JP6035679B2 - Plating laminate manufacturing method and plating laminate - Google Patents

Plating laminate manufacturing method and plating laminate Download PDF

Info

Publication number
JP6035679B2
JP6035679B2 JP2013030372A JP2013030372A JP6035679B2 JP 6035679 B2 JP6035679 B2 JP 6035679B2 JP 2013030372 A JP2013030372 A JP 2013030372A JP 2013030372 A JP2013030372 A JP 2013030372A JP 6035679 B2 JP6035679 B2 JP 6035679B2
Authority
JP
Japan
Prior art keywords
liquid crystal
metal layer
crystal polymer
copper
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2013030372A
Other languages
Japanese (ja)
Other versions
JP2014160738A (en
Inventor
恭子 宮内
恭子 宮内
寛人 渡邉
寛人 渡邉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2013030372A priority Critical patent/JP6035679B2/en
Publication of JP2014160738A publication Critical patent/JP2014160738A/en
Application granted granted Critical
Publication of JP6035679B2 publication Critical patent/JP6035679B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、全芳香族ポリエステルを主成分とする液晶ポリマーフィルムと金属層とからなるめっき積層体の製造方法、及びめっき積層体に関する。   The present invention relates to a method for producing a plated laminate comprising a liquid crystal polymer film having a wholly aromatic polyester as a main component and a metal layer, and a plated laminate.

全芳香族ポリエステルを主成分とする液晶ポリマーフィルムは、電気・電子部品の小型・薄型化の進展に伴い、低吸水性、高周波における誘電損失が低いといった電気特性に優れていることから、フレキシブル基板などプリント基板向けの絶縁フィルムへの展開が検討されている。   Liquid crystal polymer films based on wholly aromatic polyesters have excellent electrical properties such as low water absorption and low dielectric loss at high frequencies as electrical and electronic components become smaller and thinner, so flexible substrates Development of insulating films for printed circuit boards is under consideration.

液晶ポリマーフィルムを基板としたフレキシブルプリント基板の製造方法としては、回路を形成する導体に用いられる電解銅箔と液晶ポリマーフィルムを熱圧着(ラミネート)法にて貼り合わせる方法、もしくは液晶ポリマーフィルム上にドライプロセス(例えば、スパッタリング法、イオンプレーティング法、真空蒸着法など)により液晶ポリマーフィルム上に薄膜の下地金属層を形成し、その上に電気銅めっきにて銅層を形成するメタライジング法、の2つが代表的な製造方法として挙げられる。   As a manufacturing method of a flexible printed circuit board using a liquid crystal polymer film as a substrate, a method of bonding an electrolytic copper foil used for a conductor forming a circuit and a liquid crystal polymer film by a thermocompression bonding (laminate) method, or on a liquid crystal polymer film A metalizing method in which a thin metal base layer is formed on a liquid crystal polymer film by a dry process (eg, sputtering, ion plating, vacuum deposition, etc.), and a copper layer is formed thereon by electrolytic copper plating; These are the two typical production methods.

しかし、特許文献1にある熱圧着法では、電解銅箔と液晶ポリマーフィルムの密着性が低い為、その銅箔の表面を荒らす対応が必要となるが、その結果伝送損失が大きくなり、結果として誘電損による伝送損失の低減効果が課題となっている。
一方で、メタライジング法で製造されるフレキシブルプリント基板においては、銅層−液晶ポリマーフィルム界面が平滑である為、液晶ポリマーフィルム表面の凹凸によるアンカー効果が得られず、銅層と液晶ポリマーフィルムの接着界面の接着強度が不十分となる。
However, in the thermocompression bonding method disclosed in Patent Document 1, since the adhesion between the electrolytic copper foil and the liquid crystal polymer film is low, it is necessary to cope with the surface of the copper foil, but as a result, transmission loss increases, and as a result The effect of reducing transmission loss due to dielectric loss is a problem.
On the other hand, in the flexible printed circuit board manufactured by the metalizing method, since the interface between the copper layer and the liquid crystal polymer film is smooth, the anchor effect due to the irregularities on the surface of the liquid crystal polymer film cannot be obtained. The adhesive strength at the adhesive interface becomes insufficient.

そこで、例えば特許文献2にあるように、液晶ポリマーフィルムと銅層の間に下地金属(シード)層として、Ni、Cr等を主成分とする金属合金層を形成することで接着力の向上が図られている。
さらに、液晶ポリマーフィルムは銅層との接着性が悪く、その改善の為にコロナ放電、紫外線照射、エキシマレーザー照射、サンドプラスト、化学薬品による薬液処理、プラズマ処理などの方法が提案されている。
Therefore, as disclosed in Patent Document 2, for example, by forming a metal alloy layer mainly composed of Ni, Cr, or the like as a base metal (seed) layer between the liquid crystal polymer film and the copper layer, the adhesive force can be improved. It is illustrated.
Furthermore, the liquid crystal polymer film has poor adhesion to the copper layer, and methods such as corona discharge, ultraviolet irradiation, excimer laser irradiation, sand plast, chemical treatment with chemicals, and plasma treatment have been proposed for improvement.

特にプラズマ処理は、表面エッチングによる洗浄効果及び極性基の導入に最も効果があるとされ、広く工業的に利用されている。
さらに、一方で分子鎖の切断や架橋反応なども伴うが、低圧ガスのグロー放電を伴う低温プラズマ処理は、表面のサブミクロン層だけしか改質させない為、液晶ポリマーフィルムのバルクの性質に影響せず、しかもガス種が限定されないことからガスの組み合わせにより様々な処理効果が得られる。
In particular, the plasma treatment is said to be most effective for the cleaning effect by surface etching and the introduction of polar groups, and is widely used industrially.
Furthermore, on the other hand, molecular chain scission and cross-linking reactions are involved, but low-temperature plasma treatment with low-pressure gas glow discharge only modifies the submicron layer on the surface, so it affects the bulk properties of the liquid crystal polymer film. Furthermore, since the gas type is not limited, various treatment effects can be obtained by combining the gases.

また、非特許文献1には、酸素プラズマガス、窒素プラズマガス、水素プラズマガスのいずれによる処理でも、全て接着性改善効果が得られるものの、窒素プラズマガスや水素プラズマガスによる処理では、表面改質により親水性成分が著しく増加し、銅層と液晶ポリマーフィルムの界面に水が浸入しやすく、信頼性の低下を招く為に、酸素プラズマによる処理が最も適していると報告されている。   Non-Patent Document 1 discloses that all treatments with oxygen plasma gas, nitrogen plasma gas, and hydrogen plasma gas can improve adhesion, but surface treatment with nitrogen plasma gas or hydrogen plasma gas is not possible. It has been reported that the treatment with oxygen plasma is most suitable because the hydrophilic component increases remarkably, water easily enters the interface between the copper layer and the liquid crystal polymer film, and the reliability is lowered.

特開2007−158017号公報JP 2007-158017 A 特開平6−120630号公報JP-A-6-120630

Y.Kurihara et al, Journal Applied Polymer Science, 108, 85(2008)Y. Kurihara et al, Journal Applied Polymer Science, 108, 85 (2008).

低伝送損失という優れた電気特性を有する液晶ポリマーフィルム基板を使用し、銅層をスパッタ成膜するめっき積層体は、本来有している電気特性を損なわず、同時に液晶ポリマーフィルム/銅層間に高い密着性を保持することが課題となる。   Plating laminates that use a liquid crystal polymer film substrate with excellent electrical properties of low transmission loss and sputter deposition of copper layers do not impair the electrical properties inherently high, and at the same time are high between the liquid crystal polymer film / copper layer Maintaining adhesion is an issue.

そこで、このような状況の中、本発明はめっき積層体としての電気特性を損なわずに、基材/銅層間に高い密着性を付与しためっき積層体を提案すべく、その製造方法を提供するものである。   Under such circumstances, the present invention provides a manufacturing method for proposing a plating laminate having high adhesion between the base material / copper layers without impairing the electrical properties of the plating laminate. Is.

このような状況に鑑み、本発明の第1の発明は、液晶ポリマー基板の片面にプラズマによる表面処理を行った後、その表面処理された片面にスパッタリング法を用いて第1金属層を形成し、その第1金属層上にスパッタリング法による銅成膜と電解銅めっき法による銅被膜の形成により第2金属層である銅層を形成し、その後不活性雰囲気中にてアニール処理を施すことにより形成されるめっき積層体の製造方法であって、液晶ポリマー基板が、第1金属層を設ける面におけるプラズマによる表面処理後の二乗平均粗さ(RMS)が50nm未満、且つ算術平均粗さ(Ra)が50nm未満の平滑性を示す面を有する全芳香族ポリエステルを主成分とする液晶ポリマーフィルムで、第1金属層の膜厚が2nm〜30nm、第2金属層である銅層の膜厚が、0.1〜20μmで、そのアニール処理が、前記液晶ポリマーフィルムの主鎖セグメントの分子配向を、前記液晶ポリマーフィルムと第1金属層との密着に適する分子配向とする処理であり、アニール処理温度が、基板に使用する液晶ポリマーフィルムを動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲であることを特徴とするめっき積層体の製造方法である。 In view of such a situation, the first invention of the present invention forms a first metal layer on one surface of the liquid crystal polymer substrate by using a sputtering method after performing a surface treatment on one surface of the liquid crystal polymer substrate. By forming a copper layer as the second metal layer on the first metal layer by forming a copper film by sputtering and forming a copper film by electrolytic copper plating, and then performing an annealing treatment in an inert atmosphere. A method for producing a plated laminate, wherein the liquid crystal polymer substrate has a root mean square roughness (RMS) after surface treatment with plasma on the surface on which the first metal layer is provided, less than 50 nm, and an arithmetic average roughness (Ra ) the wholly aromatic polyester having a surface showing a smoothness of less than 50nm a liquid crystal polymer film containing as a main component, copper film thickness of the first metal layer is 2 nm to 30 nm, a second metal layer The film thickness, with 0.1 to 20 [mu] m, the annealing treatment, the molecular orientation of the main chain segment of the liquid crystal polymer film, in the process of molecular orientation suitable for contact with the liquid crystal polymer film and the first metal layer Yes, the annealing temperature is a temperature range of not less than α relaxation temperature and not more than α relaxation temperature + 20 ° C. measured by a tensile mode in MD direction using a dynamic viscoelasticity for a liquid crystal polymer film used for a substrate. It is a manufacturing method of the plating laminated body which makes it.

本発明の第2の発明は、液晶ポリマー基板の両面にプラズマによる表面処理を行った後、その表面処理された両面にスパッタリング法を用いて第1金属層を形成し、その第1金属層上にスパッタリング法による銅成膜と電解銅めっき法による銅被膜の形成により第2金属層である銅層を形成し、その後不活性雰囲気中にてアニール処理を施すことにより形成されるめっき積層体の製造方法であって、液晶ポリマー基板が、第1金属層を設ける面における前記プラズマによる表面処理後の二乗平均粗さ(RMS)が50nm未満、且つ算術平均粗さ(Ra)が50nm未満での平滑性を示す面を有する全芳香族ポリエステルを主成分とする液晶ポリマーフィルムで、第1金属層の膜厚が2nm〜30nm、第2金属層である銅層の膜厚が、0.1〜20μmで、そのアニール処理が、前記液晶ポリマーフィルムの主鎖セグメントの分子配向を、前記液晶ポリマーフィルムと第1金属層との密着に適する分子配向とする処理であり、アニール処理温度が、基板に使用する液晶ポリマーフィルムを動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲であることを特徴とするめっき積層体の製造方法である。 According to a second aspect of the present invention, after a surface treatment with plasma is performed on both surfaces of a liquid crystal polymer substrate, a first metal layer is formed on both surfaces of the surface treatment using a sputtering method. A copper layer as a second metal layer is formed by forming a copper film by sputtering and forming a copper film by electrolytic copper plating, and then annealing is performed in an inert atmosphere. In the manufacturing method, the liquid crystal polymer substrate has a root mean square roughness (RMS) after surface treatment with the plasma on the surface on which the first metal layer is provided of less than 50 nm, and an arithmetic average roughness (Ra) of less than 50 nm . the wholly aromatic polyester having a surface showing a smoothness in the liquid crystal polymer film containing as a main component, the thickness of the first metal layer is 2 nm to 30 nm, the film thickness of the copper layer is a second metal layer, 0. In ~20Myuemu, the annealing treatment, the molecular orientation of the main chain segment of the liquid crystal polymer film, a process to contact the appropriate molecular orientation of the liquid crystal polymer film and the first metal layer, annealing temperature, substrate A method for producing a plated laminate, characterized in that the liquid crystal polymer film used in the above is in a temperature range of α relaxation temperature or higher and α relaxation temperature + 20 ° C. or lower measured by a tensile mode in the MD direction using a dynamic viscoelastic device It is.

本発明の第3の発明は、第1及び第2の発明における第1金属層が、ニッケル、クロム、ニッケルを含む合金、クロムを含む合金、ニッケル及びクロムを含む合金から選ばれる一種であることを特徴とするめっき積層体の製造方法である。   In a third invention of the present invention, the first metal layer in the first and second inventions is a kind selected from nickel, chromium, an alloy containing nickel, an alloy containing chromium, and an alloy containing nickel and chromium. Is a method for producing a plated laminate.

本発明の第4の発明は、プラズマによる表面処理を施した片面の二乗平均粗さ(RMS)が15.2nm以上、50nm未満、且つ算術平均粗さ(Ra)が12.0nm以上、50nm未満である全芳香族ポリエステルを主成分とする液晶ポリマーフィルムのプラズマによる表面処理された片面に、膜厚2nm〜30nmの第1金属層を備え、その第1金属層上に銅スパッタ膜と銅めっき層の順に設けられた膜厚0.1〜20μmの第2金属層である銅層とからなる積層体を、液晶ポリマーフィルムを動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲でアニール処理して形成されたことを特徴とするめっき積層体である。 According to a fourth aspect of the present invention, the mean square roughness (RMS) of one surface subjected to surface treatment with plasma is 15.2 nm or more and less than 50 nm , and the arithmetic average roughness (Ra) is 12.0 nm or more and less than 50 nm. A liquid crystal polymer film comprising a wholly aromatic polyester as a main component is provided with a first metal layer having a film thickness of 2 nm to 30 nm on one surface treated with plasma, and a copper sputtered film and a copper plating are provided on the first metal layer. The laminated body which consists of a copper layer which is a 2nd metal layer with a film thickness of 0.1-20 micrometers provided in order of the layer measured the liquid crystal polymer film by the tensile mode of MD direction using a dynamic viscoelasticity apparatus. A plated laminate characterized by being formed by annealing in a temperature range between a relaxation temperature and an α relaxation temperature + 20 ° C. or less.

本発明の第5の発明は、プラズマによる表面処理を施した両面の二乗平均粗さ(RMS)が15.2nm以上、50nm未満、且つ算術平均粗さ(Ra)が12.0nm以上、50nm未満である全芳香族ポリエステルを主成分とする液晶ポリマーフィルムのプラズマによる表面処理された両面に、膜厚2nm〜30nmの第1金属層を備え、その第1金属層上に銅スパッタ膜と銅めっき層の順に設けられた膜厚0.1〜20μmの第2金属層である銅層とからなる積層体を、液晶ポリマーフィルムを動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲でアニール処理して形成されたことを特徴とするめっき積層体である。 According to a fifth aspect of the present invention, the mean square roughness (RMS) of both surfaces subjected to plasma surface treatment is 15.2 nm or more and less than 50 nm , and the arithmetic average roughness (Ra) is 12.0 nm or more and less than 50 nm. A liquid crystal polymer film having a wholly aromatic polyester as a main component is provided with a first metal layer having a film thickness of 2 nm to 30 nm on both surfaces subjected to surface treatment by plasma, and a copper sputtered film and a copper plating are provided on the first metal layer The laminated body which consists of a copper layer which is a 2nd metal layer with a film thickness of 0.1-20 micrometers provided in order of the layer measured the liquid crystal polymer film by the tensile mode of MD direction using a dynamic viscoelasticity apparatus. A plated laminate characterized by being formed by annealing in a temperature range between a relaxation temperature and an α relaxation temperature + 20 ° C. or less.

本発明の製造方法によれば、全芳香族型ポリエステルを主成分とする液晶ポリマーフィルム基板と第1および第2金属層からなり、基板と金属層の間の接着強度が十分に高められ、かつ低伝送損失を実現しためっき積層体が提供できる。   According to the production method of the present invention, the liquid crystal polymer film substrate mainly composed of a wholly aromatic polyester and the first and second metal layers are formed, the adhesive strength between the substrate and the metal layer is sufficiently increased, and A plated laminate that achieves low transmission loss can be provided.

本発明におけるめっき積層体は、全芳香族ポリエステルを主成分とする液晶ポリマー基板、その片面または両面にスパッタ法で成膜される下地層となる2nm〜30nmの膜厚の第1の金属層、および第2の金属層としてスパッタ法および電解めっき法により形成された0.1〜20μmの膜厚の銅層とから構成される。   The plated laminate in the present invention is a liquid crystal polymer substrate having a wholly aromatic polyester as a main component, a first metal layer having a thickness of 2 nm to 30 nm, which serves as an underlayer formed by sputtering on one or both sides thereof, The second metal layer is composed of a copper layer having a thickness of 0.1 to 20 μm formed by a sputtering method and an electrolytic plating method.

本発明におけるめっき積層体に使用する液晶ポリマー基板の主成分である全芳香族ポリエステルは、電気・電子部品として使用する際に必須である半田耐熱性を考慮し、230℃以上の融点を持つ、下記化学式1に例示される「共重合体化合物(I)」、及び下記化学式2に例示される「共重合体化合物(II)」から選ばれるポリエステルを使用することができる。   The wholly aromatic polyester, which is the main component of the liquid crystal polymer substrate used in the plating laminate of the present invention, has a melting point of 230 ° C. or higher in consideration of solder heat resistance, which is essential when used as an electric / electronic component. A polyester selected from “copolymer compound (I)” exemplified in the following chemical formula 1 and “copolymer compound (II)” exemplified in the following chemical formula 2 can be used.

Figure 0006035679
Figure 0006035679

Figure 0006035679
Figure 0006035679

本発明において使用される全芳香族型ポリエステルを主成分とする液晶ポリマーフィルムには、必要に応じ、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリイミド、ポリエーテルイミド、ポリアミド、ポリアミドイミド、ポリアリレート、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、ポリカーボネート等の重合体;滑剤、酸化防止剤等の添加剤;無機粒子、繊維等の充填材などを配合することができる。   In the liquid crystal polymer film mainly composed of wholly aromatic polyester used in the present invention, polyether ether ketone, polyether sulfone, polyimide, polyether imide, polyamide, polyamide imide, polyarylate, poly Polymers such as tetrafluoroethylene, polyvinylidene fluoride, and polycarbonate; additives such as lubricants and antioxidants; fillers such as inorganic particles and fibers can be blended.

さらに、本発明のめっき積層体に使用する全芳香族型ポリエステルを主成分とする液晶ポリマーフィルムの厚みは、特に限定されるものではないが、10μm以上であることが好ましい。10μm未満の場合、フィルムの厚みが薄すぎる為に、金属層を形成するめっき搬送時にシワが発生しやすく、生産性が低下する。   Furthermore, the thickness of the liquid crystal polymer film mainly composed of wholly aromatic polyester used in the plating laminate of the present invention is not particularly limited, but is preferably 10 μm or more. When the thickness is less than 10 μm, the film is too thin, so that wrinkles are easily generated during plating conveyance for forming the metal layer, and productivity is lowered.

その液晶ポリマーフィルムは、Tダイ法、インフレーション法等の押出成形方法などの公知の方法によって製造されたものを使用することができる。さらに熱変形温度や融点に代表される耐熱性を高める目的で熱処理を施された液晶ポリマーフィルムを使用してもよい。   As the liquid crystal polymer film, one produced by a known method such as an extrusion method such as a T-die method or an inflation method can be used. Further, a liquid crystal polymer film that has been subjected to heat treatment for the purpose of improving heat resistance typified by heat distortion temperature and melting point may be used.

さらに、液晶ポリマーフィルムの表面は、その片面のみによりめっき積層体を形成する場合でも、両面においてめっき積層体を形成する場合でも、その二乗平均粗さ(RMS)及び算術平均粗さ(Ra)の両者が50nm未満であることが必要である。   Furthermore, the surface of the liquid crystal polymer film has a root mean square roughness (RMS) and an arithmetic average roughness (Ra) both in the case where the plating laminate is formed only on one side and in the case where the plating laminate is formed on both sides. Both need to be less than 50 nm.

また、液晶ポリマーフィルムは、動的粘弾性装置を用いた引っ張りモードにて測定した主鎖セグメントのミクロブラウン運動に由来するα緩和温度が200℃以上であることが必要である。さらに望ましくは、フレキシブルプリント基板への適用性で重要な因子である鉛フリー半田(融点260℃)に使用する為に、少なくとも230℃以上であることが望ましい。   In addition, the liquid crystal polymer film needs to have an α relaxation temperature of 200 ° C. or higher derived from the micro-Brownian motion of the main chain segment measured in a tensile mode using a dynamic viscoelastic device. More preferably, it is at least 230 ° C. or higher for use in lead-free solder (melting point 260 ° C.), which is an important factor in applicability to flexible printed circuit boards.

本発明では、上記の平滑性及びα緩和温度を有する全芳香族ポリエステルからなる液晶ポリマーフィルムの片面またはその両面に、プラズマによる表面処理を行った後にスパッタリング法を用いて、2nm〜30nmの膜厚の第1金属層を形成し、続いてスパッタリング法による銅成膜と電解銅めっき法を用いた0.1〜20μmの膜厚の第2金属層である胴層を順に形成するもので、まずプラズマによる表面処理について説明する。   In the present invention, a film thickness of 2 nm to 30 nm is formed by performing sputtering on the surface of one or both surfaces of a liquid crystal polymer film made of a wholly aromatic polyester having the above smoothness and α relaxation temperature, using plasma. The first metal layer is formed, and then the body layer, which is a second metal layer having a thickness of 0.1 to 20 μm, is formed in order using a copper film formation by sputtering and an electrolytic copper plating method. The surface treatment with plasma will be described.

プラズマによる表面処理に使用するガスは、酸素、アルゴン、窒素、水素、二酸化炭素、水蒸気等を使用することができる。また、これらのガスの混合したガスを使用してもよい。
プラズマによる表面処理におけるガス圧は0.5Pa以上が望ましい。
ガス圧の下限は、使用するガス種によって異なり、放電持続可能な圧力とする必要がある。
これは、電子衝撃による気体の電離断面積や、電極表面や放電空間の状態によって変化する。また、電源の周波数にも依存し、例えば、直流放電プラズマより高周波放電プラズマの方が、より低圧で放電可能である。ガス圧の上限は特にないが、直流放電プラズマでは、アーク放電が発生する圧力より低圧にすることが望ましい。
As a gas used for the surface treatment with plasma, oxygen, argon, nitrogen, hydrogen, carbon dioxide, water vapor, or the like can be used. Moreover, you may use the gas which mixed these gas.
The gas pressure in the surface treatment with plasma is preferably 0.5 Pa or more.
The lower limit of the gas pressure depends on the type of gas used and needs to be a discharge sustainable pressure.
This changes depending on the ionization cross section of the gas due to electron impact and the state of the electrode surface and discharge space. Further, depending on the frequency of the power source, for example, high-frequency discharge plasma can be discharged at a lower pressure than direct-current discharge plasma. Although there is no particular upper limit on the gas pressure, it is desirable that the pressure be lower than the pressure at which arc discharge occurs in DC discharge plasma.

さらに、プラズマによるフィルムの表面処理量は、ガス種、印加電圧、電流、処理時間にも依存する。また印加電圧を変化させると電流も変化するため、プラズマ処理強度Jを下記数式1のように定めて行うとよい。   Furthermore, the surface treatment amount of the film by plasma also depends on the gas type, applied voltage, current, and treatment time. Further, since the current changes when the applied voltage is changed, the plasma processing intensity J is preferably determined as shown in the following formula 1.

Figure 0006035679
Figure 0006035679

真空装置内の圧力が1×10−4Pa以下となるまで真空引きした後、プラズマ処理のガスを導入し、直流放電プラズマにより、フィルム表面にプラズマ処理をおこなう。 After evacuating until the pressure in the vacuum apparatus becomes 1 × 10 −4 Pa or less, plasma treatment gas is introduced, and plasma treatment is performed on the film surface by direct current discharge plasma.

次に、フィルム表面に形成する金属層(第1及び第2金属層)について説明する。
第1金属層を形成する金属としては、例えば、ニッケル、クロム、モリブデン、チタン、バナジウム、錫、金、銀、亜鉛、パラジウム、ルテニウム、ロジウム、鉄、アルミニウム、鉛−錫系はんだ合金などが挙げられ、これらの金属を1以上含む合金であることが望ましい。さらには、これらの中でも、ニッケル、クロム、ニッケルを含む合金、クロムを含む合金、ニッケル及びクロムを含む合金から選ばれる一種であることが望ましい。
Next, the metal layers (first and second metal layers) formed on the film surface will be described.
Examples of the metal forming the first metal layer include nickel, chromium, molybdenum, titanium, vanadium, tin, gold, silver, zinc, palladium, ruthenium, rhodium, iron, aluminum, and a lead-tin solder alloy. And an alloy containing one or more of these metals. Furthermore, among these, it is desirable that it is a kind selected from nickel, chromium, an alloy containing nickel, an alloy containing chromium, and an alloy containing nickel and chromium.

第1金属層の厚みは、金属層を形成するには2nm以上であることが望ましく、上限としては30nm以下であることが望ましい。
またスパッタリングによる膜成長の初期段階は島状であるため、液晶ポリマーと金属層界面における表皮効果(周波数が高くなる程、界面に信号が集中する現象)により、伝送損失が大きくなる可能性が高くなる。さらに、周波数が高いほど、表皮効果が発生する膜厚は薄くなる(例えば10GHzの時、約50〜60nm)為、膜厚バラツキを考慮し、第1金属層は30nm未満とすることが望ましい。
The thickness of the first metal layer is desirably 2 nm or more for forming the metal layer, and the upper limit is desirably 30 nm or less.
In addition, since the initial stage of film growth by sputtering is island-like, transmission loss is likely to increase due to the skin effect at the interface between the liquid crystal polymer and the metal layer (a phenomenon in which signals concentrate at the interface as the frequency increases). Become. Furthermore, the higher the frequency, the thinner the film thickness at which the skin effect occurs (for example, about 50 to 60 nm at 10 GHz). Therefore, it is desirable that the first metal layer be less than 30 nm in consideration of film thickness variations.

次に、スパッタ法及び電解銅めっき法により形成される第2金属層の銅層は、その厚みを、0.1〜20μmの範囲内とすることが望ましい。
0.1μmよりも薄い場合、セミアディティブ法で配線加工する際に湿式めっき工程で給電がしづらくなるため好ましくない。一方、20μmよりも厚くなると、エッチングによる配線加工の生産性が低下するばかりでなく、基板としての総厚も厚くなってしまうので、好ましくない。なお、スパッタ法により設けられる銅の薄膜層の膜厚は、上記銅層の膜厚の範囲にあればよい。
Next, it is desirable that the copper layer of the second metal layer formed by the sputtering method and the electrolytic copper plating method has a thickness in the range of 0.1 to 20 μm.
When the thickness is less than 0.1 μm, it is difficult to supply power in the wet plating process when wiring is processed by the semi-additive method. On the other hand, if the thickness is greater than 20 μm, not only the productivity of wiring processing by etching is lowered, but also the total thickness as a substrate is increased, which is not preferable. In addition, the film thickness of the copper thin film layer provided by a sputtering method should just be in the range of the film thickness of the said copper layer.

次に、全芳香族型ポリエステルからなる液晶ポリマーフィルムの片面または両面に第1および第2金属層を形成しためっき積層体に対し、液晶ポリマー主鎖セグメントの分子配向を適正化する目的で、液晶フィルムの「α緩和温度」以上、「α緩和温度+20℃」以下の温度範囲内で、さらに好ましくは「α緩和温度」以上、「α緩和温度+10℃」以下の温度範囲内にてアニール処理を行う。   Next, for the purpose of optimizing the molecular orientation of the liquid crystal polymer main chain segment with respect to the plated laminate in which the first and second metal layers are formed on one or both sides of the liquid crystal polymer film made of wholly aromatic polyester, Annealing treatment is performed within the temperature range of “α relaxation temperature” to “α relaxation temperature + 20 ° C.” or less, more preferably “α relaxation temperature” to “α relaxation temperature + 10 ° C.” or less. Do.

このアニール温度が「α緩和温度」未満の場合、分子運動は官能基のみに留まり、主鎖セグメントの分子配向は変動しない為、本発明の効果である液晶フルムと金属層との密着性の向上が不十分となる。また、アニール温度が「α緩和温度+20℃」を超える場合、液晶ポリマーフィルムの熱膨張及び熱収縮が発生し、金属層との密着性が逆に低下してしまう。   When the annealing temperature is lower than the “α relaxation temperature”, the molecular motion remains only in the functional group, and the molecular orientation of the main chain segment does not change, so the adhesion between the liquid crystal film and the metal layer, which is the effect of the present invention, is improved. Is insufficient. On the other hand, when the annealing temperature exceeds “α relaxation temperature + 20 ° C.”, the liquid crystal polymer film undergoes thermal expansion and contraction, and the adhesion to the metal layer is conversely reduced.

アニール処理時間に制限は無く、得られるめっき積層体における密着性などの物性を考慮して設定できるが、通常2秒間〜2時間、好ましくは2秒間〜1時間の範囲内でアニールするとよい。
アニール処理は、例えば、熱風乾燥炉や加熱された金属ロールなどを使用して実施することができる。また、アニール処理は、めっき積層体をロール状にして連続的に実施してもよいし、一定の寸法に切断してバッチ式で行ってもよい。
The annealing treatment time is not limited and can be set in consideration of physical properties such as adhesion in the obtained plated laminate, but it is usually 2 seconds to 2 hours, preferably 2 seconds to 1 hour.
The annealing treatment can be performed using, for example, a hot air drying furnace or a heated metal roll. Further, the annealing treatment may be carried out continuously by making the plated laminate into a roll shape, or may be carried out by a batch method by cutting into a certain size.

本発明におけるアニール処理は、大気中のような活性雰囲気下で実施することもできるが、銅層の変色を防止する点で、不活性雰囲気下で実施することが望ましい。ここで不活性雰囲気とは、窒素、アルゴン等の不活性ガス中または減圧下を意味し、酸素等の活性ガスが0.5体積%以下であることを言う。特に不活性ガスとしては、窒素ガスが好適に使用できる。   The annealing treatment in the present invention can be carried out under an active atmosphere such as the air, but it is desirable to carry out under an inert atmosphere from the viewpoint of preventing discoloration of the copper layer. Here, the inert atmosphere means in an inert gas such as nitrogen or argon or under reduced pressure, and means that the active gas such as oxygen is 0.5% by volume or less. In particular, nitrogen gas can be suitably used as the inert gas.

本発明の製造方法によって得られるめっき積層体は、フレキシブルプリント基板に対して有用であり、例えば、リード付部品を穴を通して基板に実装するピン挿入実装法、ケース付部品を穴を通さず表面で基板に実装する表面実装法、裸のICチップを基板に実装するICチップ実装法などの公知の方法により、表面実装部品を装着することができる。   The plated laminate obtained by the production method of the present invention is useful for a flexible printed circuit board, for example, a pin insertion mounting method in which a leaded component is mounted on a substrate through a hole, and a cased component on the surface without passing through a hole. Surface-mounted components can be mounted by a known method such as a surface mounting method for mounting on a substrate or an IC chip mounting method for mounting a bare IC chip on a substrate.

以下に本発明の実施例、比較例を示して詳細に説明するが、本発明は以下の実施例により何ら制限されることはない。   EXAMPLES Hereinafter, examples and comparative examples of the present invention will be described in detail, but the present invention is not limited by the following examples.

1.液晶ポリマーフィルムの特性
液晶ポリマーフィルムの緩和温度、液晶ポリマーフィルム表面の二乗平均粗さ(RMS)及び算術平均粗さ(Ra)、金属積層体における液晶ポリマーフィルム/金属層間の接着強度は、以下の方法により測定した。
1. Characteristics of the liquid crystal polymer film The relaxation temperature of the liquid crystal polymer film, the root mean square roughness (RMS) and arithmetic mean roughness (Ra) of the liquid crystal polymer film surface, and the adhesion strength between the liquid crystal polymer film / metal layer in the metal laminate are as follows: Measured by the method.

[緩和温度]
測定装置に、TA INSTRUMENTS社製「動的粘弾性装置Q800(Dynamic Thermomechanometry:DMA)」を用い、長さ20mm、幅6〜7mmの液晶ポリマーフィルムを、1Nの荷重で引っ張り、2Hzの周波数で0.1%(20μm)歪みをかけながら、窒素雰囲気下にて5℃/minにて0℃から250℃まで昇温し、液晶ポリマーフィルム側鎖の回転運動に起因するβ緩和温度と、主鎖セグメントのミクロブラウン運動に由来するα緩和温度を得た。
[Relaxation temperature]
As a measuring device, “Dynamic Viscoelastic Device Q800 (Dynamic Thermometry: DMA)” manufactured by TA INSTRUMENTS was used, and a liquid crystal polymer film having a length of 20 mm and a width of 6 to 7 mm was pulled with a load of 1 N and 0 at a frequency of 2 Hz. The temperature was raised from 0 ° C. to 250 ° C. at 5 ° C./min in a nitrogen atmosphere while applying a strain of 1% (20 μm), the β relaxation temperature resulting from the rotational movement of the liquid crystal polymer film side chain, and the main chain The α relaxation temperature derived from the micro-Brownian motion of the segment was obtained.

[二乗平均粗さ(RMS)及び算術平均粗さ(Ra)]
日本ビーコ株式会社製「NanoscopeV」及びNANO WORLD社製「プローブSEIHR(ばね定数:12−13N/m、共振周波数123−125kHz)」を用い、液晶ポリマーフィルム表面をタッピングモードにて測定し、2μm×2μm角内のRMS及びRaを算出した。
[Root mean square roughness (RMS) and arithmetic mean roughness (Ra)]
The surface of the liquid crystal polymer film was measured in a tapping mode using “Nanoscope V” manufactured by Nippon Bico Co., Ltd. and “Probe SEIHR (spring constant: 12-13 N / m, resonance frequency: 123-125 kHz)” manufactured by NANO WORLD, and 2 μm × RMS and Ra within 2 μm square were calculated.

2.めっき積層体の形成
上記平滑性を測定した液晶ポリマーフィルムを基板として使用し、まず以下の条件でプラズマ処理を行った。
真空装置内の圧力が1×10−4Pa以下となるまで真空引きした後、アルゴンガスを導入し装置内の圧力を0.3Paとし、プラズマ処理を施した。
2. Formation of Plating Laminate The liquid crystal polymer film whose smoothness was measured was used as a substrate, and plasma treatment was first performed under the following conditions.
After evacuating until the pressure in the vacuum apparatus became 1 × 10 −4 Pa or less, argon gas was introduced to set the pressure in the apparatus to 0.3 Pa, and plasma treatment was performed.

続いて、プラズマ処理したフィルム表面にスパッタリング法により所定厚みの第1金属層であるNi−20%Cr合金層を成膜し、続いて第2金属層を構成する銅スパッタ膜を所定の厚みで積層した。   Subsequently, a Ni-20% Cr alloy layer, which is a first metal layer having a predetermined thickness, is formed on the surface of the plasma-treated film by a sputtering method, and then a copper sputter film constituting the second metal layer is formed with a predetermined thickness. Laminated.

次に、電流密度2A/dmで電気銅めっき(めっき液:硫酸銅溶液)を行ない、上記銅スパッタ膜上に膜厚8μmの銅めっき層を形成して第2金属層を設け、めっき積層体を作製した。 Next, electrolytic copper plating (plating solution: copper sulfate solution) is performed at a current density of 2 A / dm 2 , a copper plating layer having a thickness of 8 μm is formed on the copper sputtered film, a second metal layer is provided, and plating lamination is performed. The body was made.

3.めっき積層体の特性
作製しためっき積層体を評価するために、「接着強度」、「伝送損失」の各特性を測定した。
3. Characteristics of Plating Laminate In order to evaluate the prepared plating laminate, each characteristic of “adhesion strength” and “transmission loss” was measured.

[接着強度]
銅層側に1mm幅のマスキングを行った後、40℃の第二鉄溶液40°Beにて30秒間浸漬し、金属層をエッチングして除去することで、1mm幅の金属層を得た。
形成した金属層を、株式会社島津製作所製「オートグラフEZ Graph」を用いて、JIS C 6471に記載されている90°方向引き剥がし方法で、金属層を20mm/min、90°方向に引っ張り、得られた引き剥がし荷重を試料幅1mmで除した値を接着強度(N/m)とした。
[Adhesive strength]
After performing 1 mm width masking on the copper layer side, it was immersed in a 40 ° C ferric solution at 40 ° Be for 30 seconds, and the metal layer was etched and removed to obtain a 1 mm width metal layer.
Using the “Autograph EZ Graph” manufactured by Shimadzu Corporation, the formed metal layer was pulled in the 90 ° direction by the 90 ° direction peeling method described in JIS C 6471, The value obtained by dividing the obtained peeling load by the sample width of 1 mm was defined as the adhesive strength (N / m).

[伝送損失]
特性インピーダンスが50Ωのマイクロストリップ線路を形成し、HP社製のネットワークアナライザーHP8510Cにより透過係数を測定し、各周波数での伝送損失を求めた。
[Transmission loss]
A microstrip line having a characteristic impedance of 50Ω was formed, and a transmission coefficient was measured by a network analyzer HP8510C manufactured by HP, and a transmission loss at each frequency was obtained.

株式会社クラレ製のポリエステル系液晶ポリマー「Vecstar(登録商標)−CTZ(共重合体化合物IIの構造を有する全芳香族型ポリエステル、膜厚50μm:)」について、DMAを用いてTD(幅方向)及びMD(搬送方向)のβ緩和温度、α緩和温度を測定したところ、TD方向のβ緩和温度は105.3℃、α緩和温度は236.0℃、MD方向のβ緩和温度は109.6℃、α緩和温度は236.7℃であった。   Polyester-based liquid crystal polymer “Vecstar (registered trademark) -CTZ (fully aromatic polyester having the structure of copolymer compound II, film thickness: 50 μm)” manufactured by Kuraray Co., Ltd., using DMA, TD (width direction) And β relaxation temperature and α relaxation temperature in the MD (conveying direction) were measured, the β relaxation temperature in the TD direction was 105.3 ° C., the α relaxation temperature was 236.0 ° C., and the β relaxation temperature in the MD direction was 109.6. The α relaxation temperature was 236.7 ° C.

この液晶ポリマーフィルムを用いて、実施例1のめっき積層体を、下記条件により形成した。
液晶ポリマーフィルム両面に、プラズマ処理強度20kJ/mにて酸素プラズマ処理を行い、続いてスパッタリング法によりNi−20%Crを8nm、銅スパッタ膜を100nm積層し、続いて電解銅めっきにより銅めっき層を8μm形成して、めっき積層体を得た。
なお、プラズマ処理後の液晶ポリマーフィルム両面の2μm×2μm角におけるRMS及びRaを算出した結果を表1に示す。
Using this liquid crystal polymer film, the plating laminate of Example 1 was formed under the following conditions.
Oxygen plasma treatment is performed on both sides of the liquid crystal polymer film at a plasma treatment strength of 20 kJ / m 2 , followed by a sputtering method to deposit 8 nm of Ni-20% Cr and 100 nm of a sputtered copper film, followed by copper plating by electrolytic copper plating. A layer was formed with a thickness of 8 μm to obtain a plated laminate.
Table 1 shows the results of calculating RMS and Ra at 2 μm × 2 μm square on both sides of the liquid crystal polymer film after the plasma treatment.

続いて、めっき積層体を窒素雰囲気下、MD方向の「α緩和温度以上、α緩和温度+5℃以下」に相当する236.7〜241.7℃の温度範囲にて30分間アニール処理をした。
このめっき積層体の密着強度、伝送損失を測定した結果を表1に示す。
Subsequently, the plating laminate was annealed for 30 minutes in a temperature range of 236.7 to 241.7 ° C. corresponding to “more than α relaxation temperature and less than α relaxation temperature + 5 ° C.” in the MD direction in a nitrogen atmosphere.
Table 1 shows the results of measuring the adhesion strength and transmission loss of this plated laminate.

実施例1と同じ液晶ポリマーフィルム両面にプラズマ処理強度32kJ/mにて酸素プラズマ処理を行い、実施例1と同様の操作にて、実施例2に係るめっき積層体を得た。 Oxygen plasma treatment was performed on both surfaces of the same liquid crystal polymer film as in Example 1 at a plasma treatment strength of 32 kJ / m 2 , and a plating laminate according to Example 2 was obtained in the same manner as in Example 1.

実施例1と同じ液晶ポリマーフィルム両面にプラズマ処理強度42kJ/mにて酸素プラズマ処理を行い、実施例1と同様の操作にて、実施例3に係るめっき積層体を得た。 Oxygen plasma treatment was performed on both surfaces of the same liquid crystal polymer film as in Example 1 with a plasma treatment strength of 42 kJ / m 2 , and a plating laminate according to Example 3 was obtained in the same manner as in Example 1.

実施例1と同じ液晶ポリマーフィルム両面にプラズマ処理強度83kJ/mにて酸素プラズマ処理を行い、実施例1と同様の操作にて、実施例4に係るめっき積層体を得た。 Oxygen plasma treatment was performed on both surfaces of the same liquid crystal polymer film as in Example 1 at a plasma treatment strength of 83 kJ / m 2 , and a plating laminate according to Example 4 was obtained in the same manner as in Example 1.

実施例1と同じ液晶ポリマーフィルム両面にプラズマ処理強度148kJ/mにて酸素プラズマ処理を行い、実施例1と同様の操作にて、実施例5に係るめっき積層体を得た。 Oxygen plasma treatment was performed on both surfaces of the same liquid crystal polymer film as in Example 1 at a plasma treatment strength of 148 kJ / m 2 , and a plating laminate according to Example 5 was obtained in the same manner as in Example 1.

(参考例)
実施例1と同じ液晶ポリマーフィルム両面にプラズマ処理強度77kJ/mにて窒素プラズマ処理を行い、実施例1と同様の操作にて、参考例に係るめっき積層体を得た。
(Reference example)
Nitrogen plasma treatment was performed on both surfaces of the same liquid crystal polymer film as in Example 1 at a plasma treatment strength of 77 kJ / m 2 , and a plating laminate according to the reference example was obtained in the same manner as in Example 1.

実施例1と同様の全芳香族型ポリエステルからなる液晶ポリマーフィルムを用い、めっき積層体を窒素雰囲気下、MD方向の「α緩和温度以上、α緩和温度+1℃以下」に相当する236.7℃以上、237.7℃以下にて30分間アニール処理をし、実施例7に係るめっき積層体を得た。   Using a liquid crystal polymer film made of a wholly aromatic polyester similar to Example 1, the plated laminate was 236.7 ° C. corresponding to “more than α relaxation temperature and less than α relaxation temperature + 1 ° C.” in the MD direction in a nitrogen atmosphere. As described above, the annealing treatment was performed at 237.7 ° C. or lower for 30 minutes to obtain the plated laminate according to Example 7.

実施例1と同様の全芳香族型ポリエステルからなる液晶ポリマーフィルムを用い、めっき積層体を窒素雰囲気下、MD方向の「α緩和温度以上、α緩和温度+20℃以下」に該当する236.7〜256.7℃の温度範囲にて30分間アニール処理をし、実施例8に係るめっき積層体を得た。   Using a liquid crystal polymer film composed of the same wholly aromatic polyester as in Example 1, the plated laminate is in the nitrogen atmosphere and corresponds to “α relaxation temperature or higher, α relaxation temperature + 20 ° C. or lower” in the MD direction. Annealing treatment was performed for 30 minutes in a temperature range of 256.7 ° C., and a plated laminate according to Example 8 was obtained.

(比較例1)
片面をサンドプラスト粗化した全芳香族型ポリエステル液晶ポリマーフィルムを用い、その他は実施例1と同じ操作にて、比較例1に係るめっき積層体を得た。
なお、サンドブラスト処理条件はラインスピードを1.5m/minとし、サンドブラスト処理は、加圧一段式で粒径0.1〜1mmの珪砂を使用し、吹き出しノズルとポリイミドフィルムとの角度、間隔をそれぞれ45度、130mmとした。吹き出し量は調整弁により6kg/minとした。
(Comparative Example 1)
Using a wholly aromatic polyester liquid crystal polymer film whose one side was roughened by sand plast, the other operations were the same as in Example 1, and a plated laminate according to Comparative Example 1 was obtained.
The sandblasting conditions are a line speed of 1.5 m / min, the sandblasting process uses silica sand with a pressure of one stage and a particle size of 0.1 to 1 mm, and the angle and interval between the blowing nozzle and the polyimide film are respectively The angle was 45 degrees and 130 mm. The amount of blowout was set to 6 kg / min by an adjusting valve.

(比較例2)
実施例1と同様の全芳香族型ポリエステルからなる液晶ポリマーフィルムを用い、アニール処理を行わない以外は実施例1と同じ操作にて、比較例2に係るめっき積層体を得た。
(Comparative Example 2)
A plated laminate according to Comparative Example 2 was obtained in the same manner as in Example 1 except that a liquid crystal polymer film made of a wholly aromatic polyester as in Example 1 was used and no annealing treatment was performed.

(比較例3)
実施例1と同様の全芳香族型ポリエステルからなる液晶ポリマーフィルムを用い、めっき積層体を窒素雰囲気下、MD方向のα緩和温度236.7℃に対して、50℃低い186.7℃を基準として、186.7〜191.7℃の温度範囲にて30分間アニール処理をした以外は実施例1と同様にして、比較例3に係るめっき積層体を得た。
(Comparative Example 3)
A liquid crystal polymer film made of a wholly aromatic polyester similar to that in Example 1 was used, and the plating laminate was 186.7 ° C., which was 50 ° C. lower than the α relaxation temperature of 236.7 ° C. in the MD direction. As described above, a plating laminate according to Comparative Example 3 was obtained in the same manner as in Example 1 except that annealing treatment was performed for 30 minutes in a temperature range of 186.7 to 191.7 ° C.

(比較例4)
実施例1と同様の全芳香族型ポリエステルからなる液晶ポリマーフィルムを用い、めっき積層体を窒素雰囲気下、MD方向のα緩和温度236.7℃に対して、30℃低い206.7℃を基準として、206.7〜211.7℃の温度範囲にて30分間アニール処理をした以外は実施例1と同様にして、比較例4に係るめっき積層体を得た。
(Comparative Example 4)
A liquid crystal polymer film made of a wholly aromatic polyester similar to that in Example 1 was used, and the plating laminate was 206.7 ° C., which was 30 ° C. lower than the α relaxation temperature of 236.7 ° C. in the MD direction. As described above, a plating laminate according to Comparative Example 4 was obtained in the same manner as in Example 1 except that the annealing treatment was performed for 30 minutes in the temperature range of 206.7 to 211.7 ° C.

(比較例5)
実施例1と同様の全芳香族型ポリエステルからなる液晶ポリマーフィルムを用い、めっき積層体を窒素雰囲気下、MD方向のα緩和温度236.7℃に対して、50℃高い286.7℃を基準として、286.7〜291.7℃の温度範囲にて30分間アニール処理をした。
しかし、液晶ポリマーフィルムの熱収縮により金属層が屈折した為、密着強度測定には至らなかった。
以上の実施例、参考例、比較例の試料を実施例1と同様に評価した結果を表1にまとめて示す。
(Comparative Example 5)
A liquid crystal polymer film made of a wholly aromatic polyester as in Example 1 was used, and the plating laminate was 286.7 ° C. higher by 50 ° C. relative to the α relaxation temperature of 236.7 ° C. in the MD direction under a nitrogen atmosphere. As a result, annealing treatment was performed for 30 minutes in a temperature range of 286.7 to 291.7 ° C.
However, since the metal layer was refracted by the heat shrinkage of the liquid crystal polymer film, the adhesion strength measurement was not achieved.
The results of evaluating the samples of the above Examples, Reference Examples and Comparative Examples in the same manner as in Example 1 are summarized in Table 1.

Figure 0006035679
Figure 0006035679

表1に示す結果からも明らかに、本発明により製造しためっき積層体によれば、液晶ポリマー基板と金属層との密着強度は十分に高まり、同時に低伝送損失を実現できることがわかる。   From the results shown in Table 1, it is apparent that the adhesion strength between the liquid crystal polymer substrate and the metal layer is sufficiently increased and, at the same time, low transmission loss can be realized by the plated laminate produced according to the present invention.

Claims (5)

液晶ポリマー基板の片面にプラズマによる表面処理を行った後、前記表面処理された片面にスパッタリング法を用いて第1金属層を形成し、前記第1金属層上にスパッタリング法による銅成膜と電解銅めっき法による銅被膜の形成により第2金属層である銅層を形成し、その後不活性雰囲気中にてアニール処理を施すことにより形成されるめっき積層体の製造方法であって、
前記液晶ポリマー基板が、前記第1金属層を設ける面における前記プラズマによる表面処理後の二乗平均粗さ(RMS)が50nm未満、且つ算術平均粗さ(Ra)が50nm未満の平滑性を示す面を有する全芳香族ポリエステルを主成分とする液晶ポリマーフィルムで、
前記第1金属層の膜厚が、2nm〜30nmで、
前記第2金属層である銅層の膜厚が、0.1〜20μmで、
前記アニール処理が、前記液晶ポリマーフィルムの主鎖セグメントの分子配向を、前記液晶ポリマーフィルムと第1金属層との密着に適する分子配向とする処理であり、
前記アニール処理温度が、基板に使用する液晶ポリマーフィルムを、動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲であることを特徴とするめっき積層体の製造方法。
After performing a surface treatment with plasma on one surface of the liquid crystal polymer substrate, a first metal layer is formed on the one surface-treated surface using a sputtering method, and a copper film is formed and electrolyzed on the first metal layer by a sputtering method. A method for producing a plated laminate formed by forming a copper layer as a second metal layer by forming a copper film by a copper plating method, and then performing an annealing treatment in an inert atmosphere,
The surface on which the liquid crystal polymer substrate has a smoothness with a mean square roughness (RMS) after surface treatment with plasma of less than 50 nm and an arithmetic average roughness (Ra) of less than 50 nm on the surface on which the first metal layer is provided. A liquid crystal polymer film mainly composed of wholly aromatic polyester having
The thickness of the first metal layer is 2 nm to 30 nm,
The copper layer as the second metal layer has a thickness of 0.1 to 20 μm,
The annealing treatment is a treatment for changing the molecular orientation of the main chain segment of the liquid crystal polymer film to a molecular orientation suitable for adhesion between the liquid crystal polymer film and the first metal layer,
The annealing temperature is in a temperature range of not less than α relaxation temperature and not more than α relaxation temperature + 20 ° C. measured by a tensile mode in MD direction using a dynamic viscoelasticity for a liquid crystal polymer film used for a substrate. A method for producing a plated laminate.
液晶ポリマー基板の両面にプラズマによる表面処理を行った後、前記表面処理された両面にスパッタリング法を用いて第1金属層を形成し、前記第1金属層上にスパッタリング法による銅成膜と電解銅めっき法による銅被膜の形成により第2金属層である銅層を形成し、その後不活性雰囲気中にてアニール処理を施すことにより形成されるめっき積層体の製造方法であって、
前記液晶ポリマー基板が、前記第1金属層を設ける面における前記プラズマによる表面処理後の二乗平均粗さ(RMS)が50nm未満、且つ算術平均粗さ(Ra)が50nm未満の平滑性を示す面を有する全芳香族ポリエステルを主成分とする液晶ポリマーフィルムで、
前記第1金属層の膜厚が、2nm〜30nmで、
前記第2金属層である銅層の膜厚が、0.1〜20μmで、
前記アニール処理が、前記液晶ポリマーフィルムの主鎖セグメントの分子配向を、前記液晶ポリマーフィルムと第1金属層との密着に適する分子配向とする処理であり、
前記アニール処理温度が、基板に使用する液晶ポリマーフィルムを、動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲であることを特徴とするめっき積層体の製造方法。
After performing a surface treatment with plasma on both surfaces of the liquid crystal polymer substrate, a first metal layer is formed on the both surfaces subjected to the surface treatment using a sputtering method, and a copper film is formed and electrolyzed on the first metal layer by a sputtering method. A method for producing a plated laminate formed by forming a copper layer as a second metal layer by forming a copper film by a copper plating method, and then performing an annealing treatment in an inert atmosphere,
The surface on which the liquid crystal polymer substrate has a smoothness with a mean square roughness (RMS) after surface treatment with plasma of less than 50 nm and an arithmetic average roughness (Ra) of less than 50 nm on the surface on which the first metal layer is provided. A liquid crystal polymer film mainly composed of wholly aromatic polyester having
The thickness of the first metal layer is 2 nm to 30 nm,
The copper layer as the second metal layer has a thickness of 0.1 to 20 μm,
The annealing treatment is a treatment for changing the molecular orientation of the main chain segment of the liquid crystal polymer film to a molecular orientation suitable for adhesion between the liquid crystal polymer film and the first metal layer,
The annealing temperature is in a temperature range of not less than α relaxation temperature and not more than α relaxation temperature + 20 ° C. measured by a tensile mode in MD direction using a dynamic viscoelasticity for a liquid crystal polymer film used for a substrate. A method for producing a plated laminate.
前記第1金属層が、ニッケル、クロム、ニッケルを含む合金、クロムを含む合金、ニッケル及びクロムを含む合金から選ばれる一種であることを特徴とする請求項1又は2に記載のめっき積層体の製造方法。   3. The plated laminate according to claim 1, wherein the first metal layer is one selected from nickel, chromium, an alloy containing nickel, an alloy containing chromium, and an alloy containing nickel and chromium. Production method. プラズマによる表面処理を施した片面の二乗平均粗さ(RMS)が15.2nm以上、50nm未満、且つ算術平均粗さ(Ra)が12.0nm以上、50nm未満である全芳香族ポリエステルを主成分とする液晶ポリマーフィルムの前記片面に、膜厚2nm〜30nmの第1金属層を備え、前記第1金属層上に銅スパッタ膜と銅めっき層の順に設けられた膜厚0.1〜20μmの第2金属層である銅層とからなる積層体を、前記液晶ポリマーフィルムを動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲でアニール処理して形成されたことを特徴とするめっき積層体。 Mainly composed of wholly aromatic polyester having a root mean square roughness (RMS) of 15.2 nm or more and less than 50 nm and an arithmetic average roughness (Ra) of 12.0 nm or more and less than 50 nm on one side subjected to surface treatment with plasma The liquid crystal polymer film is provided with a first metal layer having a film thickness of 2 nm to 30 nm on one side, and a film having a film thickness of 0.1 to 20 μm provided on the first metal layer in the order of a copper sputtered film and a copper plating layer. A temperature range of not less than α relaxation temperature and not more than α relaxation temperature + 20 ° C. measured for the liquid crystal polymer film by a tensile mode in the MD direction using a dynamic viscoelasticity device for a laminate comprising a copper layer as a second metal layer. A plated laminate, which is formed by annealing with プラズマによる表面処理を施した両面の二乗平均粗さ(RMS)が15.2nm以上、50nm未満、且つ算術平均粗さ(Ra)が12.0nm以上、50nm未満である全芳香族ポリエステルを主成分とする液晶ポリマーフィルムの前記両面に、膜厚2nm〜30nmの第1金属層を備え、前記第1金属層上に銅スパッタ膜と銅めっき層の順に設けられた膜厚0.1〜20μmの第2金属層である銅層とからなる積層体を、前記液晶ポリマーフィルムを動的粘弾性装置を用いたMD方向の引っ張りモードにより測定したα緩和温度以上、α緩和温度+20℃以下の温度範囲でアニール処理して形成されたことを特徴とするめっき積層体。 Mainly composed of wholly aromatic polyester having a root mean square roughness (RMS) of 15.2 nm or more and less than 50 nm and an arithmetic average roughness (Ra) of 12.0 nm or more and less than 50 nm subjected to surface treatment with plasma. A first metal layer having a film thickness of 2 nm to 30 nm is provided on both surfaces of the liquid crystal polymer film, and a film thickness of 0.1 to 20 μm is provided on the first metal layer in the order of a copper sputtered film and a copper plating layer. A temperature range of not less than α relaxation temperature and not more than α relaxation temperature + 20 ° C. measured for the liquid crystal polymer film by a tensile mode in the MD direction using a dynamic viscoelasticity device for a laminate comprising a copper layer as a second metal layer. A plated laminate, which is formed by annealing with
JP2013030372A 2013-02-19 2013-02-19 Plating laminate manufacturing method and plating laminate Active JP6035679B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013030372A JP6035679B2 (en) 2013-02-19 2013-02-19 Plating laminate manufacturing method and plating laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013030372A JP6035679B2 (en) 2013-02-19 2013-02-19 Plating laminate manufacturing method and plating laminate

Publications (2)

Publication Number Publication Date
JP2014160738A JP2014160738A (en) 2014-09-04
JP6035679B2 true JP6035679B2 (en) 2016-11-30

Family

ID=51612235

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013030372A Active JP6035679B2 (en) 2013-02-19 2013-02-19 Plating laminate manufacturing method and plating laminate

Country Status (1)

Country Link
JP (1) JP6035679B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108778713B (en) * 2016-03-03 2021-05-07 株式会社可乐丽 Metal-clad laminate and method for producing same
WO2018150549A1 (en) 2017-02-17 2018-08-23 株式会社クラレ Production method for thermoplastic liquid crystal polymer film with metal deposition layer, thermoplastic liquid crystal polymer film with metal deposition layer obtained using said production method, production method for metal-clad laminate, and metal-clad laminate
CN109852933A (en) * 2018-12-17 2019-06-07 山东长宇新材料有限公司 A kind of copper plating film and its production method
WO2021134218A1 (en) * 2019-12-30 2021-07-08 瑞声声学科技(深圳)有限公司 Copper-clad plate and preparation method therefor
CN111901977A (en) * 2020-06-22 2020-11-06 深圳市信维通信股份有限公司 Preparation method of liquid crystal polymer disturbing copper-clad plate

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3693609B2 (en) * 2001-12-14 2005-09-07 株式会社クラレ Method for producing metal-clad laminate
JP2003347723A (en) * 2002-05-24 2003-12-05 Nippon Zeon Co Ltd Circuit board fabricating method
JP4341023B2 (en) * 2004-04-13 2009-10-07 住友金属鉱山株式会社 Method for producing metal-coated liquid crystal polymer film
JP5746866B2 (en) * 2011-01-05 2015-07-08 Jx日鉱日石金属株式会社 Copper-clad laminate and manufacturing method thereof
US20140023881A1 (en) * 2011-03-01 2014-01-23 Jx Nippon Mining & Metals Corporation Liquid Crystal Polymer Film Based Copper-Clad Laminate and Method for Producing Same

Also Published As

Publication number Publication date
JP2014160738A (en) 2014-09-04

Similar Documents

Publication Publication Date Title
JP6119433B2 (en) Plating laminate and manufacturing method thereof
US8624125B2 (en) Metal foil laminated polyimide resin substrate
JP6035679B2 (en) Plating laminate manufacturing method and plating laminate
EP3424703B1 (en) Metal-clad laminate and manufacturing method for same
JP6110581B2 (en) Surface-treated copper foil, copper-clad laminate and printed wiring board for high-frequency signal transmission circuit formation
JP4341023B2 (en) Method for producing metal-coated liquid crystal polymer film
KR20090105955A (en) Non-adhesive-type flexible laminate and method for production thereof
JP6205954B2 (en) Heat treatment method for resin film, method for producing plating laminate using the same, and heat treatment apparatus therefor
WO2009098832A1 (en) Adhesive-free flexible laminate
JPWO2012108264A1 (en) Two-layer copper clad laminate and method for producing the same
JP7230932B2 (en) Laminate and its manufacturing method, composite laminate manufacturing method, and polymer film manufacturing method
TWI510673B (en) 2-layer flexible substrate and manufacturing method thereof
KR20120053195A (en) Laminated structure for a flexible circuit board having a improved heat resistance adhesive strength and manufacturing method the same
JP5223325B2 (en) Metal-coated polyethylene naphthalate substrate and manufacturing method thereof
JP4777206B2 (en) Method for producing flexible copper-clad laminate
JP2006351646A (en) Circuit board and its manufacturing method
JP4304459B2 (en) Polyimide film with metal thin film
JP2006283023A (en) Polyimide film for forming metallic thin film by vapor deposition
KR20220042307A (en) A polyarylene sulfide-based resin film, a metal laminate, a method for producing a polyarylene sulfide-based resin film, and a method for producing a metal laminate
TWI282759B (en) Electro-conductive metal plated polyimide substrate
CN112423983A (en) Laminate and method for producing laminate
KR20060122591A (en) Flexible film for advancing adhesion strength between flexible film and metal layer and flexible metal-laminated film using the same
JP2006175634A (en) Metal-polyimide substrate
WO2021215353A1 (en) Metal-laminated film and method for manufacturing same
JP5073801B2 (en) Method for producing copper-clad laminate

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150512

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20160225

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160412

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20161003

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20161016

R150 Certificate of patent or registration of utility model

Ref document number: 6035679

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150