according to claim 5 or 6, wherein the film forming process is a sputtering film forming process, and the film formed by the film forming process is a metal layer.
JP2013116185A 2013-05-31 2013-05-31 Plating laminate and manufacturing method thereof Active JP6119433B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116185A JP6119433B2 (en) 2013-05-31 2013-05-31 Plating laminate and manufacturing method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116185A JP6119433B2 (en) 2013-05-31 2013-05-31 Plating laminate and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2014233891A true JP2014233891A (en) 2014-12-15
JP6119433B2 JP6119433B2 (en) 2017-04-26

Family

ID=52136959

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116185A Active JP6119433B2 (en) 2013-05-31 2013-05-31 Plating laminate and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP6119433B2 (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016114262A1 (en) * 2015-01-13 2016-07-21 宇部エクシモ 株式会社 Flexible laminated board and multilayer circuit board
JP2016131193A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Manufacturing method of laminated plate and multilayer circuit board
JP2016129949A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Flexible laminate and method for manufacturing flexible laminate
JP2017014558A (en) * 2015-06-30 2017-01-19 住友金属鉱山株式会社 Plating treatment device and film transport method
US20190001628A1 (en) * 2016-03-08 2019-01-03 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate
JP2019038136A (en) * 2017-08-23 2019-03-14 住友金属鉱山株式会社 Double side metal laminate and production method thereof
JP2020061486A (en) * 2018-10-11 2020-04-16 信越ポリマー株式会社 Electromagnetic wave shield film, manufacturing method of the same, and print circuit board with electromagnetic wave shield film
KR20210039898A (en) 2019-10-02 2021-04-12 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate and method for manufacturing copper clad laminate
WO2024004952A1 (en) * 2022-06-30 2024-01-04 東洋鋼鈑株式会社 Stretched liquid crystal polymer film, laminate, circuit board, and production method for liquid crystal polymer film

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232029A (en) * 1985-08-06 1987-02-12 Asahi Chem Ind Co Ltd Polyester film and its preparation
JPH09174786A (en) * 1995-12-22 1997-07-08 Japan Gore Tex Inc Oriented material of liquid crystal polymer film having adhesive surface or metallic surface
JP2000273225A (en) * 1999-03-25 2000-10-03 Kuraray Co Ltd Film of thermoplastic liquid crystal polymer and improvement of the same
JP2001270006A (en) * 2000-03-24 2001-10-02 Kuraray Co Ltd Thermoplastic liquid crystalline polymer film and producing method therefor
JP2005297405A (en) * 2004-04-13 2005-10-27 Sumitomo Metal Mining Co Ltd Forming method of metal coated liquid crystal polymer film
JP2005325299A (en) * 2004-05-17 2005-11-24 Toray Ind Inc Biaxially oriented polyester film
WO2008041720A1 (en) * 2006-10-03 2008-04-10 The Furukawa Electric Co., Ltd. Process for producing metal clad laminate
JP2008260274A (en) * 2007-03-19 2008-10-30 Furukawa Electric Co Ltd:The Metal coated laminate and method for production of the same
JP2008308616A (en) * 2007-06-15 2008-12-25 Hyogo Prefecture Surface modification method and surface coating method of article composed of liquid crystalline polymer material
JP2012140552A (en) * 2011-01-05 2012-07-26 Jx Nippon Mining & Metals Corp Copper-clad laminate and method for producing the same

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6232029A (en) * 1985-08-06 1987-02-12 Asahi Chem Ind Co Ltd Polyester film and its preparation
JPH09174786A (en) * 1995-12-22 1997-07-08 Japan Gore Tex Inc Oriented material of liquid crystal polymer film having adhesive surface or metallic surface
JP2000273225A (en) * 1999-03-25 2000-10-03 Kuraray Co Ltd Film of thermoplastic liquid crystal polymer and improvement of the same
JP2001270006A (en) * 2000-03-24 2001-10-02 Kuraray Co Ltd Thermoplastic liquid crystalline polymer film and producing method therefor
JP2005297405A (en) * 2004-04-13 2005-10-27 Sumitomo Metal Mining Co Ltd Forming method of metal coated liquid crystal polymer film
JP2005325299A (en) * 2004-05-17 2005-11-24 Toray Ind Inc Biaxially oriented polyester film
WO2008041720A1 (en) * 2006-10-03 2008-04-10 The Furukawa Electric Co., Ltd. Process for producing metal clad laminate
JP2008110602A (en) * 2006-10-03 2008-05-15 Furukawa Electric Co Ltd:The Manufacturing process of metal clad laminate
JP2008260274A (en) * 2007-03-19 2008-10-30 Furukawa Electric Co Ltd:The Metal coated laminate and method for production of the same
US20100047517A1 (en) * 2007-03-19 2010-02-25 Satoru Zama Metal clad laminate and method for manufacturing metal clad laminate
JP2008308616A (en) * 2007-06-15 2008-12-25 Hyogo Prefecture Surface modification method and surface coating method of article composed of liquid crystalline polymer material
JP2012140552A (en) * 2011-01-05 2012-07-26 Jx Nippon Mining & Metals Corp Copper-clad laminate and method for producing the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102469672B1 (en) 2015-01-13 2022-11-23 우베 에쿠시모 가부시키가이샤 Flexible laminate sheet and manufacturing method thereof
JP2016131193A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Manufacturing method of laminated plate and multilayer circuit board
JP2016129949A (en) * 2015-01-13 2016-07-21 宇部エクシモ株式会社 Flexible laminate and method for manufacturing flexible laminate
KR20170103835A (en) * 2015-01-13 2017-09-13 우베 에쿠시모 가부시키가이샤 Flexible laminate board and multilayer circuit board
US20170318670A1 (en) * 2015-01-13 2017-11-02 Ube Exsymo Co., Ltd. Flexible laminated board and multilayer circuit board
WO2016114262A1 (en) * 2015-01-13 2016-07-21 宇部エクシモ 株式会社 Flexible laminated board and multilayer circuit board
JP2017014558A (en) * 2015-06-30 2017-01-19 住友金属鉱山株式会社 Plating treatment device and film transport method
US20190001628A1 (en) * 2016-03-08 2019-01-03 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate
US10807352B2 (en) * 2016-03-08 2020-10-20 Kuraray Co., Ltd. Method for producing metal-clad laminate, and metal-clad laminate
JP2019038136A (en) * 2017-08-23 2019-03-14 住友金属鉱山株式会社 Double side metal laminate and production method thereof
JP2020061486A (en) * 2018-10-11 2020-04-16 信越ポリマー株式会社 Electromagnetic wave shield film, manufacturing method of the same, and print circuit board with electromagnetic wave shield film
KR20210039898A (en) 2019-10-02 2021-04-12 스미토모 긴조쿠 고잔 가부시키가이샤 Copper clad laminate and method for manufacturing copper clad laminate
US11426976B2 (en) 2019-10-02 2022-08-30 Sumitomo Metal Mining Co., Ltd. Copper-clad laminate
WO2024004952A1 (en) * 2022-06-30 2024-01-04 東洋鋼鈑株式会社 Stretched liquid crystal polymer film, laminate, circuit board, and production method for liquid crystal polymer film

Also Published As

Publication number Publication date
JP6119433B2 (en) 2017-04-26

Similar Documents

Publication Publication Date Title
JP6119433B2 (en) Plating laminate and manufacturing method thereof
JP6871910B2 (en) Manufacturing method of metal-clad laminate and metal-clad laminate
JP4866853B2 (en) Method for producing wiring board coated with thermoplastic liquid crystal polymer film
KR102304510B1 (en) Metal clad laminate and its manufacturing method
CN105683266B (en) Method for producing thermoplastic liquid crystal polymer film, and circuit board and method for producing same
KR102323306B1 (en) Copper clad laminate and method for manufacturing copper clad laminate
JP5611355B2 (en) Metal-clad laminate
JP6035679B2 (en) Plating laminate manufacturing method and plating laminate
JP6205954B2 (en) Heat treatment method for resin film, method for producing plating laminate using the same, and heat treatment apparatus therefor
JP2012006149A (en) Polyimide board, metal-laminated polyimide board, and printed wiring board
JP4004139B2 (en) MULTILAYER LAMINATE, MANUFACTURING METHOD THEREOF, AND MULTILAYER MOUNTED CIRCUIT BOARD
JP3693609B2 (en) Method for producing metal-clad laminate
JP2021041637A (en) Copper-clad laminate and method for producing copper-clad laminate
JP4160811B2 (en) Flexible copper-clad circuit board
JP6926442B2 (en) Manufacturing method of double-sided plated laminate
WO2021210478A1 (en) Metal-coated liquid-crystal polymer film
US20240090138A1 (en) Prepreg with metal layer, method for manufacturing laminate, and method for manufacturing prepreg with metal layer
KR102260207B1 (en) Copper foil for flexible printed substrate, copper-clad laminate using the same, flexible printed substrate, and electronic equipment
JP2005280153A (en) Method for manufacturing flexible metal laminate
KR102461189B1 (en) Flexible copper clad laminate, printed circuit board using the same
JP2023181136A (en) Method for manufacturing liquid crystal polymer film, liquid crystal polymer film, method for manufacturing high frequency circuit board material, and method for manufacturing high frequency circuit board
JP2005244039A (en) Printed wiring board and its manufacturing method
JP2006237325A (en) Production process of film substrate for wiring, and film substrate for wiring
JP2006130761A (en) Manufacturing method of copper clad laminated sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160314

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160510

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20161031

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20161222

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170228

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170313

R150 Certificate of patent or registration of utility model

Ref document number: 6119433

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150