JP4129627B2 - Laminated film for build-up wiring board and build-up wiring board - Google Patents

Laminated film for build-up wiring board and build-up wiring board Download PDF

Info

Publication number
JP4129627B2
JP4129627B2 JP2002366369A JP2002366369A JP4129627B2 JP 4129627 B2 JP4129627 B2 JP 4129627B2 JP 2002366369 A JP2002366369 A JP 2002366369A JP 2002366369 A JP2002366369 A JP 2002366369A JP 4129627 B2 JP4129627 B2 JP 4129627B2
Authority
JP
Japan
Prior art keywords
layer
fluororesin
build
wiring board
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2002366369A
Other languages
Japanese (ja)
Other versions
JP2004195776A (en
Inventor
哲 山本
健 森脇
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2002366369A priority Critical patent/JP4129627B2/en
Publication of JP2004195776A publication Critical patent/JP2004195776A/en
Application granted granted Critical
Publication of JP4129627B2 publication Critical patent/JP4129627B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Laminated Bodies (AREA)
  • Production Of Multi-Layered Print Wiring Board (AREA)

Description

【0001】
【発明の属する技術分野】
本発明は、ビルドアップ配線板の製造に用いられる積層フィルム、およびビルドアップ配線板の製造方法に関する。
【0002】
【従来の技術】
近年の電子機器の小型化、高性能化、高機能化が進む中で、高密度実装に対応できるプリント配線板が求められている。そのため、プリント配線板の多層化、絶縁層の薄膜化、従来のスルーホールに代わるインナーバイアホールの採用、バイアホールの小径化、回路の狭ピッチ化等の技術が検討されている。これらを実現するためビルドアップ方式による多層プリント配線板(以下、ビルドアップ配線板という。)の製造が検討されている。
【0003】
ビルドアップ配線板の製造法としては、原材料の取扱いが容易で、工程が短縮できることから、あらかじめ銅箔と絶縁性樹脂とを貼り合わせた、いわゆる樹脂付き銅箔を用いる方法が広く採用されつつある。絶縁性樹脂には、特に電気的信頼性の観点より、常温から高温まで銅箔に対する高い接着性が要求される。また、近年、コンピュータの信号処理速度の高速化や移動体通信の通信用電波の高周波化がますます進行することに伴い、低誘電率及び低誘電正接の絶縁性樹脂を用いたプリント配線板が求められている。
【0004】
従来、絶縁性樹脂としては、耐熱性、寸法安定性、接着性等に優れることから、熱硬化性エポキシ樹脂が使用されていたが、エポキシ樹脂には本質的に誘電率及び誘電正接が高いという問題があった。この点、フッ素樹脂は、誘電率及び誘電正接が低く、耐熱性、耐薬品性等に優れることから、プリント配線板用途の絶縁性樹脂として適する。
【0005】
例えば、低誘電率及び低誘電正接のプリント配線板としては、ガラス繊維補強フッ素樹脂板が知られているが、金属層との接着には350℃以上の高温が必要であるうえ、該フッ素樹脂板は厚さが厚く、小型化や軽量化に対応できなかった。また、フッ素樹脂繊維織布や多孔質フッ素樹脂フィルム等からなるフッ素樹脂積層板、ガラス繊維織布にフッ素樹脂を焼き付けた熱硬化性フッ素樹脂積層板等が知られているが、高価で、銅箔に対する接着性が低かった。
【0006】
特許文献1には、コア基板の表面に回路配線(金属層)と絶縁層を順次積層するビルドアップ配線板が開示されている。表面粗度0.1〜10μmの絶縁層の表面に直接金属層を形成することにより金属層と絶縁層との接着性が向上する。
【0007】
特許文献2には、フッ素樹脂フィルムと導電体箔とが直接接着したプリント基板用材料の製造方法が開示されているが、フッ素樹脂フィルムと導電体箔との接着性は充分ではない。
【0008】
【特許文献1】
特開2000−31642号公報
【特許文献2】
特開2002−43720号公報
【0009】
【発明が解決しようとする課題】
本発明の目的は、耐熱性に優れ、誘電率及び誘電正接が低く、導電体の層との接着性に優れるビルドアップ配線板用積層フィルム、およびそれを用いたビルドアップ配線板の製造方法を提供することである。
【0010】
【課題を解決するための手段】
本発明は、フッ素含有量が35〜76質量%であるフッ素樹脂(A)の層と導電体の層とがフッ素含有量が25質量%以下である樹脂(B)の層を介して積層されたフィルムであって、フッ素樹脂(A)の層の厚さが10〜50μmであり、基板に接着されてビルドアップ配線板を製造するのにいられる積層フィルムを提供する。
また、本発明は、表面に回路配線が形成された基板と、導電体の層を外側にした上記積層フィルムとを、接着性樹脂を用いて熱プレス成形で接着することを特徴とする、ビルドアップ配線板を製造する方法を提供する。
【0011】
【発明の実施の形態】
本発明におけるフッ素含有量が40〜76質量%であるフッ素樹脂(A)(以下、単にフッ素樹脂(A)という。)としては、特に限定されるものでないが、テトラフルオロエチレン(以下、TFEという。)の重合体(ポリテトラフルオロエチレン)又はTFEとコモノマーとの共重合体が好ましい。コモノマーとしては、CF=CFCl、CF=CH(以下、VdFという。)等のTFE以外のフルオロエチレン類、CF=CFCF(以下、HFPという。)、CF=CHCF等のフルオロプロピレン類、CH=CHCFCFCFCF、CH=CFCFCFCFH、CH=CFCFCFCFCFH等のペルフルオロアルキル基の炭素数が4〜12の(ペルフルオロアルキル)エチレン類、R(OCFXCFOCF=CF(式中Rは炭素数1〜6のペルフルオロアルキル基、Xはフッ素原子又はトリフルオロメチル基、mは0〜5の整数を表す。)等のペルフルオロ(ビニルエーテル)類、エチレン、プロピレン、イソブチレン等のオレフィン類等が挙げられる。これらのコモノマーは、単独で使用してもよいし、2種以上組み合わせて使用してもよい。
【0012】
フッ素樹脂(A)の具体例としては、ポリテトラフルオロエチレン(以下、PTFEという。)、TFE/エチレン系共重合体(以下、ETFEという。)、TFE/ペルフルオロ(アルキルビニルエーテル)系共重合体(以下、PFAという。)、TFE/HFP系共重合体(以下、FEPという。)、TFE/HFP/VdF系共重合体、クロロトリフルオロエチレン/エチレン系共重合体等が挙げられる。これらのフッ素樹脂(A)は誘電率や誘電正接が低く好ましい。特に、PTFE、ETFE、PFA又はFEPが好ましく、ETFE、PFA又はFEPがより好ましい。ETFE、PFA及びFEPは成形性に優れる。
【0013】
本発明におけるフッ素樹脂(A)のフッ素含有量は40〜76質量%である。好ましくは50〜76質量%であり、より好ましくは55〜76質量%である。この範囲にあるとフッ素樹脂(A)は誘電率や誘電正接が低く好ましい。
【0014】
フッ素樹脂(A)の層の厚さは、10〜50μmであり、特に20〜0μmが好ましい。厚さが上記範囲よりも薄いと、積層フィルムが変形又は折れ曲が生じやすく、回路配線が断線しやすくなる。また、上記範囲より厚いと、ビルドアップ配線板の厚さが増すため、小型化や軽量化に対応できない。この範囲にあると積層フィルムが変形や折れ曲がりが生じにくく、柔軟性に優れ、プリント配線板が小型化、軽量化に対応できる。
【0015】
フッ素樹脂(A)には、TFE/プロピレン系共重合体、VdF/HFP系共重合体等のフッ素ゴムの1〜50質量%を含有させることも好ましい。フッ素ゴムの含有量は1〜30質量%がより好ましく、1〜20質量%が最も好ましい。フッ素樹脂(A)がフッ素ゴムを含有すると、導電体の層との接着性が向上するので好ましい。フッ素ゴムのフッ素含有量は35〜74質量%が好ましく、50〜74質量%がより好ましく、55〜74質量%が最も好ましい。
【0016】
また、フッ素樹脂(A)は、帯電防止性を付与する帯電防止剤の0.1〜2質量%を含有することも好ましい。帯電防止剤としては、ノニオン性界面活性剤、アニオン性界面活性剤、カチオン性界面活性剤、両性イオン界面活性剤等の界面活性剤が好ましい。
【0017】
フッ素樹脂(A)は、誘電率や誘電正接を低くする無機フィラーを含有することも好ましい。無機フィラーとしては、シリカ、クレー、タルク、炭酸カルシウム、マイカ、珪藻土、アルミナ、酸化亜鉛、酸化チタン、酸化カルシウム、酸化マグネシウム、酸化鉄、酸化錫、酸化アンチモン、水酸化カルシウム、水酸化マグネシウム、水酸化アルミニウム、塩基性炭酸マグネシウム、炭酸マグネシウム、炭酸亜鉛、炭酸バリウム、ドーソナイト、ハイドロタルサイト、硫酸カルシウム、硫酸バリウム、珪酸カルシウム、モンモリロナイト、ベントナイト、活性白土、セピオライト、イモゴライト、セリサイト、ガラス繊維、ガラスビーズ、シリカ系バルーン、カーボンブラック、グラファイト、炭素繊維、炭素バルーン、木粉、ホウ酸亜鉛等が挙げられる。
【0018】
無機フィラーは1種単独で用いてもよく、2種以上を併用してもより。無機フィラーの含有量はフッ素樹脂(A)に対して1〜100質量%が好ましい。また、これらの無機フィラーが多孔質であることが誘電率や誘電正接がさらに低くなるので好ましい。
【0019】
本発明におけるフッ素含有量が25質量%以下である樹脂(B)(以下、単に樹脂(B)という。)としては、ビルドアップ配線板の成形条件に合わせて種々の樹脂が選択できる。具体例としては、ポリイミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリスルホン、ポリエーテルエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル、液晶ポリエステル、ポリエチレンテレフタレート、ポリブチレンテレフタレート、ポリエチレンナフタレート、ポリブチレンナフタレート、ポリカーボネート、ポリアミド、ポリアミドイミド、ポリアセタール、エポキシ樹脂等が挙げられる。樹脂(B)は、1種を単独で用いてもよく、2種以上を併用してもよい。
【0020】
樹脂(B)としては、ビルドアップ配線板の製造時の成形温度より融点が高い樹脂が好ましく、ポリイミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル及び液晶ポリエステルからなる群から選ばれる1種以上であることがより好ましく、ポリイミド、ポリエーテルイミド、ポリエーテルスルホン、ポリフェニレンエーテル又は液晶ポリエステルが最も好ましい。
【0021】
樹脂(B)のフッ素含有量は20質量%以下が好ましく、15質量%以下がより好ましい。さらに、実質的にフッ素を含まない樹脂が最も好ましい。この範囲にあるとフッ素樹脂(A)の層及び導電体の層との接着性に優れる。
【0022】
樹脂(B)の層の厚さとしては、0.1〜50μmが好ましく、1〜30μmがより好ましく、3〜10μmが最も好ましい。厚さが上記範囲よりも薄いと、フッ素樹脂(A)の層及び導電体の層との接着性が充分でなく、また、基板表面の配線パターンへの追従性が充分でない。上記範囲より厚いと、フッ素樹脂(A)の層と樹脂(B)の層とを併せた層の誘電率及び誘電正接が高くなる。以下、フッ素樹脂(A)の層と樹脂(B)の層を併せて絶縁性樹脂の層ともいう。この範囲にあるとフッ素樹脂(A)の層と導電体の層との接着性が充分で、絶縁性樹脂の層の誘電率及び誘電正接が低く、基板表面の配線パターンへの追従性に優れる。
【0023】
本発明における導電体としては、銅、銀、金、アルミニウム等の金属が使用できる。これらの金属は電気抵抗が低く好ましい。これらの金属は、1種を単独で用いてもよく、2種以上を併用してもよい。併用の方法としては、前記金属の箔に金メッキを施すことも好ましい。特に、金メッキを施した銅の層が好ましい。本発明における導電体の層としては、銅、銀、金、アルミニウムの層、又は金メッキを施した銅の層であることが好ましい。導電体の層の厚さは、0.1〜100μmが好ましく、1〜50μmがより好ましく、5〜30μmが最も好ましい。
【0024】
本発明のビルドアップ配線板用積層フィルムは、フッ素樹脂(A)の層と導電体の層とが樹脂(B)の層を介して積層される。本発明のビルドアップ配線板用積層フィルムの断面図の例を図1に示す。フッ素樹脂(A)の層1、樹脂(B)の層2及び導電体の層3を有する。
【0025】
本発明のビルドアップ配線板用積層フィルムの製造方法としては、通常使用される、種々の押出成形法、ラミネート成形法、コーティング成形法等が挙げられる。フッ素樹脂(A)及び樹脂(B)を同時又は別々に押出成形、加圧成形、キャスト成形等の方法で成形しフィルムを得た後、得られたフィルムと導電体の箔とをラミネートする方法、導電体の箔に、溶媒に溶解した樹脂(B)を塗布・乾燥し、ついで溶媒に溶解したフッ素樹脂(A)を塗布・乾燥する方法、導電体の箔に、溶媒に溶解した樹脂(B)を塗布・乾燥し、ついで、樹脂(B)の面にフッ素樹脂(A)のフィルムをラミネートする方法等が挙げられる。特に、導電体の箔上へ、溶媒に溶解した樹脂(B)を塗布・乾燥し、ついで、樹脂(B)の塗布面にフッ素樹脂(A)のフィルムをラミネートする方法が、高速で、かつ安価に製造できるので、より好ましい。
