JP2005244039A - Printed wiring board and its manufacturing method - Google Patents

Printed wiring board and its manufacturing method Download PDF

Info

Publication number
JP2005244039A
JP2005244039A JP2004053848A JP2004053848A JP2005244039A JP 2005244039 A JP2005244039 A JP 2005244039A JP 2004053848 A JP2004053848 A JP 2004053848A JP 2004053848 A JP2004053848 A JP 2004053848A JP 2005244039 A JP2005244039 A JP 2005244039A
Authority
JP
Japan
Prior art keywords
metal
conductor circuit
printed wiring
wiring board
width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004053848A
Other languages
Japanese (ja)
Inventor
Tsutomu Minowa
努 蓑輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon CMK Corp
CMK Corp
Original Assignee
Nippon CMK Corp
CMK Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon CMK Corp, CMK Corp filed Critical Nippon CMK Corp
Priority to JP2004053848A priority Critical patent/JP2005244039A/en
Publication of JP2005244039A publication Critical patent/JP2005244039A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Manufacturing Of Printed Wiring (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board for which peeling is not generated in a conductor circuit. <P>SOLUTION: In the printed wiring board, the conductor circuit is composed of two or more kinds of metal layer parts, and at least the width of a second metal part on an inner layer side is larger than the width of a first metal part on an outer layer side. In a method of manufacturing the printed wiring board by a transfer method, after forming the two or more kinds of metal layer parts by a plating processing on a metal carrier, the metal parts are etched such that at least the width of the first metal part on the outer layer side of the metal layer parts becomes smaller than the width of the second metal part on the inner layer side, the conductor circuit is formed. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、プリント配線板の外層に導体回路を絶縁基板に対して平坦に形成し、かつ導体回路の密着性を向上させたプリント配線板及びその製造方法に関する。   The present invention relates to a printed wiring board in which a conductor circuit is formed flat on an outer layer of a printed wiring board with respect to an insulating substrate, and the adhesion of the conductor circuit is improved, and a manufacturing method thereof.

従来、プリント配線板の最外層の導体回路を平坦化する方法として転写法が知られている(例えば、特許文献1参照)。この方法は、一般的にはステンレス板の片側に金属めっきを析出させることで導体回路を形成した後、絶縁基材を積層し、次いでステンレスであるメタルキャリアを剥がしてプリント配線板の最外層に導体回路を平坦に形成するものである。   Conventionally, a transfer method is known as a method of flattening the outermost conductor circuit of a printed wiring board (see, for example, Patent Document 1). This method generally involves forming a conductor circuit by depositing metal plating on one side of a stainless steel plate, then laminating an insulating base material, and then peeling off the stainless steel metal carrier to form the outermost layer of the printed wiring board. The conductor circuit is formed flat.

しかしながら、斯かる転写法による場合、導体回路を形成し、絶縁層に積層した後、メタルキャリアであるステンレスを剥がす際に、当該絶縁層に負荷がかかり導体回路が剥がれるという問題が発生していた。   However, in the case of such a transfer method, after forming a conductor circuit and laminating it on the insulating layer, there is a problem that when the stainless steel as the metal carrier is peeled off, a load is applied to the insulating layer and the conductor circuit is peeled off. .

特に、メタルキャリアであるステンレスは、一般に厚みが0.8mm程度で剛性があるため、引き剥がす際には絶縁層を曲げないと引き剥がすことができないが、このときに導体回路が剥がれ易いのが実状であった。   In particular, stainless steel, which is a metal carrier, generally has a thickness of about 0.8 mm and is rigid. Therefore, when peeling off, it cannot be peeled off unless the insulating layer is bent. At this time, the conductor circuit is easily peeled off. It was real.

また、最近のモバイル製品、例えば電子辞書や電子ブックなどの製品にも板厚の薄いプリント配線板が要求されているが、板厚が薄いため屈曲性も要求されているところ、この折り曲げの際に導体回路が剥離してしまうという問題もあった。
特開平11−8451号公報
In addition, recent mobile products such as electronic dictionaries and electronic books are also required to have a thin printed wiring board. However, since the board is thin, flexibility is also required. There was also a problem that the conductor circuit was peeled off.
Japanese Patent Laid-Open No. 11-8451

本発明は上記の如き従来の問題に鑑みてなされたものであり、導体回路に剥離が生じないプリント配線板を提供することを目的とする。   The present invention has been made in view of the above-described conventional problems, and an object of the present invention is to provide a printed wiring board in which peeling does not occur in a conductor circuit.

本発明は、メタルキャリア上に形成する導体回路が2種類以上の金属層部からなり、かつ少なくとも外層側の第1金属部の幅より内層側の第2金属部の方が大きいプリント配線板の構造をとることにより上記目的を達成した。   In the printed wiring board according to the present invention, the conductor circuit formed on the metal carrier includes two or more types of metal layer portions, and at least the second metal portion on the inner layer side is larger than the width of the first metal portion on the outer layer side. The above objective was achieved by taking the structure.

斯かる構造、すなわち第2金属部が第1金属部の幅より大きいため、いわばその形状がアンカー形状となる結果、絶縁層との密着力が向上し、導体回路が剥がれることはない。   Since such a structure, that is, the second metal portion is larger than the width of the first metal portion, the shape of the second metal portion becomes an anchor shape. As a result, the adhesion with the insulating layer is improved and the conductor circuit is not peeled off.

また、本発明は、メタルキャリアに金属を析出させて導体回路を形成した後、絶縁層を積層形成し、然る後メタルキャリアを剥がして最外層の回路パターンを形成するプリント配線板の製造方法において、メタルキャリア上に、めっき処理により2種類以上の金属層部を形成させた後、前記金属層部の少なくとも外層側の第1金属部の幅が、内層側の第2金属部の幅よりも小さくなるように当該金属層部をエッチングして導体回路を形成することにより上記目的を達成した。   The present invention also relates to a printed wiring board manufacturing method in which a metal circuit is deposited on a metal carrier to form a conductor circuit, and then an insulating layer is laminated, and then the metal carrier is peeled off to form a circuit pattern of the outermost layer. 2, after forming two or more types of metal layer portions on the metal carrier by plating, the width of at least the first metal portion on the outer layer side of the metal layer portion is larger than the width of the second metal portion on the inner layer side. The object was achieved by etching the metal layer part to form a conductor circuit so as to be smaller.

斯かる製法、すなわち2種類以上の金属を導体回路として使用し、当該2種類以上の金属をそれぞれ異なる幅でエッチング処理することにより、いわばアンカー形状の導体回路が形成される結果、絶縁層との密着が向上したプリント配線板を得ることができる。   By using such a manufacturing method, that is, using two or more kinds of metals as a conductor circuit and etching the two or more kinds of metals with different widths, an anchor-shaped conductor circuit is formed. A printed wiring board with improved adhesion can be obtained.

本発明によれば、導体回路と絶縁層が強固に密着しているので、導体回路に剥離が生じないプリント配線板を得ることができる。   According to the present invention, since the conductor circuit and the insulating layer are in close contact with each other, it is possible to obtain a printed wiring board in which no peeling occurs in the conductor circuit.

図1は、本発明のプリント配線板の概略断面説明図である。以下この図1に基いて本発明プリント配線板を説明する。   FIG. 1 is a schematic cross-sectional explanatory view of a printed wiring board of the present invention. The printed wiring board of the present invention will be described below with reference to FIG.

7はプリント配線板で、導体回路3が平坦に埋め込まれている。この導体回路3は、外層側の第1金属部3aと内層側の第2金属部3bとからなり、当該第1金属部3aと第2金属部3bはそれぞれ別種の金属から構成されている。斯かる金属の具体的な種類としては、例えば銅、アルミニウム、銀、金、ニッケル、はんだ(Sn−Pb、Sn−Ag−Cu、Sn−Ag、Sn−Ag−Bi、Sn−Zn)などが挙げられ、これらは2種類以上が適宜選択使用される。   Reference numeral 7 denotes a printed wiring board in which the conductor circuit 3 is embedded flat. The conductor circuit 3 includes a first metal portion 3a on the outer layer side and a second metal portion 3b on the inner layer side, and the first metal portion 3a and the second metal portion 3b are made of different kinds of metals. Specific examples of such metals include copper, aluminum, silver, gold, nickel, solder (Sn—Pb, Sn—Ag—Cu, Sn—Ag, Sn—Ag—Bi, Sn—Zn) and the like. Two or more of these are appropriately selected and used.

前記内層側の第2金属部3bの幅は、外層側の第1金属部3aの幅より大きくなっていると共に、当該第1金属部3aの幅は外層側から内層側に向かって徐々に小さくなっている。   The width of the second metal portion 3b on the inner layer side is larger than the width of the first metal portion 3a on the outer layer side, and the width of the first metal portion 3a is gradually smaller from the outer layer side toward the inner layer side. It has become.

図2は本発明プリント配線板の製造方法を示す概略断面工程説明図である。以下この図2に基いて本発明のプリント配線板の製造方法を説明する。   FIG. 2 is a schematic cross-sectional process explanatory diagram showing a method for producing a printed wiring board of the present invention. Hereinafter, a method for producing a printed wiring board according to the present invention will be described with reference to FIG.

図2(a)は、メタルキャリア1を示しており、その材質としては、例えばステンレス、アルミ、銅、ニッケルなどが挙げられ、これらは単材あるいは複合材、複層板、複層箔等として使用される。このメタルキャリア1の片面には、無電解により薄付け銅めっき2が施されている。因に、予め、極薄銅箔のついた銅製キャリアを用いれば、無電解薄付け銅めっき処理は不要となるため、製造工程が簡略化でき好ましい。なお、銅製キャリアとしては、一般の銅板あるいは銅箔が利用でき、厚みが数十μmのものは引き剥がし易く、特に薄物のプリント配線板に好適に用いられる。   FIG. 2 (a) shows a metal carrier 1, and examples of the material include stainless steel, aluminum, copper, nickel, and the like. These include single material or composite material, multilayer plate, multilayer foil, and the like. used. A thin copper plating 2 is applied to one side of the metal carrier 1 by electroless electrolysis. Incidentally, if a copper carrier with an ultrathin copper foil is used in advance, the electroless thin copper plating treatment is not necessary, which can simplify the manufacturing process and is preferable. In addition, as a copper carrier, a general copper plate or copper foil can be used, and those having a thickness of several tens of μm are easy to peel off, and are particularly suitable for thin printed wiring boards.

次に、メタルキャリア1に導体回路を形成するが、導体回路の形成方法としては、サブトラクティブ法あるいはアディティブ法が採用される。図2中、(b)〜(f)までがサブトラクティブ法、(g)〜(j)までがセミアディティブ法を示す。   Next, a conductor circuit is formed on the metal carrier 1, and a subtractive method or an additive method is employed as a method of forming the conductor circuit. In FIG. 2, (b) to (f) indicate the subtractive method, and (g) to (j) indicate the semi-additive method.

サブトラクティブ法による導体回路形成は、まず図2(b)に示すように、メタルキャリア1の片側に、導体回路用の第1金属部3aおよび第2金属部3bをめっきにて析出させる。この第1金属部3aと第2金属部3bの具体的金属の種類としては前記と同様、例えば銅、アルミニウム、銀、金、ニッケル、はんだ(Sn−Pb、Sn−Ag−Cu、Sn−Ag、Sn−Ag−Bi、Sn−Zn)などが挙げられ、適宜選択使用される。   In the conductor circuit formation by the subtractive method, first, as shown in FIG. 2B, the first metal part 3a and the second metal part 3b for the conductor circuit are deposited on one side of the metal carrier 1 by plating. The specific metal types of the first metal part 3a and the second metal part 3b are, for example, copper, aluminum, silver, gold, nickel, solder (Sn—Pb, Sn—Ag—Cu, Sn—Ag) as described above. , Sn-Ag-Bi, Sn-Zn), and the like, which are appropriately selected and used.

次いで、図2(c)に示すように、第2金属部3b上にフォトレジストパターン4を形成し、次いで、図2(d)のようにその開口部から露出した第2金属部3bをエッチングにて除去して回路形成を施す。このときに用いるエッチング液は、第2金属部3bを溶解し、第1金属部3aを溶解しないような、選択的エッチングが可能な薬液、または第2金属部3bは溶解するが第1金属部3aはわずかしか溶解しないようなエッチングレートに差がでるような薬液を選定する。   Next, as shown in FIG. 2 (c), a photoresist pattern 4 is formed on the second metal portion 3b, and then the second metal portion 3b exposed from the opening is etched as shown in FIG. 2 (d). Then, circuit formation is performed. The etching solution used at this time dissolves the second metal part 3b and does not dissolve the first metal part 3a, or a chemical solution capable of selective etching, or dissolves the second metal part 3b but dissolves the first metal part. For 3a, a chemical solution that makes a difference in etching rate that only slightly dissolves is selected.

次いで、図2(e)に示すようにフォトレジスト4を剥離した後、図2(f)に示すように第1金属部3aをエッチング処理して導体回路3を形成する。このとき使用されるエッチング液は、第1金属部3aはエッチング除去できるが、第2金属部3bはエッチングできない薬液を選定する。また、このとき第1金属部3aの幅が第2金属部3bの幅よりも小さくなるようにエッチングする。特に、図1に示すように、第1金属部3aが外層側から内層側に向かって幅が徐々に小さく、かつ第2金属部3bが、直上の第1金属部3aより幅が大きくなるように形成するのが、導体回路3がよりアンカー形状となり、絶縁層6との密着をより強固なものとすることができるので望ましい。   Next, after removing the photoresist 4 as shown in FIG. 2 (e), the first metal part 3a is etched as shown in FIG. 2 (f) to form the conductor circuit 3. As the etching solution used at this time, a chemical solution that can etch away the first metal portion 3a but cannot etch the second metal portion 3b is selected. At this time, the etching is performed so that the width of the first metal portion 3a is smaller than the width of the second metal portion 3b. In particular, as shown in FIG. 1, the width of the first metal portion 3a is gradually reduced from the outer layer side toward the inner layer side, and the second metal portion 3b is wider than the first metal portion 3a immediately above. It is desirable to form the conductor circuit 3 because the conductor circuit 3 has a more anchor shape and the adhesion to the insulating layer 6 can be made stronger.

他方、セミアディティブ法による導体回路形成は、メタルキャリア1の片側に無電解により薄付け銅めっき2を析出させた(図2(a))後、まず図2(g)のようにフォトレジストパターン5を形成し、次いで、図2(h)に示すようにその開口部に第1金属部3aおよび第2金属部3bを電解めっきにて析出させる。このとき用いる第1金属部3aおよび第2金属部3bの具体的金属としては、前記サブトラクティブと同様な金属が用いられる。   On the other hand, in the formation of a conductor circuit by the semi-additive method, a thin copper plating 2 is deposited on one side of the metal carrier 1 by electroless method (FIG. 2A), and then a photoresist pattern as shown in FIG. Then, as shown in FIG. 2 (h), the first metal portion 3a and the second metal portion 3b are deposited in the opening by electrolytic plating. As the specific metal of the first metal part 3a and the second metal part 3b used at this time, the same metal as the subtractive is used.

