JP3559598B2 - Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil - Google Patents

Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil Download PDF

Info

Publication number
JP3559598B2
JP3559598B2 JP32226194A JP32226194A JP3559598B2 JP 3559598 B2 JP3559598 B2 JP 3559598B2 JP 32226194 A JP32226194 A JP 32226194A JP 32226194 A JP32226194 A JP 32226194A JP 3559598 B2 JP3559598 B2 JP 3559598B2
Authority
JP
Japan
Prior art keywords
copper layer
layer
metal foil
wiring board
copper
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP32226194A
Other languages
Japanese (ja)
Other versions
JPH08181432A (en
Inventor
直之 浦崎
厚司 西村
昭士 中祖
順雄 岩崎
祐一 清水
正志 天方
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Denkai Co Ltd
Showa Denko Materials Co Ltd
Original Assignee
Nippon Denkai Co Ltd
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Denkai Co Ltd, Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Nippon Denkai Co Ltd
Priority to JP32226194A priority Critical patent/JP3559598B2/en
Publication of JPH08181432A publication Critical patent/JPH08181432A/en
Application granted granted Critical
Publication of JP3559598B2 publication Critical patent/JP3559598B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/021Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material including at least one metal alloy layer
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • C23C28/02Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material
    • C23C28/023Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D only coatings only including layers of metallic material only coatings of metal elements only

Description

【0001】
【産業上の利用分野】
本発明は、印刷配線板用金属箔とその製造法並びにこの金属箔を用いた配線板の製造法に関する。
【0002】
【従来の技術】
印刷配線板は電子機器の発達に伴い、その性能にも高度なものが要求されるようになってきている。
例えば、配線密度については電子部品に配線板の表面でのみ接続を行う、いわゆる表面実装部品が開発され、その電子部品の接続端子の間隔が小さいものになると0.15mm以下となるものも使用されており、この密度に合わせて回路導体を形成することが求められている。
また耐熱性については、はんだ付けに必要とされる260℃に耐えることは勿論のことであるが、自動車の制御に使用される等、使用環境の過酷な場合等の悪環境に耐えることも必要となっている。
【0003】
このような印刷配線板の製造法としては、銅箔を絶縁基材に貼り合わせた銅張り積層板を出発材料とし、その銅箔の回路導体とならない箇所をエッチング除去して回路を形成するサブトラクティブ法、絶縁基材の表面に必要な回路形状に無電解めっきを行って回路形成するアディティブ法、スルーホール内壁等の回路導体の一部を無電解めっきによって形成する部分アディティブ法等が一般的に知られている。
【0004】
中でも、サブトラクティブ法は古くから行われており、配線密度の向上には通常、銅張り積層板の銅箔の厚さを薄くすることが行われている。この理由は、銅箔の表面に必要とする回路形状にエッチングレジストを形成し、エッチング溶液でエッチングレジストから露出した不要な銅箔の除去を行う時に、必要な回路部分の側面から銅が腐食される、いわゆるサイドエッチと呼ばれる現象が起こり、銅箔が厚い程サイドエッチによって除去される側面の銅の量が多くなるので、微細な回路を形成するためには薄い銅箔を必要とするのである。
【0005】
加えてスルーホールを設けて、その内壁を金属化して層の異なる回路を接続する印刷配線板においては、銅張り積層板に穴をあけ、穴内壁と銅箔表面全体に無電解めっきを行い、さらに穴内壁の金属層の厚さを確保するために電気めっきを行うことが通常行われているので、銅箔の上にもめっき層が形成され必然的に銅の厚さが厚くなる。
【0006】
従って出発材料である銅張り積層板の銅箔には薄いものを必要とし、このような銅箔としては、銅を熱と圧力によって延ばした圧延銅箔やステンレス等の金属の表面に電解めっきによって銅を析出させた電解銅箔が使用され、近年では18〜70μmの厚さの銅箔が製造されている。
また、近年、アルミニウム箔に電解めっきによって5μm程度の薄い銅箔を形成した、アルミキャリア付き極薄銅箔も知られている。
【0007】
このように薄い銅箔は、銅箔と未硬化ないしは半硬化のプリプレグを積層する時に取り扱いが困難であり、わずかの力で銅箔に折れが生じる。
また、銅箔を製造する時の取り扱いによっても、このような不都合が起こることがある。
そこで、薄い銅箔を全体として十分な強度を有する板や箔にして複合層化しておき、樹脂との接合の後、あるいは使用する直前に支持体層を除去する方法が開発されてきている。
このような例として、特開昭58−108785号公報に記載されているように、2層の銅箔の間に銅とはエッチング条件の異なるニッケル、ニッケル−鉄、錫、鉛等の中間金属層を設けた3層構造の金属箔が提案されている。
【0008】
【発明が解決しようとする課題】
ところで従来の技術のうち、特開昭58−108785号公報に記載されているような3層構造の金属箔を用いるものは、中間層のエッチング除去に電解エッチングを用いることが記載され化学的に行うこともできるという記載がある。
この電解エッチングには、特殊な装置設備を必要とし効率的でない。
また現在、ニッケル−鉄、錫、鉛等をエッチング除去する化学溶液としては、エチレンジアミン系のエンストリップNP(メルテックス社製、商品名)、メルテックSCB(マクダーミッド社製、商品名)等の市販の溶液や硝酸と過酸化水素の混合溶液、あるいはクロム酸と硫酸の混合溶液等を用いることができるが、エンストリップNP(メルテックス社製、商品名)を用いた場合には、中間層の未溶解残渣であるスマットと呼ばれる表面変質層が発生し、このスマットの除去が大変困難であり、その他の溶液を用いた場合には中間層のみならず回路となる銅層まで除去してしまうことがあり、逆にその銅層を残そうとすると中間層を完全には除去できないことがある。
また、スマットが発生すると銅箔が不連続になり樹脂と銅箔との接着性が低下し、中間層が残っても同様に樹脂と銅箔との接着性が低下する。
【0009】
そこで、本発明の発明者らは鋭意検討の結果、これらの課題を解決すべくニッケル−リンを中間層として用い、樹脂と接する回路となる銅層の表面を平均粗さが1〜2μmとなるように粗化する技術を提案している。
ところが、このような粗さで粗化すると、ニッケル−リン合金層で覆われる面積が大きくなり、さらに凹凸があるのでニッケル−リン合金層にピンホールが発生しやすく、支持体となる第2の銅層をエッチング除去する時にこのピンホールにより回路となる第1の銅層が損なわれることが判明した。
【0010】
本発明は、配線密度に優れ、かつ、その製造過程においてもピンホールの抑制に優れた印刷配線板用金属箔と、その製造法、並びにこの金属箔を用いた簡便な印刷配線板の製造法を提供することを目的とするものである。
【0011】
【課題を解決するための手段】
本発明の印刷配線板用金属箔は、回路となる第1の銅層と、全体としての金属箔として十分な強度を有する第2の銅層と、その中間に挟まれた中間層からなる印刷配線板用金属箔において、第1の銅層の樹脂と接する表面の平均粗さが0.1〜0.8μmであり、第2の銅層の中間層と接する表面の平均粗さが0.05〜0.4μmであり、中間層がニッケルまたはその合金であって、その厚さが0.04〜1.5μmであることを特徴とする。
第1の銅層の樹脂と接する表面の平均粗さが0.1μm未満では、ピール強度が小さく、形成した配線が浮くことがあり、0.8μmを越えると、微細な配線が形成しにくくなる。
また、第2の銅層の中間層と接する表面の平均粗さが0.05μm未満であると、配線形成のときのレジストとの密着が低下し、0.4μmを越えると、ピンホールが発生しやすくなる。
【0012】
このような印刷配線板用金属箔のうち、第2の銅層の厚さは10〜150μmの範囲であることが好ましい。10μm未満では全体としての印刷配線板用金属箔として十分な強度を得ることができず、150μmを超えるとエッチング除去するために時間がかかり能率的でない。しかし、厚くすることによって生じる効果が能率よりも重要な場合には厚くすることもできるが、通常はこれを越える厚さを必要としない。さらに好ましくは、18〜70μmの範囲である。
【0013】
また、第1の銅層の厚さは1〜15μmの範囲であることが好ましい。1μm未満では形成した銅箔にピンホールが発生しやすく、15μmを超えると従来の技術でも述べたようにサイドエッチが大きくなり、配線密度を高くすることが困難となる。さらに好ましくは、3〜6μmである。
【0014】
この印刷配線板用金属箔の第1の銅層及び第2の銅層の中間層と接しない表面には、防錆被膜を設けることが好ましく、例えば、イミダゾール系の有機物による被膜を形成する方法やクロメート処理、あるいはジンケート処理等、従来から知られている方法を使用することができる。
【0015】
このような印刷配線板用金属箔は、全体としての印刷配線板用金属箔として十分な強度を有する第2の銅層の少なくとも一方を平均粗さが0.05〜0.4μmとなるように調整し、その表面に厚さ0.04〜1.5μmのニッケルまたはその合金の層を形成し、さらに、その表面に回路となる銅層を形成した後に、第1の銅層の樹脂と接する表面に平均粗さが0.1〜0.8μmとなるように粗化面を形成することによって製造することができる。
【0016】
第1の銅層の表面に粗化面を形成する工程としては、電気めっき、無電解めっき、置換めっき、エッチングあるいは蒸着のうちから選択した方法によって行うことができる。
電気めっきを用いる場合には、電流密度やめっき液組成を変更して、めっき析出速度を通常の光沢めっきよりも速くすることによって粗化を行うことができ、平均粗さを制御するためには、その条件を一定の範囲で維持するように制御することによって得られる。
また、陰極板に平均粗さが0.05〜0.4μmのものを用いることによっても同様の粗化を行うことができる。
無電解めっきや置換めっきを用いる場合には、組成を変更して、めっき析出速度を通常の光沢めっきよりも速くすることによって粗化を行うことができる。
また、従来から知られた方法を用いることもでき、例えば、過硫酸アンモニウム等のソフトエッチング溶液に接触させる方法や、サンドブラストを吹き付けたり、サンダーベルトによって機械的に研磨することによっても行うことができる。
【0017】
このような印刷配線板用金属箔を用いて印刷配線板を製造する方法としては、以下の工程をこの順序に含むことによって可能である。
a.回路となる第1の銅層と、全体としての金属箔として十分な強度を有する第2の銅層と、その中間に挟まれた中間層からなる金属箔において、第1の銅層の樹脂と接する表面の平均粗さが0.1〜0.8μmであり、第2の銅層の中間層と接する表面の平均粗さが0.05〜0.4μmであり、中間層がニッケルまたはその合金であって、その厚さが0.04〜1.5μmである印刷配線板用金属箔の第1の銅層の表面に未硬化ないしは半硬化の熱硬化性樹脂を含浸
したプリプレグを重ね、加熱・加圧して積層一体化する工程
b.第2の銅層のみをエッチング除去する工程
c.中間層のみをエッチング除去する工程
d.回路導体を形成する工程
【0018】
この発明に用いる印刷配線板用金属箔は前述のとおりであるが、プリプレグと重ねて積層一体化する時に、プリプレグの一方の面にその金属箔の第1の銅層が接するように重ね、他方の面には同じ金属箔を重ねることもできるが、通常の配線板に用いる銅箔を重ねることもできる。
【0019】
未硬化ないしは半硬化のプリプレグとしては、ガラス布、ガラス単繊維、紙等の強化基材にポリイミド樹脂、エポキシ樹脂、フェノール樹脂、あるいはこれらの混合物等と、それぞれの樹脂の硬化剤を含浸させたもの、あるいは加熱して半硬化状(B−ステージ)にしたものが使用できる。
また、強化基材を用いずに樹脂とその硬化剤を混合したものを塗布し、加熱して硬化させることによっても製造することができる。例えば樹脂として、エポキシ樹脂で変性したポリイミド樹脂、ポリアミド樹脂、またはポリアミド−ポリイミド樹脂等の耐熱性の熱硬化樹脂と、それらの硬化剤、例えば、ジアミノジフェニルスルホン、ジシアンジアミド、フェノールノボラック等を用いることもできる。
この樹脂としては、ふっ素樹脂のような熱可塑性のものを使用することもで
き、この場合には硬化剤を用いることなく樹脂の溶融、金属箔との融着、冷却という順序で同様の工程を用いることによって行うことができる。この場合、熱可塑性樹脂が予めシート状に加工したものを用いることもできる。
【0020】
前記印刷配線板用金属箔の第2の銅層のみを除去するエッチング溶液としては、塩素イオンとアンモニウムイオンと銅イオンとを含むアルカリ性化学液、例えばAプロセス液(メルテックス社製、商品名)(以下、アルカリエッチャントという。)を用いることができ、エッチングはこのアルカリエッチャントに接触させることによって行うことができる。ここでいう接触とは、その溶液中に浸漬することや、その液を噴霧することをいう。
【0021】
中間層のみを除去するエッチング溶液としては、硝酸と過酸化水素とカルボキシル基を含む有機酸とベンゾトリアゾールとを含むものを用いることができる。例えば、このような溶液として、硝酸200g/l、プロピオン酸100g/l、H10ml/l、ベンゾトリアゾール5g/l等がある。
【0022】
前記回路導体を形成する工程は、第2の銅層、中間層を除去した後、回路を形成する第1の銅層の表面にエッチングレジストを形成し、そのエッチングレジストから露出した銅箔をエッチング除去することによって所望の回路を形成することができる。
また、両面の回路を接続する時には、この工程の前にスルーホールとなる穴をあけ、穴内壁を無電解めっきして、必要な場合には電解めっきを行い、導体の厚さを確保してエッチングレジストを形成し、不要な銅箔をエッチング除去して回路を形成することもできる。
さらにまた、内層回路を形成した内層基板の表面の少なくとも一方の面に、プリプレグとこの金属箔を重ねて積層一体化し、この金属箔の第2の銅層の除去、中間層の除去を行った後、スルーホールとなる穴をあけ、穴内壁を無電解めっきして、必要な場合には電解めっきを行い、導体の厚さを確保してエッチングレジストを形成し、不要な銅箔をエッチング除去して回路導体を形成することもできる。
【0023】
【作用】
本発明者らは鋭意検討の結果、
(1)第2の銅層の表面粗さを、Ra;0.05〜0.4μmとすることにより、中間層のピンホールを抑制でき、エッチング時に第1の銅層を侵食させないということ、
(2)第1の銅層の表面粗さが、Ra;0.1〜0.8μmであっても樹脂基材との十分な接着強度が得られ、また、配線形成性も良好であること、
の知見を得、これによって本発明をなすことができた。
【0024】
【実施例】
実施例1
第2の銅層として、ステンレス板の表面に硫酸銅めっき液を用いて電解銅めっきを行い、めっき厚さ約30μm、析出銅の表面の平均粗さRaが0.2μm(10点平均粗さRzでは1.0μm)の電解銅箔が得られた。
その表面に以下の組成、条件のニッケル−リンめっきを行って中間層を形成した。この結果、めっきの厚さは螢光X線膜厚計で測定したところ、約0.2μmであった。
(組成)
硫酸ニッケル(NiSO・6HO)・・・・・・・・・・・・300g/l
塩化ニッケル(NiCl・6HO)・・・・・・・・・・・・50g/l
硼酸(HBO)・・・・・・・・・・・・・・・・・・・・・40g/l
亜燐酸・・・・・・・・・・・・・・・・・・・・・・・・・・10g/l
(条件)
電流密度;1.5A/dm
液温 ;50℃
時間 ;5分間
次いで、第1の銅層として、前述の析出したニッケル−リン合金層の表面に硫酸銅めっき液を用いて、平滑なめっきを厚さ3μm、粗化めっきを1μm、電解銅めっきを行った。この結果、粒径がほぼ0.2〜0.4μmの粒状析出が行われ、めっき厚さは約4μmとなった。この時の平均粗さは約0.5μmであった。