【0026】
図2にビルドアップ配線板用積層フィルムの製造工程の例を示す。繰り出し部4より導電体の箔を繰り出し、塗工部5で樹脂(B)の溶液を塗布し、ついで乾燥炉6で乾燥した後、繰り出し部7より繰り出したフッ素樹脂(A)のフィルムと金属ロール8及びシリコーンゴム製ロール9で加熱加圧して積層し、巻き取り部10で巻き取り、ビルドアップ配線板用積層フィルムが製造される。
【0027】
本発明のビルドアップ配線板用積層フィルムの例としては、フッ素樹脂(A)の層/樹脂(B)の層/導電体の層からなる3層積層フィルム、導電体の層/樹脂(B)の層/フッ素樹脂(A)の層/樹脂(B)の層/導電体の層からなる5層積層フィルム等が挙げられる。
【0028】
本発明のビルドアップ配線板用積層フィルムを用いて製造されるビルドアップ配線板は、ビルドアップ配線板用積層フィルムが基板に積層されてなる。該ビルドアップ配線板を製造する方法としては、表面に回路配線が形成された基板と導電体の層を外側にしたビルドアップ配線板用積層フィルムとを、ポリイミドワニス等の接着性樹脂を用いて接着する方法が好ましい。前記基板とビルドアップ配線板用積層フィルムとは通常、熱プレス成形で接着される。ビルドアップ配線板用積層フィルムの接着を繰り返すことによりビルドアップ配線板が製造される。
【0029】
本発明のビルドアップ配線板における基板としては、特に限定するものではなく、エポキシ樹脂、フェノール樹脂、ポリイミド樹脂、不飽和ポリエステル樹脂、フッ素樹脂、ポリフェニレンエーテル、液晶ポリエステル等を用いた基板が挙げられる。なかでも、フッ素樹脂、ポリイミド樹脂、ポリフェニレンエーテル又は液晶ポリエステルを用いた基板がより好ましい。また、無機充填材等を配合した熱硬化性樹脂組成物を用いた基板も使用できる。さらに、ガラス繊維等の無機繊維の布、ポリエステル、ポリアミド、フッ素樹脂、木綿等の有機繊維の布、紙等の複数枚を熱硬化性樹脂で接着して得た積層基板、表面に配線回路を形成した該積層基板等が使用できる。なかでも、フッ素樹脂を焼き付けたガラス繊維織布からなる基板がより好ましい。
【0030】
積層基板の表面に配線回路を形成する方法としては、積層基板の片面又は両面に接着した導電体の層をエッチングして配線回路を形成する方法、積層基板の表面をメッキ処理して回路配線を形成する方法等が挙げられる。
【0031】
基板にビルドアップ配線板用積層フィルムをプレス成形により接着する条件としては、温度は100〜240℃が好ましく、120〜220℃がより好ましく、150〜200℃が最も好ましい。圧力は0.3〜5MPaが好ましく、0.4〜3MPaがより好ましく、3〜5MPaが最も好ましい。時間は30〜240分が好ましく、40〜120分がより好ましく、60〜80分が最も好ましい。プレス成形に用いるプレス板としては、ステンレス鋼製板が好ましい。
【0032】
プレス成形時に、絶縁性樹脂の層は、基板表面の回路配線の形状に追随して変形するので、ビルドアップ配線板用積層フィルムと基板表面の回路配線の間の空気が押出され、該積層フィルムと基板との間に気泡が生じにくい。したがって、本発明のビルドアップ配線板は、絶縁信頼性に優れる。ビルドアップ配線板には、表面の導電体の層をエッチングして、回路配線を形成し、更に必要に応じて絶縁性樹脂の層にスルーホール又はバイアホールを形成できる。また、この工程を繰り返して多層のビルドアップ配線板が製造できる。
【0033】
本発明のビルドアップ配線板用積層フィルムを用いて製造されたビルドアップ配線板は、誘電率及び誘電正接が低く、高周波特性に優れる。また、フッ素樹脂(A)のフィルムと導電体の層との間に樹脂(B)の層が存在することにより、フッ素樹脂(A)のフィルムと導電体の層とが接着性に優れる。
【0034】
【実施例】
以下に実施例を挙げて、本発明を詳細に説明するが、本発明はこれらに限定されない。例1〜4、6が実施例であり、例5が比較例である。なお、誘電率及び誘電正接の測定、並びに接着性の評価は、以下に示す方法を用いた。
【0035】
[誘電率及び誘電正接の測定]
厚さ3mmのフッ素樹脂(A)のフィルムを200mm×120mmの大きさに切断し試験フィルムを作成した。試験フィルムの両面に導電ペーストを塗布して配線し、1MHzにおける誘電率及び誘電正接を測定した。
【0036】
[接着性の評価]
ビルドアップ配線板用積層フィルムを切断して得た長さ150mm、幅10mmの試験フィルムを作成した。試験フィルムの長さ方向の端から50mmの位置までフッ素樹脂(A)の層と導電体の層との間を剥離した。ついで、その位置を中央にして、引張り試験機を用いて、引張り速度50mmで180度剥離し、最大荷重を剥離強度(N/10mm)とした。剥離強度が大きいほど、接着性に優れることを示す。
【0037】
[例1]
フッ素樹脂(A)として、ETFE(旭硝子社製フルオンETFE/C−88AXP)を押出し成形して、厚さ50μmのETFEフィルムを得た。ETFEの誘電率は2.7、誘電正接は0.005であった。
【0038】
図2の装置を用い、導電体として厚さ18μm、幅380mmの電解銅箔(福田金属箔粉社製/CF−T9B−THE)に、樹脂(B)としてのポリイミド(宇部興産社製UPA−AH)の30質量%テトラヒドロフラン溶液を、乾燥時厚さが5μmになるように塗布し、100℃、110℃及び120℃の温度の3領域に分かれた乾燥炉6に、1m/分の速度で導き乾燥した。得られた電解銅箔/ポリイミド積層体のポリイミド面側と前記ETFEフィルムとを、180℃に加熱した金属ロール8とシリコーンゴム製ロール9の間を通して貼り合わせ、厚さ73μmの、電解銅箔層/ポリイミド層/ETFEフィルム層からなる3層積層フィルムを得た。積層フィルムの、ETFEフィルム層と電解銅箔層との剥離強度は10.3N/10mm幅であり、充分な接着力を示した。
【0039】
[例2]
樹脂(B)として、ポリイミド(宇部興産社製UPA−111C)の20質量%テトラヒドロフラン溶液を用いる以外は例1と同様にして、厚さ73μmの、電解銅箔層/ポリイミド層/ETFEフィルム層からなる3層積層フィルムを作成した。得られた積層フィルムの、ETFEフィルム層と電解銅箔層との剥離強度は11.1N/10mm幅であり、充分な接着力を示した。
【0040】
[例3]
フッ素樹脂(A)として、PFA(旭硝子社製フルオンPFA/P−65P)を用いる以外は例1と同様にして、厚さ73μmの、電解銅箔層/ポリイミド層/PFAフィルム層からなる3層積層フィルムを作成した。PFAの誘電率は2.1、誘電正接は0.0003であった。得られた積層フィルムの、PFAフィルム層と電解銅箔層との剥離強度は9.5N/10mm幅であり、充分な接着力を示した。
【0041】
[例4]
樹脂(B)として、ポリイミド(宇部興産社製UPA−111C)の20質量%テトラヒドロフラン溶液を用いる以外は例3と同様にして、厚さ73μmの、電解銅箔層/ポリイミド層/PFAフィルム層からなる3層積層フィルムを作成した。得られた積層フィルムの、PFAフィルム層と電解銅箔層との剥離強度は7.6N/10mm幅であり、充分な接着力を示した。
【0042】
[例5(比較例)]
例1の電解銅箔とETFEフィルムとを180℃に加熱した金属ロールと、シリコーンゴム製ロールの間を通して貼り合わせ、厚さ68μmの、電解銅箔層/ETFEフィルム層からなる2層積層フィルムを作成した。得られた積層フィルムの、ETFEフィルム層と電解銅層との剥離強度は0.03N/10mm幅であり、簡単に手で剥離し、接着性が不充分であった。
【0043】
[例6(実施例)]
図4に示す6層ビルドアップ配線板26の製造工程を図3に示す。
【0044】
図3の(a)に示す、スルーホール13及び無電解銅メッキの導電体の層12を有し、導電体の層12に配線パターンが形成された、厚さ1mmのガラス繊維補強フッ素樹脂板11を準備した。
【0045】
(b)工程で、該ガラス繊維補強フッ素樹脂板11にポリイミドワニスを塗布した後、例1で得たビルドアップ配線板用積層フィルム16を、圧力2MPa、温度130℃で5分間、ついで圧力2MPa、温度190℃で5分間、ついで圧力0.5MPa、温度185℃で5分間の条件でプレス成形して、接着した。図3及び4には、ポリイミド層/ETFE層を併せて絶縁性樹脂の層14として示す。配線パターンはポリイミドワニスで満たされ、絶縁性樹脂の層14と一体化している。
【0046】
(c)工程で、導電体の層15の表面に、COガスレーザーにて開口17(図示せず)を開けた後、電解メッキを施すことにより、厚さ15μmの電解銅メッキ膜19を形成した。開口17も電解銅メッキ膜で覆われてバイアホール18が形成された。
【0047】
(d)工程で、電解銅メッキ膜19及び導電体の層15をエッチングすることにより、ガラス繊維補強フッ素樹脂板に接着したビルドアップ配線板用積層フィルムに配線パターン形成した。ついで、ポリイミドワニスを塗布し、(b)〜(d)工程を繰り返し、図4に示す6層ビルドアップ配線板26を得た。図4において、21は導電体の層、20は絶縁性樹脂の層、22はビルドアップ配線板用積層フィルム、24はバイアホール、25は電解銅メッキ膜である。バイアホール18にはポリイミドワニス絶縁性樹脂の層20と一体化している。
【0048】
【発明の効果】
本発明のビルドアップ配線板用積層フィルムは、誘電率及び誘電正接が低い。また、フッ素樹脂(A)の層と導電体の層との間に樹脂(B)の層を有するので、フッ素樹脂(A)の層と導電体の層との接着性に優れる。本発明のビルドアップ配線板用積層フィルムは、高周波特性に優れるビルドアップ配線板用途に適する。
【図面の簡単な説明】
【図1】本発明のビルドアップ配線板用積層フィルムの断面図の例。
【図2】本発明のビルドアップ配線板用積層フィルムの製造方法の例。
【図3】例6のビルドアップ配線板の製造工程。
【図4】例6の6層ビルドアップ配線板。
【符号の説明】
1:フッ素含有量が35〜76質量%であるフッ素樹脂(A)の層
2:フッ素含有量が25質量%以下である樹脂(B)の層
3:導電体の層
4:繰り出し部
5:塗工部
6:乾燥炉
7:繰り出し部
8:金属ロール
9:シリコーンゴム製ロール
10:巻き取り部
11:ガラス繊維補強フッ素樹脂板
12、15、21:銅の導電体の層
13:スルーホール
14、20:絶縁性樹脂の層
16、22:ビルドアップ配線板用積層フィルム
17:開口
18、24:バイアホール
19、25:電解銅メッキ膜
26:6層ビルドアップ配線板
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a laminated film used for manufacturing a build-up wiring board and a method for manufacturing the build-up wiring board .
[0002]
[Prior art]
In recent years, with the progress of miniaturization, high performance, and high functionality of electronic devices, printed wiring boards that can support high-density mounting are required. Therefore, techniques such as multilayering of printed wiring boards, thinning of insulating layers, adoption of inner via holes in place of conventional through holes, reducing the diameter of via holes, and reducing the pitch of circuits have been studied. In order to realize these, production of a multilayer printed wiring board (hereinafter referred to as a build-up wiring board) by a build-up method has been studied.
[0003]
As a manufacturing method of a build-up wiring board, since handling of raw materials is easy and the process can be shortened, a method using a so-called resin-coated copper foil in which a copper foil and an insulating resin are bonded together is being widely adopted. . The insulating resin is required to have high adhesion to the copper foil from room temperature to high temperature, particularly from the viewpoint of electrical reliability. In recent years, as the signal processing speed of computers and the frequency of radio waves for mobile communications have increased, printed wiring boards using insulating resin with low dielectric constant and low dielectric loss tangent have been developed. It has been demanded.
[0004]
Conventionally, as an insulating resin, a thermosetting epoxy resin has been used because of its excellent heat resistance, dimensional stability, adhesiveness, and the like, but an epoxy resin essentially has a high dielectric constant and dielectric loss tangent. There was a problem. In this respect, the fluororesin is suitable as an insulating resin for printed wiring boards because it has a low dielectric constant and dielectric loss tangent and is excellent in heat resistance and chemical resistance.
[0005]
For example, as a printed wiring board having a low dielectric constant and a low dielectric loss tangent, a glass fiber reinforced fluororesin plate is known, but a high temperature of 350 ° C. or higher is required for adhesion to a metal layer, and the fluororesin The board was thick and could not cope with miniaturization and weight reduction. Also known are fluororesin laminates made of fluororesin fiber woven fabrics and porous fluororesin films, thermosetting fluororesin laminates made by baking fluororesin on glass fiber woven fabrics, etc. The adhesion to the foil was low.
[0006]
Patent Document 1 discloses a build-up wiring board in which circuit wiring (metal layer) and an insulating layer are sequentially laminated on the surface of a core substrate. By forming the metal layer directly on the surface of the insulating layer having a surface roughness of 0.1 to 10 μm, the adhesion between the metal layer and the insulating layer is improved.
[0007]
Patent Document 2 discloses a method for producing a printed circuit board material in which a fluororesin film and a conductor foil are directly bonded, but the adhesion between the fluororesin film and the conductor foil is not sufficient.
[0008]
[Patent Document 1]
JP 2000-31642 A [Patent Document 2]
Japanese Patent Laid-Open No. 2002-43720
[Problems to be solved by the invention]
An object of the present invention is to provide a laminated film for a buildup wiring board having excellent heat resistance, low dielectric constant and dielectric loss tangent, and excellent adhesion to a conductor layer, and a method for producing a buildup wiring board using the same. Is to provide.
[0010]
[Means for Solving the Problems]
In the present invention, a fluororesin (A) layer having a fluorine content of 35 to 76% by mass and a conductor layer are laminated via a resin (B) layer having a fluorine content of 25% by mass or less. a film, has a thickness of 10~50μm layer of fluorocarbon resin (a), the to provide a laminated film which need use to be adhered to the substrate to produce a build-up wiring board.
Also, the present invention is characterized in that the substrate having circuit wiring formed on the surface and the laminated film with the conductor layer outside are bonded by hot press molding using an adhesive resin. A method for manufacturing an up-wiring board is provided.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
Although it does not specifically limit as a fluororesin (A) (henceforth a fluororesin (A)) whose fluorine content is 40-76 mass% in this invention, It is called tetrafluoroethylene (henceforth TFE). )) (Polytetrafluoroethylene) or a copolymer of TFE and a comonomer is preferred. Examples of the comonomer include fluoroethylenes other than TFE such as CF 2 = CFCl, CF 2 = CH 2 (hereinafter referred to as VdF), CF 2 = CFCF 3 (hereinafter referred to as HFP), CF 2 = CHCF 3 and the like. Carbon number of perfluoroalkyl groups such as fluoropropylenes, CH 2 = CHCF 2 CF 2 CF 2 CF 3 , CH 2 = CFCF 2 CF 2 CF 2 H, CH 2 = CFCF 2 CF 2 CF 2 CF 2 H, etc. (perfluoroalkyl) ethylenes such 12, R f (OCFXCF 2) m OCF = CF 2 ( formula in the R f perfluoroalkyl group having 1 to 6 carbon atoms, X is a fluorine atom or a trifluoromethyl group, m is 0 Perfluoro (vinyl ether) s such as 5), and olefins such as ethylene, propylene, and isobutylene. Etc. The. These comonomers may be used alone or in combination of two or more.
[0012]
Specific examples of the fluororesin (A) include polytetrafluoroethylene (hereinafter referred to as PTFE), TFE / ethylene copolymer (hereinafter referred to as ETFE), and TFE / perfluoro (alkyl vinyl ether) copolymer (referred to as PTFE). Hereinafter, it is referred to as PFA), TFE / HFP copolymer (hereinafter referred to as FEP), TFE / HFP / VdF copolymer, chlorotrifluoroethylene / ethylene copolymer, and the like. These fluororesins (A) are preferable because of their low dielectric constant and dielectric loss tangent. In particular, PTFE, ETFE, PFA or FEP is preferable, and ETFE, PFA or FEP is more preferable. ETFE, PFA and FEP are excellent in moldability.
[0013]
The fluorine content of the fluororesin (A) in the present invention is 40 to 76% by mass. Preferably it is 50-76 mass%, More preferably, it is 55-76 mass%. Within this range, the fluororesin (A) is preferable because of its low dielectric constant and dielectric loss tangent.
[0014]
The thickness of the layer of the fluororesin (A) is 10 to a 50 [mu] m, in particular. 20 to 5 0 .mu.m preferred. If the thickness is less than the above range, the laminated film is likely to be deformed or bent, and the circuit wiring is likely to be disconnected. On the other hand, if the thickness is larger than the above range, the thickness of the build-up wiring board increases, so that it is not possible to cope with the reduction in size and weight. Within this range, the laminated film is less likely to be deformed or bent, has excellent flexibility, and the printed wiring board can be reduced in size and weight.
[0015]
The fluororesin (A) preferably contains 1 to 50% by mass of fluororubber such as TFE / propylene copolymer and VdF / HFP copolymer. The content of fluororubber is more preferably 1 to 30% by mass, and most preferably 1 to 20% by mass. It is preferable that the fluororesin (A) contains fluororubber because adhesion with the conductor layer is improved. The fluorine content of the fluororubber is preferably 35 to 74 mass%, more preferably 50 to 74 mass%, and most preferably 55 to 74 mass%.
[0016]
Moreover, it is also preferable that a fluororesin (A) contains 0.1-2 mass% of the antistatic agent which provides antistatic property. As the antistatic agent, surfactants such as nonionic surfactants, anionic surfactants, cationic surfactants, and zwitterionic surfactants are preferable.
[0017]
The fluororesin (A) also preferably contains an inorganic filler that lowers the dielectric constant and dielectric loss tangent. Inorganic fillers include silica, clay, talc, calcium carbonate, mica, diatomaceous earth, alumina, zinc oxide, titanium oxide, calcium oxide, magnesium oxide, iron oxide, tin oxide, antimony oxide, calcium hydroxide, magnesium hydroxide, water Aluminum oxide, basic magnesium carbonate, magnesium carbonate, zinc carbonate, barium carbonate, dosonite, hydrotalcite, calcium sulfate, barium sulfate, calcium silicate, montmorillonite, bentonite, activated clay, sepiolite, imogolite, sericite, glass fiber, glass Examples include beads, silica-based balloons, carbon black, graphite, carbon fibers, carbon balloons, wood powder, and zinc borate.
[0018]
The inorganic filler may be used alone or in combination of two or more. As for content of an inorganic filler, 1-100 mass% is preferable with respect to a fluororesin (A). Further, it is preferable that these inorganic fillers are porous because the dielectric constant and dielectric loss tangent are further reduced.
[0019]
As the resin (B) having a fluorine content of 25% by mass or less in the present invention (hereinafter simply referred to as resin (B)), various resins can be selected according to the molding conditions of the build-up wiring board. Specific examples include polyimide, polyetherimide, polyether ketone, polyether ether ketone, polyether sulfone, polysulfone, polyether ether sulfone, polyphenylene sulfone, polyphenylene sulfide, polyphenylene ether, liquid crystal polyester, polyethylene terephthalate, polybutylene terephthalate, Examples include polyethylene naphthalate, polybutylene naphthalate, polycarbonate, polyamide, polyamideimide, polyacetal, and epoxy resin. Resin (B) may be used individually by 1 type, and may use 2 or more types together.
[0020]
As the resin (B), a resin having a melting point higher than the molding temperature at the time of manufacturing the build-up wiring board is preferable. Polyimide, polyetherimide, polyetherketone, polyetheretherketone, polyethersulfone, polysulfone, polyethersulfone, One or more selected from the group consisting of polyphenylene sulfone, polyphenylene sulfide, polyphenylene ether, and liquid crystal polyester is more preferable, and polyimide, polyether imide, polyether sulfone, polyphenylene ether, or liquid crystal polyester is most preferable.
[0021]
The fluorine content of the resin (B) is preferably 20% by mass or less, and more preferably 15% by mass or less. Further, a resin substantially free of fluorine is most preferable. Within this range, the adhesiveness to the fluororesin (A) layer and the conductor layer is excellent.
[0022]
The thickness of the resin (B) layer is preferably 0.1 to 50 μm, more preferably 1 to 30 μm, and most preferably 3 to 10 μm. If the thickness is less than the above range, the adhesion between the fluororesin (A) layer and the conductor layer is not sufficient, and the followability to the wiring pattern on the substrate surface is not sufficient. When it is thicker than the above range, the dielectric constant and dielectric loss tangent of the layer comprising the fluororesin (A) layer and the resin (B) layer are increased. Hereinafter, the layer of the fluororesin (A) and the layer of the resin (B) are also referred to as an insulating resin layer. Within this range, the adhesion between the fluororesin (A) layer and the conductor layer is sufficient, the dielectric constant and dielectric loss tangent of the insulating resin layer are low, and the followability to the wiring pattern on the substrate surface is excellent. .
[0023]
As the conductor in the present invention, metals such as copper, silver, gold, and aluminum can be used. These metals are preferable because of their low electrical resistance. These metals may be used individually by 1 type, and may use 2 or more types together. As a combination method, it is also preferable to apply gold plating to the metal foil. In particular, a copper layer plated with gold is preferable. The conductor layer in the present invention is preferably a copper, silver, gold, aluminum layer, or a copper layer plated with gold. The thickness of the conductor layer is preferably 0.1 to 100 μm, more preferably 1 to 50 μm, and most preferably 5 to 30 μm.
[0024]
In the laminated film for a build-up wiring board of the present invention, the fluororesin (A) layer and the conductor layer are laminated via the resin (B) layer. The example of sectional drawing of the laminated film for buildup wiring boards of this invention is shown in FIG. It has a fluororesin (A) layer 1, a resin (B) layer 2, and a conductor layer 3.
[0025]
As a manufacturing method of the laminated film for buildup wiring boards of the present invention, various extrusion molding methods, laminate molding methods, coating molding methods and the like which are usually used can be mentioned. A method of laminating the obtained film and a conductor foil after obtaining a film by molding the fluororesin (A) and the resin (B) simultaneously or separately by a method such as extrusion molding, pressure molding, or cast molding. , A method of applying and drying a resin (B) dissolved in a solvent on a conductive foil, and then applying and drying a fluororesin (A) dissolved in a solvent; a resin dissolved in a solvent on a conductive foil ( Examples thereof include a method of applying and drying B) and then laminating a film of a fluororesin (A) on the surface of the resin (B). In particular, a method in which a resin (B) dissolved in a solvent is applied and dried on a conductive foil, and then a fluororesin (A) film is laminated on the application surface of the resin (B) at a high speed, and Since it can manufacture cheaply, it is more preferable.
[0026]
The example of the manufacturing process of the laminated film for buildup wiring boards is shown in FIG. The conductor foil is fed out from the feeding section 4, the resin (B) solution is applied in the coating section 5, then dried in the drying furnace 6, and then the fluororesin (A) film and metal fed out from the feeding section 7. A laminated film for a build-up wiring board is manufactured by heating and pressurizing with the roll 8 and the roll 9 made of silicone rubber, and winding with the winding unit 10.
[0027]
Examples of the laminated film for a build-up wiring board of the present invention include a three-layer laminated film comprising a layer of fluororesin (A) / a layer of resin (B) / a layer of conductor, and a layer of conductor / resin (B). For example, a five-layer laminated film comprising a layer of fluororesin (A) / a layer of resin (B) / a conductor layer.
[0028]
The buildup wiring board manufactured using the laminated film for buildup wiring boards of the present invention is formed by laminating a laminated film for buildup wiring boards on a substrate. As a method for producing the build-up wiring board, a substrate having circuit wiring formed on the surface and a laminated film for a build-up wiring board with a conductor layer on the outside are formed using an adhesive resin such as a polyimide varnish. A method of bonding is preferred. The said board | substrate and the laminated film for buildup wiring boards are normally adhere | attached by hot press molding. A build-up wiring board is manufactured by repeating the adhesion of the laminated film for the build-up wiring board.
[0029]
The substrate in the build-up wiring board of the present invention is not particularly limited, and examples include substrates using epoxy resin, phenol resin, polyimide resin, unsaturated polyester resin, fluororesin, polyphenylene ether, liquid crystal polyester, and the like. Among these, a substrate using a fluorine resin, a polyimide resin, polyphenylene ether, or liquid crystal polyester is more preferable. Moreover, the board | substrate using the thermosetting resin composition which mix | blended the inorganic filler etc. can also be used. In addition, cloth of inorganic fiber such as glass fiber, cloth of organic fiber such as polyester, polyamide, fluororesin, and cotton, laminated board obtained by bonding multiple sheets of paper etc. with thermosetting resin, wiring circuit on the surface The formed laminated substrate or the like can be used. Among these, a substrate made of a glass fiber woven fabric baked with a fluororesin is more preferable.
[0030]
As a method of forming a wiring circuit on the surface of the multilayer substrate, a method of forming a wiring circuit by etching a conductor layer bonded to one or both surfaces of the multilayer substrate, or a circuit wiring by plating the surface of the multilayer substrate. The method of forming etc. are mentioned.
[0031]
As conditions for bonding the laminated film for a build-up wiring board to the substrate by press molding, the temperature is preferably 100 to 240 ° C, more preferably 120 to 220 ° C, and most preferably 150 to 200 ° C. The pressure is preferably 0.3 to 5 MPa, more preferably 0.4 to 3 MPa, and most preferably 3 to 5 MPa. The time is preferably 30 to 240 minutes, more preferably 40 to 120 minutes, and most preferably 60 to 80 minutes. As a press plate used for press molding, a stainless steel plate is preferable.
[0032]
At the time of press molding, the insulating resin layer deforms following the shape of the circuit wiring on the substrate surface, so that air between the build-up wiring board laminated film and the circuit wiring on the substrate surface is extruded, and the laminated film Bubbles are unlikely to form between the substrate and the substrate. Therefore, the build-up wiring board of the present invention is excellent in insulation reliability. In the build-up wiring board, the conductive layer on the surface can be etched to form circuit wiring, and further, through holes or via holes can be formed in the insulating resin layer as necessary. Moreover, a multilayer build-up wiring board can be manufactured by repeating this process.
[0033]
The build-up wiring board manufactured using the laminated film for build-up wiring boards of the present invention has a low dielectric constant and dielectric loss tangent and is excellent in high frequency characteristics. Further, since the resin (B) layer exists between the fluororesin (A) film and the conductor layer, the fluororesin (A) film and the conductor layer are excellent in adhesiveness.
[0034]
【Example】
The present invention will be described in detail below with reference to examples, but the present invention is not limited thereto. Examples 1-4, 6 is an example, Example 5 is a comparative example. The following methods were used for measurement of dielectric constant and dielectric loss tangent, and evaluation of adhesiveness.
[0035]
[Measurement of dielectric constant and dissipation factor]
A fluororesin (A) film having a thickness of 3 mm was cut into a size of 200 mm × 120 mm to prepare a test film. Conductive paste was applied to both sides of the test film and wired, and the dielectric constant and dielectric loss tangent at 1 MHz were measured.
[0036]
[Evaluation of adhesion]
A test film having a length of 150 mm and a width of 10 mm obtained by cutting the laminated film for a build-up wiring board was prepared. The fluororesin (A) layer and the conductor layer were peeled from the end in the length direction of the test film to a position of 50 mm. Then, with the position at the center, peeling was performed 180 degrees at a pulling speed of 50 mm using a tensile tester, and the maximum load was defined as peel strength (N / 10 mm). It shows that it is excellent in adhesiveness, so that peeling strength is large.
[0037]
[Example 1]
As the fluororesin (A), ETFE (Fullon ETFE / C-88AXP manufactured by Asahi Glass Co., Ltd.) was extruded to obtain an ETFE film having a thickness of 50 μm. The dielectric constant of ETFE was 2.7, and the dielectric loss tangent was 0.005.
[0038]
Using the apparatus shown in FIG. 2, an electrolytic copper foil having a thickness of 18 μm and a width of 380 mm as a conductor (Fukuda Metal Foil Powder Co., Ltd./CF-T9B-THE) and a polyimide as a resin (B) (UPA made by Ube Industries) AH) 30% by mass tetrahydrofuran solution was applied to a thickness of 5 μm when dried, and dried in a drying furnace 6 divided into three regions of 100 ° C., 110 ° C. and 120 ° C. at a speed of 1 m / min. Guided dry. The obtained electrolytic copper foil / polyimide laminate was bonded to the polyimide surface side and the ETFE film through a metal roll 8 heated to 180 ° C. and a silicone rubber roll 9, and an electrolytic copper foil layer having a thickness of 73 μm. A three-layer laminated film consisting of / polyimide layer / ETFE film layer was obtained. The peel strength between the ETFE film layer and the electrolytic copper foil layer of the laminated film was 10.3 N / 10 mm width, indicating sufficient adhesive strength.
[0039]
[Example 2]
From the electrolytic copper foil layer / polyimide layer / ETFE film layer having a thickness of 73 μm in the same manner as in Example 1 except that a 20% by mass tetrahydrofuran solution of polyimide (UPA-111C manufactured by Ube Industries, Ltd.) is used as the resin (B). A three-layer laminated film was prepared. The peel strength between the ETFE film layer and the electrolytic copper foil layer of the obtained laminated film was 11.1 N / 10 mm width, indicating a sufficient adhesive force.
[0040]
[Example 3]
Three layers consisting of electrolytic copper foil layer / polyimide layer / PFA film layer with a thickness of 73 μm in the same manner as in Example 1 except that PFA (Fullon PFA / P-65P manufactured by Asahi Glass Co., Ltd.) is used as the fluororesin (A). A laminated film was created. The dielectric constant of PFA was 2.1 and the dielectric loss tangent was 0.0003. The peel strength between the PFA film layer and the electrolytic copper foil layer of the obtained laminated film was 9.5 N / 10 mm width, indicating a sufficient adhesive force.
[0041]
[Example 4]
From the electrolytic copper foil layer / polyimide layer / PFA film layer having a thickness of 73 μm in the same manner as in Example 3, except that a 20 mass% tetrahydrofuran solution of polyimide (UPA-111C manufactured by Ube Industries, Ltd.) is used as the resin (B). A three-layer laminated film was prepared. The peel strength between the PFA film layer and the electrolytic copper foil layer of the obtained laminated film was 7.6 N / 10 mm width, indicating a sufficient adhesive force.
[0042]
[Example 5 (comparative example)]
A two-layer laminated film composed of an electrolytic copper foil layer / ETFE film layer having a thickness of 68 μm was bonded by passing the electrolytic copper foil and ETFE film of Example 1 through a metal roll heated to 180 ° C. and a silicone rubber roll. Created. The resulting laminated film had a peel strength between the ETFE film layer and the electrolytic copper layer of 0.03 N / 10 mm width, and was easily peeled by hand, resulting in insufficient adhesion.
[0043]
EXAMPLE 6 (Example)]
A manufacturing process of the six-layer build-up wiring board 26 shown in FIG. 4 is shown in FIG.
[0044]
A glass fiber reinforced fluororesin plate having a thickness of 1 mm, having a through hole 13 and an electroless copper-plated conductor layer 12, and having a wiring pattern formed on the conductor layer 12, shown in FIG. 11 was prepared.
[0045]
In step (b), after the polyimide varnish is applied to the glass fiber reinforced fluororesin plate 11, the laminated film 16 for build-up wiring board obtained in Example 1 is subjected to a pressure of 2 MPa, a temperature of 130 ° C. for 5 minutes, and then a pressure of 2 MPa. Then, press molding was performed at a temperature of 190 ° C. for 5 minutes, followed by pressure molding at a pressure of 0.5 MPa and a temperature of 185 ° C. for 5 minutes. 3 and 4, the polyimide layer / ETFE layer is shown together as an insulating resin layer 14. The wiring pattern is filled with polyimide varnish and is integrated with the insulating resin layer 14.
[0046]
In step (c), an opening 17 (not shown) is opened on the surface of the conductor layer 15 with a CO 2 gas laser, and then electrolytic plating is performed to form an electrolytic copper plating film 19 having a thickness of 15 μm. Formed. The opening 17 was also covered with an electrolytic copper plating film, and a via hole 18 was formed.
[0047]
In step (d), the electrolytic copper plating film 19 and the conductor layer 15 were etched to form a wiring pattern on the laminated film for a build-up wiring board adhered to the glass fiber reinforced fluororesin board. Next, a polyimide varnish was applied, and the steps (b) to (d) were repeated to obtain a six-layer build-up wiring board 26 shown in FIG. In FIG. 4, 21 is a conductor layer, 20 is an insulating resin layer, 22 is a laminated film for a build-up wiring board, 24 is a via hole, and 25 is an electrolytic copper plating film. The via hole 18 is integrated with a polyimide varnish insulating resin layer 20.
[0048]
【The invention's effect】
The laminated film for buildup wiring boards of the present invention has a low dielectric constant and dielectric loss tangent. Further, since the resin (B) layer is provided between the fluororesin (A) layer and the conductor layer, the adhesion between the fluororesin (A) layer and the conductor layer is excellent. The laminated film for build-up wiring boards of the present invention is suitable for use in build-up wiring boards that are excellent in high-frequency characteristics.
[Brief description of the drawings]
FIG. 1 is an example of a cross-sectional view of a laminated film for a buildup wiring board according to the present invention.
FIG. 2 shows an example of a method for producing a laminated film for a buildup wiring board according to the present invention.
3 is a manufacturing process of the build-up wiring board of Example 6. FIG.
4 is a six-layer build-up wiring board of Example 6. FIG.
[Explanation of symbols]
1: Layer of fluorine resin (A) having a fluorine content of 35 to 76% by mass 2: Layer of resin (B) having a fluorine content of 25% by mass or less 3: Layer of conductor 4: Feeding portion 5: Coating part 6: Drying furnace 7: Feeding part 8: Metal roll 9: Silicone rubber roll 10: Winding part 11: Glass fiber reinforced fluororesin plates 12, 15, 21: Copper conductor layer 13: Through hole 14, 20: Insulating resin layers 16, 22: Laminated film for build-up wiring board 17: Opening 18, 24: Via hole 19, 25: Electrolytic copper plating film 26: Six-layer build-up wiring board

Claims (5)

フッ素含有量が35〜76質量%であるフッ素樹脂(A)の層と導電体の層とがフッ素含有量が25質量%以下である樹脂(B)の層を介して積層されたフィルムであって、フッ素樹脂(A)の層の厚さが10〜50μmであり、基板に接着されてビルドアップ配線板を製造するのにいられる積層フィルム。 A fluorine content of the layer and the conductor layer of 35 to 76 wt% at which the fluororesin (A) is fluorine content are laminated with a layer of resin (B) is not more than 25 wt% Film Te, the thickness of the layer of the fluororesin (a) is 10 to 50 [mu] m, laminated film is bonded to the substrate are needed use for producing a build-up wiring board. 前記フッ素含有量が35〜76質量%であるフッ素樹脂(A)が、テトラフルオロエチレン/エチレン系共重合体、テトラフルオロエチレン/ペルフルオロ(アルキルビニルエーテル)系共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン系共重合体又はポリテトラフルオロエチレンである請求項1に記載の積層フィルム。The fluororesin (A) having a fluorine content of 35 to 76% by mass is a tetrafluoroethylene / ethylene copolymer, a tetrafluoroethylene / perfluoro (alkyl vinyl ether) copolymer, or a tetrafluoroethylene / hexafluoropropylene. product layer film according to claim 1 is a system copolymer or polytetrafluoroethylene. 前記フッ素含有量が25質量%以下である樹脂(B)が、ポリイミド、ポリエーテルイミド、ポリエーテルケトン、ポリエーテルエーテルケトン、ポリエーテルスルホン、ポリスルホン、ポリエーテルスルホン、ポリフェニレンスルホン、ポリフェニレンスルフィド、ポリフェニレンエーテル及び液晶ポリエステルからなる群から選ばれる1種以上である請求項1又は2に記載の積層フィルム。The resin (B) having a fluorine content of 25% by mass or less is polyimide, polyetherimide, polyetherketone, polyetheretherketone, polyethersulfone, polysulfone, polyethersulfone, polyphenylenesulfone, polyphenylenesulfide, polyphenyleneether. product layer film according to claim 1 or 2 and at least one member selected from the group consisting of a liquid crystal polyester. 前記導電体の層が、銅、銀、金又はアルミニウムの層、又は金メッキを施した銅の層である請求項1、2又は3に記載の積層フィルム。It said layer of conductive material is copper, silver, product layer film according to claim 1, 2 or 3 layers of gold or aluminum, or a layer of copper plated with gold. 表面に回路配線が形成された基板と、導電体の層を外側にした請求項1〜4のいずれかに記載の積層フィルムとを、接着性樹脂を用いて熱プレス成形で接着することを特徴とする、ビルドアップ配線板を製造する方法。The board | substrate with which circuit wiring was formed in the surface, and the laminated | multilayer film in any one of Claims 1-4 which made the conductor layer the outer side are adhere | attached by hot press molding using adhesive resin A method for manufacturing a build-up wiring board.
JP2002366369A 2002-12-18 2002-12-18 Laminated film for build-up wiring board and build-up wiring board Expired - Fee Related JP4129627B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002366369A JP4129627B2 (en) 2002-12-18 2002-12-18 Laminated film for build-up wiring board and build-up wiring board

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002366369A JP4129627B2 (en) 2002-12-18 2002-12-18 Laminated film for build-up wiring board and build-up wiring board

Publications (2)

Publication Number Publication Date
JP2004195776A JP2004195776A (en) 2004-07-15
JP4129627B2 true JP4129627B2 (en) 2008-08-06

Family

ID=32763593

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002366369A Expired - Fee Related JP4129627B2 (en) 2002-12-18 2002-12-18 Laminated film for build-up wiring board and build-up wiring board

Country Status (1)

Country Link
JP (1) JP4129627B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11549035B2 (en) 2020-12-16 2023-01-10 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
US11596064B2 (en) 2020-07-28 2023-02-28 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101090817B (en) * 2004-12-09 2011-09-07 旭硝子株式会社 Laminate for printed wiring board
EP2276792B1 (en) 2008-05-09 2011-09-21 Solvay Advanced Polymers, L.L.C. Fire resistant, high flow poly(aryl ether sulfone) composition
TWI461119B (en) * 2009-01-20 2014-11-11 Toyoboseki Kabushikikaisha Multilayer fluorine resin film and printed wiring board
JP5464980B2 (en) * 2009-11-18 2014-04-09 旭化成株式会社 Photosensitive resin laminate
CN104220251B (en) 2012-07-11 2016-05-25 株式会社Lg化学 flexible metal laminate
WO2014010968A1 (en) * 2012-07-11 2014-01-16 주식회사 엘지화학 Flexible metal laminate sheet
CN102898808B (en) * 2012-10-12 2015-05-06 吉林大学 Anti-bacterial and anti-mildew polyetheretherketone membrane with excellent gas barrier property and preparation method thereof
CN105984180A (en) * 2015-02-11 2016-10-05 律胜科技股份有限公司 Copper foil base plate for high frequency printed circuit board and use thereof
WO2023210471A1 (en) * 2022-04-28 2023-11-02 富士フイルム株式会社 Film and laminate

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11596064B2 (en) 2020-07-28 2023-02-28 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
US11805600B2 (en) 2020-07-28 2023-10-31 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
US11549035B2 (en) 2020-12-16 2023-01-10 Saint-Gobain Performance Plastics Corporation Dielectric substrate and method of forming the same
US12049577B2 (en) 2020-12-16 2024-07-30 Versiv Composites Limited Dielectric substrate and method of forming the same

Also Published As

Publication number Publication date
JP2004195776A (en) 2004-07-15

Similar Documents

Publication Publication Date Title
JP6822523B2 (en) Adhesive film, flexible metal laminate, adhesive film manufacturing method, flexible metal laminate manufacturing method, flexible printed substrate and flexible printed substrate manufacturing method
CN108966534B (en) Method for manufacturing metal foil laminated plate and application thereof
US11840047B2 (en) Metal-clad laminate, printed circuit board, and method for manufacturing the same
US11818838B2 (en) Metal-clad laminate and manufacturing method of the same
WO2007040061A1 (en) Copper-clad laminate, printed wiring board, multilayer printed wiring board, and methods for producing those
TWI735477B (en) Manufacturing method of wiring board, wiring board and antenna
JP6819579B2 (en) Materials for printed circuit boards, metal laminates, their manufacturing methods and printed circuit board manufacturing methods
JP7338619B2 (en) Roll film, method for producing roll film, method for producing copper-clad laminate, and method for producing printed circuit board
JP6816722B2 (en) Manufacturing method of wiring board
JP4129627B2 (en) Laminated film for build-up wiring board and build-up wiring board
JP2017119378A (en) Laminate, substrate for printed wiring board, and method for manufacturing laminate
WO2015182696A1 (en) Fluororesin base material and flexible printed circuit board
WO2014192322A1 (en) High-frequency printed circuit board and wiring material
JP2017120826A (en) Substrate and base material for printed wiring board
JP2016046433A (en) Printed wiring board and substrate for printed wiring board
WO2016121397A1 (en) Antenna, and electronic device having antenna
JP2020180245A (en) Powder dispersion liquid, manufacturing method of laminate, laminate and manufacturing method of printed circuit board
JP6420569B2 (en) High frequency printed circuit board
JP2000200976A (en) Multilayer printed wiring substrate and its manufacture
TWI664086B (en) Double-sided copper foil substrate with fluorine polymer and high frequency and high transmission characteristics and the preparation method thereof and composite
WO2022259981A1 (en) Composition, metal-clad laminate, and method for producing same
JP2023002495A (en) Dielectric material and flexible copper clad laminate including the same
JP7482104B2 (en) LAMINATE AND METHOD FOR MANUFACTURING LAMINATE
JP6569936B2 (en) PCB for printed wiring board
JP2024030218A (en) Manufacturing method of printed wiring board

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051017

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20060202

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20060203

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080201

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080401

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080423

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080506

R151 Written notification of patent or utility model registration

Ref document number: 4129627

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110530

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120530

Year of fee payment: 4

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130530

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140530

Year of fee payment: 6

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees