WO2014010968A1 - Flexible metal laminate sheet - Google Patents

Flexible metal laminate sheet Download PDF

Info

Publication number
WO2014010968A1
WO2014010968A1 PCT/KR2013/006214 KR2013006214W WO2014010968A1 WO 2014010968 A1 WO2014010968 A1 WO 2014010968A1 KR 2013006214 W KR2013006214 W KR 2013006214W WO 2014010968 A1 WO2014010968 A1 WO 2014010968A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
resin layer
polymer resin
flexible metal
fluorine
Prior art date
Application number
PCT/KR2013/006214
Other languages
French (fr)
Korean (ko)
Inventor
박영석
박순용
장세명
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to CN201380006267.5A priority Critical patent/CN104220251B/en
Priority to US14/357,855 priority patent/US9307638B2/en
Priority to JP2015506920A priority patent/JP5997830B2/en
Priority claimed from KR1020130081375A external-priority patent/KR101344006B1/en
Publication of WO2014010968A1 publication Critical patent/WO2014010968A1/en

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B15/00Layered products comprising a layer of metal
    • B32B15/04Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B15/08Layered products comprising a layer of metal comprising metal as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/06Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material
    • B32B27/08Layered products comprising a layer of synthetic resin as the main or only constituent of a layer, which is next to another layer of the same or of a different material of synthetic resin
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/28Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42
    • B32B27/281Layered products comprising a layer of synthetic resin comprising synthetic resins not wholly covered by any one of the sub-groups B32B27/30 - B32B27/42 comprising polyimides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B32LAYERED PRODUCTS
    • B32BLAYERED PRODUCTS, i.e. PRODUCTS BUILT-UP OF STRATA OF FLAT OR NON-FLAT, e.g. CELLULAR OR HONEYCOMB, FORM
    • B32B27/00Layered products comprising a layer of synthetic resin
    • B32B27/32Layered products comprising a layer of synthetic resin comprising polyolefins
    • B32B27/322Layered products comprising a layer of synthetic resin comprising polyolefins comprising halogenated polyolefins, e.g. PTFE
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L79/00Compositions of macromolecular compounds obtained by reactions forming in the main chain of the macromolecule a linkage containing nitrogen with or without oxygen or carbon only, not provided for in groups C08L61/00 - C08L77/00
    • C08L79/04Polycondensates having nitrogen-containing heterocyclic rings in the main chain; Polyhydrazides; Polyamide acids or similar polyimide precursors
    • C08L79/08Polyimides; Polyester-imides; Polyamide-imides; Polyamide acids or similar polyimide precursors
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0313Organic insulating material
    • H05K1/0353Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement
    • H05K1/0373Organic insulating material consisting of two or more materials, e.g. two or more polymers, polymer + filler, + reinforcement containing additives, e.g. fillers
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/03Use of materials for the substrate
    • H05K1/0393Flexible materials
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/015Fluoropolymer, e.g. polytetrafluoroethylene [PTFE]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K2201/00Indexing scheme relating to printed circuits covered by H05K1/00
    • H05K2201/01Dielectrics
    • H05K2201/0137Materials
    • H05K2201/0154Polyimide
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/02Apparatus or processes for manufacturing printed circuits in which the conductive material is applied to the surface of the insulating support and is thereafter removed from such areas of the surface which are not intended for current conducting or shielding
    • H05K3/022Processes for manufacturing precursors of printed circuits, i.e. copper-clad substrates

Definitions

  • the present invention relates to a flexible metal laminate, and more particularly, to a flexible metal laminate having a low dielectric constant and a low water absorption rate and having a high elasticity and an optimized coefficient of thermal expansion.
  • IXP Liquid Crystalline Polymer
  • 7026032 discloses a method of lowering the dielectric constant of a product produced by dispersing a fine powder of a fluorine-based polymer in a polyimide.
  • the U.S. Patent discloses that the bloso-based polymer fine powder is more distributed on the outer surface than the inner core of the insulator.
  • the content of the fluorine-based polymer in the outermost layer of the insulator has a high water permeation and absorption is lowered by the fluorine-based polymer on the outer surface, but the overall water absorption rate can be lowered, the ductility of the existing polyimide Problems that copper foil laminates do not have may occur.
  • the polyimide resin described in the US patent may have a weak adhesion to the coverlay or prepreg and a low ACF, and the coefficient of thermal expansion (CTE) of the polyimide resin described in the US patent may be soft.
  • the surface of the polyimide resin has an excessive amount of fluorine resin on the outside, so that the fluorine resin may be melted at a temperature of about 380 ° C that is applied to the storage process during the PCB manufacturing process. There is a risk of the copper foil circuit peeling off the insulator. Accordingly, in order to make low dielectric constant printed circuit boards, polyimide including fluorine resin has low dielectric constant and low coefficient of thermal expansion, and it is necessary to develop polyimide material having high elastic modulus and low moisture absorption. to be.
  • Patent Document 1 (Preceding Document 001) US Patent No. 4816516
  • Patent Document 2 (Prior Document 002) United States Patent No. 7026032
  • the present invention is to provide a flexible metal laminate having a low dielectric constant and a low water absorption, while ensuring an optimized coefficient of thermal expansion with high elasticity. [Measures of problem]
  • the present invention includes a polymer resin layer including a polyimide resin and a fluorine-based resin including a repeating unit represented by Formula 1 below, and the fluorine-based resin is distributed more in the polymer resin layer than in the surface of the polymer resin layer. It provides a flexible metal laminate.
  • is a tetravalent aromatic organic functional group
  • X is a divalent aromatic organic functional group
  • n is an integer of 1 to 300.
  • a polyimide resin comprising a repeating unit of Formula 1 and a polymer resin layer comprising a fluorine-based resin, wherein the fluorine-based resin than the surface of the polymer resin layer inside the polymer resin layer More ductile metal laminates can be provided.
  • a method of adding a fluorine-based polymer resin in order to lower the dielectric constant of a polymer resin such as plyimide applied to a flexible metal laminate is known, but polytetrafluoroethylene (PTFE) and tetrafluoroethylene-nucleus, which are representative fluorine-based resins, are known.
  • PTFE polytetrafluoroethylene
  • FEP fluoropropylene copolymer
  • PFA perfluoroalkoxy
  • the present inventors conducted a related research, wherein the flexible metal laminate of the embodiment includes a polymer resin layer containing a polyimide resin and a fluorine resin having the specific chemical structure, and the fluorine resin is outside the polymer resin layer.
  • the flexible metal laminate of the embodiment includes a polymer resin layer containing a polyimide resin and a fluorine resin having the specific chemical structure, and the fluorine resin is outside the polymer resin layer.
  • the fluorine resin may be more dispersed in the polymer resin layer than the outer surface of the polymer resin layer, and the content of the fluorine resin may be It may become larger toward the inside of the polymer resin layer.
  • the flexible metal laminated in the body up to 20% of the thickness from the surface of the polymer resin, the amount of the fluorine-based resin per unit volume of the polymer resin can be "increases with depth.
  • the content of the fluorine resin per unit volume of the polymer resin layer may be minimum on the surface of the polymer resin layer.
  • the content of the fluorine resin contained in a unit volume (for example, a cube having a depth at one corner) from a surface of the polymer resin layer to a depth of 1% of the total thickness is 1 of the total thickness. It may be smaller than the amount of fluorine resin per unit volume in the interior deeper than% depth.
  • the content of the fluorine-based resin per unit volume on the surface of the polymer resin layer is minimal, and the content of the fluorine-based resin per unit volume may be increased up to 20% of the total thickness from the surface of the polymer resin layer.
  • the fluorine resin content may increase from the surface of the polymer resin layer to 20% of the total thickness, and the fluorine resin content may increase toward the inside from 20% to 50> of the total thickness from the polymer layer resin surface. It may be maintained at the same level as the content of the fluorine resin at a depth point of 20% of the total thickness.
  • the total content of the fluorine-based resin in the polymer resin layer As the thickness increases to 20%, the weight ratio of the polyimide resin and the fluorine resin per unit volume of the polymer resin layer may vary depending on the depth.
  • the weight ratio of the polyimide resin: fluorine-based resin per unit volume of the polymer resin layer may be 100: 0 to 60:40.
  • the weight ratio of the plyimide resin: the fluorine-based resin per unit volume of the polymer resin layer may be 80:20 to 30:70.
  • the fluorine-based resin is more distributed in the polymer resin than the outer surface of the polymer resin layer, or the content of the fluorine-based resin is increased toward the inside of the polymer resin, or the content of the fluorine-based resin per unit volume of the polymer resin.
  • the effect of the fluorine-based resin contained in the polymer resin layer for example, the effect of significantly lowering the dielectric constant and moisture absorption rate can be expressed fully, while the fluorine-based resin Due to this, it is possible to minimize the phenomenon that the thermal expansion coefficient of the polymer resin layer is increased or the elasticity is lowered.
  • the polymer resin layer may be more firmly bonded to the metal thin film included in the flexible metal laminate, and may be further bonded to at least one surface of the polymer resin layer.
  • the difference in the coefficient of thermal expansion of the polymer resin layer (for example, the second or crab polyimide layer) can be greatly reduced.
  • the fluorine-based resin is more distributed in the polymer resin layer than the surface of the polymer resin layer, the high temperature that can be applied in the manufacturing process of the flexible metal laminate or printed circuit board, for example, application
  • the phenomenon that the fluorine resin melts or the copper foil circuit peels from the insulator can be prevented at a temperature of about 380 ° C.
  • the characteristics of the flexible metal laminate of one embodiment described above In addition to the distribution properties of the fluorine-based resin in the polymer layer seems to be due to using a polyimide resin having a specific chemical structure.
  • the polyimide resin including the repeating unit of Formula 1 may include a tetravalent functional group selected from the group consisting of the following Formulas 21 to 27.
  • is a single bond, -0-, -CO-, -S-, -S0 2- , -C (C3 ⁇ 4) 2- , -C (CF 3 ) 2- , -C0NH-, -C00 -, - (CH 2) n ⁇ , - 0 (CH 2) n2 0-, or - 0C0 (C3 ⁇ 4) 0C0- and n3, wherein nl, n2 and n3 is an integer of 1 to 10, respectively.
  • ⁇ 2 and ⁇ 3 may be the same as or different from each other, a single bond, ⁇ 0-, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -C0NH ⁇ , -C00-,-
  • nl, n2 and ⁇ 3 are each an integer from 1 to 10.
  • Y 4 , ⁇ 5 and ⁇ 6 may be the same as or different from each other, each of a single bond, -0-, -CO-, -S-, -S0 2- , — C (C3 ⁇ 4) 2- , -C (CF 3) 2 -, -C0NH-, - C00-, - (CH 2) nl -, -0 (CH 2) n2 is 0-, or -0C0 (CH 2) n3 0C0-, wherein nl, n2 and n3 are the integers of 1-10, respectively.
  • Chemical Formulas 21 to 27 means a bonding point (bonding point).
  • tetravalent selected from the group consisting of the following Chemical Formulas 28 to 30 It is preferably a functional group. ⁇ May be the same as or different from each repeating unit of Formula 1.
  • X may be a divalent functional group selected from the group consisting of Chemical Formulas 31 to 34.
  • 3 ⁇ 4 is hydrogen, -CH 3 , -C3 ⁇ 4CH 3 , -CH 2 CH 2 CH 2 CH 3 , -CF 3 ,-CF 2 CF 3) -CF2CF2CF3, or -CF 2 CF 2 CF 2 CF 3 Can be.
  • Chemical Formula 32 is a single bond, -0-, -C0-, —S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 —, -C0NH-, -C00 -, - (CH 2) nl -, -0 (C3 ⁇ 4) n2 0-, -0CH 2 -C (CH 3) 2 - CH2O- or
  • nl, n2 and n3 is an integer of 1 to 10, respectively, 3 ⁇ 4 and 3 ⁇ 4 may be the same or different from each other, and hydrogen, -CH 3 , -CH 2 C3 ⁇ 4, -CH 2 CH 2 C3 ⁇ 4CH 3 , -CF 3 , -CF 2 CF 3 , -CF 2 CF 2 CF 3 , or -CF 2 CF 2 CF 2 CF 3 .
  • L 2 and L 3 may be the same as or different from each other, and each single bond, -0—, -CO—, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -C0NH-, -C00-,-(CH 2 ) n ⁇ , -0 (C3 ⁇ 4) n2 0—, -0CH 2 -C (CH 3 ) 2 -CH 2 0- or -0C0 (CH 2 ) n3 0C ()-, nl, n2 and n3 are each an integer of 1 to 10, R 2 and 3 ⁇ 4 may be the same or different from each other, hydrogen,-(3 ⁇ 4, -CH 2 CH 3 ) -CH 2 CH 2 CH 2 CH 3> _CF 3 , -CF 2 CF 3> -CF 2 CF 2 CF 3 , or -CF 2 CF 2 CF 2 CF 3 .
  • L 4 , L 5, and L 6 may be the same as or different from each other, and each single bond, -0-, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -C0NH ⁇ , -C00-,-(CH 2 ) n ⁇ , -0 (CH 2 ) n2 0—, -0CH 2 -C (CH 3 ) 2 -CH 2 0 Or -0C0 (C3 ⁇ 4) n3 0C0-, nl, n2 and n3 are each an integer of 1 to 10, 3 ⁇ 4 and R4 may be the same or different from each other, hydrogen, -CH 3 , -CH 2 CH 3 ,- It may be CF 2 CF 3, -CF 2 CF 2 CF 3, or -CF 2 CF 2 CF 2 CF 3 - CH 2 CH 2 CH 3, -CF 3,.
  • the flexible metal laminate of the embodiment may have a lower dielectric constant and a lower water absorption rate, and may also secure an optimized coefficient of thermal expansion with high elasticity.
  • X may be the same as or different from each repeating unit of Formula 1.
  • R 2 may be the same as or different from each other, and-CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 2 CH 3 ( -CF 3) — CF 2 CF 3 , -CF 2 CF 2 CF 3) or —CF 2 CF 2 CF 2 CF 3 .
  • the polymer resin layer may include a polyimide resin 20 to 95 weight 3 ⁇ 4> or 40 to 90 weight and the remaining amount of the fluorine-based resin comprising a repeating unit of the formula (1). If the content of the fluorine-based resin is too small, the resulting soft metal laminate may not be able to secure a sufficiently low dielectric constant or moisture absorption rate. In addition, if the content of the fluorine-based resin is too large, the mechanical properties of the flexible metal laminate is lowered and easily torn or broken The thermal expansion coefficient of the polymer resin layer included in the flexible metal laminate may be greatly increased.
  • the fluororesin is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), tetrafluoroethylene-nuclear fluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer It includes a fluoropolymer containing at least one selected from the group consisting of a polymer resin (ETFE), tetrafluoroethylene- chlorotrifluoroethylene copolymer (TFE / CTFE) and ethylene- chlorotrifluoroethylene resin (ECTFE) can do.
  • PTFE polytetrafluoroethylene
  • PFA tetrafluoroethylene-perfluoroalkylvinylether copolymer
  • FEP tetrafluoroethylene-nuclear fluoropropylene copolymer
  • ETFE polymer resin
  • TFE / CTFE tetrafluor
  • the fluorine-based resin may include particles having a longest diameter of 0.05 Urn to 20, or 0.1 to 10 to 10. If the longest diameter of the fluorine-based resin is too small, the surface area of the fluorine-based resin may increase to decrease the physical properties of the polymer resin layer or increase the amount of the dispersant to be described later. In addition, when the longest diameter of the fluorine-based resin is too large, the surface properties of the polymer resin layer to be produced may be lowered or the dispersibility of the polymer composition solution for producing the polymer resin layer may be lowered.
  • the flexible metal laminate of the embodiment may further include a dispersant dispersed in the polymer resin layer.
  • the polymer resin layer may be formed from a resin composition comprising a polyamic acid, a fluorine resin, and a predetermined dispersant, and as the dispersant is used, the fluorine resin is more distributed in the polymer resin than the outer surface of the polymer resin layer.
  • the content of the fluorine resin may be increased toward the inside of the polymer resin layer, or the content of the fluorine resin per unit volume of the polymer resin layer may be minimum on the surface of the polymer layer resin.
  • the dispersant include polyester-based polymers, polyether-modified polydimethylsiloxanes, polyester / polyamine condensation polymers or two or more kinds thereof.
  • the 'according to the use of such compounds, may be a fluorine-based resin is the above-described distribution pattern in the number of the polymer resin contained in the flexible laminated body, whereby the depending Flexible metal laminates or printed circuit boards may have an optimized coefficient of thermal expansion with high elasticity while having low dielectric constant and low moisture absorption.
  • a method of using a fluorine-based dispersant or a fluorine-based surfactant in order to disperse the fluorine-based resin in polyamic acid or polyimide is known, but according to the conventional method, the dielectric constant of the polymer resin layer manufactured may be somewhat lowered. The coefficient of thermal expansion of the polymer resin layer prepared according to the use of the agent or the fluorine-based surfactant may be greatly increased.
  • the fluorine-based dispersant or the fluorine-based surfactant when used, a phenomenon in which the fluorine-based resin is concentrated on the surface of the polymer resin layer, such as a polyimide resin, to be produced, may occur. Exposure to high temperatures that may be applied in the manufacture of sieves or printed circuit boards, for example around 380 o C, may cause the fluorine resin to melt or to exfoliate portions of the flexible metal laminate or printed circuit board. have.
  • a method of adding a fluorine-based polymer resin in order to lower the dielectric constant of a polymer resin such as polyimide applied to a flexible metal laminate is known.
  • polytetrafluoroethylene (PTFE) and tetrafluoroethylene-nucleofluoride which are representative fluorine resins
  • the thermal expansion coefficients of propylene copolymer (FEP) and perfluoroalkoxy (PFA) are 135ppm, 150ppm and 230ppm, respectively, which are considerably larger than those of 10 to 30ppm, which is the coefficient of thermal expansion of conventional polyimides.
  • FEP propylene copolymer
  • PFA perfluoroalkoxy
  • the overall coefficient of thermal expansion is bound to increase.
  • the dispersant is 0.92 g / ml to 1.2 g / ml, or 0.95 g / ml at 20 o C
  • the dispersant may have an acid value (Ac id value) of 20 to 30 mg KOH / g.
  • the dispersant has a base equivalent of 1000 to 1700 Can have.
  • the polymer resin layer may include 0.1 parts by weight to 25 parts by weight or 0.5 parts by weight to 10 parts by weight of the dispersant relative to 100 parts by weight of the fluorine resin.
  • the fluorine-based resin agglomeration may occur to reduce the appearance characteristics or uniformity of the polymer resin layer, uniformity of the polymer resin composition solution for the production of the polymer resin layer Can be lowered.
  • the content of the dispersant is too large, the elasticity or mechanical properties of the polymer resin layer may be lowered.
  • the polymer resin layer included in the flexible metal laminate may have a thickness of 0.1zm to 100 / ⁇ , or 1 / ⁇ to 50.
  • the flexible metal laminate may exhibit a dielectric constant (Dk) of 2.2 to 2.8, or 2.3 to 2.7 in a dry state at 5 GHz.
  • Dk dielectric constant
  • the polyimide resin has a dielectric constant of 3.0 or more in a dry state at 5 GHz
  • the flexible laminated metal laminate of the embodiment may have a relatively low dielectric constant as described above with the polymer resin layer.
  • the flexible laminated body may have a coefficient of thermal expansion of lppm to 28ppm at 100 ° C to 200 o C.
  • the polymer resin layer described above may have a relatively low coefficient of thermal expansion, for example, lppm to 20 ppm, and a flexible metal including the polymer resin layer or an additional polyimide layer on at least one surface of the polymer resin layer.
  • the laminate may also have a coefficient of thermal expansion of lppm to 28 ppm, or 15 ppm to 25 ppm.
  • the thermal expansion coefficient of copper foil which is a commonly used metal foil
  • the thermal expansion coefficient of the flexible metal laminate should be within the above-described range, so that warpage phenomenon resulting from the difference in thermal expansion coefficient with the metal foil can be minimized. Minimize the difference in expansion and contraction with other materials forming the printed circuit board.
  • the flexible metal laminate is copper, iron, nickel, titanium, aluminum, At least one metal thin film including at least one selected from the group consisting of silver, gold and two or more alloys thereof may be included.
  • the flexible metal laminate may include one metal thin film, and the flexible metal laminate may include two metal thin films that face each other, and in this case, the polymer resin layer may face each other. It may be located between two metal thin film.
  • Ten-point average roughness (R Z ) of the surface of the metal thin film may be 0. 3 to 2.5 ⁇ . If the ten point average roughness of the metal thin film surface is too small, the adhesive strength with the polymer resin layer may be low, and if the ten point average roughness of the metal thin film surface is too large, the surface roughness may increase to increase the transmission loss in the high frequency region.
  • the metal thin film may have a thickness of 0.1 to.
  • the flexible metal laminate described above may further include a polyimide resin layer formed on at least one surface of the polymer resin layer.
  • the flexible metal laminate may further include second and third polyimide resins bonded to both sides of the polymer resin layer.
  • the second and third polyimide resins may each have the same or different composition as the above-described polyimide resin.
  • the second and third polyimide resin may have the same or different thickness as the polymer resin layer, and may have a thickness in the range of 0.1 to 100 / ⁇ , or to 50 / ⁇ .
  • the manufacturing method of the above-mentioned flexible metal laminated body is not restrict
  • the polyimide resin included in the polymer resin layer may be obtained by heat treatment at a high temperature of 250 ° C. to 400 ° C. after coating and drying a polymer resin solution including a polyamic acid as a precursor.
  • the polyamic acid as a precursor of the polyimide resin reacts with tetracarboxylic acid or its anhydride and diamine compound.
  • a diamine comprising a tetracarboxylic acid or an anhydride thereof including a tetravalent functional group selected from the group consisting of Formula 21 to Formula 27 and a divalent functional group selected from the group consisting of Formulas 31 to 34, for example.
  • the resin composition including a polyamic acid, a fluorine resin, and a dispersant, which is a precursor of the polyimide may include an organic solvent, and examples of the organic solvent that can be used are not particularly limited.
  • the organic solvent that can be used are not particularly limited.
  • N, N′-dimethylformamide, N, N'-dimethylacetamide, N, N'-diethylacetamide, N, N'-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone, N-methyl caprolactam, 1, 3- Dimethyl-2-imidazolidone, 1,2-dimethoxyethane, 1,3-dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxydi, dimethulfone, m-cresol, P- Chlorophenol, anisol, etc. may be used, and may be used alone or in combination of two or more.
  • the usable amount of the organic solvent may
  • a flexible metal laminate having a low dielectric constant and a low water absorption rate, while ensuring an optimized coefficient of thermal expansion with high elasticity.
  • the present invention is a solution to the increase in the data loss rate, the thickening of the printed circuit board, the narrowing of the circuit on the printed circuit board caused by the recent increase in data transmission speed of devices such as laptops, computers, mobile phones
  • a method capable of producing a low dielectric constant polyimide having a low dielectric constant and having characteristics such as high heat resistance chemical resistance and dimensional stability of an existing polyimide insulator.
  • the present invention provides a method capable of producing a low dielectric constant copper foil laminate using a low dielectric constant polyimide prepared according to the above method.
  • the printed circuit board can be made thinner while matching impedance, thereby making the portable electronic device thinner, and the line width of the printed circuit board can be widened, thereby significantly reducing the defect rate of the PCB manufacturing company. It can greatly contribute to cost reduction.
  • Figure 1 shows a cross-sectional SEM photograph and EDS results of the copper foil laminate obtained in Example 8.
  • FIG. 2 is an enlarged cross-sectional SEM photograph of the laminate of FIG. 1.
  • Nitrogen was charged in a 1 L PE bottle, 765 g of dimethylacetamide (DMAc), 219 g polytetra pulluloethylene micro powder (PTFE micro powder, particle size: 0.1 to 2.0 um), and poly with dispersant. 10.95 g of ester polymer [acid value 26 mg KOH / g, base value 1200] and 765 g of beads having a diameter of 2 mm were added thereto, and PTFE was dispersed while stirring in a high speed ball milling machine. .
  • DMAc dimethylacetamide
  • PTFE micro powder polytetra pulluloethylene micro powder
  • the PTFE was dispersed in a 500 mL back bottom flask. 73 g of solution 73 g dimethylacetamide, 11.609 g pyromellitic dianhydride, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl 17.391g, at 50 ° C
  • 1 L of PE bottle was filled with nitrogen, 765 g of dimethylacetamide (DMAc), 219 g of polytetrafluoroethylene micro powder (particle size: 0.1 to 2.0 um), polyester with dispersant 10.95 g of a system polymer (density (20): 1.13 g / ml) and 765 g of beads having a diameter of 2 mm were added thereto, and PTFE was dispersed while stirring in a high speed ball milling machine.
  • DMAc dimethylacetamide
  • polytetrafluoroethylene micro powder particle size: 0.1 to 2.0 um
  • polyester with dispersant 10.95 g of a system polymer (density (20): 1.13 g / ml) and 765 g of beads having a diameter of 2 mm were added thereto, and PTFE was dispersed while stirring in a high speed ball milling machine.
  • DMAc dimethylacetamide
  • PMDA pyromellitic di anhydride
  • BPDA pyromellitic di anhydride
  • DMAc dimethylacetamide
  • PMDA pyromellitic di anhydride
  • 1 L of PE bottle was filled with nitrogen, 765 g of dimethylacetamide (DMAc), 219 g of polytetrafluoroethylene micro powder (PTFE micro powder, particle size: 0.1 to 2.0 um), polyester with dispersant Type Polymer [acid value 26 mg K0H / g, base value 10.95 g and 765 g of beads having a diameter of 2 mm were added, and PTFE was dispersed while stirring in a high speed ball milling machine.
  • DMAc dimethylacetamide
  • PTFE micro powder polytetrafluoroethylene micro powder
  • polyester with dispersant Type Polymer [acid value 26 mg K0H / g, base value 10.95 g and 765 g of beads having a diameter of 2 mm were added, and PTFE was dispersed while stirring in a high speed ball milling machine.
  • the polyamic acid solutions prepared in Preparation Examples 1 to 3 were coated on a Matte surface of copper foil (thickness: 12) so that the final thickness was 25 ⁇ m, and then dried at 80 ° C. for 10 minutes. The dried product was started at room temperature in a nitrogen oven to proceed with curing at 350 ° C. for 30 minutes. After the curing was completed, the copper foil was etched to prepare a polyimide film having a thickness of 25 ⁇ m.
  • a film was prepared.
  • the polyamic acid solution (P5) prepared in Preparation Example 5 was coated on a Matte surface of a copper foil (thickness: i / m) so that the final thickness is 2um and dried at 80 ° C for 10 minutes.
  • the polyamic acid solution (P1) prepared in Preparation Example 1 thereon was coated to a final thickness of 20um and then dried at 80 ° C for 10 minutes.
  • the polyamic acid solution (P1) on the surface of the dried product, the polyamic acid solution (P5) prepared in Preparation Example 5 was coated to a final thickness of 3um and then dried at 80 ° C. for 10 minutes to prepare a laminate. .
  • the dried laminate was heated at room temperature in a nitrogen oven, and cured at 350 ° C. for 30 minutes to produce a flexible copper foil laminate having one surface of the copper foil. Examples 6-7
  • Example 8 The surface was the same as in Example 5 except for using the polyamic acid solutions (P2 and P3) prepared in Preparation Example 2 and Preparation Example 3 instead of the polyamic acid solution (P1) prepared in Preparation Example 1.
  • the flexible copper foil laminated board which one side is made of copper foil was manufactured.
  • the polyamic acid solution (P5) prepared in Preparation Example 5 was coated on a Matte surface of copper foil (thickness: 12zm) so that the final thickness is 2um, and dried at 80 ° C for 10 minutes.
  • the polyamic acid solution (P1) prepared in Preparation Example 1 was coated thereon to have a final thickness of 20 ⁇ m, and then dried at 80 ° C. for 10 minutes.
  • the polyamic acid solution (P5) was coated to a final thickness of 3 ⁇ m and then at 80 o C
  • the copper foil (thickness: 1 ⁇ ) on the other side of the cured product so as to face the copper foil at a temperature of 400 ° C. It bonded by and manufactured the flexible copper foil laminated board which copper foil was bonded to both surfaces. Examples 9-10
  • the cross section of the copper foil crushing plate obtained in the said Example 8 was confirmed through the SEM photograph.
  • the polyimide film laminate obtained by etching the copper foil in the polyimide film obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and the flexible copper foil laminate obtained in Examples 4 to 11 was dried at 150 ° C. for 30 minutes, and The dielectric constant of the polyimide film or the polyimide film laminate was measured using a split post dielectric resonance (SPDR) method at 25 ° C. and 50% RH.
  • SPDR split post dielectric resonance
  • the measurement was performed using a Resonator using an E5071B ENA apparatus.
  • the linear thermal expansion coefficients of the polyimide films obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and the linear thermal expansion coefficients of the polyimide film laminates obtained by etching copper foil from the flexible copper foil laminates obtained in Examples 4 to 11 were obtained from IPC TM-.
  • the absorption rate of the polyimide film obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and the absorption rate of the polyimide film laminate obtained by etching copper foil from the flexible copper foil laminates obtained in Examples 4 to 11 were IPC TM-650 2.6.2C It was immersed in distilled water of 23 0 C for 24 hours based on the criterion of, and the water absorption was calculated by measuring the mass of the measurement object before and after the deposition.
  • the composition of the polyamic acid of Examples 5 to 11 relates to the precursor of the polyimide film located in the middle layer of the polyimide films of the flexible copper foil laminate.
  • the polyimide film obtained in Examples 1 to 3 has a low dielectric constant and low water absorption, but also in a suitable range (for example, lppm to 20 ppm) as compared to the polyimide films of Comparative Examples 1 to 3. It was confirmed that it has a coefficient of thermal expansion of.
  • the polyimide films of Comparative Examples 1 to 3 had relatively high dielectric constants (for example, 2.8 or more or 3.0 or more) and high absorption rates (for example, 1.5% or more).
  • the dielectric constant of 2.80 or less and the absorption rate of 1.2 or less can be secured, while the thermal expansion coefficient of the laminated structure excluding copper foil can be adjusted in the range of 18 ppm to 28 ppm. Confirmed.

Abstract

The present invention relates to a flexible metal laminate sheet comprising a polymer resin layer including a polyimide resin having a specific structure and a fluorine-based resin. More fluorine-based resin is distributed on the inside of the polymer resin layer than at the surface of the polymer resin layer.

Description

【명세서】  【Specification】
【발명의 명칭]  [Name of invention]
연성 금속 적층체  Ductile metal laminate
[기술분야]  [Technical Field]
본 발명은 연성 금속 적층체에 관한 것으로서, 보다상세하게는 낮은 유전율 및 낮은 수분 흡수율을 가지면서도 높은 탄성도와 함께 최적화된 열팽창계수를 확보할 수 있는 연성 금속 적층체에 관한 것이다.  The present invention relates to a flexible metal laminate, and more particularly, to a flexible metal laminate having a low dielectric constant and a low water absorption rate and having a high elasticity and an optimized coefficient of thermal expansion.
【발명의 배경이 되는 기술]  [Technology behind the invention]
최근 전자 기기의 소형화와 고속화 및 다양한 기능들이 결합하는 추세에 맞춰서 전자 기기 내부에서의 신호 전달 속도 또는 전자 기기 외부와의 신호 전달 속도가 빨라지고 있는 실정이다. 이에 따라서, 기존의 절연체보다 유전율과 유전 손실 계수가 더욱 낮은 절연체를 이용한 인쇄 회로 기판이 필요해지고 있다.  In recent years, in accordance with the trend of miniaturization, high speed, and various functions of electronic devices, a signal transmission speed inside an electronic device or a signal transmission speed outside the electronic device is increasing. Accordingly, there is a need for a printed circuit board using an insulator having a lower dielectric constant and lower dielectric loss coefficient than the conventional insulator.
이러한 경향을 반영하듯 최근 연성 인쇄 회로기판에서도 종래의 폴리이미드보다 더욱 유전율이 낮으면서 홉습에 의한 영향을 덜 받는 절연체인 액정 폴리머 (IXP, Liquid Crystalline Polymer)를 적용하려는 움직임이 생겨나고 있다. 그러나, LCP를 작용하더라도 실질적으로 LCP의 유전율 (Dk=2.9)이 폴리이미드 (Dk=3.2)와 크게 다르지 않기 때문에 적용에 따른 개선 정도가 미미하고, 또한 IXP의 내열성이 남땜 공정에서 문제가 될 정도로 낮으며, IXP가 열가소성을 갖기 때문에 레이저를 이용한 Via hole 가공에 있어서 기존의 폴리이미드를 이용했던 PCB 제조 공정과의 호환성이 떨어지는 문제점이 있다.  Reflecting this trend, there is a movement to apply Liquid Crystalline Polymer (IXP), which is an insulator that is lower in dielectric constant and less affected by hoping, in a flexible printed circuit board. However, even if LCP is applied, the dielectric constant (Dk = 2.9) of LCP is not substantially different from that of polyimide (Dk = 3.2). Therefore, the improvement of application is insignificant, and the heat resistance of IXP is a problem in the soldering process. Low and because IXP has a thermoplastic, there is a problem that the compatibility with the PCB manufacturing process using a conventional polyimide in the via hole processing using a laser is inferior.
따라서, 이에 대한 해결책으로 기존 연성 회로 기판의 절연체로 사용되고 있는 폴리이미드의 유전율을 낮추는 노력이 실시되어 왔다. 예를 들어, 미국등록특허 제 4816516호에 의하면, 폴리이미드와 불소계 고분자를 흔합하여 몰드 성형품을 만드는 내용을 나타내었다. 그러나, 상기 특허는 저유전율이 필요한 전자기기용 제품에 관한 것이 아니라 몰드 성형품에 관한 것으로, 실제 열팽창율이 크고 유리전이은도가 낮은 폴리이미드를 사용하였다. 또한, 인쇄회로기판에 사용하기 위해서는 얇은 박막 형태로 폴리이미드 수지를 가공하여야 하는데, 상기 미국특허에는 얇은 박막 형태로 제조된 동박 적층판에 관한 내용이 나타나 있지 않다. 또한, 미국등록특허 제 7026032호에 의하면, 불소계 고분자의 미세 분말을 폴리이미드에 분산시켜 제조되는 제품의 유전율을 낮추는 방법이 개시되어 있다. 상기 미국 특허에는 블소계 고분자 미세 분말이 절연체의 내부 코어에 비하여 외부 표면에 보다 많이 분포하는 내용이 나타나 있다. 그러나, 상기 미국 특허에 기재된 바와 같이, 절연체의 최외각층에 불소계 고분자의 함량이 많기 때문에 외부 표면의 불소계 고분자에 의하여 수분 투과 및 흡수가 낮아져서 전체적인 수분 흡수율을 낮출 수 있으나, 기존의 폴리이미드로 이루어진 연성 동박 적층판이 갖지 않던 문제점이 발생할 수 있다. 예를 들어, 상기 미국 특허에 기재된 폴리이미드 수지는 커버레이와의 접착력이나 프리프레그와의 접착력이 약해지고 ACF와의 접착력도 낮아질 수 있으며, 상기 미국 특허에 기재된 폴리이마드 수지의 열팽창계수 (CTE)는 연성 동박 적층판에 적용되기에는 너무 클 뿐만 아니라, 상기 폴리이미드 수지의 표면에는 불소 수지가 외부에 과량으로 존재하게 때문에, PCB 제조 공정 중의 수납 공정에 적용되는 380°C 내외의 온도에서 불소 수지가 녹을 수 있고 동박 회로가 절연체로부터 박리될 위험아 있다. 이에 따라 저유전율 인쇄 회로 기판을 만들기 위해서는 폴리이미드가 불소 수지를 포함하여 낮은 유전율을 나타내면서도 낮은 열팽창계수의 특성을 갖고 있고, 탄성 계수가 높을 뿐만 아니라 수분 흡수율이 낮은 폴리이미드 재료의 개발이 필요한 실정이다. Therefore, as a solution to this, efforts have been made to lower the dielectric constant of polyimide, which is used as an insulator of a conventional flexible circuit board. For example, according to US Patent No. 4816516, a content of making a molded article by mixing polyimide and fluorine-based polymer is shown. However, the patent does not relate to products for electronic devices requiring a low dielectric constant but to molded articles, and uses polyimide having a high thermal expansion coefficient and a low glass transition rate. In addition, in order to use in a printed circuit board, polyimide resin should be processed in the form of a thin film. The content regarding the copper foil laminated board manufactured in the form is not shown. In addition, US Patent No. 7026032 discloses a method of lowering the dielectric constant of a product produced by dispersing a fine powder of a fluorine-based polymer in a polyimide. The U.S. Patent discloses that the bloso-based polymer fine powder is more distributed on the outer surface than the inner core of the insulator. However, as described in the U.S. patent, since the content of the fluorine-based polymer in the outermost layer of the insulator has a high water permeation and absorption is lowered by the fluorine-based polymer on the outer surface, but the overall water absorption rate can be lowered, the ductility of the existing polyimide Problems that copper foil laminates do not have may occur. For example, the polyimide resin described in the US patent may have a weak adhesion to the coverlay or prepreg and a low ACF, and the coefficient of thermal expansion (CTE) of the polyimide resin described in the US patent may be soft. In addition to being too large to be applied to copper foil laminates, the surface of the polyimide resin has an excessive amount of fluorine resin on the outside, so that the fluorine resin may be melted at a temperature of about 380 ° C that is applied to the storage process during the PCB manufacturing process. There is a risk of the copper foil circuit peeling off the insulator. Accordingly, in order to make low dielectric constant printed circuit boards, polyimide including fluorine resin has low dielectric constant and low coefficient of thermal expansion, and it is necessary to develop polyimide material having high elastic modulus and low moisture absorption. to be.
【선행기술문헌】  Prior Art Documents
【특허문헌】  [Patent literature]
(특허문헌 1) (선행문헌 001) 미국등록특허 제 4816516호  (Patent Document 1) (Preceding Document 001) US Patent No. 4816516
(특허문헌 2) (선행문헌 002) 미국등록특허 게 7026032호  (Patent Document 2) (Prior Document 002) United States Patent No. 7026032
【발명의 내용]  [Contents of the Invention]
【해결하고자 하는 과제】  Problem to be solved
본 발명은 낮은 유전율 및 낮은 수분 흡수율을 가지면서도 높은 탄성도와 함께 최적화된 열팽창계수를 확보할 수 있는 연성 금속 적층체를 제공하기 위한 것이다. 【과제의 해결 수단】 The present invention is to provide a flexible metal laminate having a low dielectric constant and a low water absorption, while ensuring an optimized coefficient of thermal expansion with high elasticity. [Measures of problem]
본 발명은, 하기 화학식 1의 반복 단위를 포함하는 폴리이미드 수지 및 불소계 수지를 포함한 고분자 수지층을 포함하고, 상기 불소계 수지가 상기 고분자 수지층의 표면에 비하여 상기 고분자 수지층의 내부에 보다 많이 분포하는 연성 금속 적층체를 제공한다.  The present invention includes a polymer resin layer including a polyimide resin and a fluorine-based resin including a repeating unit represented by Formula 1 below, and the fluorine-based resin is distributed more in the polymer resin layer than in the surface of the polymer resin layer. It provides a flexible metal laminate.
Figure imgf000004_0001
Figure imgf000004_0001
상기 화학식 1에서, ^은 4가의 방향족 유기 작용기이고, X는 2가의 방향족 유기 작용기이고, 상기 n 은 1 내지 300의 정수이다. . 이하 발명의 구체적인 구현예에 따른 연성 금속 적층체에 관하여 보다 구체적으로 설명하기로 한다. 발명의 일 구현예에 따르면, 상기 화학식 1의 반복 단위를 포함하는 폴리이미드 수지 및 불소계 수지를 포함한 고분자 수지층을 포함하고, 상기 불소계 수지가 상기 고분자 수지층의 표면에 비하여 상기 고분자 수지층의 내부에 보다 많이 분포하는 연성 금속 적층체가 제공될 수 있다.  In Formula 1, ^ is a tetravalent aromatic organic functional group, X is a divalent aromatic organic functional group, and n is an integer of 1 to 300. . Hereinafter, a flexible metal laminate according to a specific embodiment of the present invention will be described in more detail. According to one embodiment of the invention, a polyimide resin comprising a repeating unit of Formula 1 and a polymer resin layer comprising a fluorine-based resin, wherein the fluorine-based resin than the surface of the polymer resin layer inside the polymer resin layer More ductile metal laminates can be provided.
이전에는 연성 금속 적층체에 적용되는 플리이미드 등의 고분자 수지의 유전율을 낮추기 위해서 불소계 고분자 수지를 첨가하는 방법이 알려져 있으나, 대표적인 블소계 수지인 폴리테트라 플루오로에틸렌 (PTFE), 테트라플루오르에틸렌―핵사플루오르프로필렌 공중합체 (FEP) 및 퍼플루오로알콕시 (PFA)의 열팽창계수가 각각 135ppm, 150ppm 및 230ppm에 달하여 통상적인 폴리이미드가 갖는 열팽창계수인 10 내지 30ppm에 비하여 상당히 크며, 폴리이미드의 유전율을 층분히 낮추기 위해서 상기와 같은 불소 수지를 10 내지 60wt 정도 넣어 주어야 하기 때문에 전체적인 열팽창계수가 커질 수 밖에 없는 한계가 있었다. 이에 본 발명자들은 관련 연구를 진행하여, 상기 일 구현예의 연성 금속 적층체가 상기 특정의 화학 구조를 갖는 폴리이미드 수지 및 불소계 수지를 함유한 고분자 수지층을 포함하고, 상기 불소계 수지가 상기 고분자 수지층 외부 표면에 비하여 내부에 보다 많이 분포함에 따라서, 보다 낮은 유전율 및 낮은 수분 흡수율을 가지면서도 높은 탄성도와 함께 최적화된 열팽창계수를 확보할 수 있다는 점을 실험을 통하여 확인하고 발명을 완성하였다. Previously, a method of adding a fluorine-based polymer resin in order to lower the dielectric constant of a polymer resin such as plyimide applied to a flexible metal laminate is known, but polytetrafluoroethylene (PTFE) and tetrafluoroethylene-nucleus, which are representative fluorine-based resins, are known. The thermal expansion coefficients of fluoropropylene copolymer (FEP) and perfluoroalkoxy (PFA) are 135ppm, 150ppm and 230ppm, respectively, which are considerably larger than those of 10 to 30ppm, which is the coefficient of thermal expansion of conventional polyimides. In order to lower the amount of fluorine resin as described above, it is necessary to add about 10 to 60 wt. Accordingly, the present inventors conducted a related research, wherein the flexible metal laminate of the embodiment includes a polymer resin layer containing a polyimide resin and a fluorine resin having the specific chemical structure, and the fluorine resin is outside the polymer resin layer. As a result of more distribution on the inside than the surface, experiments confirmed that an optimized coefficient of thermal expansion with high elasticity and a low dielectric constant and low moisture absorption was obtained through experiments.
상술한 바와 같이, 상기 연성 금속 적층체에 포함되는 상기 고분자 수지층에서는, 상기 불소계 수지가 상기 고분자 수지층 외부 표면에 비하여 고분자 수지층 내부에 보다 많이 분포할 수 있으며, 또한 상기 불소계 수지의 함량은 상기 고분자수지층 내부로 갈수록 커질 수 있다.  As described above, in the polymer resin layer included in the flexible metal laminate, the fluorine resin may be more dispersed in the polymer resin layer than the outer surface of the polymer resin layer, and the content of the fluorine resin may be It may become larger toward the inside of the polymer resin layer.
구체적으로, 상기 연성 금속 적층체에서는, 상기 고분자 수지 의 표면으로부터 전체 두께의 20%까지 상기 고분자 수지층의 단위 부피당 상기 불소계 수지의 함량이 깊이에 따라 증가할 '수 있다. Specifically, the flexible metal laminated in the body, up to 20% of the thickness from the surface of the polymer resin, the amount of the fluorine-based resin per unit volume of the polymer resin can be "increases with depth.
그리고, 상기 고분자 수지층의 단위 부피당 상기 불소계 수지의 함량이 상기 고분자 수지층의 표면에서 최소일 수 있다.  In addition, the content of the fluorine resin per unit volume of the polymer resin layer may be minimum on the surface of the polymer resin layer.
예를 들어, 상기 고분자 수지층의 표면에서 전체 두께의 1% 깊이까지의 단위 부피 (예를 들어, 해당 깊이를 하나의 모서리로 하는 정육면체)에 포함되어 있는 불소 수지의 함량이 상기 전체 두께의 1% 깊이보다 깊은 내부에서의 동일 단위 부피당 불소 수지의 햠량에 비하여 작을 수 있다.  For example, the content of the fluorine resin contained in a unit volume (for example, a cube having a depth at one corner) from a surface of the polymer resin layer to a depth of 1% of the total thickness is 1 of the total thickness. It may be smaller than the amount of fluorine resin per unit volume in the interior deeper than% depth.
또한, 상술한 바와 같이, 상기 고분자 수지층 표면에서 단위 부피당 불소계 수지의 함량이 최소이고, 상기 고분자 수지층 표면으로부터 전체 두께의 20%까지 단위 부피당 불소계 수지의 함량이 증가할 수 있다.  In addition, as described above, the content of the fluorine-based resin per unit volume on the surface of the polymer resin layer is minimal, and the content of the fluorine-based resin per unit volume may be increased up to 20% of the total thickness from the surface of the polymer resin layer.
그리고, 상기 고분자 수지층 표면으로부터 전체 두께의 20%까지 불소계 수지 함량이 증가할 수 있으며, 상기 고분자층 수지 표면으로부터 전체 두께의 20% 내지 50 >의 영역에서는 불소계 수지 함량이 내부로 갈수록 증가할 수도 있으며, 전체 두께의 20%의 깊이 지점에서의 불소계 수지의 함량과 동등 수준으로 유지될 수도 있다.  In addition, the fluorine resin content may increase from the surface of the polymer resin layer to 20% of the total thickness, and the fluorine resin content may increase toward the inside from 20% to 50> of the total thickness from the polymer layer resin surface. It may be maintained at the same level as the content of the fluorine resin at a depth point of 20% of the total thickness.
상기 고분자 수지층의 내부에서 상기 불소계 수지의 함량이 전체 두께의 20%까지 점증함에 따라서, 상기 고분자 수지층의 단위 부피당 상기 폴리이미드 수지와 상기 불소계 수지의 중량비는 깊이에 따라서 변화할 수 있다. The total content of the fluorine-based resin in the polymer resin layer As the thickness increases to 20%, the weight ratio of the polyimide resin and the fluorine resin per unit volume of the polymer resin layer may vary depending on the depth.
구체적으로, 상기 고분자 수지층의 표면으로부터 전체 두께의 20%의 깊이에서, 상기 고분자 수지층의 단위 부피당 상기 폴리이미드 수지: 상기 불소계 수지의 중량비가 100:0 내지 60:40일 수 있다.  Specifically, at a depth of 20% of the total thickness from the surface of the polymer resin layer, the weight ratio of the polyimide resin: fluorine-based resin per unit volume of the polymer resin layer may be 100: 0 to 60:40.
또한, 상기 고분자 수지층의 전체 두께의 40 내지 60%의 깊이에서, 상기 고분자 수지층의 단위 부피당 상기 플리이미드 수지: 상기 불소계 수지의 중량비가 80:20 내지 30 :70일 수 있다.  In addition, at a depth of 40 to 60% of the total thickness of the polymer resin layer, the weight ratio of the plyimide resin: the fluorine-based resin per unit volume of the polymer resin layer may be 80:20 to 30:70.
이와 같이, 상기 불소계 수지가 상기 고분자 수지층 외부 표면에 비하여 고분자 수지 내부에 보다 많이 분포하거나, 상기 불소계 수지의 함량은 상기 고분자 수지 내부로 갈수록 커지거나, 상기 고분자 수지의 단위 부피당 상기 불소계 수지의 함량이 상기 고분자 수지의 표면에서 최소가 됨에 따라서, 상기 고분자 수지층에 포함되는 불소계 수지에 따른 효과, 예를 들어 유전율 및 수분 흡수율이 크게 낮아지는 등의 효과는 층분히 발현될 수 있으면서도, 상기 불소계 수지로 인하여 상기 고분자 수지층의 열팽창 계수가 높아지거나 탄성도가 저하되는 현상을 최소화할 수 있다.  As such, the fluorine-based resin is more distributed in the polymer resin than the outer surface of the polymer resin layer, or the content of the fluorine-based resin is increased toward the inside of the polymer resin, or the content of the fluorine-based resin per unit volume of the polymer resin. As the minimum on the surface of the polymer resin, the effect of the fluorine-based resin contained in the polymer resin layer, for example, the effect of significantly lowering the dielectric constant and moisture absorption rate can be expressed fully, while the fluorine-based resin Due to this, it is possible to minimize the phenomenon that the thermal expansion coefficient of the polymer resin layer is increased or the elasticity is lowered.
또한, 상기 불소계 수지의 분포 양상에 따라서, 상기 고분자 수지층이 상기 연성 금속 적층체에 포함되는 금속 박막과 보다 견고하게 결합될 수 있으며, 상기 고분자 수지층의 적어도 일면에 추가로 결합될 수 있는 다른 고분자 수지층 (예를 들어, 제 2 또는 게 3의 폴리이미드층)의 열팽창계수의 차이가 크게 줄어들 수 있다.  In addition, according to the distribution of the fluorine-based resin, the polymer resin layer may be more firmly bonded to the metal thin film included in the flexible metal laminate, and may be further bonded to at least one surface of the polymer resin layer. The difference in the coefficient of thermal expansion of the polymer resin layer (for example, the second or crab polyimide layer) can be greatly reduced.
또한, 상기 불소계 수지가 상기 고분자 수지층의 표면에 비하여 상기 고분자 수지층의 내부에 보다 많이 분포함에 따라서, 상기 연성 금속 적층체 또는 인쇄 회로 기판의 제조 과정에서 적용될 수 있는 고온, 예를 들어 적용되는 380oC 내외의 온도에서 상기 불소계 수지가 녹는 현상이나 동박 회로가 절연체로부터 박리되는 현상을 방지할 수 있다. In addition, as the fluorine-based resin is more distributed in the polymer resin layer than the surface of the polymer resin layer, the high temperature that can be applied in the manufacturing process of the flexible metal laminate or printed circuit board, for example, application The phenomenon that the fluorine resin melts or the copper foil circuit peels from the insulator can be prevented at a temperature of about 380 ° C.
한편, 상술한 일 구현예의 연성 금속 적층체의 특성은 상술한 고분자층 내에서의 불소계 수지의 분포 특성과 더불어 특정의 화학 구조를 갖는 폴리이미드 수지를 사용함에 따른 것으로 보인다. On the other hand, the characteristics of the flexible metal laminate of one embodiment described above In addition to the distribution properties of the fluorine-based resin in the polymer layer seems to be due to using a polyimide resin having a specific chemical structure.
구체적으로, 상기 화학식 1의 반복 단위를 포함하는 폴리이미드 수지는 하기 화학식 21 내지 27로 이루어진 군에서 선택된 4가의 작용기를 포함할 수 있다.  Specifically, the polyimide resin including the repeating unit of Formula 1 may include a tetravalent functional group selected from the group consisting of the following Formulas 21 to 27.
[화학식 21]  [Formula 21]
Figure imgf000007_0001
상기 화학식 22에서, ^ 은 단일결합, -0-, -CO-, -S-, -S02-, - C(C¾)2-, -C(CF3)2-, -C0NH-, -C00-, -(CH2)n厂, — 0(CH2)n20-, 또는 - 0C0(C¾)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이다.
Figure imgf000007_0001
In Formula 22, ^ is a single bond, -0-, -CO-, -S-, -S0 2- , -C (C¾) 2- , -C (CF 3 ) 2- , -C0NH-, -C00 -, - (CH 2) n 厂, - 0 (CH 2) n2 0-, or - 0C0 (C¾) 0C0- and n3, wherein nl, n2 and n3 is an integer of 1 to 10, respectively.
[화학식 23]  [Formula 23]
Figure imgf000007_0002
Figure imgf000007_0002
상기 화학식 23에서, Υ2 및 Υ3는 서로 같거나 다를 수 있으며, 각각 단일결합, ᅳ0-, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-, -C0NHᅳ, -C00-, -In Formula 23, Υ 2 and Υ 3 may be the same as or different from each other, a single bond, ᅳ 0-, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -C0NH ᅳ , -C00-,-
(CH2)„i-, -0(CH2)n20-, 또는 -0C0(C¾)n30C0-이고, 상기 nl, n2 및 η3는 각각 1 내지 10의 정수이다. (CH 2 ) 'i-, -0 (CH 2 ) n 2 0-, or -0C0 (C¾) n3 0C0-, wherein nl, n2 and η3 are each an integer from 1 to 10.
[화학식 24]
Figure imgf000008_0001
[Formula 24]
Figure imgf000008_0001
상기 화학식 24에서, Y4, Υ5및 Υ6는 서로 같거나 다를 수 있으며 , 각각 단일결합, -0-, -CO-, -S-, -S02-, — C(C¾)2-, -C(CF3)2-, -C0NH-, - C00-, -(CH2)nl-, -0(CH2)n20-, 또는 -0C0(CH2)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이다. In Formula 24, Y 4 , Υ 5 and Υ 6 may be the same as or different from each other, each of a single bond, -0-, -CO-, -S-, -S0 2- , — C (C¾) 2- , -C (CF 3) 2 -, -C0NH-, - C00-, - (CH 2) nl -, -0 (CH 2) n2 is 0-, or -0C0 (CH 2) n3 0C0-, wherein nl, n2 and n3 are the integers of 1-10, respectively.
[화학식 25]  [Formula 25]
Figure imgf000008_0002
상기 화학식 21 내지 27에서, 은 결합점 (bonding point)을 의미한다. 그리고, 상기 일 구현예의 연성 금속 적층체가 보다 낮은 유전율 및 낮은 수분 흡수율을 가지면서도 높은 탄성도와 함께 최적화된 열팽창계수를 확보하기 위해서는, 상기 화학식 1의 이 하기 화학식 28 내지 30으로 이루어진 군에서 선택된 4가 작용기인 것이 바람직하다. 상기 ^은 상기 화학식 1의 반복 단위 각각에서 같거나 다를 수 있다.
Figure imgf000008_0002
In Chemical Formulas 21 to 27, means a bonding point (bonding point). In addition, in order to secure an optimized coefficient of thermal expansion with high elasticity while having a lower dielectric constant and a low water absorption rate of the flexible metal laminate of the embodiment, tetravalent selected from the group consisting of the following Chemical Formulas 28 to 30 It is preferably a functional group. ^ May be the same as or different from each repeating unit of Formula 1.
[화학식 28]  [Formula 28]
Figure imgf000009_0001
Figure imgf000009_0001
[화학식 29] [Formula 29]
Figure imgf000009_0002
Figure imgf000009_0002
[화학식 30] [Formula 30]
Figure imgf000009_0003
상기 화학식 28 내지 30에서, 은 결합점 (bonding point)을 의미한다.
Figure imgf000009_0003
In Chemical Formulas 28 to 30, means a bonding point (bonding point).
한편, 상기 화학식 1에서, 상기 X는 하기 화학식 31 내지 34로 이루어진 군에서 선택된 2가 작용기일 수 있다.  Meanwhile, in Chemical Formula 1, X may be a divalent functional group selected from the group consisting of Chemical Formulas 31 to 34.
Figure imgf000009_0004
상기 화학식 31에서, ¾은 수소, -CH3, -C¾CH3, -CH2CH2CH2CH3, -CF3, - CF2CF3) -CF2CF2CF3, 또는 -CF2CF2CF2CF3일 수 있다.
Figure imgf000009_0004
In Chemical Formula 31, ¾ is hydrogen, -CH 3 , -C¾CH 3 , -CH 2 CH 2 CH 2 CH 3 , -CF 3 ,-CF 2 CF 3) -CF2CF2CF3, or -CF 2 CF 2 CF 2 CF 3 Can be.
[화학식 32]  [Formula 32]
Figure imgf000010_0001
Figure imgf000010_0001
상기 화학식 32에서, 은 단일결합, -0-, -C0-, — S -, -S02-, - C(CH3)2-, -C(CF3)2—, -C0NH-, -C00-, -(CH2)nl -, -0(C¾)n20-, -0CH2-C(CH3)2- CH2O- 또는 ?|00(CH2)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고, ¾및 ¾ 는 서로 같거나 다를 수 있으며, 각각 수소, -CH3, - CH2C¾, -CH2CH2C¾CH3, -CF3, -CF2CF3, -CF2CF2CF3, 또는 -CF2CF2CF2CF3 일 수 있다. In Chemical Formula 32, is a single bond, -0-, -C0-, —S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 —, -C0NH-, -C00 -, - (CH 2) nl -, -0 (C¾) n2 0-, -0CH 2 -C (CH 3) 2 - CH2O- or |? 00 (CH 2) n3 and 0C0-, wherein nl, n2 and n3 is an integer of 1 to 10, respectively, ¾ and ¾ may be the same or different from each other, and hydrogen, -CH 3 , -CH 2 C¾, -CH 2 CH 2 C¾CH 3 , -CF 3 , -CF 2 CF 3 , -CF 2 CF 2 CF 3 , or -CF 2 CF 2 CF 2 CF 3 .
[화학식 33]  [Formula 33]
Figure imgf000010_0002
Figure imgf000010_0002
상기 화학식 33에서, L2 및 L3는 서로 같거나 다를 수 있으며, 각각 단일결합, -0—, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-, -C0NH-, -C00-, - (CH2)n厂, -0(C¾)n20—, -0CH2-C(CH3)2-CH20- 또는 -0C0(CH2)n30C()-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고, R2 및 ¾ 는 서로 같거나 다를 수 있으며 , 각각 수소, -(¾, -CH2CH3) -CH2CH2CH2CH3> _CF3, -CF2CF3> - CF2CF2CF3, 또는 -CF2CF2CF2CF3일 수 있다. In Chemical Formula 33, L 2 and L 3 may be the same as or different from each other, and each single bond, -0—, -CO—, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -C0NH-, -C00-,-(CH 2 ) n厂, -0 (C¾) n2 0—, -0CH 2 -C (CH 3 ) 2 -CH 2 0- or -0C0 (CH 2 ) n3 0C ()-, nl, n2 and n3 are each an integer of 1 to 10, R 2 and ¾ may be the same or different from each other, hydrogen,-(¾, -CH 2 CH 3 ) -CH 2 CH 2 CH 2 CH 3> _CF 3 , -CF 2 CF 3> -CF 2 CF 2 CF 3 , or -CF 2 CF 2 CF 2 CF 3 .
[화학식 34]
Figure imgf000011_0001
[Formula 34]
Figure imgf000011_0001
상기 화학식 34에서, L4, L5 및 L6는 서로 같거나 다를 수 있으며, 각각 단일결합, -0-, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-, -C0NHᅳ, - C00-, -(CH2)n厂, -0(CH2)n20—, -0CH2-C(CH3)2-CH20- 또는 -0C0(C¾)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고, , ¾ 및 R4는 서로 같거나 다를 수 있으며, 각각 수소, -CH3, -CH2CH3, -CH2CH2CH2CH3, -CF3, - CF2CF3, -CF2CF2CF3, 또는 -CF2CF2CF2CF3일 수 있다. In Formula 34, L 4 , L 5, and L 6 may be the same as or different from each other, and each single bond, -0-, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , -C0NH ᅳ, -C00-,-(CH 2 ) n厂, -0 (CH 2 ) n2 0—, -0CH 2 -C (CH 3 ) 2 -CH 2 0 Or -0C0 (C¾) n3 0C0-, nl, n2 and n3 are each an integer of 1 to 10, ¾ and R4 may be the same or different from each other, hydrogen, -CH 3 , -CH 2 CH 3 ,- It may be CF 2 CF 3, -CF 2 CF 2 CF 3, or -CF 2 CF 2 CF 2 CF 3 - CH 2 CH 2 CH 2 CH 3, -CF 3,.
특히 상기 화학식 1의 X이 하기 화학식 35의 2가 작용기인 경우, 상기 일 구현예의 연성 금속 적층체가 보다 낮은 유전율 및 낮은 수분 흡수율을 가질 수 있으며, 또한 높은 탄성도와 함께 최적화된 열팽창계수를 확보할 수 있다. 상기 X는 상기 화학식 1의 반복 단위 각각에서 같거나 다를 수 있다.  In particular, when X in Chemical Formula 1 is a divalent functional group in Chemical Formula 35, the flexible metal laminate of the embodiment may have a lower dielectric constant and a lower water absorption rate, and may also secure an optimized coefficient of thermal expansion with high elasticity. have. X may be the same as or different from each repeating unit of Formula 1.
[화학식 35]  [Formula 35]
Figure imgf000011_0002
Figure imgf000011_0002
상기 화학식 35에서, 및 R2 는 서로 같거나 다를 수 있으며 , 각각 - CH3, -CH2CH3, -CH2CH2CH2CH3( -CF3) — CF2CF3, -CF2CF2CF3) 또는 -CF2CF2CF2CF3 일 수 있다. In Formula 35, and R 2 may be the same as or different from each other, and-CH 3 , -CH 2 CH 3 , -CH 2 CH 2 CH 2 CH 3 ( -CF 3) — CF 2 CF 3 , -CF 2 CF 2 CF 3) or —CF 2 CF 2 CF 2 CF 3 .
한편, 상기 고분자 수지층은 상기 화학식 1의 반복 단위를 포함하는 폴리이미드 수지 20 내지 95 중량 ¾> 또는 40 내지 90 중량 및 잔량의 불소계 수지를 포함할 수 있다. 상기 불소계 수지의 함량이 너무 작으면 최종 제조되는 연성 금속 적층체가 층분히 낮은 유전율 또는 수분 흡수율을 확보하지 못할 수 있다. 또한, 상기 불소계 수지의 함량의 너무 크면, 상기 연성 금속 적층체의 기계적 물성이 저하되어 쉽게 찢어지거나 부서지는 등의 문제점을 가질 수 있고, 상기 연성 금속 적층체에 포함되는 고분자 수지층의 열팽창계수가크게 증가할 수 있다. On the other hand, the polymer resin layer may include a polyimide resin 20 to 95 weight ¾> or 40 to 90 weight and the remaining amount of the fluorine-based resin comprising a repeating unit of the formula (1). If the content of the fluorine-based resin is too small, the resulting soft metal laminate may not be able to secure a sufficiently low dielectric constant or moisture absorption rate. In addition, if the content of the fluorine-based resin is too large, the mechanical properties of the flexible metal laminate is lowered and easily torn or broken The thermal expansion coefficient of the polymer resin layer included in the flexible metal laminate may be greatly increased.
상기 불소계 수지는 폴리테트라 플루오로에틸렌 (PTFE), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체 (PFA), 테트라플루오르에틸렌-핵사플루오르프로필렌 공층합체 (FEP), 에틸렌- 테트라플루오로에틸렌 코폴리머 수지 (ETFE), 테트라플루오로에틸렌- 클로로트리플루오로에틸렌 공중합체 (TFE/CTFE) 및 에틸렌- 클로로트리플루오로에틸렌 수지 (ECTFE)로 이루어진 군에서 선택된 1종 이상을 포함하는 불소계 고분자를 포함할 수 있다.  The fluororesin is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkylvinylether copolymer (PFA), tetrafluoroethylene-nuclear fluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer It includes a fluoropolymer containing at least one selected from the group consisting of a polymer resin (ETFE), tetrafluoroethylene- chlorotrifluoroethylene copolymer (TFE / CTFE) and ethylene- chlorotrifluoroethylene resin (ECTFE) can do.
상기 불소계 수지는 0.05 Urn 내지 20 , 또는 0.1通 내지 10 의 최장 직경을 갖는 입자를 포함할 수 있다. 상기 불소계 수지의 최장 직경이 너무 작으면 불소계 수지의 표면적이 증가하여 상기 고분자 수지층의 물성이 저하되거나 후술하는 분산제의 첨가량을 높여야 할 수 있다. 또한, 상기 불소계 수지의 최장 직경이 너무 크면 제조되는 고분자 수지층의 표면 특성이 저하되거나 상기 고분자 수지층을 제조하기 위한 고분자 조성물 용액의 분산성이 저하될 수 있다.  The fluorine-based resin may include particles having a longest diameter of 0.05 Urn to 20, or 0.1 to 10 to 10. If the longest diameter of the fluorine-based resin is too small, the surface area of the fluorine-based resin may increase to decrease the physical properties of the polymer resin layer or increase the amount of the dispersant to be described later. In addition, when the longest diameter of the fluorine-based resin is too large, the surface properties of the polymer resin layer to be produced may be lowered or the dispersibility of the polymer composition solution for producing the polymer resin layer may be lowered.
한편, 상기 일 구현예의 연성 금속 적층체는 상기 고분자 수지층에 분산되어 있는 분산제를 더 포함할 수 았다.  Meanwhile, the flexible metal laminate of the embodiment may further include a dispersant dispersed in the polymer resin layer.
상기 고분자 수지층은 폴리아믹산, 불소계 수지 및 소정의 분산제를 포함하는 수지 조성물로부터 형성될 수 있으며, 상기 분산제를 사용함에 따라서 상기 불소계 수지가 상기 고분자 수지층 외부 표면에 비하여 고분자 수지 내부에 보다 많이 분포하거나, 상기 불소계 수지의 함량은 상기 고분자 수지층 내부로 갈수록 커지거나, 상기 고분자 수지층의 단위 부피당 상기 불소계 수지의 함량이 상기 고분자층 수지의 표면에서 최소가 될 수 있다.  The polymer resin layer may be formed from a resin composition comprising a polyamic acid, a fluorine resin, and a predetermined dispersant, and as the dispersant is used, the fluorine resin is more distributed in the polymer resin than the outer surface of the polymer resin layer. Alternatively, the content of the fluorine resin may be increased toward the inside of the polymer resin layer, or the content of the fluorine resin per unit volume of the polymer resin layer may be minimum on the surface of the polymer layer resin.
상기 분산제의 구체적인 예로는, 폴리에스테르계 고분자, 폴리에테르변성 폴리디메틸실록산, 폴리에스테르 /폴리아민 축합 중합체 또는 이들의 2종 이상의 흔합물을 들 수 있다. 이'러한 화합물을 사용함에 따라서, 상기 연성 금속 적층체에 포함되는 상기 고분자 수지층 내에서 상기 불소계 수지가 상술한 분포 양상을 될 수 있으며, 이에 따라 상기 연성 금속 적층체 또는 인쇄 회로 기판이 낮은 유전율 및 낮은 수분 흡수율을 가지면서도 높은 탄성도와 함께 최적화된 열팽창계수를 가질 수 있다. Specific examples of the dispersant include polyester-based polymers, polyether-modified polydimethylsiloxanes, polyester / polyamine condensation polymers or two or more kinds thereof. The 'according to the use of such compounds, may be a fluorine-based resin is the above-described distribution pattern in the number of the polymer resin contained in the flexible laminated body, whereby the depending Flexible metal laminates or printed circuit boards may have an optimized coefficient of thermal expansion with high elasticity while having low dielectric constant and low moisture absorption.
이전에는 폴리아믹산 또는 폴리이미드에 불소계 수지를 분산시키기 위하여 불소계 분산제나 불소계 계면활성제를 사용하는 방법이 알려져 있으나, 이러한 종래의 방법에 따르면 제조되는 고분자 수지층의 유전율은 다소 낮출 수 있으나, 상기 불소계 분산제나 불소계 계면활성제의 사용에 따라서 제조되는 고분자 수지층의 열팽창계수가 크게 증가할 수 있다.  Previously, a method of using a fluorine-based dispersant or a fluorine-based surfactant in order to disperse the fluorine-based resin in polyamic acid or polyimide is known, but according to the conventional method, the dielectric constant of the polymer resin layer manufactured may be somewhat lowered. The coefficient of thermal expansion of the polymer resin layer prepared according to the use of the agent or the fluorine-based surfactant may be greatly increased.
뿐만 아니라, 상기 불소계 분산제나 불소계 계면활성제를 사용하는 경우, 제조되는 폴리이미드 수지 등의 고분자 수지층에서 내부에 비하여 표면으로 불소계 수지가 몰리는 현상이 발행할 수 있고, 이러한 고분자 수지층을 연성 금속 적층체 또는 인쇄 회로 기판의 제조 과정에서 적용될 수 있는 고온, 예를 들어 적용되는 380oC 내외의 온도에 노출하면 상기 불소계 수지가 녹아버리거나 상기 연성 금속 적층체 또는 인쇄 회로 기판의 각 부분이 박리될 수 있다. In addition, when the fluorine-based dispersant or the fluorine-based surfactant is used, a phenomenon in which the fluorine-based resin is concentrated on the surface of the polymer resin layer, such as a polyimide resin, to be produced, may occur. Exposure to high temperatures that may be applied in the manufacture of sieves or printed circuit boards, for example around 380 o C, may cause the fluorine resin to melt or to exfoliate portions of the flexible metal laminate or printed circuit board. have.
이전에는 연성 금속 적층체에 적용되는 폴리이미드 등의 고분자 수지의 유전율을 낮추기 위해서 불소계 고분자 수지를 첨가하는 방법이 알려져 있으나, 대표적인 불소계 수지인 폴리테트라 플루오로에틸렌 (PTFE), 테트라플루오르에틸렌-핵사플루오르프로필렌 공중합체 (FEP) 및 퍼플루오로알콕시 (PFA)의 열팽창계수가 각각 135ppm, 150ppm 및 230ppm에 달하여 통상적인 폴리이미드가 갖는 열팽창계수인 10 내지 30ppm에 비하여 상당히 크며, 폴리이미드의 유전율을 층분히 낮추기 위해서 상기와 같은 불소 수지를 10 내지 60wt% 정도 넣어 주어야 하기 때문에 전체적인 열팽창계수가 커질 수 밖에 없다.  Previously, a method of adding a fluorine-based polymer resin in order to lower the dielectric constant of a polymer resin such as polyimide applied to a flexible metal laminate is known. However, polytetrafluoroethylene (PTFE) and tetrafluoroethylene-nucleofluoride, which are representative fluorine resins The thermal expansion coefficients of propylene copolymer (FEP) and perfluoroalkoxy (PFA) are 135ppm, 150ppm and 230ppm, respectively, which are considerably larger than those of 10 to 30ppm, which is the coefficient of thermal expansion of conventional polyimides. In order to lower the amount of the fluorine resin as described above 10 to 60wt%, the overall coefficient of thermal expansion is bound to increase.
상기 분산제는 20oC에서 0.92g/ml 내지 1.2g/ml, 또는 0.95g/ml 내지The dispersant is 0.92 g / ml to 1.2 g / ml, or 0.95 g / ml at 20 o C
1.15g/ml 의 밀도를 가질 수 있다. It may have a density of 1.15 g / ml.
상기 분산제는 20 내지 30 mg KOH/g 의 산가 (Ac id value)를 가질 수 있다.  The dispersant may have an acid value (Ac id value) of 20 to 30 mg KOH / g.
또한, 상기 분산제는 1000 내지 1700의 염기가 (Base equivalent)를 가질 수 있다. In addition, the dispersant has a base equivalent of 1000 to 1700 Can have.
상기 고분자 수지층은 상기 불소계 수지 100중량부 대비 상기 분산제 0.1중량부 내지 25중량부 또는 0.5 중량부 내지 10중량부를 포함할 수 있다.  The polymer resin layer may include 0.1 parts by weight to 25 parts by weight or 0.5 parts by weight to 10 parts by weight of the dispersant relative to 100 parts by weight of the fluorine resin.
상기 분산제-의 함량이 너무 작으면, 상기 불소계 수지가 서로 뭉치는 현상이 발생하여 상기 고분자 수지층의 외관 특성이나 균일도가 저하될 수 있으며, 상기 고분자 수지층의 제조를 위한 고분자 수지 조성물 용액의 균일도가 저하될 수 있다. 또한, 상기 분산제의 함량의 너무 크면, 상기 고분자 수지층의 탄성도나 기계적 물성이 저하될 수 있다.  If the content of the dispersing agent- is too small, the fluorine-based resin agglomeration may occur to reduce the appearance characteristics or uniformity of the polymer resin layer, uniformity of the polymer resin composition solution for the production of the polymer resin layer Can be lowered. In addition, when the content of the dispersant is too large, the elasticity or mechanical properties of the polymer resin layer may be lowered.
한편, 상기 연성 금속 적층체에 포함되는 고분자 수지층은 0.1zm 내지 100/皿, 또는 1/皿 내지 50 의 두께를 가질 수 있다.  On the other hand, the polymer resin layer included in the flexible metal laminate may have a thickness of 0.1zm to 100 / 皿, or 1 / 皿 to 50.
상기 연성 금속 적층체는 5 GHz에서의 건조 상태에서 2.2 내지 2.8, 또는 2.3 내지 2.7 의 유전율 (Dk)을 나타낼 수 있다. 통상의 폴리이미드 수지는 5 GHz에서의 건조 상태에서 3.0 이상의 유전율을 갖는 것이 일반적이였는데 반하여, 상기 일 구현예의 연성 적층 금속 적층판은 상술한 고분자 수지층을 포함함에 따라서 상대적으로 낮은 유전율을 가질 수 있다. 상기 연성 금속 적층체는 100°C 내지 200oC에서 lppm 내지 28ppm의 열팽창계수를 가질 수 있다. The flexible metal laminate may exhibit a dielectric constant (Dk) of 2.2 to 2.8, or 2.3 to 2.7 in a dry state at 5 GHz. In general, the polyimide resin has a dielectric constant of 3.0 or more in a dry state at 5 GHz, whereas the flexible laminated metal laminate of the embodiment may have a relatively low dielectric constant as described above with the polymer resin layer. The flexible laminated body may have a coefficient of thermal expansion of lppm to 28ppm at 100 ° C to 200 o C.
상술한 고분자 수지층은 상대적으로 낮은 열팽창계수, 예를 들어 lppm 내지 20ppm의 열팽창계수를 가질 수 있으며, 상기 고분자 수지층을 포함하거나 상기 고분자 수지층의 적어도 일면에 추가적인 폴리이미드층을 포함하는 연성 금속 적층체도 lppm 내지 28ppm, 또는 15 ppm 내지 25ppm의 열팽창계수를 가질 수 있다.  The polymer resin layer described above may have a relatively low coefficient of thermal expansion, for example, lppm to 20 ppm, and a flexible metal including the polymer resin layer or an additional polyimide layer on at least one surface of the polymer resin layer. The laminate may also have a coefficient of thermal expansion of lppm to 28 ppm, or 15 ppm to 25 ppm.
통상적으로 사용되는 금속박인 동박의 열팽창 계수가 약 18 ppm 내외이기 때문에, 상기 연성 금속 적층체의 열팽창계수를 상술한 범위로 하여야, 금속박과의 열팽창계수의 차이로부터 나타나는 휨 현상을 최소화 할 수 있으며, 인쇄 회로 기판을 이루는 기타 자재와의 신축 차이가 발생하는 현상을 최소화 할 수 있다.  Since the thermal expansion coefficient of copper foil, which is a commonly used metal foil, is about 18 ppm, the thermal expansion coefficient of the flexible metal laminate should be within the above-described range, so that warpage phenomenon resulting from the difference in thermal expansion coefficient with the metal foil can be minimized. Minimize the difference in expansion and contraction with other materials forming the printed circuit board.
한편, 상기 연성 금속 적층체는 구리, 철, 니켈, 티타늄, 알루미늄, 은, 금 및 이들의 2종 이상의 합금으로 이루어진 군에서 선택된 1종 이상을 포함한 금속 박막을 적어도 1개 이상 포함할 수 있다. On the other hand, the flexible metal laminate is copper, iron, nickel, titanium, aluminum, At least one metal thin film including at least one selected from the group consisting of silver, gold and two or more alloys thereof may be included.
구체적으로, 상기 연성 금속 적층체는 상기 금속 박막을 1개 포함할 수도 있으며, 상기 연성 금속 적층체는 서로 대향하는 상기 금속 박막 2개를 포함할 수 있고, 이 경우 상기 고분자 수지층은 상기 서로 대향하는 금속 박막 2개의 사이에 위치할 수 있다.  Specifically, the flexible metal laminate may include one metal thin film, and the flexible metal laminate may include two metal thin films that face each other, and in this case, the polymer resin layer may face each other. It may be located between two metal thin film.
상기 금속 박막 표면의 십점 평균조도 (RZ)가 0. 皿 내지 2.5Λΐι일 수 있다. 상기 금속 박막 표면의 십점 평균조도가 너무 작으면 상기 고분자 수지층과의 접착력이 낮아질 수 있으며, 상기 금속 박막 표면의 십점 평균조도가 너무 크면 표면 거칠기가 증가하여 고주파 영역에서 전송손실이 커질 수 있다. Ten-point average roughness (R Z ) of the surface of the metal thin film may be 0. 3 to 2.5Λΐι. If the ten point average roughness of the metal thin film surface is too small, the adhesive strength with the polymer resin layer may be low, and if the ten point average roughness of the metal thin film surface is too large, the surface roughness may increase to increase the transmission loss in the high frequency region.
상기 금속 박막은 0.1 내지 의 두께를 가질 수 있다.  The metal thin film may have a thickness of 0.1 to.
상술한 연성 금속 적층체는 상기 고분자 수지층의 적어도 1면에 형성된 폴리이미드 수지층을 더 포함할 수 있다.  The flexible metal laminate described above may further include a polyimide resin layer formed on at least one surface of the polymer resin layer.
구체적으로, 상기 연성 금속 적층체는 상기 고분자 수지층의 양 면에 결합된 제 2 및 제 3의 폴리이미드 수지를 더 포함할 수 있다. 상기 제 2 및 제 3의 폴리이미드 수지는 각각 상술한 폴리이미드 수지와 동일하거나 상이한 조성을 가질 수 있다.  Specifically, the flexible metal laminate may further include second and third polyimide resins bonded to both sides of the polymer resin layer. The second and third polyimide resins may each have the same or different composition as the above-described polyimide resin.
또한, 상기 제 2 및 제 3의 폴리이미드 수지는 상기 고분자 수지층과 동일하거나 상이한 두께를 가질 수 있으며, 0.1 내지 100/皿, 또는 내지 50/皿의 범위 내의 두께를 가질 수 있다.  In addition, the second and third polyimide resin may have the same or different thickness as the polymer resin layer, and may have a thickness in the range of 0.1 to 100 / 皿, or to 50 / 皿.
한편, 상술한 연성 금속 적층체의 제조 방법은 크게 제한되는 것은 아니며, 통상적으로 알려진 폴리이미드 수지의 합성 방법과 연성 금속 적층체의 제조 방법을사용할 수 있다.  In addition, the manufacturing method of the above-mentioned flexible metal laminated body is not restrict | limited significantly, Usually, the synthesis | combining method of a known polyimide resin, and the manufacturing method of a flexible metal laminated body can be used.
상기 고분자 수지층에 포함되는 폴리이미드 수지는 전구체인 폴리아믹산을 포함한 고분자 수지 용액을 도포 및 건조한 이후에, 250oC 내지 400oC의 고온에서 열처리하여 얻을 수 있다. The polyimide resin included in the polymer resin layer may be obtained by heat treatment at a high temperature of 250 ° C. to 400 ° C. after coating and drying a polymer resin solution including a polyamic acid as a precursor.
그리고, 상기 폴리이미드 수지의 전구체인 폴리아믹산은 테트라카르복실산 또는 이의 무수물과 디아민 화합물을 반웅시킴으로서 얻어질 수 있으며, 예를 들어 상기 화학식 21 내지 화학식 27로 이루어진 군에서 선택된 4가 작용기를 포함하는 테트라카르복실산 또는 이의 무수물과 상기 화학식 31 내지 34로 이루어진 군에서 선택된 2가 작용기를 포함하는 디아민 화합물을 반웅시킴으로서 얻어질 수 있다. In addition, the polyamic acid as a precursor of the polyimide resin reacts with tetracarboxylic acid or its anhydride and diamine compound. A diamine comprising a tetracarboxylic acid or an anhydride thereof including a tetravalent functional group selected from the group consisting of Formula 21 to Formula 27 and a divalent functional group selected from the group consisting of Formulas 31 to 34, for example. By reacting the compounds.
상기 폴리이미드의 전구체인 폴리아믹산, 불소 수지 및 분산제를 포함한 수지 조성물은 유기 용매를 포함할 수 있으며, 사용 가능한 유기 용매의 예가 크게 한정되는 것은 아니며, 예를 들어 N, Ν'- 디메틸포름아미드, Ν, Ν'-디메틸아세트아미드, Ν,Ν'-디에틸아세트아미드, Ν,Ν'-디메틸메톡시아세트아미드, Ν-메틸 -2-피롤리돈, Ν-메틸카프로락탐, 1, 3-디메틸 -2-이미다졸리돈, 1,2-디메록시에탄, 1,3-디옥세인, 1,4- 디옥세인, 피리딘, 피콜린, 디메틸설폭시디, 디메틀설폰, m-크레졸, P- 클로로페놀, 아니졸 등이 사용될 수 있으며, 단독 또는 2이상을 흔합하여 사용돨 수 있다. 이때 유기 용매의 사용 가능한 양은 상기 수지 조성물 전체 고형분의 2 내지 8배 정도를 사용할 수 있다.  The resin composition including a polyamic acid, a fluorine resin, and a dispersant, which is a precursor of the polyimide, may include an organic solvent, and examples of the organic solvent that can be used are not particularly limited. For example, N, N′-dimethylformamide, N, N'-dimethylacetamide, N, N'-diethylacetamide, N, N'-dimethylmethoxyacetamide, N-methyl-2-pyrrolidone, N-methyl caprolactam, 1, 3- Dimethyl-2-imidazolidone, 1,2-dimethoxyethane, 1,3-dioxane, 1,4-dioxane, pyridine, picoline, dimethyl sulfoxydi, dimethulfone, m-cresol, P- Chlorophenol, anisol, etc. may be used, and may be used alone or in combination of two or more. At this time, the usable amount of the organic solvent may use about 2 to 8 times the total solids of the resin composition.
【발명의 효과】  【Effects of the Invention】
본 발명에 따르면, 낮은 유전율 및 낮은 수분 흡수율을 가지면서도 높은 탄성도와 함께 최적화된 열팽창계수를 확보할 수 있는 연성 금속 적층체가 제공될 수 있다.  According to the present invention, there can be provided a flexible metal laminate having a low dielectric constant and a low water absorption rate, while ensuring an optimized coefficient of thermal expansion with high elasticity.
이에 따라, 본 발명은 최근 노트북, 컴퓨터, 휴대폰 등의 기기가 데이터 전송 속도가 증가하면서 초래되는 더ᅵ이터의 손실율 증가나 인쇄 회로 기판의 후막화, 인쇄 회로 기판에서의 회로의 협폭화에 대한 해결책으로서, 저유전율을 가지면서도 기존의 폴리이미드 절연체가 가지고 있는 고내열성 내화학성, 치수 안정성 등의 특성을 가지고 있는 저유전율 폴리이미드를 제조할 수 있는 방법올 제공한다.  Accordingly, the present invention is a solution to the increase in the data loss rate, the thickening of the printed circuit board, the narrowing of the circuit on the printed circuit board caused by the recent increase in data transmission speed of devices such as laptops, computers, mobile phones As a method, there is provided a method capable of producing a low dielectric constant polyimide having a low dielectric constant and having characteristics such as high heat resistance chemical resistance and dimensional stability of an existing polyimide insulator.
또한, 이러한 방법에 따라 제조된 저유전율 폴리이미드를 사용하여 저유전율 동박 적층판을 제조할 수 있는 방법을 제공한다. 이에 따라, 임피던스를 매칭하면서도 인쇄 회로 기판을 더욱 얇게 만들 수 있게 됨에 따라서 휴대용 전자 기기를 더욱 얇게 만들 수 있고, 인쇄 회로 기판의 선폭을 넓게 할 수 있으므로 PCB제조 회사의 불량율을 획기적으로 줄일 수 있어서 제조 비용 절감에 크게 기여할 수 있다. 【도면의 간단한 설명】 In addition, the present invention provides a method capable of producing a low dielectric constant copper foil laminate using a low dielectric constant polyimide prepared according to the above method. As a result, the printed circuit board can be made thinner while matching impedance, thereby making the portable electronic device thinner, and the line width of the printed circuit board can be widened, thereby significantly reducing the defect rate of the PCB manufacturing company. It can greatly contribute to cost reduction. [Brief Description of Drawings]
도 1은 실시예 8 에서 얻어진 동박 적층체의 단면 SEM사진 및 EDS 결과를 나타낸 것이다.  Figure 1 shows a cross-sectional SEM photograph and EDS results of the copper foil laminate obtained in Example 8.
도 2는 도 1의 적층체 단면 SEM사진을 확대하여 나타낸 것이다.  FIG. 2 is an enlarged cross-sectional SEM photograph of the laminate of FIG. 1.
【발명을 실시하기 위한 구체적인 내용】  [Specific contents to carry out invention]
발명을 하기의 실시예에서 보다 상세하게 설명한다. 단, 하기의 실시예는 본 발명을 예시하는 것일 뿐, 본 발명의 내용이 하기의 실시예에 의하여 한정되는 것은 아니다. [제조예: 폴리아믹산용액의 제조]  The invention is explained in more detail in the following examples. However, the following examples are merely to illustrate the invention, but the content of the present invention is not limited by the following examples. Preparation Example: Preparation of Polyamic Acid Solution
제조예 1: 불소계 수지를 포함한폴리아믹산용액의 제조 (P1)  Preparation Example 1 Preparation of Polyamic Acid Solution Containing Fluorine Resin (P1)
1L의 폴리에틸렌 용기 (PE bottle)에 질소를 충진하고, 디메틸아세트아미드 (Dimethylacetamide, DMAc) 765g, 폴리테트라 풀루오로에틸렌 마이크로 분말 (PTFE micro powder , 입자 크기: 0.1 내지 2.0um) 219g, 분산제로 폴리에스테르계 고분자 [산가 26 mg KOH/g, 염기가 1200] 10.95g 및 지름 2腿의 비드 (bead) 765g을 넣고, 고속 볼 밀링 (ball milling) 기기에서 교반하면서 PTFE를 분산시켰다. .  Nitrogen was charged in a 1 L PE bottle, 765 g of dimethylacetamide (DMAc), 219 g polytetra pulluloethylene micro powder (PTFE micro powder, particle size: 0.1 to 2.0 um), and poly with dispersant. 10.95 g of ester polymer [acid value 26 mg KOH / g, base value 1200] and 765 g of beads having a diameter of 2 mm were added thereto, and PTFE was dispersed while stirring in a high speed ball milling machine. .
500mL의 둥근 바닥 플라스크에 상기 PTFE가 분산된 용액 80g 디메틸아세트아미드 107g, 3,4,3',4'- 비페닐테트라카르복실릭디안하이드라이드 1.852g, 피로멜리틱 디언하이드리드 12.355g, 2,2'-디메틸 -4,4'-디아미노비페닐 5.453g, 2,2'- 비스 (트리플루오로메틸 )-4,4'-디아미노비페닐 12.340g을 넣고, 50°C에서 80 g dimethylacetamide 107 g, 3,4,3 ', 4'-biphenyltetracarboxylic dianhydride 1.852 g, pyromellitic dianhydride 12.355 g, 2 , 2'-dimethyl-4,4'-diaminobiphenyl 5.453g, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl 12.340g was added, at 50 ° C.
10시간 동안 질소를 흘려주면서 교반기를 사용하여 교반하면서 반웅시켜, 점도 25,000cps정도의 폴리아믹산 용액 (P1)을 얻었다. 제조예 2: 불소계 수지를 포함한 폴리아믹산용액의 제조 (P2) The reaction mixture was stirred with a stirrer while flowing nitrogen for 10 hours to obtain a polyamic acid solution (P1) having a viscosity of about 25,000 cps. Preparation Example 2 Preparation of Polyamic Acid Solution Containing Fluorine Resin (P2)
11» 폴리에틸렌 용기 (PE bottle)에 질소를 층진하고, 디메틸아세트아미드 (Dimethylacetamide, DMAc) 765g, 폴리테트라 플루오로에틸렌 마이크로 분말 (PTFE micro powder , 입자 크기: 0.1 내지 2.0um) 219g, 분산제로 폴리에스테르계 고분자 [산가 26 mg KOH/g, 염기가 1200] 10.95g 및 지름 2mm의 비드 (bead) 765g을 넣고, 고속 볼 밀링 (ball milling) 기기에서 교반하면서 PTFE를 분산시켰다. 11 »layered nitrogen in a PE bottle, 765 g of dimethylacetamide (DMAc), polytetrafluoroethylene micro powder, particle size: 0.1 to 2.0um) 219g, 10.95g of polyester polymer [acid value 26 mg KOH / g, base value 1200] and 2mm diameter bead 765g as a dispersant, PTFE was added while stirring in a high speed ball milling machine. Dispersed.
500mL의 등근 바닥 플라스크에 상기 PTFE가 분산된.용액 73g 디메틸아세트아미드 115g, 피로멜리틱 디언하이드리드 11.609g, 2,2'- 비스 (트리플루오로메틸 )-4, 4'-디아미노비페닐 17.391g을 넣고, 50°C에서 The PTFE was dispersed in a 500 mL back bottom flask. 73 g of solution 73 g dimethylacetamide, 11.609 g pyromellitic dianhydride, 2,2'-bis (trifluoromethyl) -4,4'-diaminobiphenyl 17.391g, at 50 ° C
10시간 동안 질소를 흘려주면서 교반기를 사용하여 교반하면서 반응시켜, 점도 100,000cps정도의 폴리아믹산 용액 (P2)을 얻었다. 제조예 3: 불소계 수지를 포함한폴리아믹산용액의 제조 (P3) The reaction was carried out using a stirrer while flowing nitrogen for 10 hours to obtain a polyamic acid solution (P2) having a viscosity of about 100,000 cps. Preparation Example 3 Preparation of Polyamic Acid Solution Containing Fluorine Resin (P3)
1L의 폴리에틸렌 용기 (PE bottle)에 질소를 충진하고, 디메틸아세트아미드 (Dimethylacetamide, DMAc) 765g, 폴리테트라 플루오로에틸렌 마이크로 분말 (PTFE micro powder, 입자 크기: 0.1 내지 2.0um) 219g, 분산제로 폴리에스테르계 고분자 [밀도 (20 ): 1.13 g/ml] 10.95g 및 지름 2画의 비드 (bead) 765g을 넣고, 고속 볼 밀링 (ball milling) 기기에서 교반하면서 PTFE를 분산시켰다.  1 L of PE bottle was filled with nitrogen, 765 g of dimethylacetamide (DMAc), 219 g of polytetrafluoroethylene micro powder (particle size: 0.1 to 2.0 um), polyester with dispersant 10.95 g of a system polymer (density (20): 1.13 g / ml) and 765 g of beads having a diameter of 2 mm were added thereto, and PTFE was dispersed while stirring in a high speed ball milling machine.
500mL의 등근 바닥 플라스크에 상기 PTFE가 분산된 용액 80g 디메틸아세트아미드 107g, 피로멜리틱 디언하이드리드 13.937g, 2,2'- 디메틸 4,4'—디아미노비페닐 (2,2'— dimethyl-4,4'- di amino bi henyl , m- TB-HG) 5.536g, 2, 2'-비스 (트리플루오로메틸 )ᅳ4,4'-디아미노비페닐  107 g of 80 g dimethylacetamide in which a solution of PTFE was dispersed in a 500 mL back bottom flask, 13.937 g pyromellitic dianhydride, 2,2'-dimethyl 4,4'-diaminobiphenyl (2,2'—dimethyl- 4,4'-diamino bihenyl, m-TB-HG) 5.536 g, 2,2'-bis (trifluoromethyl) ᅳ 4,4'-diaminobiphenyl
12.527g을 넣고, 50oC에서 10시간 동안 질소를 흘려주면서 교반기를 사용하여 교반하면서 반웅시켜, 점도 20,000cps정도의 폴리아믹산 용액 (P3)을 얻었다. 제조예 4: 폴리아믹산용액의 제조 (P4) 12.527 g was added and reacted with stirring using a stirrer while flowing nitrogen at 50 ° C. for 10 hours to obtain a polyamic acid solution (P3) having a viscosity of about 20,000 cps. Preparation Example 4 Preparation of Polyamic Acid Solution (P4)
500mL의 등근 바닥 플라스크에 디메틸아세트아미드 (Dimethylacetamide, DMAc) 187g, 피로멜리틱 디언하이드리드 (pyromellitic di anhydride, PMDA) 12.355g, 3,4,3',4'- 비페닐테트라카르복실릭디안하이드라이드 (BPDA) 1.852g, 2, 2' -디메틸- 4,4'—디아미노비페닐 (2,2'-dimethyl-4,4'_ diamino bi henyl , m-TB-HG)187g of dimethylacetamide (DMAc), 12.355g of pyromellitic di anhydride (PMDA) in 500mL back-bottom flask, 3,4,3 ', 4'- Biphenyltetracarboxylic dianhydride (BPDA) 1.852g, 2, 2'-dimethyl-4,4'—diaminobiphenyl (2,2'-dimethyl-4,4'_ diamino bihenyl, m- TB-HG)
5.453g, 2,2'-비스 (트리플루오로메틸 )-4,4'ᅳ디아미노비페닐 (2,2'-TFDB) 5.453 g, 2,2'-bis (trifluoromethyl) -4,4 'ᅳ diaminobiphenyl (2,2'-TFDB)
12.340g을 넣고 50oC에서 10시간 동안 질소를 홀려주면서 교반기를 사용하여 교반하면서 반응시켜, 약 20,000cps정도의 점도를 갖는 폴리아믹산 용액 (P4)을 얻었다. 제조예 5: 폴리아믹산용액의 제조 (P5) 12.340 g was added and reacted with stirring using a stirrer while blowing nitrogen at 50 ° C. for 10 hours to obtain a polyamic acid solution (P4) having a viscosity of about 20,000 cps. Preparation Example 5 Preparation of Polyamic Acid Solution (P5)
500mL의 등근 바닥 플라스크에 디메틸아세트아미드 (Dimethylacetamide, DMAc) 200g, 피로멜리틱 디언하이드리드 (pyromellitic di anhydride, PMDA) lO.OOg, 200 g of dimethylacetamide (DMAc), pyromellitic di anhydride (PMDA) lO.OOg, in a 500 mL back-bottom flask
([아미노페녹시] -페닐)프로판 (BAPP) 18.82g을 넣고, 50°C에서 10시간 동안 질소를 홀려주면서 교반기를 사용하여 교반하면서 반웅시켜, 약 5,000cps정도의 점도를 갖는 플리아믹산 용액 (P5)을 얻었다. 제조예 6: 폴리아믹산용액의 제조 (P6) 18.82 g of ([aminophenoxy] -phenyl) propane (BAPP) was added, and the reaction mixture was stirred using a stirrer while nitrogen was poured at 50 ° C. for 10 hours, and a plymic acid solution having a viscosity of about 5,000 cps. (P5) was obtained. Preparation Example 6 Preparation of Polyamic Acid Solution (P6)
500mL의 등근 바닥 플라스크에 디메틸아세트아미드 (Dimethylacetamide, DMAc) 200g, 3,4,3',4'- 비페닐테트라카르복실릭디안하이드라이드 (BPDA) 26.65g, p-페닐렌 디아민 (PDA) 9.98g을 넣고, 50°C에서 10시간 동안 질소를 흘려주면서 교반기를 사용하여 교반하면서 반웅시켜, 약 5,000cps정도의 점도를 갖는 폴리아믹산 용액 (P6)을 얻었다. 제조예 7: 불소계 수지를포함한폴리아믹산용액의 제조 (P7)  Dimethylacetamide (DMAc) 200 g, 3,4,3 ', 4'-biphenyltetracarboxylic dianhydride (BPDA) 26.65 g, p-phenylene diamine (PDA) in a 500 mL back bottom flask 9.98 g was added and reacted with stirring using a stirrer while flowing nitrogen at 50 ° C. for 10 hours to obtain a polyamic acid solution (P6) having a viscosity of about 5,000 cps. Preparation Example 7 Preparation of Polyamic Acid Solution Containing Fluorine Resin (P7)
1L의 폴리에틸렌 용기 (PE bottle)에 질소를 충진하고, 디메틸아세트아미드 (Dimethylacetamide, DMAc) 765g, 폴리테트라 플루오로에틸렌 마이크로 분말 (PTFE micro powder , 입자 크기: 0.1 내지 2.0um) 219g, 분산제로 폴리에스테르계 고분자 [산가 26 mg K0H/g, 염기가 1200] 10.95g 및 지름 2mm의 비드 (bead) 765g을 넣고, 고속 볼 밀링 (ball milling) 기기에서 교반하면서 PTFE를 분산시켰다. 1 L of PE bottle was filled with nitrogen, 765 g of dimethylacetamide (DMAc), 219 g of polytetrafluoroethylene micro powder (PTFE micro powder, particle size: 0.1 to 2.0 um), polyester with dispersant Type Polymer [acid value 26 mg K0H / g, base value 10.95 g and 765 g of beads having a diameter of 2 mm were added, and PTFE was dispersed while stirring in a high speed ball milling machine.
500mL의 둥근 바닥 플라스크에 상기 PTFE가 분산된 용액 7 에 디메틸아세트아미드 (Dimethylacetamide, DMAc) 112g, 3,4,3',4'- 비페닐테트라카르복실릭디안하이드라이드 (BPDA) 21.817g, p-페닐렌 디아민 (PDA) 8.183g을 넣고, 50°C에서 10시간 동안 질소를 홀려주면서 교반기를 사용하여 교반하면서 반웅시켜, 약 35,000cps정도의 점도를 갖는 폴리아믹산 용액 (P7)을 얻었다. [실시예 1내지 3 및 비교예 1 내지 3: 연성 금속 적층체용 폴리이미드 수지 필름의 제조]  Dimethylacetamide (DMAc) 112 g, 3,4,3 ', 4'-biphenyltetracarboxylic dianhydride (BPDA) 21.817 g, p in a solution of PTFE dispersed in a 500 mL round bottom flask 7 8.183 g of -phenylene diamine (PDA) was added thereto, and the reaction mixture was stirred with a stirrer while giving nitrogen at 50 ° C. for 10 hours to obtain a polyamic acid solution (P7) having a viscosity of about 35,000 cps. [Examples 1 to 3 and Comparative Examples 1 to 3: Preparation of Polyimide Resin Film for Flexible Metal Laminate]
실시예 1 내지 3  Examples 1 to 3
상기 제조예 1 내지 3에서 각각 제조한 폴리아믹산 용액을 최종 두께가 25um가 되도록 동박 (두께: 12 )의 Matte면에 코팅한 후 80°C에서 10분간 건조하였다. 상기 건조 제품을 질소 오븐에서 상온에서부터 승온을 시작하여 350°C에서 30분간 경화를 진행하였다. 상기 경화가 완료된 후, 상기 동박을 에칭하여 25um의 두께의 폴리이미드 필름을 제조하였다. 실시예 4  The polyamic acid solutions prepared in Preparation Examples 1 to 3 were coated on a Matte surface of copper foil (thickness: 12) so that the final thickness was 25 μm, and then dried at 80 ° C. for 10 minutes. The dried product was started at room temperature in a nitrogen oven to proceed with curing at 350 ° C. for 30 minutes. After the curing was completed, the copper foil was etched to prepare a polyimide film having a thickness of 25 μm. Example 4
상기 제조예 1에서 제조한 폴리아믹산 용액 (P1) 대신에 상기 제조예 7에서 각각 제조한 폴리아믹산 용액 (P7)을 사용한 점을 제외하고 실시예 1과 동일한 방법으로 25um의 두께의 플리이미드 필름을 제조하였다. 비교예 1 내지 3  Instead of the polyamic acid solution (P1) prepared in Preparation Example 1, except that the polyamic acid solution (P7) prepared in Preparation Example 7 was used, a plyimide film having a thickness of 25 μm was prepared in the same manner as in Example 1. Prepared. Comparative Examples 1 to 3
상기 제조예 1 내지 3에서 제조된 폴리아믹산 용액 대신에 상기 제조예 4 내지 및 6에서 각각 얻어진 폴리아믹산 용액을 사용한 점을 제외하고, 상기 실시예 1과 동일한 방법으로 25um의 두께의 폴리이미드 필름을 제조하였다. Polyimide having a thickness of 25 μm in the same manner as in Example 1, except that the polyamic acid solution obtained in Preparation Examples 4 to 6 was used instead of the polyamic acid solution prepared in Preparation Examples 1 to 3, respectively. A film was prepared.
[실시예 5내지 10 및 비교예 4: 연성 금속 적층체의 제조] [Examples 5 to 10 and Comparative Example 4: Preparation of Flexible Metal Laminate]
실시^ ]5  Implementation ^] 5
상기 제조예 5에서 제조한 폴리아믹산 용액 (P5)을 최종 두께가 2um가 되도록 동박 (두께: i /m)의 Matte면에 코팅한 후 80°C에서 10분간 건조하였다. 그 위에 상기 제조예 1에서 제조한 폴리아믹산 용액 (P1)을 최종 두께가 20um가 되도록 코팅한 후 80°C에서 10분간 건조하였다. 그리고, 상기 폴리아믹산 용액 (P1)의 건조물 표면에, 상기 제조예 5에서 제조한 폴리아믹산 용액 (P5)을 최종 두께가 3um가 되도록 코팅한 후 80°C에서 10분간 건조하여 적층체를 제조하였다.  The polyamic acid solution (P5) prepared in Preparation Example 5 was coated on a Matte surface of a copper foil (thickness: i / m) so that the final thickness is 2um and dried at 80 ° C for 10 minutes. The polyamic acid solution (P1) prepared in Preparation Example 1 thereon was coated to a final thickness of 20um and then dried at 80 ° C for 10 minutes. Then, the polyamic acid solution (P1) on the surface of the dried product, the polyamic acid solution (P5) prepared in Preparation Example 5 was coated to a final thickness of 3um and then dried at 80 ° C. for 10 minutes to prepare a laminate. .
상기 건조된 적층체를 질소 오븐에서 상온에서부터 승온을 시작하여 350oC에서 30분간 경화하여 표면 중 하나의 면이 동박으로 되어 있는 연성 동박 적층판을 제조하였다. 실시예 6 내지 7 The dried laminate was heated at room temperature in a nitrogen oven, and cured at 350 ° C. for 30 minutes to produce a flexible copper foil laminate having one surface of the copper foil. Examples 6-7
상기 제조예 1에서 제조한 폴리아믹산 용액 (P1) 대신에 상기 제조예 2 및 제조예 3에서 각각 제조한 폴리아믹산 용액 (P2 및 P3)를 사용한 점을 제외하고, 실시예 5와 동일한 방법으로 표면 중 하나의 면이 동박으로 되어 있는 연성 동박 적층판을 제조하였다. 실시예 8  The surface was the same as in Example 5 except for using the polyamic acid solutions (P2 and P3) prepared in Preparation Example 2 and Preparation Example 3 instead of the polyamic acid solution (P1) prepared in Preparation Example 1. The flexible copper foil laminated board which one side is made of copper foil was manufactured. Example 8
상기 제조예 5에서 제조한 폴리아믹산 용액 (P5)을 최종 두께가 2um가 되도록 동박 (두께: 12zm)의 Matte면에 코팅한 후 80°C에서 10분간 건조하였다. 그 위에 상기 제조예 1에서 제조한 폴리아믹산 용액 (P1)을 최종 두께가 20um가 되도록 코팅한 후 80oC에서 10분간 건조하였다. 그리고, 상기 폴리아믹산 용액 (P1)의 건조물 표면에, 상기 합성예 5에서 제조한 폴리아믹산 용액 (P5)을 최종 두께가 3um가 되도록 코팅한 후 80oC에서The polyamic acid solution (P5) prepared in Preparation Example 5 was coated on a Matte surface of copper foil (thickness: 12zm) so that the final thickness is 2um, and dried at 80 ° C for 10 minutes. The polyamic acid solution (P1) prepared in Preparation Example 1 was coated thereon to have a final thickness of 20 μm, and then dried at 80 ° C. for 10 minutes. And, on the surface of the dried product of the polyamic acid solution (P1), prepared in Synthesis Example 5 The polyamic acid solution (P5) was coated to a final thickness of 3 μm and then at 80 o C
10분간 건조하여 적층체를 제조하였다. It dried for 10 minutes and manufactured the laminated body.
상기 건조된 적층체를 질소 오본에서 상온에서부터 승온을 시작하여 350oC에서 30분간 경화한 이후에, 상기 동박과 대향되도록 상기 경화물의 다른 일면에 동박 (두께: 1 ΛΙΙ)을 400°C의 온도에서 접합하여, 양면에 동박이 결합된 연성 동박 적층판을 제조하였다. 실시예 9 내지 10 After drying the dried laminate at room temperature in nitrogen Aubon for 30 minutes at 350 o C, the copper foil (thickness: 1 ΛΙΙ) on the other side of the cured product so as to face the copper foil at a temperature of 400 ° C. It bonded by and manufactured the flexible copper foil laminated board which copper foil was bonded to both surfaces. Examples 9-10
상기 제조예 1에서 제조한 폴리아믹산 용액 (P1) 대신에 상기 제조예 2 및 제조예 3에서 각각 제조한 폴리아믹산 용액 (P2 및 P3)를 사용한 점을 제외하고, 실시예 8과 동일한 방법으로 양면에 동박이 결합된 연성 동박 적층판을 제조하였다. 실시예 11  Except for using the polyamic acid solution (P2 and P3) prepared in Preparation Example 2 and Preparation Example 3 instead of the polyamic acid solution (P1) prepared in Preparation Example 1, both sides in the same manner as in Example 8 The flexible copper foil laminated board which copper foil was bonded to was manufactured. Example 11
상기 제조예 1에서 제조한 폴리아믹산 용액 (P1) 대신에 상기 제조예 7에서 각각 제조한 폴리아믹산 용액 (P7)을 사용한 점을 제외하고, 실시예 8과 동일한 방법으로 양면에 동박이 결합된 연성 동박 적층판을 제조하였다. [실험예]  Except for using the polyamic acid solution (P7) prepared in Preparation Example 7 instead of the polyamic acid solution (P1) prepared in Preparation Example 1, the same flexibility as the copper foil on both sides in the same manner as in Example 8 The copper foil laminated board was manufactured. Experimental Example
1. 실험예 1: 연성 금속 적충체의 단면 관찰  Experimental Example 1 Observation of the Cross-section of a Soft Metal Red Lump
상기 실시예 8에서 얻어진 동박 적충판의 단면을 SEM사진을 통하여 확인하였다.  The cross section of the copper foil crushing plate obtained in the said Example 8 was confirmed through the SEM photograph.
하기 도 1 및 도 2에서 나타난 바와 같이, 상기 실시예 8에서 제조된 연성 금속 적층체의 폴리이미드 수지층에는 불소계 수지가 외부 표면에 비하여 수지 내부에 보다 많이 분포한다는 점이 확인되었다.  As shown in FIG. 1 and FIG. 2, it was confirmed that fluorine-based resin was more distributed inside the resin than the outer surface in the polyimide resin layer of the flexible metal laminate prepared in Example 8.
뿐만 아니라, 연성 금속 적층체의 폴리이미드 수지층 표면으로부터 일정 깊이까지, 예를 들어 상기 고분자 수지층의 표면으로부터 전체 두께의 약 20%까지는 불소 수지 함량이 계속 증가한다는 점이 확인되었다. 2. 실험예 2: 연성 금속 적충체의 물성 측정 In addition, it was confirmed that the fluorine resin content continued to increase from the surface of the polyimide resin layer of the flexible metal laminate to a certain depth, for example, up to about 20% of the total thickness from the surface of the polymer resin layer. 2. Experimental Example 2: Measurement of Physical Properties of Ductile Metal Lumps
상기 실시예 및 비교예에서 얻어진 동박 적층판에 대하여 유전 상수, Dielectric constant for the copper foil laminate obtained in the above Examples and Comparative Examples,
CTE 및 흡수율을 다음과 같은 측정하여 그 결과를 하기 표 1에 기재하였다. CTE and water absorption were measured as follows, and the results are shown in Table 1 below.
(1) 유전 상수 측정 방법 (1) dielectric constant measurement method
실시예 1내지 3 및 비교예 1 내지 3에서 얻어진 폴리이미드 필름 및 실시예 4 내지 11에서 얻어진 연성 동박 적층판에서 동박을 에칭하여 제거한 폴리이미드 필름 적층체를 150oC에서 30분간 건조하고, 각각의 폴리이미드 필름 또는 폴리이미드 필름 적층체의 유전율을 SPDR(split post dielectric resonance) 방법으로, 25°C 및 50%RH 의 조건에서, AgiletnThe polyimide film laminate obtained by etching the copper foil in the polyimide film obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and the flexible copper foil laminate obtained in Examples 4 to 11 was dried at 150 ° C. for 30 minutes, and The dielectric constant of the polyimide film or the polyimide film laminate was measured using a split post dielectric resonance (SPDR) method at 25 ° C. and 50% RH.
E5071B ENA장치를 이용하여, Resonator를 이용하여 측정하였다. The measurement was performed using a Resonator using an E5071B ENA apparatus.
(2) 선열팽창계수 (CTE) 측정 방법 (2) How to measure the coefficient of thermal expansion (CTE)
실시예 1내지 3 및 비교예 1 내지 3에서 얻어진 폴리이미드 필름의 선열팽창계수 및 실시예 4 내지 11에서 얻어진 연성 동박 적층판에서 동박을 에칭하여 제거한 폴리이미드 필름 적층체의 선열팽창계수를 IPC TM- The linear thermal expansion coefficients of the polyimide films obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and the linear thermal expansion coefficients of the polyimide film laminates obtained by etching copper foil from the flexible copper foil laminates obtained in Examples 4 to 11 were obtained from IPC TM-.
650 2.4.24.3의 기준을 바탕으로 100°C 내지 200oC 측정 조건에서 650 at 100 ° C to 200 ° C measurement conditions, based on 2.4.24.3
Mettler사의 TMA/SDTA 840 기기를 이용하여 측정하였다.  Measurements were made using a TMA / SDTA 840 instrument from Mettler.
(3) 흡수율 측정 방법 (3) Absorption rate measurement method
실시예 1내지 3 및 비교예 1 내지 3에서 얻어진 폴리이미드 필름의 흡수율 및 실시예 4 내지 11에서 얻어진 연성 동박 적층판에서 동박을 에칭하여 제거한 폴리이미드 필름 적층체의 흡수율을 IPC TM-650 2.6.2C의 기준을 바탕으로 230C의 증류수에 24시간 동안 침적시켜서, 상기 침적 전후의 측정 대상물의 질량을 측정하여 흡수율을 산정하였다. The absorption rate of the polyimide film obtained in Examples 1 to 3 and Comparative Examples 1 to 3 and the absorption rate of the polyimide film laminate obtained by etching copper foil from the flexible copper foil laminates obtained in Examples 4 to 11 were IPC TM-650 2.6.2C It was immersed in distilled water of 23 0 C for 24 hours based on the criterion of, and the water absorption was calculated by measuring the mass of the measurement object before and after the deposition.
[표 1] 실험예 2의 측정 결과 Table 1 Measurement Results of Experimental Example 2
Figure imgf000024_0001
Figure imgf000024_0001
* 상기 표 1에서, 실시예 5 내지 11의 폴리아믹산의 조성은 연성 동박 적층판의 폴리이미드 필름들 중 중간층에 위치한 폴리이미드 필름의 전구체에 관한 것이다. 상기 표 1에 나타난 바와 같이, 실시예 1 내지 3에서 얻어진 폴리이미드 필름은 비교예 1 내지 3의 폴리이미드 필름에 비하여 낮은 유전상수 및 낮은 흡수율을 가지면서도, 적정 범위 (예를 들어, lppm 내지 20ppm)의 열팽창계수를 갖는다는 점이 확인되었다.  * In Table 1, the composition of the polyamic acid of Examples 5 to 11 relates to the precursor of the polyimide film located in the middle layer of the polyimide films of the flexible copper foil laminate. As shown in Table 1, the polyimide film obtained in Examples 1 to 3 has a low dielectric constant and low water absorption, but also in a suitable range (for example, lppm to 20 ppm) as compared to the polyimide films of Comparative Examples 1 to 3. It was confirmed that it has a coefficient of thermal expansion of.
이에 반하여, 비교예 1 내지 3의 폴리이미드 필름은 상대적으로 높은 유전율 (예를 들어, 2.8 이상 또는 3.0이상)과 높은 흡수율 (예를 들어, 1.5% 이상)을 갖는다는 점이 확인되었다.  In contrast, it was confirmed that the polyimide films of Comparative Examples 1 to 3 had relatively high dielectric constants (for example, 2.8 or more or 3.0 or more) and high absorption rates (for example, 1.5% or more).
한편, 실시예 5 내지 11에서 제조되는 동박 금속 적층체의 경우, 2.80이하의 유전 상수 및 1.2이하의 흡수율을 확보하면서도, 동박을 제외한 적층 구조의 열팽창계수를 18ppm 내지 28ppm의 범위로 조절할 수 있다는 점이 확인되었다.  Meanwhile, in the case of the copper foil metal laminates prepared in Examples 5 to 11, the dielectric constant of 2.80 or less and the absorption rate of 1.2 or less can be secured, while the thermal expansion coefficient of the laminated structure excluding copper foil can be adjusted in the range of 18 ppm to 28 ppm. Confirmed.
특히, 특정의 단량체를 사용하여 합성한 폴리아믹산으로부터 얻어지는 폴리이미드 필름을 포함하는 경우 (실시예 5 내지 10), 적절한 열팽창계수를 유지하면서도 유전 상수 및 흡수율을 보다 낮게 확보할 수 있다는 점이 확인되었다 In particular, when including a polyimide film obtained from a polyamic acid synthesized using a specific monomer (Examples 5 to 10), it is possible to ensure a lower dielectric constant and water absorption while maintaining an appropriate coefficient of thermal expansion. Has been confirmed

Claims

【특허 청구범위】 [Patent Claims]
【청구항 1】  [Claim 1]
하기 화학식 1의 반복 단위를 포함하는 폴리 이미드 수지 및 불소계 수지를 포함한 고분자 수지충을 포함하고,  To include a polymer resin containing a polyimide resin and a fluorine-based resin comprising a repeating unit of the formula (1),
상기 불소계 수지가 상기 고분자 수지층의 표면에 비하여 상기 고분자 수지층의 내부에 보다 많이 분포하는, 연성 금속 작층체 :  The fluorine-based resin is more distributed in the interior of the polymer resin layer than the surface of the polymer resin layer, soft metal laminate:
[화학식 1]  [Formula 1]
Figure imgf000026_0001
Figure imgf000026_0001
상기 화학식 1에서, Yr 4가의 방향족 유기 작용기 이고, X는 2가의 방향족 유기 작용기 이고, 상기 n 은 1 내지 300의 정수이다.  In Chemical Formula 1, Yr is a tetravalent aromatic organic functional group, X is a divalent aromatic organic functional group, and n is an integer of 1 to 300.
【청구항 2】 [Claim 2]
제 1항에 있어서,  The method of claim 1,
상기 고분자 수지층의 표면으로부터 전체 두께의 20%까지 상기 고분자 수지층의 단위 부피당 상기 불소계 수지의 함량이 깊이 에 따라 증가하는, 연성 금속 적층체 .  The content of the fluorine-based resin per unit volume of the polymer resin layer increases with depth from the surface of the polymer resin layer to 20% of the total thickness, soft metal laminate.
【청구항 3] [Claim 3]
제 2항에 있어서,  The method of claim 2,
상기 고분자 수지층의 단위 부피 당 상기 불소계 수지의 함량이 상기 고분자 수지층의 표면에서 최소인, 연성 금속 적층체 .  A flexible metal laminate, wherein the content of the fluorine-based resin per unit volume of the polymer resin layer is minimum at the surface of the polymer resin layer.
【청구항 4】 [Claim 4]
제 2항에 있어서,  The method of claim 2,
상기 고분자 수지층의 표면으로부터 전체 두께의 20%의 깊이에서, 상기 고분자 수지층의 단위 부피당 상기 폴리이미드 수지: 상기 불소계 수지의 중량비가 100:0 내지 60:40인, 연성 금속 적층체. At a depth of 20% of the total thickness from the surface of the polymer resin layer, The flexible metal laminate of claim 1, wherein the weight ratio of the polyimide resin: fluorine-based resin per unit volume of the polymer resin layer is 100: 0 to 60:40.
【청구항 5】 [Claim 5]
게 2항에 있어서,  According to claim 2,
상기 고분자 수지층의 전체 두께의 40 내지 60%의 깊이에서, 상기 고분자 수지층의 단위 부피당 상기 폴리이미드 수지: 상기 불소계 수지의 중량비가 75:25 내지 25 :75인 , 연성 금속 적층체 .  And a weight ratio of the polyimide resin: fluorine-based resin per unit volume of the polymer resin layer at a depth of 40 to 60% of the total thickness of the polymer resin layer is 75:25 to 25:75.
【청구항 6】 [Claim 6]
제 1항에 있어서,  The method of claim 1,
상기 Yi은 하기 화학식 21 내지 화학식 27로 이루어진 군에서 선택된 4가 작용기인, 연성 금속 적층체 :  Yi is a tetravalent functional group selected from the group consisting of Formula 21 to Formula 27, a flexible metal laminate:
[화학식 21]  [Formula 21]
Figure imgf000027_0001
상기 화학식 22에서, 은 단일결합, -0-, -CO-, -S -, -S02-, - C(C¾)2ᅳ, -C(CF3)2ᅳ, -C0NH-, -C00-, — (C¾)nl―, — 0((¾)η20-, 또는 - 0C0(C¾)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고,
Figure imgf000027_0001
In Formula 22, is a single bond, -0-, -CO-, -S-, -S0 2- , -C (C¾) 2 ᅳ, -C (CF 3 ) 2 ᅳ, -C0NH-, -C00- , — (C¾) nl — , — 0 ((¾) η2 0-, or −0C0 (C¾) n3 0C0-, wherein nl, n2 and n3 are each an integer from 1 to 10,
[화학식 23]
Figure imgf000028_0001
상기 화학식 23에서, Y2 및 Υ3는 서로 같거나 다를 수 있으며, 각각 단일결합, -0-, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-, -C0NH-, -C00-, - (C¾)nl -, -0(CH2)n20-, 또는 ¾00(C¾)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고,
[Formula 23]
Figure imgf000028_0001
In Formula 23, Y 2 And Υ 3 It may be the same or different from each other, each a single bond, -0-, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3) 2 -, -C0NH- , -C00-, - (C¾) nl -, -0 (CH 2) n2 is 0-, or ¾00 (C¾) n3 0C0-, wherein nl, n2 and n3 are each An integer of 1 to 10,
Figure imgf000028_0002
상기 화학식 24에서, Υ4, Υ5 및 Υ6는 서로 같거나 다를 수 있으며 , 각각 단일결합, -0-, -C0-, ᅳ S -, -S02-, -C(C¾)2-, -C(CF3)2—, -C0NH-, - C00-, -(CH2)ni-, -0(CH2)n20-, 또는 -0C0(C¾)n30(D-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고,
Figure imgf000028_0002
In Formula 24, Υ 4 , Υ 5 and Υ 6 may be the same as or different from each other, each a single bond, -0-, -C0-, ᅳ S-, -S0 2- , -C (C¾) 2- , -C (CF 3 ) 2 —, -C0NH-, -C00-,-(CH 2 ) ni-, -0 (CH 2 ) n2 0-, or -0C0 (C¾) n3 0 ( D-, wherein nl , n2 and n3 are each an integer of 1 to 10,
[화학식 25]  [Formula 25]
Figure imgf000028_0003
Figure imgf000028_0003
[화학식 26] [Formula 26]
Figure imgf000029_0001
Figure imgf000029_0001
상기 화학식 21 내지 27에서, '*'은 결합점 (bonding point)을 의미한다.  In Formulas 21 to 27, '*' means a bonding point.
【청구항 7】 [Claim 7]
제 1항에 있어서,  The method of claim 1,
상기 ^은 하기 화학식 28 내지 30으로 이루어진 군에서 선택된 4가 작용기인, 연성 금속 적층체:  The ^ is a tetravalent functional group selected from the group consisting of Formulas 28 to 30, a flexible metal laminate:
[화학식 28]  [Formula 28]
Figure imgf000029_0002
[화학식 30]
Figure imgf000029_0002
[Formula 30]
Figure imgf000030_0001
상기 화학식 28 내지 30에서, 은 결합점 (bonding point)을 의미한다.
Figure imgf000030_0001
In Chemical Formulas 28 to 30, means a bonding point (bonding point).
【청구항 8】 [Claim 8]
제 1항에 있어서,  The method of claim 1,
상기 X는 하기 화학식 31 내지 34로 이루어진 군에서 선택된
Figure imgf000030_0002
작용기인, 연성 금속 적층체:
X is selected from the group consisting of
Figure imgf000030_0002
Functional group, flexible metal laminate:
[화학식 31]  [Formula 31]
Figure imgf000030_0003
Figure imgf000030_0003
상기 화학식 31에서, Rr 수소, -(¾, -CH2CH3, -CH2CH2C¾CH3, -CF3, CF2CF3, -CF2CF2CF3> 또는 -CF2CF2CF2CF3이고, In Formula 31, Rr hydrogen,-(¾, -CH 2 CH 3 , -CH 2 CH 2 C¾CH 3 , -CF 3 , CF 2 CF 3 , -CF 2 CF 2 CF 3> or -CF 2 CF 2 CF 2 CF 3 ,
[화학식 32]  [Formula 32]
Figure imgf000030_0004
Figure imgf000030_0004
상기 화학식 32에서, 은 단일결합, -0-, -co-, -s-, -so2-, - C(C¾)2-, -C(CF3)2-, -C0NH-, -C00-, -(C¾)nl -, -0(CH2)n20-, -0CH2-C(CH3)2- CH20- 또는 ¾|00(CH2)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고, - ¾및 R2 는 서로 같거나 다를 수 있으며, 각각 수소, ᅳ C¾, -CH2CH; -CH2C¾CH2CH3, -CF3, -CF2CF3) -CF2CF2CF3) 또는 — CF2CF2CF2CF3이고, In Chemical Formula 32, is a single bond, -0-, -co-, -s-, -so 2- , -C (C¾) 2- , -C (CF 3 ) 2- , -C0NH-, -C00- , - (C¾) nl -, -0 (CH 2) n2 0-, -0CH 2 -C (CH 3) 2 - CH 2 0- or ¾ | 00 (CH 2) n3 and 0C0-, wherein nl, n2 And n3 are each an integer of 1 to 10, ¾ and R 2 may be the same or different from each other, hydrogen, , C¾, —CH 2 CH; -CH 2 C¾CH 2 CH 3 , -CF 3 , -CF 2 CF 3) -CF 2 CF 2 CF 3) or — CF 2 CF 2 CF 2 CF 3 ,
[화학식 33]  [Formula 33]
Figure imgf000031_0001
Figure imgf000031_0001
상기 화학식 33에서, L2 및 L3는 서로 같거나 다를 수 있으며, 각각 단일결합, -0-, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-( -C0NH-, -C00-, - (CH2)ni-, -0(C¾)n20-, -0CH2-C(CH3)2-CH20- 또는 ᅵ! 00(CH2)n30C0-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고, In Formula 33, L 2 and L 3 may be the same as or different from each other, and each single bond, -0-, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2 - ( -C0NH-, -C00-,-(CH 2 ) ni-, -0 (C¾) n2 0-, -0CH 2 -C (CH 3 ) 2-CH 2 0- or ᅵ! and 00 (CH 2) n3 0C0-, and wherein nl, n2 and n3 is an integer from 1 to 10,
Ri, ¾ 및 R3 는 서로 같거나 다를 수 있으며, 각각 수소, -CH3, - CH2CH3, -CH2CH2CH2C¾, -CF3) -CF2CF3, -CF2CF2CF3, 또는 -CF2CF2CF2CF3이고,Ri, ¾ and R 3 may be the same or different from each other, and hydrogen, -CH 3 ,-CH 2 CH 3 , -CH 2 CH 2 CH 2 C¾, -CF 3) -CF 2 CF 3 , -CF 2 CF 2 CF 3 , or -CF 2 CF 2 CF 2 CF 3 ,
[화학식 34] [Formula 34]
Figure imgf000031_0002
Figure imgf000031_0002
상기 화학식 34에서, L4, L5 및 L6는 서로 같거나 다를 수 있으며, 각각 단일결합, -0-, -CO-, -S-, -S02-, -C(CH3)2-, -C(CF3)2-, — C0NH -, - C00-, -(CH2)ni-, -0(CH2)n20-, -0CH2-C(CH3)2-CH20- 또는 ¾ 00(C¾)n30C()-이고, 상기 nl, n2 및 n3는 각각 1 내지 10의 정수이고, In Formula 34, L 4 , L 5 and L 6 may be the same as or different from each other, and each single bond, -0-, -CO-, -S-, -S0 2- , -C (CH 3 ) 2- , -C (CF 3 ) 2- , — C0NH-,-C00-,-(CH 2 ) n i-, -0 (CH 2 ) n2 0-, -0CH 2 -C (CH 3 ) 2-CH 2 0- or ¾ 00 (C¾) n3 0C ()-, wherein nl, n2 and n3 are each an integer of 1 to 10,
Ri, , ¾ 및 ¾는 서로 같거나 다를 수 있으며, 각각 수소, — (¾, - CH2CH3, -C¾CH2CH2CH3, -CF3, -CF2CF3) -CF2CF2CF3, 또는 -CF2CF2CF2CF3이고, 상기 화학식 31 내지 34에서, 은 결합점 (bonding point)을 의미한다. Ri, ¾ and ¾ may be the same or different from each other, and hydrogen, — (¾,-CH 2 CH 3 , -C¾CH 2 CH 2 CH 3 , -CF 3 , -CF 2 CF 3) -CF 2 CF 2 CF 3 , or —CF 2 CF 2 CF 2 CF 3 , in Chemical Formulas 31 to 34, denotes a bonding point.
【청구항 9】 거 U항에 있어서, [Claim 9] In U,
상기 X는 하기 화학식 35의 2가 작용기인
Figure imgf000032_0001
-속 적층체 :
X is a divalent functional group represented by Chemical Formula 35
Figure imgf000032_0001
Genus laminate:
[화학식 35]  [Formula 35]
Figure imgf000032_0002
Figure imgf000032_0002
상기 화학식 35에서, 및 ¾ 는 서로 같거나 다를 수 있으며, 각각 - CH3> -CH2CH3) -CH2CH2CH2CH3, -CF3, -CF2CF3, -CF2CF2CF3, 또는 -CF2CF2CF2CF3 이다. In Formula 35, and ¾ may be the same or different from each other, -CH 3> -CH 2 CH 3) -CH 2 CH 2 CH 2 CH 3 , -CF 3 , -CF 2 CF 3 , -CF 2 CF 2 CF 3 , or -CF 2 CF 2 CF 2 CF 3 .
【청구항 10】 [Claim 10]
제 1항에 있어서,  The method of claim 1,
상기 고분자 수지층에 분산되어 있는 분산제를 더 포함하  Further comprising a dispersant dispersed in the polymer resin layer
^속 적층체 .  ^ Stacks.
【청구항 11] [Claim 11]
제 10항에 있어서,  The method of claim 10,
상기 분산제는 폴리에스테르계 고분자, 폴리에테르변성 플리디메틸실록산 및 폴리에스테르 /폴리아민 중합체로 이루어진 군에서 선택된 1종 이상을 포함하는, 연성 금속 적층체. 【청구항 12】  The dispersant comprises at least one selected from the group consisting of polyester polymers, polyether modified polydimethylsiloxane and polyester / polyamine polymer, soft metal laminate. [Claim 12]
제 10항에 있어서,  The method of claim 10,
상기 분산제는 20oC에서 0.92g/ml 내지 1.2g/ml의 밀도를 갖는, 연성 금속 적층체 . 【청구항 13】 Said dispersant having a density of from 0.92 g / ml to 1.2 g / ml at 20 ° C .; [Claim 13]
제 10항에 있어세 상기 분산제는 20 내지 30 mg KOH/g 의 산가 (Acid value) 또는 1000 내지 1700의 염기가 (Base equivalent)를 갖는 연성 금속 적층체. Clause 10 The dispersant is a flexible metal laminate having an acid value of 20 to 30 mg KOH / g or a base equivalent of 1000 to 1700.
【청구항 14】 [Claim 14]
제 10항에 있어서,  The method of claim 10,
상기 고분자 수지층이 상기 불소계 수지 100중량부 대비 상기 분산제 0.1중량부 내지 25중량부를 포함하는, 연성 금속 적층체.  The flexible metal laminate of the polymer resin layer comprises 0.1 parts by weight to 25 parts by weight of the dispersant relative to 100 parts by weight of the fluorine-based resin.
【청구항 15】 [Claim 15]
제 1항에 있어서,  The method of claim 1,
상기 불소계 수지는 폴리테트라 플루오로에틸렌 (PTFE), 테트라플루오로에틸렌-퍼플루오로알킬비닐에테르 공중합체 (PFA), 테트라플루오르에틸렌-헥사플루오르프로필렌 공중합체 (FEP), 에틸렌- 테트라플루오로에틸렌 코폴리머 수지 (ETFE), 테트라플루오로에틸렌- 클로로트리플루오로에틸렌 공중합체 (TFE/CTFE) . 및 에틸렌- 클로로트리플루오로에틸렌 수지 (ECTFE)로 이루어진 군에서 선택된 1종 이상을 포함하는, 연성 금속 적층체. The fluororesin is polytetrafluoroethylene (PTFE), tetrafluoroethylene-perfluoroalkyl vinyl ether copolymer (PFA), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), ethylene-tetrafluoroethylene copolymer Polymer resin (ETFE), tetrafluoroethylene-chlorotrifluoroethylene copolymer (TFE / CTFE) . And at least one selected from the group consisting of ethylene-chlorotrifluoroethylene resin (ECTFE).
【청구항 16】 [Claim 16]
제 1항에 있어서,  The method of claim 1,
상기 불소계 수지는 0.05 내지 20,의 최장 직경을 갖는 입자를 포함하는, 연성 금속 적층체.  Said fluorine-type resin contains the particle | grains which have the longest diameter of 0.05-20, The flexible metal laminated body.
【청구항 17] [Claim 17]
게 1항에 있어서,  According to claim 1,
상기 고분자 수지층이 상기 화학식 1의 반복 단위를 포함하는 폴리이미드 수지 20 내지 95 중량 % 및 잔량의 불소계 수지를 포함하는, 연성 금속 적층체 . 【청구항 18】 제 1항에 있어서, The polymer resin layer comprises 20 to 95% by weight of a polyimide resin containing a repeating unit of the formula (1) and a residual amount of fluorine-based resin, flexible metal laminate. [Claim 18] The method of claim 1,
상기 고분자 수지층은 0.1 내지 100/m의 두께를 갖는, 연성 금속 적층체. 【청구항 19】  The polymer resin layer has a thickness of 0.1 to 100 / m, flexible metal laminate. [Claim 19]
제 1항에 있어서,  The method of claim 1,
5 GHz에서 상기 고분자 수지층의 유전율이 2.2 내지 2.8인, 연성 금속 적충체. 【청구항 20】  The soft metal antagonist of the dielectric constant of the polymer resin layer at 5 GHz is 2.2 to 2.8. [Claim 20]
계 1항에 있어서,  According to claim 1,
100°C 내지 200oC에서 lppm 내지 28ppm 의 열팽창계수를 갖는, 연성 금속 적층체 . 【청구항 21】 From 100 ° C to about 200 o C with a thermal expansion coefficient of lppm to 28ppm, the flexible metal laminate. [Claim 21]
제 1항에 있어서,  The method of claim 1,
구리, 철, 니켈, 티타늄, 알루미늄, 은, 금 및 이들의 2종 이상의 합금으로 이루어진 군에서 선택된 1종 이상을 포함한 금속 박막을 적어도 1개 이상 포함하는, 연성 금속 적층체.  A flexible metal laminate comprising at least one metal thin film comprising at least one selected from the group consisting of copper, iron, nickel, titanium, aluminum, silver, gold and two or more alloys thereof.
【청구항 22】 [Claim 22]
제 21항에 있어서,  The method of claim 21,
상기 금속 박막 표면의 십점 평균조도 (Rz)가 0.5/im 내지 인, 연성 금속 적층체.  The ten point average roughness (Rz) of the said metal thin film surface is 0.5 / im, The flexible metal laminated body.
【청구항 23] [Claim 23]
제 21항에 있어서,  The method of claim 21,
상기 금속 박막은 0.1/ 내지 50/m의 두께를 갖는, 연성 금속 적층체. 【청구항 24】 The metal thin film has a thickness of 0.1 / 50 / m, flexible metal laminate. [Claim 24]
제 21항에 있어서,  The method of claim 21,
서로 대향하는 상기 금속 박막 2개를 포함하고,  It includes two of the metal thin film facing each other,
상기 고분자 수지층이 상기 서로 대향하는 금속 박막 2개의 사이에 위치하는, 연성 금속 적층체.  A flexible metal laminate, wherein the polymer resin layer is positioned between two metal thin films opposing each other.
【청구항 25] [Claim 25]
제 1항에 있어서,  The method of claim 1,
상기 고분자 수지층의 적어도 1면에 형성된 폴리이미드 수지층을 더 포함하는, 연성 금속 적층체.  The flexible metal laminate further comprising a polyimide resin layer formed on at least one surface of the polymer resin layer.
【청구항 26】 [Claim 26]
제 25항에 있어서,  The method of claim 25,
상기 폴리이미드 수지층은 1 내지 50;mi의 두께를 갖는, 연성 금속 적층체.  The polyimide resin layer has a thickness of 1 to 50; mi, flexible metal laminate.
PCT/KR2013/006214 2012-07-11 2013-07-11 Flexible metal laminate sheet WO2014010968A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
CN201380006267.5A CN104220251B (en) 2012-07-11 2013-07-11 flexible metal laminate
US14/357,855 US9307638B2 (en) 2012-07-11 2013-07-11 Flexible metal laminate
JP2015506920A JP5997830B2 (en) 2012-07-11 2013-07-11 Soft metal laminate

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2012-0075601 2012-07-11
KR20120075601 2012-07-11
KR1020130081375A KR101344006B1 (en) 2012-07-11 2013-07-11 Flexible metal laminate
KR10-2013-0081375 2013-07-11

Publications (1)

Publication Number Publication Date
WO2014010968A1 true WO2014010968A1 (en) 2014-01-16

Family

ID=49916326

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2013/006214 WO2014010968A1 (en) 2012-07-11 2013-07-11 Flexible metal laminate sheet

Country Status (1)

Country Link
WO (1) WO2014010968A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020488A (en) * 2014-06-17 2016-02-04 東邦化成株式会社 Fluorine resin-containing aqueous polyimide precursor composition, laminate using the same, printed circuit board, and method for producing the laminate
WO2022050253A1 (en) 2020-09-03 2022-03-10 Agc株式会社 Powder dispersion and production method for composite

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011727A (en) * 1988-09-09 1991-04-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyimide resin laminate improved in slidability
JP2003227467A (en) * 2002-01-31 2003-08-15 Yodogawa Kasei Kk Diaphragm for compact fixed delivery pump using fluorine resin multilayered polyimide film
JP2004195776A (en) * 2002-12-18 2004-07-15 Asahi Glass Co Ltd Laminated film for built-up wiring board and built-up wiring board
US20050096429A1 (en) * 2003-11-05 2005-05-05 Yueh-Ling Lee Polyimide based compositions useful as electronic substrates, derived in part from (micro-powder) fluoropolymer, and methods and compositions relating thereto
KR20120067574A (en) * 2010-12-16 2012-06-26 주식회사 엘지화학 Metal laminate for circuit board and preparation method of the same

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5011727A (en) * 1988-09-09 1991-04-30 Kanegafuchi Kagaku Kogyo Kabushiki Kaisha Polyimide resin laminate improved in slidability
JP2003227467A (en) * 2002-01-31 2003-08-15 Yodogawa Kasei Kk Diaphragm for compact fixed delivery pump using fluorine resin multilayered polyimide film
JP2004195776A (en) * 2002-12-18 2004-07-15 Asahi Glass Co Ltd Laminated film for built-up wiring board and built-up wiring board
US20050096429A1 (en) * 2003-11-05 2005-05-05 Yueh-Ling Lee Polyimide based compositions useful as electronic substrates, derived in part from (micro-powder) fluoropolymer, and methods and compositions relating thereto
KR20120067574A (en) * 2010-12-16 2012-06-26 주식회사 엘지화학 Metal laminate for circuit board and preparation method of the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016020488A (en) * 2014-06-17 2016-02-04 東邦化成株式会社 Fluorine resin-containing aqueous polyimide precursor composition, laminate using the same, printed circuit board, and method for producing the laminate
WO2022050253A1 (en) 2020-09-03 2022-03-10 Agc株式会社 Powder dispersion and production method for composite

Similar Documents

Publication Publication Date Title
KR101344006B1 (en) Flexible metal laminate
JP5989778B2 (en) Fluorine resin-containing soft metal laminate
KR101769101B1 (en) Poly-imide resin with low dielectric constant and flexible metal laminate using the same
US10112368B2 (en) Flexible metal laminate and preparation method of the same
JP5019874B2 (en) Thermosetting resin composition, laminated body using the same, and circuit board
US20050096429A1 (en) Polyimide based compositions useful as electronic substrates, derived in part from (micro-powder) fluoropolymer, and methods and compositions relating thereto
TWI682019B (en) Multilayer adhesive film and flexible metal-clad laminate
JP6014270B2 (en) Soft metal laminate and method for producing the same
WO2013036077A2 (en) Flexible metal laminate containing fluorocarbon resin
EP2596949A1 (en) Process for production of polyimide film laminate, and polyimide film laminate
KR20160059286A (en) Flexible metal laminate
CN112745676A (en) Resin composition, resin film, and metal-clad laminate
WO2014010968A1 (en) Flexible metal laminate sheet
KR101614847B1 (en) Flexible metal laminate
KR101641211B1 (en) Preparation method of flexible metal laminate
KR102080374B1 (en) Flexible metal laminate
KR101598610B1 (en) Flexible metal laminate
JP2024022280A (en) Resin films, metal clad laminates and circuit boards
WO2016052873A1 (en) Ductile metal laminate and method of manufacturing same

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13816273

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 14357855

Country of ref document: US

ENP Entry into the national phase

Ref document number: 2015506920

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 13816273

Country of ref document: EP

Kind code of ref document: A1