さらに、最後に形成した第1の銅層の表面に電解処理によって、NaCr・2HO;5g/l,0.3A/dmの条件でクロメート処理の防食被膜を形成し、第1の銅層/中間層/第2の銅層からなる3層構造の印刷配線板用金属箔を得た。
次いで、この防食被膜面にガラス布−エポキシ樹脂プリプレグE−67(日立化成工業株式会社製、商品名)を重ね、170℃、30kgf/cm、90分間の条件で加熱・加圧して積層一体化した。
次いで、最初に形成した銅層を、市販の溶液であるAプロセス液(メルテックス社製、商品名)を用いてニッケル−リン合金層が露出するまで除去した。
次に、露出したニッケル−リン合金層を以下の組成のエッチング液を用いて、最後に形成した第1の銅層が露出するまで除去した。
(組成)
硝酸・・・・・・・・・・・・・・・・・・・・・・・・・・・200g/l過酸化水素・・・・・・・・・・・・・・・・・・・・・・・・10ml/lプロピオン酸・・・・・・・・・・・・・・・・・・・・・・・100g/lベンゾトリアゾール・・・・・・・・・・・・・・・・・・・・・・5g/l(条件)
温度;50℃
時間;2分間
【0025】
実施例2
第2の銅層の厚さを120μmとした以外は実施例1と同様にして、印刷配線板用金属箔を作成した。第2の銅層の平均粗さは0.2μm、第1の銅層の表面の平均粗さは0.4μmであった。
【0026】
実施例3
第1の銅層の厚さを15μmとした以外は実施例1と同様にして、印刷配線板用金属箔を作成した。第2の銅層の平均粗さは0.3μm、第1の銅層の表面の平均粗さは0.3μmであった。
【0027】
実施例4
中間層として、以下の組成の無電解ニッケル−リンめっき液を用いて、液温80℃で1分間めっきを行った以外は実施例1と同様にして、印刷配線板用金属箔を作成した。この中間層は螢光X線膜厚計で測定した結果、約0.2μmの厚さであった。第2の銅層の平均粗さは0.3μm、第1の銅層の表面の平均粗さは0.5μmであった。
(組成)
塩化ニッケル(NiCl・6HO)・・・・・・・・・・・・・30g/l
酢酸 (CHCOOH)・・・・・・・・・・・・・・・・・・・10g/l
次亜燐酸ナトリウム (NaHPO・6HO)・・・・・・・・10g/l
塩酸・・・・・・・・・・・・・・・・上記組成と合わせてpHを5とする量
【0028】
実施例5
中間層の厚さを0.04μmとした以外は実施例1と同様にして、印刷配線板用金属箔を作成した。第2の銅層の平均粗さは0.3μm、第1の銅層の表面の平均粗さは0.8μmであった。
【0029】
実施例6
中間層に以下の組成のニッケルめっきを行った以外は実施例1と同様にして、印刷配線板用金属箔を作成した。第2の銅層の平均粗さは0.4μm、第1の銅層の表面の平均粗さは0.7μmであった。
(組成)
硫酸ニッケル(NiSO・6HO)・・・・・・・・・・・・100g/l
塩化ニッケル(NiCl・6HO)・・・・・・・・・・・・・50g/l
硼酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・40g/l
(条件)
電流密度;5A/dm
液温;40℃
時間;21秒間
【0030】
比較例1
中間層に以下の組成の鉛−錫めっきを行った以外は実施例1と同様にして、印刷配線板用金属箔を作成した。第2の銅層の平均粗さは0.2μm、第1の銅層の表面の平均粗さは0.5μmであった。
(組成)
硼弗化第一錫・・・・・・・・・・・・・・・・・・・・・・・130g/l
硼弗化鉛・・・・・・・・・・・・・・・・・・・・・・・・・・50g/l
硼弗酸・・・・・・・・・・・・・・・・・・・・・・・・・・125g/l
硼酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・25g/l
ペプトン・・・・・・・・・・・・・・・・・・・・・・・・・・・5g/l
(条件)
電流密度;2.5A/dm
液温;25℃
時間;21秒間
【0031】
比較例2
中間層に以下の組成の錫めっきを行った以外は、実施例1と同様にして作成し、印刷配線板用金属箔とした。第2の銅層の平均粗さは0.3μm、第1の銅層の表面の平均粗さは0.3μmであった。
(組成)
硫酸錫・・・・・・・・・・・・・・・・・・・・・・・・・・・73g/l
硫酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・50g/l
フェノールスルフォン酸・・・・・・・・・・・・・・・・・・・40g/l
ゼラチン・・・・・・・・・・・・・・・・・・・・・・・・・・・2g/l
β−ナフトール・・・・・・・・・・・・・・・・・・・・・・・・1g/l
(条件)
電流密度;2.5A/dm
液温;25℃
時間;20秒間
【0032】
比較例3
アルミキャリア付5μmの銅箔に、実施例1と同じプリプレグを同じ条件で加熱・加圧して積層一体化した積層板を作成した。その後、アルミキャリアを除去し、電解めっきを行って銅箔の厚さを約35μmとした。この時の回路となる銅層の表面の平均粗さは0.5μmであった。
【0033】
実施例7
実施例1におけるニッケル−リン合金層に代えて、硼素還元剤を含む無電解ニッケル−硼素めっき液であるブルーシューマーSB−55(日本カニゼン株式会社製、商品名)を使用して中間層を形成した以外は、実施例1と同様にして、印刷配線板用金属箔を作成した。第2の銅層の平均粗さは0.3μm、第1の銅層の表面の平均粗さは0.6μmであった。
【0034】
比較例4
実施例1におけるニッケル−リン合金層の厚さを0.02μmとした以外は、実施例1と全て同じようにして試験片を作成した。第2の銅層の平均粗さは0.2μm、第1の銅層の表面の平均粗さは0.4μmであった。
【0035】
比較例5
実施例1における第1の銅層の平均粗さを0.02μmとなるようにした以外は、実施例1と同様にして作成した。
【0036】
(試験)
(1)試験片の作成及び配線の形成性
このようにして作成した積層板の表面に得ようとする回路導体の箇所のみを露出するようにめっきレジストを形成し、レジストから露出した箇所に前述と同様にして電解めっきにより銅箔を厚さ30μmに形成した。その後、はんだめっきを厚さ8μmに析出させ、めっきレジストを剥離除去してめっきレジストによって覆われていた銅層を露出し、アルカリエッチング溶液でその露出した銅層が除去できる程度にエッチングを行った。結果として、回路導体の形状に銅層が形成されたその形状は試験のためのパターンであって、幅10mm、長さ100mmの長方形、及び30μmの幅の導体を形成した。この30μmの導体の形成性を調べ、導体が全て形成できているものを〇とし、一部形成できているものを△、全く形成できていないものを×とした。
以上の結果を表1に示す。
【0037】
(2)ピンホールの観察
実施例1〜7、比較例1〜5で作成した印刷配線板用金属箔貼り積層板の、第2の銅層をアルカリエッチャントによってエッチング除去した。判定は、直径50μm以下のピンホールの数が3cm×3cmの面積(0.09m)中に、100以下を〇とし、101〜200を△とし、201以上を×とした。
【0038】
(3)中間層の耐熱性
実施例1〜7、比較例1〜5で作成した印刷配線板用金属箔貼り積層板を、200℃〜500℃で30分間加熱したものを用いて、中間層の選択エッチング性を目視で観察した。
第2の銅層のみが選択的にエッチングされているものを〇、中間層の一部がエッチングされピンホール様になっているものを△、中間層を含めてエッチング除去されているものを×とした。
【0039】
(4)めっき液の安定性
中間層を形成しためっき液を長時間放置し、分解や沈澱等の発生を観察した。
【0040】
実施例8
第2の銅層として、ステンレス板の表面に硫酸銅めっきを用いて電解銅めっきを行った。この結果、めっき厚さ約30μm、析出銅の平均表面粗さが0.2μmであった。
次に、中間層として以下の組成のニッケル−リン合金めっき液を用いて0.7A/dm 、液温50℃、めっき時間約16分間の条件で電解ニッケル−リンめっきを行った。この結果、めっき厚さは約1.0μmであった。
(組成)
硫酸ニッケル・・・・・・・・・・・・・・・・・・・・・・・300g/l
塩化ニッケル・・・・・・・・・・・・・・・・・・・・・・・・50g/l
硼酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・40g/l
亜燐酸・・・・・・・・・・・・・・・・・・・・・・・・・・・10g/l
次いで、第1の銅層として前述の析出したニッケル−リン合金層の表面に硫酸銅めっき液を用いて電解めっきを行った。この結果、粒径がほぼ0.2〜0.4μmの粒状析出が行われ、めっき厚さは約2μmであり、平均表面粗さは0.4μmであった。
さらに、最後に形成した銅層の表面に電解処理によって、クロメート処理の防食被膜を形成した。
このようにして作成した印刷配線板用金属箔を2枚用いて、第1の銅層の粗化された表面に半硬化した熱硬化性樹脂であるエポキシ樹脂含浸ガラス布プリプレグE−67(日立化成工業株式会社製、商品名)が接触するようにしてプリプレグを挟むように重ね、170℃、30kgf/cm、90分間の条件で、加熱・加圧して積層一体化した。
両面の第2の銅層のみをアルカリエッチング液であるAプロセス液(メルテックス社製、商品名)でエッチング除去し、続いて、両面のニッケル−リン合金層のみを実施例1のエッチング液で除去し、穴をあけ、穴内壁と両面の第1の銅層の表面にCC−41めっき液(日立化成工業株式会社製、商品名)を用いて全面に厚さ5μmの無電解めっきを行い、さらにピロリン酸銅めっき浴による電解銅めっきを行って厚さ25μmの銅層を形成し、エッチングレジストを形成して回路導体を形成した。
【0041】
実施例9
実施例8の印刷配線板用金属箔の第1の銅層の粗化された表面に、半硬化したエポキシ樹脂プリプレグE−67(日立化成工業株式会社製、商品名)を重ね、さらにプリプレグの反対側に35μmの銅箔を重ね、170℃、30kgf/cm、90分間の条件で加熱・加圧して積層一体化した。第1の銅層のみをアルカリエッチング液であるAプロセス用エッチング液(メルテックス社製、商品名)でエッチング除去し、続いて、ニッケル−リン合金層のみを実施例1のエッチング液で除去し、穴をあけ、穴内壁と前記第1の銅層及び貼り合わせた銅箔の表面全面にCC−41めっき液(日立化成工業株式会社製、商品名)を用いて全面に厚さ5μmの無電解めっきを行い、さらにピロリン酸銅めっき浴による電解銅めっきを行って厚さ25μmの銅層を形成し、エッチングレジストを形成して回路導体を形成した。
【0042】
実施例10
実施例8で作成した印刷配線板用金属箔を2枚用いて、第1の銅層の粗化された表面に熱可塑性樹脂であるふっ素樹脂であるポリテトラフルオロエチレンを含浸したプリプレグが接触するようにしてプリプレグを挟むように重ね、385℃、20kgf/cm、90分間の条件で加熱・加圧して積層一体化した。
両面の第2の銅層のみをアルカリエッチング液であるAプロセス液(メルテックス社製、商品名)でエッチング除去し、続いて、両面のニッケル−リン合金層のみを実施例1のエッチング液で除去し、穴をあけ、穴内壁と両面の第1の銅層の表面にCC−41めっき液(日立化成工業株式会社製、商品名)を用いて全面に厚さ5μmの無電解めっきを行い、さらにピロリン酸銅めっき浴による電解銅めっきを行って厚さ25μmの銅層を形成し、エッチングレジストを形成して回路導体を形成した。
【0043】
実施例11
第2の銅層として35μmの圧延銅箔を用い、過硫酸アンモニウムを用いてソフトエッチングを行い表面を粗化した。この圧延銅箔の平均表面粗さは0.2μmであった。
次に中間層としては、以下の組成のニッケル−リン合金めっき液を用いて、1.5A/dm、液温50℃、めっき時間8分間の条件で電解ニッケル−リン合金めっきを行った。この結果、めっきの厚さは約0.5μmであった。
(組成)
硫酸ニッケル・・・・・・・・・・・・・・・・・・・・・・・300g/l
塩化ニッケル・・・・・・・・・・・・・・・・・・・・・・・・50g/l
硼酸・・・・・・・・・・・・・・・・・・・・・・・・・・・・40g/l
亜燐酸・・・・・・・・・・・・・・・・・・・・・・・・・・・10g/l
次いで、第1の銅層として前述の析出したニッケル−リン合金層の表面に、硫酸銅めっき液を用いて電解めっきを行った。この結果、粒径がほぼ0.2〜0.4μmの粒状析出が行われ、めっき厚さは約2μmであった。また、平均表面粗さは0.4μmであった。
この後、酸化剤によって銅箔の表面を酸化し酸化被膜の形成を行った。この酸化処理としては、亜塩素酸塩の酸化剤のアルカリ水溶液による処理を行った。さらに酸化被膜にジメチルアミンボランを還元剤として接触させ、少なくともその一部を金属銅に還元した。
このようにして作成した2枚の金属箔の第1の銅層の粗化された表面に、ポリアミック酸のワニスを直接塗布し、塗布面同志を合わせ、400℃に加熱してポリイミドを硬化し、第2の銅層のみをアルカリエッチング液によって除去し、続いて、実施例1で用いたニッケル−リン合金層のみをエッチング除去するエッチング液でニッケル−リン合金層を除去し、穴をあけ、穴内壁と両面の第1の銅層の全面にCC−41めっき液(日立化成工業株式会社製、商品名)を用いて厚さ5μmの無電解めっきを行い、その後さらにピロリン酸銅めっき液を用いて電解銅めっきを行い、約25μmの厚さの銅層を得た。
この後、めっきレジストを形成し、めっきレジストから露出した箇所にはんだめっきを電解めっき法によって形成し、めっきレジストを剥離除去した後、はんだめっきから露出している銅層をアルカリエッチング液によって除去し、はんだめっきをはんだめっき剥離液によって除去し回路導体を形成した。
【0044】
実施例12
実施例11で作成した印刷配線板用金属箔の第1の銅層の粗化された表面に、熱可塑性樹脂であるふっ素樹脂ポリテトラフルオロエチレンシートを重ねると共に、2枚の金属箔で挟み、385℃、20kgf/cm、90分間の条件で加熱して積層し、第2の銅層のみをエッチング除去し、続いて、実施例1で用いたニッケル−リン合金層のみをエッチングする溶液で除去し、エッチングレジストを形成して回路導体を形成した。
【0045】
【表1】

Figure 0003559598
【0046】
以上のようにして得られた実施例8〜12の印刷配線板は、いずれも配線密度が回路幅0.03mmまで形成でき、しかも引き剥がし度はいずれも1.3〜1.4kgf/cmの範囲であった。比較例2、3の場合には、ピール強度が約1.2kgf/cmであったが、めっき液の安定性や配線形成性や耐熱性に劣り、比較例5に至っては0.4kgf/cmと小さかった。
【0047】
【発明の効果】
以上に説明たように、本発明によってピンホールの抑制に優れ、かつ配線密度に優れた印刷配線板用金属箔と、その製造法並びにこの金属箔を用いて効率良く印刷配線板を製造する方法を提供することができる。[0001]
[Industrial applications]
The present invention relates to a metal foil for a printed wiring board, a method for manufacturing the same, and a method for manufacturing a wiring board using the metal foil.
[0002]
[Prior art]
With the development of electronic devices, high performance printed wiring boards have been required.
For example, with respect to the wiring density, a so-called surface mount component has been developed in which connection is made only to the electronic component on the surface of the wiring board, and when the spacing between the connection terminals of the electronic component is reduced, a component having a wiring density of 0.15 mm or less is also used. Therefore, it is required to form a circuit conductor according to the density.
As for heat resistance, it is necessary to withstand 260 ° C required for soldering, but also to withstand harsh environments such as those used in the control of automobiles. It has become.
[0003]
As a method of manufacturing such a printed wiring board, a copper-clad laminate obtained by bonding copper foil to an insulating base material is used as a starting material, and a portion of the copper foil that is not a circuit conductor is removed by etching to form a circuit. The active method, the additive method of forming the circuit by performing electroless plating on the required circuit shape on the surface of the insulating base material, and the partial additive method of forming a part of the circuit conductor such as the inner wall of the through hole by electroless plating are common. Is known to.
[0004]
Above all, the subtractive method has been used for a long time. In order to improve the wiring density, the thickness of the copper foil of the copper-clad laminate is usually reduced. The reason for this is that when an etching resist is formed in the required circuit shape on the surface of the copper foil and unnecessary copper foil exposed from the etching resist is removed with an etching solution, copper is corroded from the side surfaces of the required circuit portion. A phenomenon called so-called side etch occurs, and the thicker the copper foil, the larger the amount of copper on the side that is removed by the side etch, so a thin copper foil is required to form a fine circuit. .
[0005]
In addition, in the case of printed wiring boards that provide through holes and connect the circuits of different layers by metalizing the inner wall, drill holes in the copper-clad laminate, perform electroless plating on the inner wall of the hole and the entire copper foil surface, Further, since electroplating is usually performed to secure the thickness of the metal layer on the inner wall of the hole, a plating layer is also formed on the copper foil, and the thickness of copper is inevitably increased.
[0006]
Therefore, the copper foil of the copper-clad laminate, which is the starting material, needs to be thin, and such a copper foil is obtained by electrolytic plating on the surface of a metal such as a rolled copper foil obtained by extending copper by heat and pressure or stainless steel. An electrolytic copper foil on which copper is deposited is used, and in recent years, a copper foil having a thickness of 18 to 70 μm has been manufactured.
In recent years, an ultra-thin copper foil with an aluminum carrier in which a thin copper foil of about 5 μm is formed on an aluminum foil by electrolytic plating is also known.
[0007]
Such a thin copper foil is difficult to handle when laminating a copper foil and an uncured or semi-cured prepreg, and the copper foil is broken by a slight force.
Such inconveniences may also occur depending on the handling when manufacturing the copper foil.
Therefore, a method has been developed in which a thin copper foil as a whole is made into a board or foil having sufficient strength to form a composite layer, and the support layer is removed after bonding with a resin or immediately before use.
For example, as described in JP-A-58-108785, an intermediate metal such as nickel, nickel-iron, tin, lead, etc., having etching conditions different from copper between two copper foil layers is used. A metal foil having a three-layer structure provided with layers has been proposed.
[0008]
[Problems to be solved by the invention]
Meanwhile, among the conventional techniques, those using a metal foil having a three-layer structure as described in Japanese Patent Application Laid-Open No. 58-108785 have disclosed that electrolytic etching is used to remove the intermediate layer by etching. There is a statement that it can be performed.
This electrolytic etching requires special equipment and is inefficient.
At present, commercially available chemical solutions for etching and removing nickel-iron, tin, lead and the like include ethylenediamine-based Enstrip NP (trade name, manufactured by Meltex Corporation) and Meltec SCB (trade name, manufactured by McDermid Corporation). A solution, a mixed solution of nitric acid and hydrogen peroxide, or a mixed solution of chromic acid and sulfuric acid can be used. However, when Enstrip NP (trade name, manufactured by Meltex Co., Ltd.) is used, the intermediate layer is not A surface alteration layer called smut, which is a melting residue, is generated, and it is very difficult to remove this smut.If other solutions are used, not only the intermediate layer but also the copper layer that becomes the circuit may be removed. On the contrary, if the copper layer is to be left, the intermediate layer may not be completely removed.
In addition, when smut occurs, the copper foil becomes discontinuous, and the adhesiveness between the resin and the copper foil decreases. Even when the intermediate layer remains, the adhesiveness between the resin and the copper foil similarly decreases.
[0009]
Therefore, the inventors of the present invention have conducted intensive studies and as a result, in order to solve these problems, nickel-phosphorus is used as the intermediate layer, and the average surface roughness of the copper layer serving as a circuit in contact with the resin is 1 to 2 μm. We propose a technique for roughening.
However, when the surface is roughened with such a roughness, the area covered with the nickel-phosphorus alloy layer becomes large, and since there is more unevenness, pinholes are easily generated in the nickel-phosphorus alloy layer, and the second material serving as a support is formed. It has been found that when the copper layer is removed by etching, the pinhole damages the first copper layer to be a circuit.
[0010]
The present invention is directed to a metal foil for a printed wiring board which is excellent in wiring density and excellent in suppressing pinholes in the manufacturing process, a method for manufacturing the same, and a simple method for manufacturing a printed wiring board using the metal foil. The purpose is to provide.
[0011]
[Means for Solving the Problems]
The metal foil for a printed wiring board of the present invention comprises a first copper layer serving as a circuit, a second copper layer having sufficient strength as a metal foil as a whole, and an intermediate layer sandwiched therebetween. In the metal foil for wiring boards, the average roughness of the surface of the first copper layer in contact with the resin is 0.1 to 0.8 μm, and the average roughness of the surface of the second copper layer in contact with the intermediate layer is 0. 0.5 to 0.4 μm, wherein the intermediate layer is nickel or an alloy thereof and has a thickness of 0.04 to 1.5 μm.
If the average roughness of the surface of the first copper layer in contact with the resin is less than 0.1 μm, the peel strength is small and the formed wiring may float, and if it exceeds 0.8 μm, it becomes difficult to form fine wiring. .
If the average roughness of the surface of the second copper layer in contact with the intermediate layer is less than 0.05 μm, the adhesion to the resist at the time of forming the wiring decreases, and if it exceeds 0.4 μm, pinholes are generated. Easier to do.
[0012]
In such a metal foil for a printed wiring board, the thickness of the second copper layer is preferably in the range of 10 to 150 μm. If it is less than 10 μm, sufficient strength cannot be obtained as a whole metal foil for a printed wiring board, and if it exceeds 150 μm, it takes time to remove by etching, which is not efficient. However, if the effect produced by the thickening is more important than efficiency, it can be made thicker, but usually does not require more. More preferably, it is in the range of 18 to 70 μm.
[0013]
Further, the thickness of the first copper layer is preferably in the range of 1 to 15 μm. If it is less than 1 μm, pinholes are likely to be formed in the formed copper foil, and if it exceeds 15 μm, the side etching becomes large as described in the related art, and it becomes difficult to increase the wiring density. More preferably, it is 3 to 6 μm.
[0014]
It is preferable to provide a rust-preventive coating on the surface of the metal foil for a printed wiring board that is not in contact with the intermediate layer between the first copper layer and the second copper layer. For example, a method of forming a coating made of an imidazole organic material A conventionally known method such as a chromate treatment, a zincate treatment, or the like can be used.
[0015]
Such a metal foil for a printed wiring board has at least one of the second copper layers having sufficient strength as the metal foil for a printed wiring board as a whole so that the average roughness is 0.05 to 0.4 μm. After adjustment, a layer of nickel or an alloy thereof having a thickness of 0.04 to 1.5 μm is formed on the surface thereof, and further, a copper layer serving as a circuit is formed on the surface thereof, and then the resin of the first copper layer is brought into contact therewith. It can be manufactured by forming a roughened surface on the surface such that the average roughness is 0.1 to 0.8 μm.
[0016]
The step of forming a roughened surface on the surface of the first copper layer can be performed by a method selected from among electroplating, electroless plating, displacement plating, etching, and vapor deposition.
When using electroplating, roughening can be performed by changing the current density or plating solution composition and making the plating deposition rate faster than normal bright plating, and in order to control the average roughness, , By controlling the conditions to be maintained within a certain range.
Similar roughening can be performed by using a cathode plate having an average roughness of 0.05 to 0.4 μm.
When electroless plating or displacement plating is used, roughening can be performed by changing the composition and making the plating deposition rate faster than normal bright plating.
Further, a conventionally known method can also be used, for example, a method of contacting with a soft etching solution such as ammonium persulfate, a method of spraying sand blast, or a method of mechanically polishing with a sander belt.
[0017]
As a method of manufacturing a printed wiring board using such a metal foil for a printed wiring board, it is possible to include the following steps in this order.
a. In a first copper layer to be a circuit, a second copper layer having sufficient strength as a metal foil as a whole, and a metal foil composed of an intermediate layer sandwiched between the first copper layer and the resin of the first copper layer, The average roughness of the surface in contact with the intermediate layer of the second copper layer is 0.1 to 0.8 μm, the average roughness of the surface in contact with the intermediate layer of the second copper layer is 0.05 to 0.4 μm, and the intermediate layer is nickel or an alloy thereof. Wherein the surface of the first copper layer of the metal foil for a printed wiring board having a thickness of 0.04 to 1.5 μm is impregnated with an uncured or semi-cured thermosetting resin.
Of stacking prepregs and stacking them by applying heat and pressure
b. Step of etching and removing only the second copper layer
c. Step of removing only the intermediate layer by etching
d. Step of forming circuit conductors
[0018]
The metal foil for a printed wiring board used in the present invention is as described above. However, when the metal foil for a printed wiring board is laminated and integrated with a prepreg, the first copper layer of the metal foil is overlapped on one surface of the prepreg, and The same metal foil can be overlapped on the surface of, but a copper foil used for a normal wiring board can also be overlapped.
[0019]
As an uncured or semi-cured prepreg, a reinforcing material such as glass cloth, glass fiber, paper, etc. was impregnated with a polyimide resin, an epoxy resin, a phenol resin, or a mixture thereof, and a curing agent for each resin. Or a semi-cured one (B-stage) by heating.
Further, it can also be produced by applying a mixture of a resin and a curing agent thereof without using a reinforcing base material, and heating and curing the mixture. For example, as the resin, a polyimide resin modified with an epoxy resin, a polyamide resin, or a heat-resistant thermosetting resin such as a polyamide-polyimide resin, and a curing agent thereof, for example, diaminodiphenyl sulfone, dicyandiamide, or phenol novolak may also be used. it can.
As this resin, a thermoplastic resin such as a fluororesin may be used.
In this case, it can be performed by using similar steps in the order of melting the resin, fusing with the metal foil, and cooling without using a curing agent. In this case, it is also possible to use a thermoplastic resin which has been previously processed into a sheet shape.
[0020]
As an etching solution for removing only the second copper layer of the metal foil for a printed wiring board, an alkaline chemical solution containing chlorine ions, ammonium ions, and copper ions, for example, an A process solution (trade name, manufactured by Meltex Corporation) (Hereinafter, referred to as an alkali etchant), and etching can be performed by contact with the alkali etchant. Here, the term “contact” refers to immersion in the solution or spraying the solution.
[0021]
As an etching solution for removing only the intermediate layer, a solution containing nitric acid, hydrogen peroxide, an organic acid containing a carboxyl group, and benzotriazole can be used. For example, as such a solution, 200 g / l of nitric acid, 100 g / l of propionic acid, H2O210 ml / l, benzotriazole 5 g / l and the like.
[0022]
The step of forming the circuit conductor includes, after removing the second copper layer and the intermediate layer, forming an etching resist on the surface of the first copper layer forming the circuit, and etching the copper foil exposed from the etching resist. By removal, a desired circuit can be formed.
Also, when connecting circuits on both sides, make a hole to be a through hole before this process, electroless-plate the inner wall of the hole, perform electroplating if necessary, and secure the thickness of the conductor. A circuit can also be formed by forming an etching resist and removing unnecessary copper foil by etching.
Furthermore, on at least one surface of the inner layer substrate on which the inner layer circuit was formed, the prepreg and the metal foil were stacked and integrated, and the removal of the second copper layer and the removal of the intermediate layer of the metal foil were performed. After that, a hole to be a through hole is drilled, the inner wall of the hole is electroless plated, if necessary, electrolytic plating is performed, the thickness of the conductor is secured, an etching resist is formed, and unnecessary copper foil is removed by etching To form a circuit conductor.
[0023]
[Action]
The present inventors have conducted intensive studies and as a result,
(1) By setting the surface roughness of the second copper layer to Ra; 0.05 to 0.4 μm, pinholes in the intermediate layer can be suppressed and the first copper layer is not eroded during etching;
(2) Even if the surface roughness of the first copper layer is Ra; 0.1 to 0.8 μm, sufficient adhesive strength with the resin base material is obtained, and the wiring formability is also good. ,
And obtained the present invention.
[0024]
【Example】
Example 1
As the second copper layer, electrolytic copper plating is performed on the surface of the stainless steel plate using a copper sulfate plating solution, and the plating thickness is about 30 μm, and the average roughness Ra of the surface of the deposited copper is 0.2 μm (10-point average roughness). (Rz: 1.0 μm) was obtained.
An intermediate layer was formed on the surface by nickel-phosphorus plating with the following composition and conditions. As a result, the thickness of the plating was about 0.2 μm as measured by a fluorescent X-ray film thickness meter.
(composition)
Nickel sulfate (NiSO4・ 6H2O) ... 300g / l
Nickel chloride (NiCl2・ 6H2O) ・ ・ ・ ・ 50g / l
Boric acid (H3BO3) ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ ・ 40g / l
Phosphorous acid 10g / l
(conditions)
Current density: 1.5 A / dm2
Liquid temperature: 50 ° C
Time; 5 minutes
Next, as a first copper layer, electrolytic copper plating was performed on the surface of the nickel-phosphorus alloy layer thus deposited, using a copper sulfate plating solution, smooth plating at a thickness of 3 μm, roughening plating at 1 μm, and electrolytic plating. As a result, granular precipitation having a particle size of approximately 0.2 to 0.4 μm was performed, and the plating thickness was approximately 4 μm. The average roughness at this time was about 0.5 μm.
Further, the surface of the last formed first copper layer is electrolytically treated with Na.2Cr2O7・ 2H2O; 5 g / l, 0.3 A / dm2The anticorrosion film of the chromate treatment was formed under the conditions described above to obtain a metal foil for a printed wiring board having a three-layer structure consisting of a first copper layer / intermediate layer / second copper layer.
Next, a glass cloth-epoxy resin prepreg E-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) is overlaid on the anticorrosion coating surface, and 170 ° C., 30 kgf / cm.2The laminate was integrated by heating and pressing for 90 minutes.
Next, the copper layer formed first was removed using a commercially available solution A process solution (trade name, manufactured by Meltex Corporation) until the nickel-phosphorus alloy layer was exposed.
Next, the exposed nickel-phosphorus alloy layer was removed using an etching solution having the following composition until the last formed first copper layer was exposed.
(composition)
Nitric acid 200 g / l hydrogen peroxide ········ 10 ml / l propionic acid ······ 100 g / l benzotriazole ... 5 g / l (conditions)
Temperature; 50 ° C
Time; 2 minutes
[0025]
Example 2
A metal foil for a printed wiring board was prepared in the same manner as in Example 1 except that the thickness of the second copper layer was set to 120 μm. The average roughness of the second copper layer was 0.2 μm, and the average roughness of the surface of the first copper layer was 0.4 μm.
[0026]
Example 3
A metal foil for a printed wiring board was prepared in the same manner as in Example 1 except that the thickness of the first copper layer was changed to 15 μm. The average roughness of the second copper layer was 0.3 μm, and the average roughness of the surface of the first copper layer was 0.3 μm.
[0027]
Example 4
As an intermediate layer, a metal foil for a printed wiring board was prepared in the same manner as in Example 1 except that plating was performed at a solution temperature of 80 ° C. for 1 minute using an electroless nickel-phosphorous plating solution having the following composition. The thickness of the intermediate layer was about 0.2 μm as measured by a fluorescent X-ray film thickness meter. The average roughness of the second copper layer was 0.3 μm, and the average roughness of the surface of the first copper layer was 0.5 μm.
(composition)
Nickel chloride (NiCl2・ 6H2O) ... 30g / l
Acetic acid (CH3COOH) 10 g / l
Sodium hypophosphite (NaH2PO2・ 6H2O) ········· 10 g / l
Hydrochloric acid ・ ・ ・ ・ ・ ・ ・ ・ ・ Amount to adjust the pH to 5 in combination with the above composition
[0028]
Example 5
A metal foil for a printed wiring board was prepared in the same manner as in Example 1 except that the thickness of the intermediate layer was changed to 0.04 μm. The average roughness of the second copper layer was 0.3 μm, and the average roughness of the surface of the first copper layer was 0.8 μm.
[0029]
Example 6
A metal foil for a printed wiring board was prepared in the same manner as in Example 1 except that the intermediate layer was plated with nickel having the following composition. The average roughness of the second copper layer was 0.4 μm, and the average roughness of the surface of the first copper layer was 0.7 μm.
(composition)
Nickel sulfate (NiSO4・ 6H2O) 100g / l
Nickel chloride (NiCl2・ 6H2O) ... 50g / l
Boric acid 40 g / l
(conditions)
Current density: 5 A / dm2
Liquid temperature; 40 ° C
Time; 21 seconds
[0030]
Comparative Example 1
A metal foil for a printed wiring board was prepared in the same manner as in Example 1 except that the intermediate layer was plated with lead-tin having the following composition. The average roughness of the second copper layer was 0.2 μm, and the average roughness of the surface of the first copper layer was 0.5 μm.
(composition)
Stannous borofluoride 130g / l
Lead borofluoride 50g / l
Borofluoric acid ... 125g / l
Boric acid 25 g / l
Peptone ... 5g / l
(conditions)
Current density: 2.5 A / dm2
Liquid temperature; 25 ° C
Time; 21 seconds
[0031]
Comparative Example 2
A metal foil for a printed wiring board was prepared in the same manner as in Example 1 except that the intermediate layer was plated with tin having the following composition. The average roughness of the second copper layer was 0.3 μm, and the average roughness of the surface of the first copper layer was 0.3 μm.
(composition)
Tin sulfate ... 73g / l
Sulfuric acid 50g / l
Phenolsulfonic acid 40g / l
Gelatin ... 2g / l
β-naphthol 1g / l
(conditions)
Current density: 2.5 A / dm2
Liquid temperature; 25 ° C
Time; 20 seconds
[0032]
Comparative Example 3
The same prepreg as in Example 1 was heated and pressed on a 5 μm copper foil with an aluminum carrier under the same conditions to form a laminated board. Thereafter, the aluminum carrier was removed, and electrolytic plating was performed to reduce the thickness of the copper foil to about 35 μm. At this time, the average roughness of the surface of the copper layer serving as a circuit was 0.5 μm.
[0033]
Example 7
Instead of the nickel-phosphorus alloy layer in Example 1, an intermediate layer was formed using Blue Schumer SB-55 (trade name, manufactured by Nippon Kanigen Co., Ltd.), which is an electroless nickel-boron plating solution containing a boron reducing agent. A metal foil for a printed wiring board was prepared in the same manner as in Example 1 except for the above. The average roughness of the second copper layer was 0.3 μm, and the average roughness of the surface of the first copper layer was 0.6 μm.
[0034]
Comparative Example 4
Test pieces were prepared in the same manner as in Example 1 except that the thickness of the nickel-phosphorus alloy layer in Example 1 was changed to 0.02 μm. The average roughness of the second copper layer was 0.2 μm, and the average roughness of the surface of the first copper layer was 0.4 μm.
[0035]
Comparative Example 5
The first copper layer was formed in the same manner as in Example 1 except that the average roughness of the first copper layer was 0.02 μm.
[0036]
(test)
(1) Preparation of test pieces and formability of wiring
A plating resist is formed so as to expose only the portion of the circuit conductor to be obtained on the surface of the laminate thus prepared, and a copper foil is formed by electrolytic plating on the portion exposed from the resist in the same manner as described above. It was formed to 30 μm. Thereafter, solder plating was deposited to a thickness of 8 μm, and the plating resist was peeled off to expose the copper layer covered by the plating resist, and etching was performed with an alkaline etching solution to such an extent that the exposed copper layer could be removed. . As a result, the shape of the circuit conductor with the copper layer formed thereon was a pattern for testing, forming a 10 mm wide, 100 mm long rectangle, and a 30 μm wide conductor. The formability of this 30 μm conductor was examined, and the case where all the conductors were formed was marked as Δ, the case where a part of the conductor was formed was marked as Δ, and the case where no conductor was formed at all was marked X.
Table 1 shows the above results.
[0037]
(2) Observation of pinhole
The second copper layer of each of the metal-foil-laminated laminates for printed wiring boards prepared in Examples 1 to 7 and Comparative Examples 1 to 5 was removed by etching with an alkali etchant. The judgment was made that the number of pinholes having a diameter of 50 μm or less was an area of 3 cm × 3 cm (0.09 m2In), 100 or less was defined as Δ, 101 to 200 was defined as Δ, and 201 or more was defined as ×.
[0038]
(3) Heat resistance of the intermediate layer
The selective etching property of the intermediate layer was visually observed by using the metal foil-bonded laminates for printed wiring boards prepared in Examples 1 to 7 and Comparative Examples 1 to 5 which were heated at 200 to 500 ° C. for 30 minutes. did.
A case where only the second copper layer is selectively etched is Δ, a case where a part of the intermediate layer is etched to form a pinhole, and a case where the intermediate layer and the intermediate layer are removed by etching is ×. And
[0039]
(4) Stability of plating solution
The plating solution on which the intermediate layer was formed was left for a long time, and the occurrence of decomposition and precipitation was observed.
[0040]
Example 8
As the second copper layer, electrolytic copper plating was performed on the surface of the stainless steel plate using copper sulfate plating. As a result, the plating thickness was about 30 μm, and the average surface roughness of the deposited copper was 0.2 μm.
Next, as the intermediate layer, a nickel-phosphorus alloy plating solution having the following composition was used and 0.7 A / dm.2 Electrolytic nickel-phosphorus plating was performed under the conditions of a solution temperature of 50 ° C. and a plating time of about 16 minutes. As a result, the plating thickness was about 1.0 μm.
(composition)
Nickel sulfate 300g / l
Nickel chloride ... 50g / l
Boric acid 40 g / l
Phosphorous acid 10g / l
Next, electrolytic plating was performed on the surface of the deposited nickel-phosphorus alloy layer as a first copper layer using a copper sulfate plating solution. As a result, granular precipitation having a particle size of approximately 0.2 to 0.4 μm was performed, the plating thickness was about 2 μm, and the average surface roughness was 0.4 μm.
Further, an anticorrosion film of chromate treatment was formed on the surface of the copper layer formed last by electrolytic treatment.
Using two metal foils for a printed wiring board prepared in this manner, an epoxy resin impregnated glass cloth prepreg E-67 which is a thermosetting resin semi-cured on the roughened surface of the first copper layer (Hitachi, Japan) The prepregs are sandwiched between the prepregs in such a manner that the prepregs are in contact with each other at 170 ° C. and 30 kgf / cm.2Under heat and pressure for 90 minutes, the layers were integrated.
Only the second copper layer on both surfaces is removed by etching with an A process solution (trade name, manufactured by Meltex Co., Ltd.), which is an alkaline etching solution. The hole is removed, a hole is formed, and a 5 μm-thick electroless plating is performed on the entire surface using a CC-41 plating solution (trade name, manufactured by Hitachi Chemical Co., Ltd.) on the inner wall of the hole and the surface of the first copper layer on both surfaces. Then, electrolytic copper plating was performed using a copper pyrophosphate plating bath to form a copper layer having a thickness of 25 μm, and an etching resist was formed to form a circuit conductor.
[0041]
Example 9
A semi-cured epoxy resin prepreg E-67 (trade name, manufactured by Hitachi Chemical Co., Ltd.) was overlaid on the roughened surface of the first copper layer of the metal foil for printed wiring boards of Example 8, and A copper foil of 35 μm is placed on the other side, and the temperature is 170 ° C., 30 kgf / cm2The laminate was integrated by heating and pressing for 90 minutes. Only the first copper layer was removed by etching with an etching solution for process A (trade name, manufactured by Meltex Co., Ltd.), which is an alkaline etching solution. Then, a hole having a thickness of 5 μm was formed on the entire surface using a CC-41 plating solution (trade name, manufactured by Hitachi Chemical Co., Ltd.) on the entire surface of the inner wall of the hole, the first copper layer, and the bonded copper foil. Electroplating was performed, and further, electrolytic copper plating was performed in a copper pyrophosphate plating bath to form a copper layer having a thickness of 25 μm, and an etching resist was formed to form a circuit conductor.
[0042]
Example 10
Using two pieces of the metal foil for a printed wiring board prepared in Example 8, a prepreg impregnated with polytetrafluoroethylene, which is a fluororesin, which is a thermoplastic resin, comes into contact with the roughened surface of the first copper layer. At 385 ° C, 20 kgf / cm2The laminate was integrated by heating and pressing for 90 minutes.
Only the second copper layer on both surfaces is removed by etching with an A process solution (trade name, manufactured by Meltex Co., Ltd.), which is an alkaline etching solution. The hole is removed, a hole is formed, and a 5 μm-thick electroless plating is performed on the entire surface using a CC-41 plating solution (trade name, manufactured by Hitachi Chemical Co., Ltd.) on the inner wall of the hole and the surface of the first copper layer on both surfaces. Then, electrolytic copper plating was performed using a copper pyrophosphate plating bath to form a copper layer having a thickness of 25 μm, and an etching resist was formed to form a circuit conductor.
[0043]
Example 11
Rolled copper foil of 35 μm was used as the second copper layer, and the surface was roughened by soft etching using ammonium persulfate. The average surface roughness of this rolled copper foil was 0.2 μm.
Next, as the intermediate layer, 1.5 A / dm.2Electrolytic nickel-phosphorus alloy plating was performed under the conditions of a liquid temperature of 50 ° C. and a plating time of 8 minutes. As a result, the thickness of the plating was about 0.5 μm.
(composition)
Nickel sulfate 300g / l
Nickel chloride ... 50g / l
Boric acid 40 g / l
Phosphorous acid 10g / l
Next, electrolytic plating was performed on the surface of the deposited nickel-phosphorus alloy layer as a first copper layer using a copper sulfate plating solution. As a result, granular precipitation having a particle size of approximately 0.2 to 0.4 μm was performed, and the plating thickness was approximately 2 μm. The average surface roughness was 0.4 μm.
Thereafter, the surface of the copper foil was oxidized with an oxidizing agent to form an oxide film. As the oxidation treatment, treatment with an alkali aqueous solution of an chlorite oxidizing agent was performed. Further, the oxide film was brought into contact with dimethylamine borane as a reducing agent, and at least a part thereof was reduced to metallic copper.
A varnish of polyamic acid was directly applied to the roughened surfaces of the first copper layers of the two metal foils thus formed, the applied surfaces were matched, and the polyimide was cured by heating to 400 ° C. Removing only the second copper layer with an alkaline etchant, subsequently removing the nickel-phosphorus alloy layer with an etchant used to remove only the nickel-phosphorus alloy layer used in Example 1, and drilling holes; Electroless plating of a thickness of 5 μm is performed using a CC-41 plating solution (trade name, manufactured by Hitachi Chemical Co., Ltd.) on the entire surface of the inner wall of the hole and the first copper layer on both surfaces, and then a copper pyrophosphate plating solution is further applied. Was used to perform electrolytic copper plating to obtain a copper layer having a thickness of about 25 μm.
Thereafter, a plating resist is formed, solder plating is formed by electroplating on a portion exposed from the plating resist, and after the plating resist is peeled off, the copper layer exposed from the solder plating is removed by an alkali etching solution. Then, the solder plating was removed by a solder plating stripper to form a circuit conductor.
[0044]
Example 12
On the roughened surface of the first copper layer of the metal foil for a printed wiring board prepared in Example 11, a fluororesin polytetrafluoroethylene sheet as a thermoplastic resin was overlapped and sandwiched between two metal foils, 385 ° C, 20kgf / cm2Laminate by heating under the conditions of 90 minutes to remove only the second copper layer by etching, and then remove by using the solution for etching only the nickel-phosphorus alloy layer used in Example 1 to form an etching resist. Thus, a circuit conductor was formed.
[0045]
[Table 1]
Figure 0003559598
[0046]
All of the printed wiring boards of Examples 8 to 12 obtained as described above can be formed with a wiring density of up to 0.03 mm in circuit width, and all have a peeling degree of 1.3 to 1.4 kgf / cm.2Was in the range. In the case of Comparative Examples 2 and 3, the peel strength was about 1.2 kgf / cm.2However, the stability of the plating solution, the wiring formability and the heat resistance were inferior, and in Comparative Example 5, 0.4 kgf / cm2Was small.
[0047]
【The invention's effect】
As described above, a metal foil for a printed wiring board excellent in suppressing pinholes and excellent in wiring density according to the present invention, a method of manufacturing the same, and a method of efficiently manufacturing a printed wiring board using the metal foil Can be provided.

Claims (12)

回路となる第1の銅層と、全体としての金属箔として十分な強度を有する第2の銅層と、その中間に挟まれた中間層からなる金属箔において、第1の銅層の樹脂と接する表面の平均粗さが0.1〜0.8μmであり、第2の銅層の中間層と接する表面の平均粗さが0.05〜0.4μmであり、中間層がニッケルまたはその合金であって、その厚さが0.04〜1.5μmであることを特徴とする印刷配線板用金属箔。In a first copper layer to be a circuit, a second copper layer having sufficient strength as a metal foil as a whole, and a metal foil composed of an intermediate layer sandwiched between the first copper layer and the resin of the first copper layer, The average roughness of the surface in contact with the intermediate layer of the second copper layer is 0.1 to 0.8 μm, the average roughness of the surface in contact with the intermediate layer of the second copper layer is 0.05 to 0.4 μm, and the intermediate layer is nickel or an alloy thereof. Wherein the metal foil has a thickness of 0.04 to 1.5 μm. 第2の銅層の厚さが10〜150μmの範囲であることを特徴とする請求項1に記載の印刷配線板用金属箔。The metal foil for a printed wiring board according to claim 1, wherein the thickness of the second copper layer is in the range of 10 to 150 m. 第1の銅層の厚さが1〜15μmの範囲であることを特徴とする請求項1または2に記載の印刷配線板用金属箔。The metal foil for a printed wiring board according to claim 1, wherein a thickness of the first copper layer is in a range of 1 to 15 μm. 第1の銅層及び第2の銅層の中間層と接しない表面(外側になる面)に、防錆被膜を設けたことを特徴とする請求項1〜3のうちいずれかに記載の印刷配線板用金属箔。The printing according to any one of claims 1 to 3, wherein a rust preventive coating is provided on a surface (outside surface) of the first copper layer and the second copper layer that is not in contact with the intermediate layer. Metal foil for wiring boards. 全体としての金属箔として十分な強度を有する第2の銅層の表面の少なくとも一方が、平均粗さが0.05〜0.4μmの範囲にあり、その表面に厚さ0.04〜1.5μmのニッケルまたはその合金の層を形成し、さらにその表面に回路となる第1の銅層を形成した後に、第1の銅層の樹脂と接する表面に平均粗さが0.1〜0.8μmとなるように粗化面を形成することを特徴とする印刷配線板用金属箔の製造法。At least one of the surfaces of the second copper layer having sufficient strength as the whole metal foil has an average roughness in the range of 0.05 to 0.4 μm and a thickness of 0.04 to 1. After forming a layer of nickel or an alloy thereof having a thickness of 5 μm and further forming a first copper layer serving as a circuit on the surface thereof, the surface of the first copper layer in contact with the resin has an average roughness of 0.1 to 0.1 μm. A method for producing a metal foil for a printed wiring board, wherein a roughened surface is formed to have a thickness of 8 μm. 第1の銅層の表面に粗化面を形成する工程として、電気めっき、無電解めっき、置換めっき、エッチングあるいは蒸着のうちから選択した方法によって行うことを特徴とする請求項5に記載の印刷配線板用金属箔の製造法。6. The printing method according to claim 5, wherein the step of forming the roughened surface on the surface of the first copper layer is performed by a method selected from among electroplating, electroless plating, displacement plating, etching and vapor deposition. Manufacturing method of metal foil for wiring boards. 以下の工程をこの順序に含むことを特徴とする印刷配線板の製造法。
a.回路となる第1の銅層と、全体としての印刷配線板用金属箔として十分な強度を有する第2の銅層と、その中間に挟まれた中間層からなる金属箔において、第1の銅層の樹脂と接する表面の平均粗さが0.1〜0.8μmであり、第2の銅層の中間層と接する表面の平均粗さが0.05〜0.4μmであり、中間層がニッケルまたはその合金であって、その厚さが0.04〜1.5μmである印刷配線板用金属箔をその第1の銅層の表面に未硬化ないしは半硬化の熱硬化性樹脂を含浸したプリプレグが接するように重ね、加熱・加圧して積層一体化する工程
b.第2の銅層のみをエッチング除去する工程
c.中間層のみをエッチング除去する工程
d.回路導体を形成する工程
A method for manufacturing a printed wiring board, comprising the following steps in this order:
a. A first copper layer serving as a circuit, a second copper layer having sufficient strength as a metal foil for a printed wiring board as a whole, and a metal foil including an intermediate layer sandwiched between the first copper layer and the first copper layer The average roughness of the surface of the layer in contact with the resin is 0.1 to 0.8 μm, the average roughness of the surface of the second copper layer in contact with the intermediate layer is 0.05 to 0.4 μm, and the intermediate layer is A surface of the first copper layer is impregnated with an uncured or semi-cured thermosetting resin of nickel or an alloy thereof and having a thickness of 0.04 to 1.5 μm for a printed wiring board. A step of stacking the prepregs so as to be in contact with each other, and heating and pressurizing to laminate and integrate b. Etching away only the second copper layer c. A step of etching and removing only the intermediate layer d. Step of forming circuit conductors
以下の工程をこの順序に含むことを特徴とする印刷配線板の製造法。
a.回路となる第1の銅層と、全体としての印刷配線板用金属箔として十分な強度を有する第2の銅層と、その中間に挟まれた中間層からなる金属箔において、第1の銅層の樹脂と接する表面の平均粗さが0.1〜0.8μmであり、第2の銅層の中間層と接する表面の平均粗さが0.05〜0.4μmであり、中間層がニッケルまたはその合金であって、その厚さが0.04〜1.5μmである印刷配線板用金属箔の第1の銅層の表面に熱可塑性樹脂を含浸したプリプレグを重ね、加熱・加圧して積層一体化する工程
b.第2の銅層のみをエッチング除去する工程
c.中間層のみをエッチング除去する工程
d.回路導体を形成する工程
A method for manufacturing a printed wiring board, comprising the following steps in this order:
a. A first copper layer serving as a circuit, a second copper layer having sufficient strength as a metal foil for a printed wiring board as a whole, and a metal foil including an intermediate layer sandwiched between the first copper layer and the first copper layer The average roughness of the surface of the layer in contact with the resin is 0.1 to 0.8 μm, the average roughness of the surface of the second copper layer in contact with the intermediate layer is 0.05 to 0.4 μm, and the intermediate layer is A prepreg impregnated with a thermoplastic resin is superimposed on the surface of the first copper layer of the metal foil for a printed wiring board, which is nickel or an alloy thereof and has a thickness of 0.04 to 1.5 μm, and is heated and pressed. B. Lamination and integration. Etching away only the second copper layer c. A step of etching and removing only the intermediate layer d. Step of forming circuit conductors
以下の工程をこの順序に含むことを特徴とする印刷配線板の製造法。
a.回路となる第1の銅層と、全体としての金属箔として十分な強度を有する第2の銅層と、その中間に挟まれた中間層からなる印刷配線板用金属箔において、第1の銅層の樹脂と接する表面の平均粗さが0.1〜0.8μmであり、第2の銅層の中間層と接する表面の平均粗さが0.05〜0.4μmであり、中間層がニッケルまたはその合金であって、その厚さが0.04〜1.5μmである印刷配線板用金属箔の第1の銅層の表面に未硬化の熱硬化性樹脂とその硬化剤の混合物を塗布し、加熱して硬化する工程
b.第2の銅層のみをエッチング除去する工程
c.中間層のみをエッチング除去する工程
d.回路導体を形成する工程
A method for manufacturing a printed wiring board, comprising the following steps in this order:
a. In a metal foil for a printed wiring board including a first copper layer to be a circuit, a second copper layer having sufficient strength as a whole metal foil, and an intermediate layer sandwiched between the first copper layer and the first copper layer, The average roughness of the surface of the layer in contact with the resin is 0.1 to 0.8 μm, the average roughness of the surface of the second copper layer in contact with the intermediate layer is 0.05 to 0.4 μm, and the intermediate layer is A mixture of an uncured thermosetting resin and a curing agent thereof on a surface of a first copper layer of a metal foil for a printed wiring board, which is nickel or an alloy thereof and has a thickness of 0.04 to 1.5 μm. Applying and heating to cure b. Etching away only the second copper layer c. A step of etching and removing only the intermediate layer d. Step of forming circuit conductors
以下の工程をこの順序に含むことを特徴とする印刷配線板の製造法。
a.回路となる第1の銅層と、全体としての印刷配線板用金属箔として十分な強度を有する第2の銅層と、その中間に挟まれた中間層からなる金属箔において、第1の銅層の樹脂と接する表面の平均粗さが0.1〜0.8μmであり、第2の銅層の中間層と接する表面の平均粗さが0.05〜0.4μmであり、中間層がニッケルまたはその合金であって、その厚さが0.04〜1.5μmである印刷配線板用金属箔の第1の銅層の表面に熱可塑性樹脂シートを重ね、加熱・加圧して積層一体化する工程
b.第2の銅層のみをエッチング除去する工程
c.中間層のみをエッチング除去する工程
d.回路導体を形成する工程
A method for manufacturing a printed wiring board, comprising the following steps in this order:
a. A first copper layer serving as a circuit, a second copper layer having sufficient strength as a metal foil for a printed wiring board as a whole, and a metal foil including an intermediate layer sandwiched between the first copper layer and the first copper layer The average roughness of the surface of the layer in contact with the resin is 0.1 to 0.8 μm, the average roughness of the surface of the second copper layer in contact with the intermediate layer is 0.05 to 0.4 μm, and the intermediate layer is A thermoplastic resin sheet is superimposed on the surface of the first copper layer of the metal foil for a printed wiring board, which is nickel or an alloy thereof and has a thickness of 0.04 to 1.5 μm, and is laminated by heating and pressing. B. Etching away only the second copper layer c. A step of etching and removing only the intermediate layer d. Step of forming circuit conductors
第2の銅層のみを除去するエッチング溶液が、塩素イオンとアンモニウムイオンと銅イオンとを含むことを特徴とする請求項7〜10のうちいずれかに記載の印刷配線板の製造法。The method for manufacturing a printed wiring board according to any one of claims 7 to 10, wherein the etching solution for removing only the second copper layer contains chlorine ions, ammonium ions, and copper ions. 中間層のみを除去するエッチング溶液が、硝酸と過酸化水素とカルボキシル基を含む有機酸とベンゾトリアゾールとを含むものであることを特徴とする請求項7〜11のうちいずれかに記載の印刷配線板の製造法。12. The printed wiring board according to claim 7, wherein the etching solution for removing only the intermediate layer contains nitric acid, hydrogen peroxide, an organic acid containing a carboxyl group, and benzotriazole. Manufacturing method.
JP32226194A 1994-12-26 1994-12-26 Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil Expired - Fee Related JP3559598B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32226194A JP3559598B2 (en) 1994-12-26 1994-12-26 Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32226194A JP3559598B2 (en) 1994-12-26 1994-12-26 Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil

Publications (2)

Publication Number Publication Date
JPH08181432A JPH08181432A (en) 1996-07-12
JP3559598B2 true JP3559598B2 (en) 2004-09-02

Family

ID=18141682

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32226194A Expired - Fee Related JP3559598B2 (en) 1994-12-26 1994-12-26 Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil

Country Status (1)

Country Link
JP (1) JP3559598B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW446627B (en) * 1998-09-30 2001-07-21 Toyo Kohan Co Ltd A clad sheet for lead frame, a lead frame using thereof and a manufacturing method thereof
LU90532B1 (en) * 2000-02-24 2001-08-27 Circuit Foil Luxembourg Trading Sarl Comosite copper foil and manufacturing method thereof
US7026059B2 (en) 2000-09-22 2006-04-11 Circuit Foil Japan Co., Ltd. Copper foil for high-density ultrafine printed wiring boad
JP5727592B2 (en) * 2011-03-25 2015-06-03 Jx日鉱日石金属株式会社 Composite copper foil and method for producing the same
JP6085919B2 (en) * 2012-08-31 2017-03-01 味の素株式会社 Film with ultra-thin copper layer, adhesive film with ultra-thin copper layer, manufacturing method thereof, copper-clad laminate, and wiring board

Also Published As

Publication number Publication date
JPH08181432A (en) 1996-07-12

Similar Documents

Publication Publication Date Title
US6107003A (en) Method for producing multi-layer printed wiring boards having blind vias
JP4728723B2 (en) Ultra-thin copper foil with carrier
US5689879A (en) Metal foil for printed wiring board and production thereof
US3990926A (en) Method for the production of material for printed circuits
JP3067021B2 (en) Method for manufacturing double-sided wiring board
TWI544115B (en) Roughened copper foil, its manufacturing method, copper clad laminate and printed circuit board
EP0744884A2 (en) Process for producing multilayer printed circuit board
JP3295308B2 (en) Electrolytic copper foil
JP2000269637A (en) Copper foil for high-density ultrafine wiring board
CN108124391B (en) Composite metal foil, copper-clad laminate, and method for producing copper-clad laminate
JPH0628941B2 (en) Circuit board and manufacturing method thereof
EP1102524A1 (en) Double-sided printed wiring board and method for manufacturing multilayer printed wiring board having three or more layers
JPS63229897A (en) Manufacture of rigid type multilayer printed circuit board
JPH06318783A (en) Manufacturing method of multilayered circuit substrate
JP2005260058A (en) Carrier-attached very thin copper foil, manufacturing method of carrier-attached very thin copper foil, and wiring board
JP5256747B2 (en) Manufacturing method of copper wiring insulating film by semi-additive method, and copper wiring insulating film manufactured therefrom
JP3735485B2 (en) Copper foil with resin film, and copper foil with resin using the same
JP2004034524A (en) Metal resin composite and its manufacturing method
JP3559598B2 (en) Metal foil for printed wiring board, method for manufacturing the same, and method for manufacturing wiring board using the metal foil
JP2755058B2 (en) Metal foil for printed wiring board, method of manufacturing the same, and method of manufacturing wiring board using the metal foil
US6884944B1 (en) Multi-layer printed wiring boards having blind vias
WO2020195748A1 (en) Metal foil for printed wiring board, metal foil with carrier, and metal-clad laminate, and method for manufacturing printed wiring board using same
JP3071722B2 (en) Method for manufacturing multilayer printed wiring board
JP3543348B2 (en) Manufacturing method of multilayer wiring board
JP3680321B2 (en) Manufacturing method of multilayer printed wiring board

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040511

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040524

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313532

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090528

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100528

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110528

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees