JP2022037703A - 復調装置 - Google Patents

復調装置 Download PDF

Info

Publication number
JP2022037703A
JP2022037703A JP2020141966A JP2020141966A JP2022037703A JP 2022037703 A JP2022037703 A JP 2022037703A JP 2020141966 A JP2020141966 A JP 2020141966A JP 2020141966 A JP2020141966 A JP 2020141966A JP 2022037703 A JP2022037703 A JP 2022037703A
Authority
JP
Japan
Prior art keywords
signal
message
bit pattern
subtype
demodulation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020141966A
Other languages
English (en)
Inventor
徹 古市
Toru Furuichi
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Radio Co Ltd
Original Assignee
Japan Radio Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Radio Co Ltd filed Critical Japan Radio Co Ltd
Priority to JP2020141966A priority Critical patent/JP2022037703A/ja
Publication of JP2022037703A publication Critical patent/JP2022037703A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Position Fixing By Use Of Radio Waves (AREA)

Abstract

【課題】L6信号のメッセージが備える特性に基づいてサブタイプを判定することによってサブフレームの先頭を待つことなく測位補強情報の復調を再開する。【解決手段】準天頂衛星から配信されるL6信号を受信して復調する復調装置であり、L6信号の受信が中断した後に再開された場合に、L6信号から、「Message Number」に相当するビットパターンと「Message Sub Type ID」に相当するビットパターンとの組み合わせからなる16ビットのパターンを検索し検出する先頭検出部42と、前記検出された16ビットのパターンから復調処理を開始する復調部47と、を有する。【選択図】図1

Description

この発明は、復調装置に関し、特に、準天頂衛星システムから配信されるL6信号のメッセージデータを復調する技術に関する。
準天頂衛星システム(QZSS:Quasi-Zenith Satellite System の略)は、準天頂軌道の衛星が主体となって構成されている衛星測位システムのことである(非特許文献1参照)。衛星測位は4機以上の衛星で可能であるものの、安定した位置情報を得るためにはより多くの衛星が見えることが望ましい。このため、準天頂衛星システムは、全球測位システム(GPS:Global Positioning System の略)と一体で利用することにより、安定した高精度測位を行うことを可能とする衛星数を確保することができるようにしている。
準天頂衛星システムでは、高精度な衛星測位を行うため、国土交通省国土地理院が全国に整備している電子基準点のデータ(具体的には、位置情報)が利用されて補正情報が計算されて、現在位置を正確に求めるための情報(「センチメータ級測位補強情報」と呼ばれる)が配信される(具体的には例えば、準天頂衛星から送信される)。センチメータ級測位補強情報を送信する信号は「L6信号」と呼ばれ(非特許文献2参照)、全球測位システムから配信される信号ではないため、専用の受信機が必要とされる。
内閣府宇宙開発戦略推進事務局「準天頂衛星システム『衛星測位サービス』」(専門家向けリーフレット),2017年3月 内閣府宇宙開発戦略推進事務局「準天頂衛星システム『センチメータ級測位補強サービス』」(専門家向けリーフレット),2019年3月
ところで、L6信号のメッセージ(言い換えると、センチメータ級測位補強情報)は、センチメータ級測位補強サービスが提供される領域/範囲の全域に共通の補強情報と前記領域を区分した地域(尚、L6信号ではネットワークIDによって各地域が相互に区別されて特定される)ごとの個別の補強情報とがあり、前記地域ごとの個別の補強情報については受信機が実際に位置している地域(即ち、ネットワークID)の補強情報を受信して使用する必要がある。
また、L6信号の1メッセージはヘッダ部、データ部、およびRS符号部の3部から構成される時間長さが1秒のデータであり、L6信号にのせて送信されるセンチメータ級測位補強情報(単に「測位補強情報」とも呼ぶ)は5つの(言い換えると、5秒間の)メッセージのデータ部を合成した(別言すると、連結した)サブフレーム単位で利用される(図3参照)。そして、6つのサブフレームにより、L6信号の1フレームが構成される。すなわち、L6信号の1フレームは30秒分のメッセージのデータ部を合成/連結したデータである。
ここで、各サブフレームによって伝送されるサブタイプは予め定められている(図4参照)一方で、各サブタイプは可変長データである(図5参照)。したがって、各サブタイプのメッセージについてはメッセージ全体としてのビット長情報が存在せず、すなわちサブフレーム内における各サブタイプのメッセージの配置が一定ではなく、つまりサブフレーム内における配信パターンが不定である(図6参照)。
このため、例えばQZSSの衛星が遮られるなどしてデータの復調に失敗した後に測位補強情報の復調を再開する場合に、従来は、サブフレームの先頭を待ってサブフレームの先頭データから順番に復調する必要があり、必要なサブタイプの復調に時間がかかる、という問題や、先頭の到来を待って復調を再開したサブフレームの直前のサブフレームに含まれていた、受信機が位置している地域(即ち、ネットワークID)の最新の測位補強情報を取得することができない、という問題がある。
また、各サブタイプにはそれぞれ配信周期が定められているとともに有効期間(具体的には、前記配信周期の倍の時間長さ)が設定されているため、例えばL6信号が頻繁に遮られるような環境下では特に、サブフレームの先頭まで復調の再開を待つとサブタイプの有効期間が切れてしまう、という問題がある。
そこでこの発明は、L6信号のメッセージが備える特性に基づいてサブタイプのメッセージの先頭を検出するとともに前記メッセージのサブタイプを判定することによってサブフレームの先頭を待つことなく測位補強情報の復調を再開することが可能な、復調装置を提供することを目的とする。
上記課題を解決するために、請求項1に記載の発明は、準天頂衛星から配信されるL6信号を受信して復調する復調装置であり、前記L6信号の受信が中断した後に再開された場合に、前記L6信号から、「Message Number」に相当するビットパターンと「Message Sub Type ID」に相当するビットパターンとの組み合わせからなる先頭ビットパターンを検索し検出する先頭検出部と、前記先頭ビットパターンから復調処理を開始する復調部と、を有する、ことを特徴とする復調装置である。
請求項2に記載の発明は、請求項1に記載の復調装置において、前記先頭ビットパターンが検出されたときに、前記L6信号の受信が中断してから所定の一巡最短時間が経過しているか否かを判断する一巡判定部、をさらに有する、ことを特徴とする。
請求項3に記載の発明は、請求項1または2に記載の復調装置において、前記先頭ビットパターンの後に含まれている「IOD SSR」が、前記L6信号の受信が中断する前に受信された直近の「IOD SSR」と一致するか否かを判断する発行番号確認部、をさらに有する、ことを特徴とする。
請求項4に記載の発明は、請求項1から3に記載の復調装置において、前記「Message Sub Type ID」に対応するサブタイプのメッセージのビット数を算出するとともに前記先頭ビットパターンの先頭位置から前記ビット数だけ進んだ位置の次のビット位置を後続ビット位置として特定する後続推定部と、前記後続ビット位置を先頭とする部分が前記先頭ビットパターンのうちのいずれかと一致するか否かを判断する先頭判定部と、をさらに有する、ことを特徴とする。
請求項1に記載の発明によれば、L6信号に含まれている特定のビットパターンを検索して検出することにより、サブタイプのメッセージの先頭を検出するとともに前記メッセージのサブタイプを特定することができ、サブフレームの先頭を待つことなく測位補強情報の復調を再開することが可能となる。
請求項2に記載の発明によれば、L6信号の受信中断からの所定の時間の経過の有無を確認するようにしているので、L6信号が長期間遮られる信号中断中に測位補強情報の配信の対象とされる衛星や信号の組み合わせが頻繁に切り替わって「IOD SSR」が一巡した場合の誤復調を防止することができ、L6信号のメッセージデータを安定して復調することが可能となる。
請求項3に記載の発明によれば、L6信号の受信中断の前後における「IOD SSR」の一致性を確認するようにしているので、測位補強情報の継続性を一層確実に担保して誤復調を一層確実に防止することができ、L6信号のメッセージデータを安定して復調することが可能となる。
請求項4に記載の発明によれば、L6信号に含まれている特定のビットパターンの検索/検出を2箇所で行う(言い換えると、特定のビットパターンの出現を二重で確認する)ようにしているので、サブタイプのメッセージの先頭であることを一層確実に担保して誤復調を一層確実に防止することができ、L6信号のメッセージデータを安定して復調することが可能となる。
この発明の実施の形態に係る復調装置を含むQZSS受信機の主要構成を示す機能ブロック図である。 図1のQZSS受信機における処理手順を示すフロー図である。 L6信号の構造を説明する図である。(A)はL6信号のメッセージの構造を説明する図である。(B)はL6信号のフレームの構造およびサブフレームの構造を説明する図である。 サブタイプの配信パターンを説明する図である。 サブタイプIDごとの内容およびビット数を説明する図である。 L6信号のサブフレームの構造を説明する図である。 サブタイプ1のメッセージの構造を説明する図である。 サブタイプ1のメッセージのヘッダ部の構成を説明する図である。 サブタイプ1のメッセージの衛星依存部の構成を説明する図である。
以下、この発明を図示の実施の形態に基づいて説明する。図1は、この発明の実施の形態に係る復調装置4を含むQZSS受信機1の主要構成を示す機能ブロック図である。図2は、実施の形態に係るQZSS受信機1における処理手順を示すフロー図である。図2のフロー図に示す処理手順は、主に復調装置4が例えばプログラムに従って実行する処理内容である。
以下の説明において、準天頂衛星システムについては、内閣府宇宙開発戦略推進事務局が公表している、例えば、パフォーマンススタンダード「Quasi-Zenith Satellite System Performance Standard(PS-QZSS-001)(November 5,2018)」を前提とするとともに、衛星測位サービスに関するユーザインタフェース仕様書「Quasi-Zenith Satellite System Interface Specification Satellite Positioning,Navigation and TimingService(IS-QZSS-PNT-003) (November5, 2018)」ならびにセンチメータ級測位補強サービスに関するユーザインタフェース仕様書「Quasi-Zenith Satellite System Interface Specification Centimeter Level Augmentation Service(IS-QZSS-L6-001)(November 5,2018)」および「Quasi-Zenith Satellite System Interface Specification Centimeter Level Augmentation Service(IS-QZSS-L6-002)(Dec 27,2019)」を前提とする。ただし、準天頂衛星システムに関する仕様が改定されるなどした場合には、この発明は、改定されるなどした内容に合わせて適宜修正されて適用・実施されるものとする。
QZSS受信機1は、準天頂衛星システムを利用して現在位置を求めるための機序である。以下の説明では、QZSS受信機1の構成のうちL6信号の受信および復調に纏わる構成を中心に述べ、その他の構成については既知のまたは新規の構成が用いられ得るので詳細の説明は省略する。具体的には例えば、QZSS受信機1は他の全球測位衛星システム(GNSS:Global Navigation Satellite System の略)から配信される測位信号を受信して必要な処理を施す機能/仕組みも備える場合が考えられるが、この発明に特有の構成ではなく既知のまたは新規の構成が用いられ得るので、他のシステムの測位信号を受信して処理する機能/仕組みの説明は省略する。
QZSS受信機1は、アンテナ2と、受信部3と、復調装置4と、測位部5と、を有する。
アンテナ2は、準天頂衛星から配信されるL6信号を受信し(ステップS0)、受信した前記L6信号を受信部3へと転送する。
受信部3は、アンテナ2から転送されるL6信号に対して所定の処理を施して復調装置4において利用可能な形式の信号を出力する。受信部3は、例えば、アンテナ2から転送されるL6信号の周波数を中間周波数に変換するとともにアナログ-デジタル変換処理を施してデジタル信号を生成し、さらに、生成した前記デジタル信号をベースバンド信号に変換して出力する。
復調装置4および測位部5は、例えばCPU(Central Processing Unit の略)、メモリ、および入力・出力ポートなどを含む演算ユニット内に構成され、メモリに記憶された制御プログラムや各種データをCPUが参照することによって必要な処理を実行する。
復調装置4は、L6信号を復調して測位補強情報を取得するための仕組みであり、特性保持部41、先頭検出部42、一巡判定部43、発行番号確認部44、後続推定部45、先頭判定部46、および復調部47を備える。
そして、この実施の形態に係る復調装置4は、具体的には、準天頂衛星から配信されるL6信号を受信して復調する復調装置であり、L6信号の受信が中断した後に再開された場合に、L6信号から、「Message Number」に相当するビットパターンと「Message Sub Type ID」に相当するビットパターンとの組み合わせからなる16ビットのパターンを検索し検出する先頭検出部42と、前記16ビットのパターンが検出されたときに、L6信号の受信が中断してから所定の時間が経過しているか否かを判断する一巡判定部43と、前記検出された16ビットのパターンの後に含まれている「IOD SSR」が、L6信号の受信が中断する前に受信された直近の「IOD SSR」と一致するか否かを判断する発行番号確認部44と、「Message Sub Type ID」に対応するサブタイプのメッセージのビット数を算出するとともに前記検出された16ビットのパターンの先頭位置から前記算出したビット数だけ進んだ位置の次のビット位置を特定する後続推定部45と、前記特定されたビット位置を先頭とする部分が前記検出された16ビットのパターンのうちのいずれかと一致するか否かを判断する先頭判定部46と、前記検出された16ビットのパターンから復調処理を開始する復調部47と、を有する、ようにしている。
L6信号の1メッセージは、図3(A)に示すように、ヘッダ部、データ部、およびRS符号部の3部から構成され(RS:Reed-Solomon の略)、ヘッダ部が49ビット、データ部が1695ビット、およびRS符号部が256ビットで全体ではビット長が2000ビットのデータであり、ビットレートが2000bpsで時間長さが1秒のデータである。
L6信号の1フレームは、図3(B)に示すように、5つのメッセージのデータ部を合成/連結して構成されるサブフレームを6つ含んで構成される。
すなわち、測位補強情報は、5秒分のメッセージのデータ部の纏まりを1つのサブフレームとするとともに6つのサブフレーム(即ち、30秒分のメッセージのデータ部)を1つのフレームとして構成される。
各サブフレームによって伝送されるサブタイプは、図4に示すように、予め定められている。ネットワークIDごとの各サブタイプは、図4に示す配信パターンに従って、30秒を1つのサイクルとして、1サイクルごとに配信される。
ネットワークIDは、センチメータ級測位補強サービスが提供される領域/範囲全体を網目状に区分して設定される地域それぞれを相互に区別して一意に特定するための識別番号であり、ネットワークIDと対応づけられて提供される情報は当該のネットワークID(別言すると、網目/地域)のみに有効な情報である。
つまり、QZSS受信機1が位置している地域(即ち、ネットワークID)において有効な測位補強情報は30秒に1回の割合で配信される。
各サブタイプは、図5に示すように、可変長データ(別言すると、不定長データ)であり、ビット長情報が存在しない。このため、サブフレーム内におけるサブタイプそれぞれの配置が不定であり(図6参照)、具体的には先行するサブタイプのメッセージの後尾位置が不定であるので次の(別言すると、後続の)サブタイプのメッセージの先頭位置が不定であり、つまり各サブタイプのメッセージの配置パターンが不定である。なお、図5中の各変数の内容は下記の通りである。
Ncell :全球測位衛星システムそれぞれの衛星数と信号数とを乗じた値
Nsat :衛星の数
Nsig :信号の数
Nsys :全球測位衛星システムの数
Msat :ローカルネットワークにおける衛星の数
Ngrid :ローカルネットワーク内のグリッドの数
なお、サブタイプ10の仕様が未定の場合は、この発明の説明については適宜、サブタイプ10は無いものとして解釈したり、サブタイプ10について定められる仕様に従って適用されるものとして解釈したりするものとする。
サブタイプ1(即ち、「Compact SSR Mask」)は測位補強情報が提供される全球測位衛星システム、衛星、および信号の種別を示す。サブタイプ1のメッセージは、図7に示すように、ヘッダ部と全球測位衛星システムごとの特定部(「衛星依存部」と呼ぶ)とから構成され、ヘッダ部は49ビットの固定長であり、衛星依存部は (61+Ncell)×Nsys ビットの可変長(別言すると、不定長)である。
サブタイプ1のメッセージの、ヘッダ部の構成を図8に示し、衛星依存部の構成を図9に示す。ヘッダ部のうち、最上位ビットを含む先頭12ビットが「Message Number」(メッセージ番号)であり、後続4ビットが「Message Sub Type ID」(サブタイプID)である。そして、「Message Number」は「4073」であり、また、図7および図8ではサブタイプ1を取り上げているので「Message Sub Type ID」は「1」である。
なお、「Message Number」の「4073」は、「RTCM STANDARD 10403.2」の「proprietary message」のメッセージタイプである(RTCM:Radio Technical Commission for Maritime Services)。ただし、「Message Number」の「4073」は、仕様の改定などによって変更されることも考えられる。
そして、サブタイプ1~11のいずれも、メッセージのヘッダ部は固定長であるとともに、メッセージのヘッダ部の最上位ビットを含む先頭12ビットは「Message Number」(メッセージ番号)であり且つ後続4ビットは「Message Sub Type ID」(サブタイプID)であることは共通している。
また、サブタイプ1~11のいずれも、「Message Number」の12ビットと「Message Sub Type ID」の4ビットとの合計16ビットの後に、ヘッダ部内における位置はサブタイプそれぞれによって異なるものの、4ビットの「IOD SSR」(SSR発行番号)をヘッダ部内の所定の位置に含むことも共通している。
サブタイプ1のメッセージのヘッダ部に含まれる「IOD SSR」(SSR発行番号)は、L6信号の複数のメッセージのデータ部に格納される測位補強情報を関連付けるための識別子であり、同値の「IOD SSR」を含むメッセージを組み合わせて使用する必要がある。「IOD SSR」は、具体的には、0から1ずつ増加する値であり、衛星依存部に含まれる「Compact SSR Satellite mask」、「Compact SSR Signal mask」、または「Compact SSR Cell mask」が変わるたびに1ずつ加算される。「IOD SSR」は、ビット長が4ビットの情報であり、0から15までの値をとり、15のあとは0に戻ってあらためて1ずつ増加する。
特性保持部41は、受信中の若しくは直近に受信したL6信号(具体的には、受信部3から出力されるベースバンド信号)に関する最新の情報を随時更新しながら保持する(ステップS1)。
特性保持部41は、具体的には、L6信号を受信することによって取得される、図5の「ビット数」の欄に示されている各式に従ってサブタイプIDごとのビット数を算出するために必要な各変数に関する情報である全球測位衛星システムそれぞれの衛星数と信号数とを乗じた値(Ncell),衛星の数(Nsat),信号の数(Nsig),全球測位衛星システムの数(Nsys),ローカルネットワークにおける衛星の数(Msat),およびローカルネットワーク内のグリッドの数(Ngrid)、ならびに、サブタイプ1のメッセージに含まれている「IOD SSR」(SSR発行番号)を、受信中の若しくは直近に受信したL6信号に基づく最新の情報(「配信内容情報」と呼ぶ)として随時更新しながら保持する。
特性保持部41は、具体的には例えば、演算ユニット内のメモリに、上記の配信内容情報を記憶させる。
先頭検出部42は、L6信号の受信が中断した後に再開された場合に、受信部3から出力される信号列について、サブタイプのメッセージのヘッダ部に含まれている「Message Number」の12ビットと「Message Sub Type ID」の4ビットとの組み合わせ(別言すると、連なり)に相当する信号列(別言すると、ビットパターン)を検索し検出する(ステップS2)。
「Message Number」は具体的には例えば4073であり、「Message Sub Type ID」は具体的には例えば1~11のうちのいずれかである。つまり、先頭検出部42は、4073(12ビット)と1(4ビット)との組み合わせとしての16ビットのパターン、4073(12ビット)と2(4ビット)との組み合わせとしての16ビットのパターン、4073(12ビット)と3(4ビット)との組み合わせとしての16ビットのパターン、・・・、および、4073(12ビット)と11(4ビット)との組み合わせとしての16ビットのパターンのうちのいずれかと一致するビットパターンを検索し検出する。
先頭検出部42は、すなわち、L6信号の復調を失敗した時点以降におけるサブタイプ1からサブタイプ11のうちのいずれかのメッセージの先頭位置を検索し検出する。
各サブタイプのメッセージのヘッダ部の最上位ビットを含む先頭12ビットの「Message Number」(メッセージ番号;具体的には例えば、4073)と後続4ビットの「Message Sub Type ID」(サブタイプID;具体的には例えば、1~11のうちのいずれか)との組み合わせとしての16ビットのパターンのことを「先頭ビットパターン」と呼ぶ。
先頭検出部42は、先頭ビットパターンのうちのいずれかを検出すると、検出した前記先頭ビットパターンに含まれているサブタイプIDの情報を出力する。
一巡判定部43は、先頭検出部42からサブタイプIDの情報が出力されると、L6信号の受信が中断している間に「IOD SSR」(SSR発行番号)が一巡している可能性があるか否かを判断する(ステップS3)。
「IOD SSR」は、ビット長が4ビットの情報であり、0から15までの値をとり、15のあとは0に戻ってあらためて1ずつ増加する。したがって、4ビット分の推移を一巡した場合には、新たに受信したメッセージに含められている「IOD SSR」の値が保持されている「IOD SSR」の値と見かけ上は同じであっても、前記保持されている「IOD SSR」の値は一巡前のものであり、実際には関連の無いメッセージということとなる。
なお、「IOD SSR」が変わるということは、準天頂衛星システムから配信される測位補強情報が対象としている全球測位衛星システムの種別や数、衛星の番号や数、信号の種別や数が変化しているということであり、したがって各サブタイプのメッセージの衛星依存部のビット数が変化しているということである。
一巡判定部43は、具体的には、L6信号の受信が中断している間に所定の時間が経過して「IOD SSR」が一巡している可能性があるか否かを判断する。ここで、L6信号の1フレームは30秒分のメッセージのデータ部を合成/連結して構成され、仮にフレームごとに連続して「IOD SSR」が変更/更新されると、「IOD SSR」は最短で8分で一巡する。「IOD SSR」が一巡する可能性がある最短の時間のことを「一巡最短時間」と呼ぶ。
一巡最短時間は、8分より長い時間であれば特定の時間長さに限定されるものではなく、例えば「IOD SSR」が変更/更新される平均的な頻度や時間長さが考慮されるなどしたうえで、適当な時間長さに適宜設定される。
一巡判定部43は、L6信号の受信が中断してから一巡最短時間が経過しているか否かを判断し、L6信号の受信が中断してから一巡最短時間が経過している場合は(ステップS3:Yes)、復調再開の処理手順を、L6信号のフレームの先頭(即ち、サブフレーム1内のサブタイプ1のメッセージ)から復調を開始する通常の処理へと移行させる。
一方、L6信号の受信が中断してから一巡最短時間が経過していない場合は(ステップS3:No)、一巡判定部43は、復調再開の処理手順をステップS4の処理へと進める。
発行番号確認部44は、先頭検出部42によって検出された先頭ビットパターンの後に含まれている「IOD SSR」の値が配信内容情報における「IOD SSR」と同値であるか否かを判断する(ステップS4)。
発行番号確認部44は、具体的には、先頭検出部42から出力されるサブタイプIDの情報に基づいて、当該のサブタイプのメッセージにおいてヘッダ部内の所定の位置に含まれている「IOD SSR」の値を抽出する。
発行番号確認部44は、さらに、抽出した上記「IOD SSR」の値が特性保持部41によって保持されている(具体的には例えば、演算ユニット内のメモリに記憶されている)配信内容情報における「IOD SSR」と同値であるか否かを判断する。
そして、抽出した上記「IOD SSR」の値が配信内容情報における「IOD SSR」と同値でない場合は(ステップS4:No)、発行番号確認部44は、復調再開の処理手順を、L6信号のフレームの先頭(即ち、サブフレーム1内のサブタイプ1のメッセージ)から復調を開始する通常の処理へと移行させる。
一方、抽出した上記「IOD SSR」の値が配信内容情報における「IOD SSR」と同値である場合は(ステップS4:Yes)、発行番号確認部44は、復調再開の処理手順をステップ5の処理へと進める。
後続推定部45は、図5の「ビット数」の欄に示されている各式に従って、特性保持部41によって保持されている(具体的には例えば、演算ユニット内のメモリに記憶されている)各変数(具体的には、Ncell,Nsat,Nsig,Nsys,Msat,Ngrid)の値を用いて、先頭検出部42から出力されるサブタイプIDの情報に対応するサブタイプのメッセージのビット数を算出する。
後続推定部45は、続いて、先頭検出部42によって検出された先頭ビットパターンの先頭位置から、上記で算出されたビット数だけ進んだ位置(即ち、先頭検出部42によって検出された先頭ビットパターンから始まるサブタイプのメッセージの後尾位置)の次のビット位置(「後続ビット位置」と呼ぶ)を特定し、特定された前記後続ビット位置を出力する(ステップS5)。
後続ビット位置は、すなわち、先頭検出部42によって検出された先頭ビットパターンから始まるサブタイプのメッセージの次の(別言すると、後続の)サブタイプのメッセージの先頭位置である。
先頭判定部46は、後続推定部45から出力される後続ビット位置を先頭とする16ビットについて、先頭ビットパターンのうちのいずれかと一致するか否かを判断する(ステップS6)。
そして、後続ビット位置を先頭とする16ビットが先頭ビットパターンのうちのいずれかと一致しない場合は(ステップS6:No)、発行番号確認部44は、復調再開の処理手順をステップS2の処理に戻す。
一方、後続ビット位置を先頭とする16ビットが先頭ビットパターンのうちのいずれかと一致する場合は(ステップS6:Yes)、発行番号確認部44は、復調再開の処理手順をステップS7の処理へと進める。
後続ビット位置を先頭とする16ビットが先頭ビットパターンのうちのいずれかと一致するということは、先頭検出部42によって検出された部分がサブタイプのメッセージの先頭部分であることの確実性が補強されたということである。
復調部47は、受信部3から出力されるベースバンド信号について、先頭検出部42によって検出された先頭ビットパターンから復調処理を開始して測位補強情報を取得し、取得した前記測位補強情報を測位部5へと転送する(ステップS7)。なお、L6信号の変調方式は、BPSK(Binary Phase-Shift Keying の略)である。
この場合、先頭検出部42によって検出された先頭ビットパターンから始まるメッセージについて、先頭検出部42から出力されるサブタイプIDの情報に基づいてサブタイプIDが特定され、後続推定部45によって算出されるビット数に基づいてビット長が特定される。
測位部5は、復調部47から転送される測位補強情報を使用して、GNSSから配信される測位信号やQZSSから配信される測位信号(例えば、L1C/A,L2C)における観測量に重畳する誤差を補正して、cm級測位を実施する(ステップS8)。
上記のような復調装置4によれば、L6信号に含まれている先頭ビットパターンを検索して検出することにより、サブタイプのメッセージの先頭を検出するとともに前記メッセージのサブタイプを特定することができ、サブフレームの先頭を待つことなく測位補強情報の復調を再開することが可能となる。
上記のような復調装置4によれば、また、L6信号の受信中断からの一巡最短時間の経過の有無を確認するようにしているので、L6信号が長期間遮られる信号中断中に測位補強情報の配信の対象とされる衛星や信号の組み合わせが頻繁に切り替わって「IOD SSR」が一巡した場合の誤復調を防止することができ、L6信号のメッセージデータを安定して復調することが可能となる。
上記のような復調装置4によれば、また、L6信号の受信中断の前後における「IOD SSR」の一致性を確認するようにしているので、測位補強情報の継続性を一層確実に担保して誤復調を一層確実に防止することができ、L6信号のメッセージデータを安定して復調することが可能となる。
上記のような復調装置4によれば、さらに、L6信号に含まれている先頭ビットパターンの検索/検出を2箇所で行う(言い換えると、先頭ビットパターンの出現を二重で確認する)ようにしているので、サブタイプのメッセージの先頭であることを一層確実に担保して誤復調を一層確実に防止することができ、L6信号のメッセージデータを安定して復調することが可能となる。
以上、この発明の実施の形態について説明したが、具体的な構成は、上記の実施の形態に限られるものではなく、この発明の要旨を逸脱しない範囲の設計の変更等があっても、この発明に含まれる。
例えば、上記の実施の形態では「IOD SSR」が一巡している可能性があるか否かを判断する(ステップS3)ようにしているが、ステップS3の処理はこの発明において必須の構成ではなく、ステップS2の処理の後にステップS4の処理が行われるようにしてもよい。すなわち、「IOD SSR」が一巡している可能性があるか否かを判断することによって「IOD SSR」が実質的には異なるメッセージを使用する事態を確実に回避することができるものの、仮に「IOD SSR」が実際に実質的には異なっている場合には後続ビット位置を先頭とする16ビットが先頭ビットパターンのうちのいずれとも一致しない可能性が高く、ステップS6の処理を経ることによって「IOD SSR」が異なるメッセージを使用する事態を回避することができる蓋然性が高い。
また、上記の実施の形態では先頭ビットパターンの後に含まれている「IOD SSR」が配信内容情報における「IOD SSR」と同値であるか否かを判断する(ステップS4)ようにしているが、ステップS4の処理はこの発明において必須の構成ではなく、ステップS4の処理が行われない場合には前記のステップS3の処理が行われる必要もないので、ステップS2の処理の後にステップS5の処理が行われるようにしてもよい。すなわち、「IOD SSR」が配信内容情報における「IOD SSR」と同値であるか否かを判断することによって「IOD SSR」が異なるメッセージを使用する事態を確実に回避することができるものの、仮に「IOD SSR」が実際に異なっている場合には後続ビット位置を先頭とする16ビットが先頭ビットパターンのうちのいずれとも一致しない可能性が高く、ステップS6の処理を経ることによって「IOD SSR」が異なるメッセージを使用する事態を回避することができる蓋然性が高い。
また、上記の実施の形態では後続推定部45から出力される後続ビット位置を先頭とする16ビットが先頭ビットパターンのうちのいずれかと一致するか否かを判断する(ステップS6)ようにしているが、ステップS6の処理はこの発明において必須の構成ではなく、ステップS5の処理の後にステップS7の処理が行われるようにしてもよい。すなわち、後続ビット位置を先頭とする16ビットが先頭ビットパターンのうちのいずれかと一致するか否かを判断することによって先頭検出部42によって検出された部分がサブタイプのメッセージの先頭部分であることの確実性が補強されるものの、ステップS2の処理において先頭ビットパターンが検出されたことのみによっても前記先頭ビットパターン部分がサブタイプのメッセージの先頭部分であると判断してもよい。
さらに言えば、この発明の主たる要点は先頭検出部42によるステップS2の処理であるとともにこれに従属する要点は一巡判定部43によるステップS3の処理、発行番号確認部44によるステップS4の処理、ならびに後続推定部45および先頭判定部46によるステップS5およびステップS6の処理であり、QZSS受信機1や復調装置4の具体的な構成は図1に示す例に限定されるものではなく、また、前記要点以外の処理内容は上記の実施の形態における処理内容には限定されない。
1 QZSS受信機
2 アンテナ
3 受信部
4 復調装置
41 特性保持部
42 先頭検出部
43 一巡判定部
44 発行番号確認部
45 後続推定部
46 先頭判定部
47 復調部
5 測位部

Claims (4)

  1. 準天頂衛星から配信されるL6信号を受信して復調する復調装置であり、
    前記L6信号の受信が中断した後に再開された場合に、前記L6信号から、「Message Number」に相当するビットパターンと「Message Sub Type ID」に相当するビットパターンとの組み合わせからなる先頭ビットパターンを検索し検出する先頭検出部と、
    前記先頭ビットパターンから復調処理を開始する復調部と、を有する、
    ことを特徴とする復調装置。
  2. 前記先頭ビットパターンが検出されたときに、前記L6信号の受信が中断してから所定の一巡最短時間が経過しているか否かを判断する一巡判定部、をさらに有する、
    ことを特徴とする請求項1に記載の復調装置。
  3. 前記先頭ビットパターンの後に含まれている「IOD SSR」が、前記L6信号の受信が中断する前に受信された直近の「IOD SSR」と一致するか否かを判断する発行番号確認部、をさらに有する、
    ことを特徴とする請求項1または2に記載の復調装置。
  4. 前記「Message Sub Type ID」に対応するサブタイプのメッセージのビット数を算出するとともに前記先頭ビットパターンの先頭位置から前記ビット数だけ進んだ位置の次のビット位置を後続ビット位置として特定する後続推定部と、
    前記後続ビット位置を先頭とする部分が前記先頭ビットパターンのうちのいずれかと一致するか否かを判断する先頭判定部と、をさらに有する、
    ことを特徴とする請求項1から3のうちのいずれか1項に記載の復調装置。
JP2020141966A 2020-08-25 2020-08-25 復調装置 Pending JP2022037703A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020141966A JP2022037703A (ja) 2020-08-25 2020-08-25 復調装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020141966A JP2022037703A (ja) 2020-08-25 2020-08-25 復調装置

Publications (1)

Publication Number Publication Date
JP2022037703A true JP2022037703A (ja) 2022-03-09

Family

ID=80494742

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020141966A Pending JP2022037703A (ja) 2020-08-25 2020-08-25 復調装置

Country Status (1)

Country Link
JP (1) JP2022037703A (ja)

Similar Documents

Publication Publication Date Title
TWI452323B (zh) 用於通信的方法和系統
RU2457507C1 (ru) Способ и устройство для определения положения с помощью гибридных данных об орбите sps
CN105044740B (zh) 通过混合sps轨道数据进行定位的方法和装置
JP5650436B2 (ja) 衛星測位受信機
KR102228715B1 (ko) 위치 식별 시스템의 프레임 동기 방법 및 장치
CA3076721A1 (en) Apparatus and method for synchronization of global navigation satellite system signal synchronization in a noisy environment
JP2008170338A (ja) 衛星航法装置、外部基地局、及び衛星測位システム
JP6308406B1 (ja) 測位装置、測位方法及びプログラム
WO2014079133A1 (zh) 兼容gps、bd2和glonass系统的辅助同步方法
JP5480906B2 (ja) 航法メッセージの取得方法、サブフレーム作成方法、航法メッセージ取得プログラム、gnss受信装置、および移動端末
JP2022037703A (ja) 復調装置
JPH11223669A (ja) Gps受信装置及びそのzカウント抽出方法
JP2003316665A (ja) ナビゲーション衛星受信システム
US11841444B2 (en) Resilient ephemeris decoding of GNSS satellite information
JP2013190387A (ja) 通信装置および人工衛星および情報生成装置および測位システム
JP2003167043A (ja) 衛星信号受信機
JP2004037212A (ja) ディファレンシャル測位装置
Di Grazia et al. A Triple-Band GNSS Receiver for High Accuracy Automotive Applications
KR100678143B1 (ko) 이동통신 시스템에서 전세계 위치 확인 시스템용 이동 단말기의 기준시계와 기지국 신호 동기 장치 및 방법
JP2009168657A (ja) 衛星信号受信装置
JP2012145342A (ja) メッセージデータ受信方法、メッセージデータ受信プログラム、メッセージデータ受信装置、gnss信号受信方法、gnss信号受信プログラム、gnss信号受信装置、および移動端末
CN115343739A (zh) 精密单点定位方法、装置、电子设备和存储介质
CN104407365B (zh) 导航比特同步方法
WO2017175294A1 (ja) 信号受信装置及び信号受信方法
JPH1020015A (ja) Gps受信機

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20230821

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20240408