次いで、図2(i)に示すように、フォトレジスト5を剥離した後、図2(j)に示すようにエッチング処理して導体回路3を形成する。このとき使用するエッチング液は、第1金属部3aはエッチング除去できるが、第2金属部3bはエッチングできない薬液を使用する。また、2のとき第1金属部3aの幅が第2金属部3bの幅よりも小さくなるようにエッチングする。特に、図1に示すように、第1金属部3aが外層側から内層側に向かって幅が徐々に小さく、かつ第2金属部3bが、直上の第1金属部3aより幅が大きくなるように形成するのが、導体回路3がより、アンカー形状となり、絶縁層6との密着をより強固なものとすることができるので望ましい。   Next, as shown in FIG. 2 (i), after the photoresist 5 is peeled off, the conductor circuit 3 is formed by etching as shown in FIG. 2 (j). As the etching solution used at this time, a chemical solution that can be etched away from the first metal portion 3a but cannot be etched from the second metal portion 3b is used. Moreover, when it is 2, it etches so that the width | variety of the 1st metal part 3a may become smaller than the width | variety of the 2nd metal part 3b. In particular, as shown in FIG. 1, the width of the first metal portion 3a is gradually reduced from the outer layer side toward the inner layer side, and the second metal portion 3b is wider than the first metal portion 3a immediately above. It is desirable to form the conductor circuit 3 because the conductor circuit 3 has an anchor shape and can be more firmly adhered to the insulating layer 6.

導体回路3の形成後は、サブトラクティブ法、アディティブ法の如何を問わず、以下のとおり同様に行なわれる。   After the conductor circuit 3 is formed, the same process is performed as follows regardless of the subtractive method or the additive method.

すなわち、図2(k)および(l)に示すように、導体回路3が施されたメタルキャリア1に絶縁層6を形成する。絶縁層の形成方法としては、絶縁基材がシート状のものであれば、積層プレス、ラミネーターなどの圧着する方法で、また液状のものであれば、スピンコーター、ブレードコーター、ロールコーター、バーコーダー、ダイコーター、スクリーン印刷による塗布でもよい。特に、導体回路3が微細な場合は、絶縁基材がシート状のもので、真空プレスや真空ラミネーターによる絶縁層の形成がボイドなく良好に製造できるので望ましい。
ここで好適に用いられる熱硬化樹脂シート状の絶縁基材としては、樹脂単体をシートにしたものや、ガラス繊維、アラミド繊維、カーボン繊維等やガラス不織布、アラミド不織布、カーボン不織布などに熱硬化性樹脂や熱可塑性樹脂を含浸せしめたプリプレグが挙げられる。尚、熱硬化性樹脂としては、例えばエポキシ、ポリイミド、BTレジンなどが挙げられ、また熱可塑性樹脂としては、例えばポリカーボネート、ポリエーテルサルファイド、ポリエチレンテレフタレート、ポリエーテルイミド、ポリイミド、ポリアミド、液晶ポリマーなどが挙げられるが、特に低誘電損失などの電気特性に優れ、かつ加工性、金属との密着性の面から液晶ポリマーが好適に使用される。
That is, as shown in FIGS. 2 (k) and 2 (l), the insulating layer 6 is formed on the metal carrier 1 to which the conductor circuit 3 is applied. As a method for forming the insulating layer, if the insulating substrate is in the form of a sheet, it is a method of pressure bonding such as a laminating press or a laminator, and if it is a liquid, it is a spin coater, blade coater, roll coater, bar coder. Application by die coater or screen printing is also possible. In particular, when the conductor circuit 3 is fine, the insulating base material is sheet-like, and the formation of the insulating layer by a vacuum press or a vacuum laminator can be favorably manufactured without voids, which is desirable.
The thermosetting resin sheet-like insulating base material suitably used here is thermosetting to a single resin sheet, glass fiber, aramid fiber, carbon fiber, glass nonwoven fabric, aramid nonwoven fabric, carbon nonwoven fabric, etc. Examples thereof include a prepreg impregnated with a resin or a thermoplastic resin. Examples of the thermosetting resin include epoxy, polyimide, and BT resin. Examples of the thermoplastic resin include polycarbonate, polyether sulfide, polyethylene terephthalate, polyether imide, polyimide, polyamide, and liquid crystal polymer. In particular, a liquid crystal polymer is preferably used from the viewpoint of excellent electrical characteristics such as low dielectric loss, processability, and adhesion to metal.

次いで、図2(m)に示すように、メタルキャリア1を絶縁基板から剥がす。このとき絶縁基板に応力をかけずに剥がす。また、メタルキャリア1を薬液で除去しても構わない。   Next, as shown in FIG. 2 (m), the metal carrier 1 is peeled off from the insulating substrate. At this time, the insulating substrate is peeled off without applying stress. Moreover, you may remove the metal carrier 1 with a chemical | medical solution.

次いで、図2(n)に示すように、無電解銅めっき2をエッチング除去する。これに用いるエッチング液は、塩化第二銅、塩化第二鉄、過硫酸塩類、過酸化水素/硫酸、アルカリエッチャントなどの水溶液があるが、無電解銅めっき2を除去するのと同時に導体回路3も溶解するエッチング液の場合には、処理時間などの調整が必要である。できれば、無電解銅めっき2は溶解するが、導体回路3は溶解しないエッチング液を選定する方が好ましい。これによりプリント配線板7が得られる。   Next, as shown in FIG. 2 (n), the electroless copper plating 2 is removed by etching. Etching solutions used for this include aqueous solutions of cupric chloride, ferric chloride, persulfates, hydrogen peroxide / sulfuric acid, alkaline etchant, etc., but the conductor circuit 3 is removed at the same time as the electroless copper plating 2 is removed. In the case of an etching solution that also dissolves, it is necessary to adjust the processing time and the like. If possible, it is preferable to select an etching solution that dissolves the electroless copper plating 2 but does not dissolve the conductor circuit 3. Thereby, the printed wiring board 7 is obtained.

本発明のプリント配線板は、電子機器の配線板、ICパッケージ用インターポーザーなどに好適に使用される。また、導体回路に抵抗素子や容量素子を入れ込むことも適宜可能である。   The printed wiring board of the present invention is suitably used for wiring boards for electronic equipment, interposers for IC packages, and the like. It is also possible to insert a resistance element or a capacitance element in the conductor circuit as appropriate.

以下、実施例及び比較例を挙げて本発明を更に説明する。尚、実施例の符号は図2の符号を、比較例の符号は図3の符号をそれぞれ引用した。   Hereinafter, the present invention will be further described with reference to Examples and Comparative Examples. In addition, the code | symbol of an Example quoted the code | symbol of FIG. 2, and the code | symbol of the comparative example quoted the code | symbol of FIG. 3, respectively.

実施例1
厚さ0.8mmのステンレス板1の片面に無電解銅めっき処理により無電解銅めっき2を1μm析出させた。次いで、電解めっき法によりニッケルめっきよりなる第1金属部3aを10μm析出させ、次いで、銅めっきよりなる第2金属部3bを5μm析出させた。次いで、フォトレジスト4をラミネーターにより接着し、5分間常温にて放置後、フォトマスクを介してフォトレジスト4を露光した。テスト用のフォトマスクパターンは、ライン(L)/スペース(S)=10μm/10μm、15μm/15μm、20μm/20μm、以降10μmきざみで100μm/100μmあるもので、ネガ型とした。フォトレジスト4を現像し、めっき厚が必要な部分にレジスト層を形成した。次いで、エッチング液(アルカリエッチング液(メルテックス(株)エースプロセス))により第2金属部3bたる銅めっきのみを除去し、レジスト剥離液によりレジスト剥離後、第1金属部3aたるニッケルめっきをニッケルエッチング液(メルテックス(株)メルストリップN−950)にて第2金属部3bたる銅めっきよりも回路の幅が小さくなるようにエッチングを行ない、導体回路3を形成した。これによりニッケル/銅金属の導体回路3を得ることができた。次いで、導体回路3のついたメタルキャリアに絶縁層6を形成するために、当該メタルキャリアとプリプレグ(FR−4、0.1t)1枚と銅箔(12μm)1枚を組み合わせ、積層プレスにて加熱加圧一体成形を行った。
これにより、メタルキャリア付き積層板を得た。次いで、積層後、端面加工し端面より徐々にステンレス板1を剥離した。次いで、無電解銅めっき2をアルカリエッチングにより除去し、平坦な導体回路3を有するプリント配線板7を得た。
このプリント配線板7を金属顕微鏡による表面観察と測長機による測長を行なったところ、導体回路幅は、L/S=50μm/50μmまで±5μm以内で良好であり、また導体回路の剥離も観察されなかった。
Example 1
1 μm of electroless copper plating 2 was deposited on one side of a 0.8 mm thick stainless steel plate 1 by electroless copper plating. Then, 10 μm of the first metal part 3a made of nickel plating was deposited by electrolytic plating, and then 5 μm of the second metal part 3b made of copper plating was deposited. Next, the photoresist 4 was adhered by a laminator and left at room temperature for 5 minutes, and then the photoresist 4 was exposed through a photomask. The test photomask pattern was a line (L) / space (S) = 10 μm / 10 μm, 15 μm / 15 μm, 20 μm / 20 μm, and thereafter 100 μm / 100 μm in increments of 10 μm, and was a negative type. Photoresist 4 was developed, and a resist layer was formed on a portion requiring a plating thickness. Next, only the copper plating as the second metal part 3b is removed with an etching solution (alkali etching solution (Mertex Co., Ltd. Ace Process)), and after the resist is peeled off with the resist stripping solution, the nickel plating as the first metal part 3a is nickel. Etching was performed with an etching solution (Meltex Co., Ltd. Melstrip N-950) so that the width of the circuit was smaller than that of the copper plating as the second metal part 3b, whereby the conductor circuit 3 was formed. As a result, a nickel / copper metal conductor circuit 3 was obtained. Next, in order to form the insulating layer 6 on the metal carrier with the conductor circuit 3, the metal carrier, one prepreg (FR-4, 0.1t) and one copper foil (12 μm) are combined and laminated press Then, heating and pressurization integral molding was performed.
This obtained the laminated board with a metal carrier. Next, after lamination, the end face was processed, and the stainless steel plate 1 was gradually peeled off from the end face. Next, the electroless copper plating 2 was removed by alkali etching to obtain a printed wiring board 7 having a flat conductor circuit 3.
When the surface of the printed wiring board 7 was observed with a metal microscope and measured with a length measuring machine, the conductor circuit width was good within ± 5 μm up to L / S = 50 μm / 50 μm, and the conductor circuit was peeled off. Not observed.

実施例2
厚さ0.8mmのステンレス板1の片面に無電解銅めっき2を1μm析出させた。次いで、フォトレジスト5をラミネーターにより接着し、5分間常温にて放置後、フォトマスクを介して露光した。テスト用のフォトマスクパターンは、ライン(L)/スペース(S)=10μm/10μm、15μm/15μm、20μm/20μm、以降10μmきざみで100μm/100μmあるもので、ポジ型とした。
フォトレジスト5を現像し、めっき厚が必要な部分のレジスト除去をした。次いで、電解めっき法によりニッケルめっきよりなる第1金属部3aを10μm析出させ、次いで銅めっきよりなる第2金属部3bを5μm析出させた。次いで、レジスト5を剥離し、ニッケルエッチング液(メルテックス(株)メルストリップN−950)にて第1金属部3aたるニッケルめっきを第2金属部3bたる銅めっきよりも回路幅が小さくなるようにエッチングを行い、導体回路3の形成を行なった。これによりニッケル/銅の導体回路3を得ることができた。以下実施例1と同様にしてプリント配線板7を得た。
このプリント配線板7を金属顕微鏡による表面観察と測長機による測長を行なったところ、導体回路幅は、L/S=20μm/20μmまで±2μm以内で良好であり、また導体回路の剥離も観察されなかった。
Example 2
1 μm of electroless copper plating 2 was deposited on one surface of a stainless steel plate 1 having a thickness of 0.8 mm. Next, the photoresist 5 was adhered by a laminator, left at room temperature for 5 minutes, and then exposed through a photomask. The test photomask pattern had a line (L) / space (S) = 10 μm / 10 μm, 15 μm / 15 μm, 20 μm / 20 μm, and thereafter 100 μm / 100 μm in increments of 10 μm, and was a positive type.
Photoresist 5 was developed, and the resist was removed at portions where plating thickness was required. Next, 10 μm of the first metal part 3a made of nickel plating was deposited by electrolytic plating, and then 5 μm of the second metal part 3b made of copper plating was deposited. Next, the resist 5 is peeled off, and the nickel plating liquid (Meltex Co., Ltd. Melstrip N-950) is used to make the nickel plating as the first metal part 3a smaller than the copper plating as the second metal part 3b. Etching was performed to form the conductor circuit 3. As a result, a nickel / copper conductor circuit 3 was obtained. Thereafter, a printed wiring board 7 was obtained in the same manner as in Example 1.
When the surface of the printed wiring board 7 was observed with a metal microscope and measured with a length measuring machine, the conductor circuit width was good within ± 2 μm up to L / S = 20 μm / 20 μm, and the conductor circuit was peeled off. Not observed.

比較例1
厚さ0.8mmのステンレス板31の片面に無電解銅めっき処理により無電解銅めっき32を1μm析出させた。次いで、電解めっき法によりニッケルめっきよりなる第1金属部33aを10μm析出させ、次いで、銅めっきよりなる第2金属部33bを5μm析出させた。次いで、フォトレジスト34をラミネーターにより接着し5分間常温にて放置後、フォトマスクを介して露光した。テスト用のフォトマスクパターンは、ライン(L)/スペース(S)=10μm/10μm、15μm/15μm、20μm/20μm、以降10μmきざみで100μm/100μmあるもので、ネガ型とした。フォトレジスト34を現像し、めっき厚が必要な部分にレジスト層を形成した。次いで、第1金属部33aたるニッケルめっき33a及び第2金属部33bたる銅めっきを塩化第二鉄のエッチング液にてエッチングを行い、導体回路33を形成した。以下実施例1と同様にしてプリント配線板37を得た。
このプリント配線板37を金属顕微鏡による表面観察と測長機による測長を行なったところ、導体回路幅は、L/S=50μm/50μmまで±5μm以内で良好であったが、一部導体回路の剥離が確認された。
Comparative Example 1
1 μm of electroless copper plating 32 was deposited on one surface of a stainless steel plate 31 having a thickness of 0.8 mm by electroless copper plating treatment. Next, 10 μm of the first metal part 33a made of nickel plating was deposited by electrolytic plating, and then 5 μm of the second metal part 33b made of copper plating was deposited. Next, a photoresist 34 was adhered by a laminator, left at room temperature for 5 minutes, and then exposed through a photomask. The test photomask pattern was a line (L) / space (S) = 10 μm / 10 μm, 15 μm / 15 μm, 20 μm / 20 μm, and thereafter 100 μm / 100 μm in increments of 10 μm, and was a negative type. The photoresist 34 was developed, and a resist layer was formed in a portion requiring a plating thickness. Next, the nickel plating 33a as the first metal part 33a and the copper plating as the second metal part 33b were etched with a ferric chloride etchant to form the conductor circuit 33. Thereafter, a printed wiring board 37 was obtained in the same manner as in Example 1.
When the surface of the printed wiring board 37 was observed with a metal microscope and measured with a length measuring machine, the conductor circuit width was good within ± 5 μm up to L / S = 50 μm / 50 μm. The peeling of was confirmed.

比較例2
厚さ0.8mmのステンレス板31の片面に無電解銅めっき32を1μm析出させた。次いで、フォトレジスト35をラミネーターにより接着し、5分間常温にて放置後、フォトマスクを介して露光した。テスト用のフォトマクスパターンは、ライン(L)/スペース(S)=10μm/10μm、15μm/15μm、20μm/20μm、以降10μmきざみで100μm/100μmあるもので、ポジ型とした。フォトレジストを現像し、めっき厚が必要な部分のレジストを除去した。次いで、電解めっき法によりニッケルめっきよりなる第1金属部33aを10μm析出させ、次いで銅めっきよりなる第2金属部33bを5μm析出させた。次いで、レジスト35を剥離し、導体回路33を形成した。以下実施例1と同様にプリント配線板37を得た。
このプリント配線板37を金属顕微鏡による表面観察と測長機による測長を行なったところ、導体回路幅は、L/S=20μm/20μmまで±2μm以内で良好であったが、一部導体回路の剥離が確認された。
Comparative Example 2
1 μm of electroless copper plating 32 was deposited on one surface of a stainless steel plate 31 having a thickness of 0.8 mm. Next, a photoresist 35 was adhered by a laminator, left at room temperature for 5 minutes, and then exposed through a photomask. The test photomax pattern was line (L) / space (S) = 10 μm / 10 μm, 15 μm / 15 μm, 20 μm / 20 μm, and thereafter 100 μm / 100 μm in increments of 10 μm, and was a positive type. The photoresist was developed, and the resist where the plating thickness was required was removed. Then, 10 μm of the first metal part 33a made of nickel plating was deposited by electrolytic plating, and then 5 μm of the second metal part 33b made of copper plating was deposited. Next, the resist 35 was peeled off to form a conductor circuit 33. Thereafter, a printed wiring board 37 was obtained in the same manner as in Example 1.
When the surface of the printed wiring board 37 was observed with a metal microscope and the length was measured with a length measuring machine, the conductor circuit width was good within ± 2 μm up to L / S = 20 μm / 20 μm. The peeling of was confirmed.

本発明のプリント配線板の概略断面説明図。The schematic cross-section explanatory drawing of the printed wiring board of this invention. 本発明のプリント配線板の製造工程を示す概略断面説明図。The schematic cross-section explanatory drawing which shows the manufacturing process of the printed wiring board of this invention. 従来技術のプリント配線板の製造工程を示す概略断面説明図。Schematic cross-sectional explanatory drawing which shows the manufacturing process of the printed wiring board of a prior art.

符号の説明Explanation of symbols

1、31:ステンレス板
2、32:無電解銅めっき
3、33:導体回路
3a、33a:第1金属部
3b、33b:第2金属部
4、5、34、35:フォトレジスト
6、36:絶縁層
7:プリント配線板(本発明品)
37:プリント配線板(従来品)
DESCRIPTION OF SYMBOLS 1, 31: Stainless steel plate 2, 32: Electroless copper plating 3, 33: Conductor circuit 3a, 33a: 1st metal part 3b, 33b: 2nd metal part 4, 5, 34, 35: Photoresist 6, 36: Insulating layer 7: Printed wiring board (product of the present invention)
37: Printed wiring board (conventional product)

Claims (4)

外層の導体回路が絶縁基板に埋め込まれた平坦な導体回路を有するプリント配線板であって、導体回路が2種類以上の金属層部からなり、かつ少なくとも外層側の第1金属部の幅より内層側の第2金属部の幅の方が大きいことを特徴とするプリント配線板。   A printed wiring board having a flat conductor circuit in which a conductor circuit of an outer layer is embedded in an insulating substrate, wherein the conductor circuit is composed of two or more kinds of metal layer portions, and at least an inner layer from the width of the first metal portion on the outer layer side A printed wiring board characterized in that the width of the second metal portion on the side is larger. メタルキャリアに金属を析出させて導体回路を形成した後、絶縁層を積層形成し、然る後メタルキャリアを剥がして最外層の回路パターンを形成するプリント配線板の製造方法において、メタルキャリア上に、めっき処理により2種類以上の金属層部を形成させた後、前記金属層部の少なくとも外層側の第1金属部の幅が、内層側の第2金属部の幅よりも小さくなるように当該金属層部をエッチングして導体回路を形成することを特徴とするプリント配線板の製造方法。   In a method for manufacturing a printed wiring board, a metal circuit is deposited on a metal carrier to form a conductor circuit, and then an insulating layer is laminated, and then the metal carrier is peeled off to form an outermost circuit pattern. After forming two or more types of metal layer portions by plating, the width of at least the first metal portion on the outer layer side of the metal layer portion is smaller than the width of the second metal portion on the inner layer side. A method for producing a printed wiring board, comprising etching a metal layer portion to form a conductor circuit. 前記エッチングを、第1金属部は溶解するが第2金属部は溶解しないエッチング液を用いて行なうことを特徴とする請求項2記載のプリント配線板の製造方法。   3. The method of manufacturing a printed wiring board according to claim 2, wherein the etching is performed using an etching solution that dissolves the first metal part but does not dissolve the second metal part. 前記エッチングを、第1金属部は溶解するが第2金属部はわずかに溶解するようなエッチング液を用いて行なうことを特徴とする請求項2記載のプリント配線板の製造方法。   3. The method of manufacturing a printed wiring board according to claim 2, wherein the etching is performed using an etching solution that dissolves the first metal part but slightly dissolves the second metal part.
JP2004053848A 2004-02-27 2004-02-27 Printed wiring board and its manufacturing method Pending JP2005244039A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004053848A JP2005244039A (en) 2004-02-27 2004-02-27 Printed wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004053848A JP2005244039A (en) 2004-02-27 2004-02-27 Printed wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2005244039A true JP2005244039A (en) 2005-09-08

Family

ID=35025430

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004053848A Pending JP2005244039A (en) 2004-02-27 2004-02-27 Printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2005244039A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101048539B1 (en) 2010-03-31 2011-07-11 한국조폐공사 Screen printing plate using mold and the method for preparing the same
KR101075249B1 (en) 2009-12-14 2011-10-19 한국조폐공사 Double layer screen Printing Plate using mold and A Method for Preparing the Same
KR101103648B1 (en) * 2010-03-26 2012-01-11 한국조폐공사 Mold for making screen printing plate and the method for preparing the same

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101075249B1 (en) 2009-12-14 2011-10-19 한국조폐공사 Double layer screen Printing Plate using mold and A Method for Preparing the Same
KR101103648B1 (en) * 2010-03-26 2012-01-11 한국조폐공사 Mold for making screen printing plate and the method for preparing the same
KR101048539B1 (en) 2010-03-31 2011-07-11 한국조폐공사 Screen printing plate using mold and the method for preparing the same

Similar Documents

Publication Publication Date Title
US20070101571A1 (en) Printed wiring board, its manufacturing method and circuit device
JP2006278774A (en) Double-sided wiring board, method for manufacturing the same and base substrate thereof
JP5256747B2 (en) Manufacturing method of copper wiring insulating film by semi-additive method, and copper wiring insulating film manufactured therefrom
US11690178B2 (en) Multilayer printed wiring board and method of manufacturing the same
JP2009176770A (en) Method of manufacturing copper wiring insulation film, and copper wiring insulation film manufactured from the same
WO2010018790A1 (en) Multilayer laminated circuit board having multiple conduction part
JP2004009357A (en) Metal vapor-deposited/metal plated laminated film and electronic part using the same
JP6252988B2 (en) Two-layer copper-clad laminate and method for producing the same, flexible wiring board using the same, and method for producing the same
JP2005244039A (en) Printed wiring board and its manufacturing method
JP6274491B2 (en) Manufacturing method of multilayer wiring board
JP2000340948A (en) Method of improving adhesion between copper and resin, and multilayered wiring board manufactured using the same
CN106576428A (en) Method for manufacturing flexible copper wiring board, and flexible copper-clad layered board with support film used in said copper wiring board
JP5467009B2 (en) RESIST-FORMED WIRING BOARD AND ELECTRONIC CIRCUIT MANUFACTURING METHOD
JP2005032901A (en) Conductive sheet
JP2001189548A (en) Method of manufacturing substrate for electronic part
JP4752357B2 (en) LAMINATED MANUFACTURING METHOD AND PRINTED WIRING BOARD MANUFACTURING METHOD
JP3559598B2 (en) Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil
JPH1126938A (en) Manufacture of laminated board with inner layer circuit
JPH11204942A (en) Manufacture of multilayer wiring board
JPH0348494A (en) Multilayer printed circuit board for microscopic conductor and plating method of the same
JP2004039771A (en) Production of wiring circuit substrate
JP3071722B2 (en) Method for manufacturing multilayer printed wiring board
JP2006324545A (en) Manufacturing method of film substrate for wiring, manufacturing device, and film substrate for wiring
JPH045888A (en) Printed wiring board
JP6252989B2 (en) Two-layer copper-clad laminate and method for producing the same, flexible wiring board using the same, and method for producing the same