JP2022030382A - Steel beam, column-beam joint structure and structure provided therewith - Google Patents

Steel beam, column-beam joint structure and structure provided therewith Download PDF

Info

Publication number
JP2022030382A
JP2022030382A JP2020134374A JP2020134374A JP2022030382A JP 2022030382 A JP2022030382 A JP 2022030382A JP 2020134374 A JP2020134374 A JP 2020134374A JP 2020134374 A JP2020134374 A JP 2020134374A JP 2022030382 A JP2022030382 A JP 2022030382A
Authority
JP
Japan
Prior art keywords
steel
hole
steel beam
web
stiffener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2020134374A
Other languages
Japanese (ja)
Other versions
JP7351271B2 (en
Inventor
信太郎 金崎
Shintaro Kanezaki
隼平 安永
Jumpei Yasunaga
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2020134374A priority Critical patent/JP7351271B2/en
Publication of JP2022030382A publication Critical patent/JP2022030382A/en
Application granted granted Critical
Publication of JP7351271B2 publication Critical patent/JP7351271B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

To provide a steel beam, a column-beam joint structure and a structure provided therewith in a simple structure capable of improving plastic deformation capacity at an end part in a material axis direction upon short load action such as earthquake force.SOLUTION: A steel beam 1 has an upper flange 11, a lower flange 12, and a web 13 jointing the upper flange and the lower flange, which is provided with: main stiffeners 14 jointing a space between the upper flange and the lower flange at a predetermined position in its material axial direction; and through hole 13h formed in the web to overlap the main stiffeners in a beam width direction.SELECTED DRAWING: Figure 2

Description

本発明は、鉄骨梁、柱梁接合構造およびこれを有する構造物に関する。 The present invention relates to a steel beam, a column-beam joint structure, and a structure having the same.

ラーメン構造等の構造物、例えば建築物においては、梁の材軸方向の端部、すなわち柱に接続される部分は、地震時の短期荷重作用時に大きな曲げモーメントを受ける。特に、鉄骨梁の場合には、地震力等の短期荷重作用時に曲げモーメントを受けると、材軸方向の端部のウェブやフランジに局部座屈が発生して、鉄骨梁の耐力や変形能力が急激に低下することがある。 In a structure such as a rigid frame structure, for example, a building, the end portion of the beam in the material axial direction, that is, the portion connected to the column, receives a large bending moment when a short-term load is applied during an earthquake. In particular, in the case of steel beams, when a bending moment is applied when a short-term load such as seismic force is applied, local buckling occurs in the web and flange at the end in the material axial direction, and the yield strength and deformation capacity of the steel beam are increased. It may drop sharply.

具体的には、鉄骨梁の材軸方向の端部において、ウェブが局部座屈したり、現場溶接の施工上の必要からウェブに設けられるスカラップ底からフランジが破断したり、鉄骨梁が柱に接合される溶接部が破断したりして、鉄骨梁の塑性変形能力が十分に発揮されずに、構造物に想定外の被害が生じる恐れがある。 Specifically, at the end of the steel beam in the material axial direction, the web buckles locally, the flange breaks from the scallop bottom provided on the web due to the need for on-site welding, and the steel beam joins the column. The welded portion to be welded may be broken, and the plastic deformation ability of the steel beam may not be fully exerted, resulting in unexpected damage to the structure.

鉄骨構造物の塑性設計では、地震力等の短期荷重作用時に、鉄骨梁の材軸方向の端部が曲げモーメントを受けて塑性変形した後も、破断せずに大きく塑性変形可能な塑性ヒンジとなることにより、鉄骨梁が受けるエネルギーを吸収するように設計する。したがって、鉄骨梁が十分な塑性変形能力を発揮できるように、鉄骨梁の材軸方向の端部の局部座屈や早期破断を確実に防止する必要がある。 In the plastic design of steel structures, a plastic hinge that can be greatly plastically deformed without breaking even after the end of the steel beam in the material axial direction receives a bending moment and is plastically deformed when a short-term load such as seismic force is applied. By doing so, it is designed to absorb the energy received by the steel beam. Therefore, it is necessary to surely prevent local buckling and premature fracture of the end portion of the steel beam in the material axial direction so that the steel beam can exhibit sufficient plastic deformation ability.

また、建築物等の構造物においては、梁下の空間を有効に活用して階高を抑え、構造物の施工費用を低減するため、梁に設備配管や配線を通すための貫通孔が設けられることが多い。H形、I形、溝形等の断面を有する鉄骨梁に貫通孔が設けられる場合には、ウェブに貫通孔が設けられて断面欠損が生じることとなる。 In addition, in structures such as buildings, in order to effectively utilize the space under the beam to reduce the floor height and reduce the construction cost of the structure, the beam is provided with a through hole for passing equipment piping and wiring. Is often done. When a through hole is provided in a steel beam having a cross section such as H-shaped, I-shaped, or groove-shaped, the through hole is provided in the web and a cross-sectional defect occurs.

鉄骨梁のウェブに設けられる貫通孔は、ウェブの座屈耐力を低下させるため、ウェブの局部座屈が発生しやすくなり、鉄骨梁の塑性変形能力の低下の原因となる。このような局部座屈の発生を防ぐ観点から、地震力等の短期荷重作用時に大きな曲げモーメントを受ける、鉄骨梁の材軸方向の端部の塑性化領域に貫通孔を形成することは、一般的には避けるべきとされている。 The through hole provided in the web of the steel beam reduces the buckling resistance of the web, so that local buckling of the web is likely to occur, which causes a decrease in the plastic deformation ability of the steel beam. From the viewpoint of preventing the occurrence of such local buckling, it is common to form a through hole in the plasticized region at the end of the steel beam in the direction of the material axis, which receives a large bending moment when a short-term load such as seismic force is applied. It is said that it should be avoided.

一方、例えば非特許文献1に開示されるように、鉄骨梁の材軸方向の端部に貫通孔を形成して、材軸方向の端部が曲げモーメントを受けるときに貫通孔の周囲のウェブが変形するようにすると、ウェブにより負担される耐力の急激な低下が抑えられて、鉄骨梁の塑性変形能力が向上する場合があることも知られている。このとき、貫通孔の位置におけるウェブの有効断面による全塑性耐力が、貫通孔の位置に作用する曲げモーメント以上となるように、貫通孔の大きさを設定することにより、貫通孔の位置の断面欠損に起因する鉄骨梁の耐力の低下の割合を抑えることができる。 On the other hand, as disclosed in Non-Patent Document 1, for example, a through hole is formed at an axial end of a steel beam, and a web around the through hole is formed when the axial end receives a bending moment. It is also known that when the steel frame is deformed, the sharp decrease in the yield strength borne by the web is suppressed, and the plastic deformation ability of the steel beam may be improved. At this time, by setting the size of the through hole so that the total plastic yield strength due to the effective cross section of the web at the position of the through hole is equal to or greater than the bending moment acting on the position of the through hole, the cross section of the position of the through hole is formed. It is possible to suppress the rate of decrease in the yield strength of the steel beam due to the defect.

また、鉄骨梁のウェブに貫通孔が形成されるときの断面欠損に起因して、鉄骨梁の耐力や変形能力が低下することを防ぐため、貫通孔の周囲を補強することが広く行われている。鉄骨梁のウェブに形成される貫通孔の周囲の補強方法としては、図16に示す鉄骨梁8Aのように、貫通孔83hの周囲のウェブ83に、同様に貫通孔88hを有するプレート88を溶接する方法や、図17に示す鉄骨梁8Bのように、貫通孔83hの内周にリングまたはスリーブ管89を挿入して接合する方法などが知られている。 In addition, it is widely practiced to reinforce the circumference of the through hole in order to prevent the strength and deformation capacity of the steel beam from being reduced due to the cross-sectional defect when the through hole is formed in the web of the steel beam. There is. As a method of reinforcing the periphery of the through hole formed in the web of the steel beam, a plate 88 having the through hole 88h is welded to the web 83 around the through hole 83h as in the steel beam 8A shown in FIG. And a method of inserting a ring or a sleeve tube 89 into the inner circumference of the through hole 83h and joining them, as in the steel beam 8B shown in FIG.

貫通孔の周囲を補強する必要性の有無は、貫通孔の位置における鉄骨梁の曲げ耐力およびせん断力と、貫通孔の位置に作用する曲げモーメントおよびせん断力の大きさとの大小関係から判断できる。特許文献1には、鉄骨梁の耐力を確保する上で、鉄骨梁のウェブに貫通孔を形成しても補強する必要のない材軸方向の範囲が開示されている。 Whether or not it is necessary to reinforce the circumference of the through hole can be determined from the magnitude relationship between the bending strength and shearing force of the steel beam at the position of the through hole and the magnitude of the bending moment and the shearing force acting on the position of the through hole. Patent Document 1 discloses a range in the lumber axis direction in which it is not necessary to reinforce even if a through hole is formed in the web of the steel frame beam in order to secure the yield strength of the steel frame beam.

特許第3238540号公報Japanese Patent No. 3238540

難波尚、外1名、「梁ウェブ穿孔加工による角形鋼管に接合される梁の変形能力の改善」、鋼構造年次論文報告集、日本鋼構造協会、2006年11月、第14巻、pp.673~680Takashi Namba, 1 outsider, "Improvement of Deformation Ability of Beams Joined to Square Steel Pipes by Drilling Beam Webs", Annual Papers on Steel Structures, Japanese Society of Steel Construction, November 2006, Vol. 14, pp. .. 673-680

ここで、特許文献1では、鉄骨梁の材軸方向の先端からの距離が所定の条件を満たすような範囲を規定し、これを貫通孔を補強する必要のない材軸方向の範囲としており、この範囲外となる鉄骨梁の材軸方向の端部の塑性化領域では、図16や図17に示すような方法で貫通孔の周囲を補強している。 Here, Patent Document 1 defines a range in which the distance from the tip of the steel frame beam in the timber axial direction satisfies a predetermined condition, and defines this as a range in the timber axial direction in which it is not necessary to reinforce the through hole. In the plasticized region at the end of the steel beam in the material axial direction outside this range, the periphery of the through hole is reinforced by the method shown in FIGS. 16 and 17.

図1は、鉄骨梁の材軸方向の端部にかかる曲げモーメントMと、鉄骨梁に生じる変形角θとの関係を、模式的に示すグラフである。図1中の実線は、貫通孔が設けられていない従来の鉄骨梁が、局部座屈や破断を生じることなく塑性変形能力を十分に発揮した場合を示す。このような場合では、鉄骨梁の耐力Mは、全塑性耐力Mpに到達した後、緩やかな勾配で上昇を続けて最大耐力に到達し、その後は緩やかな勾配で下降して、再び全塑性耐力Mpまで低下するような挙動を示す。図1に示した例では、鉄骨梁の耐力Mが全塑性耐力Mpに到達した後、全塑性耐力Mp以上を維持できる変形角の上限はθ3である。この、全塑性耐力Mp以上を維持できる変形角θの上限が大きいほど、鉄骨梁の塑性変形能力が高い。 FIG. 1 is a graph schematically showing the relationship between the bending moment M applied to the end portion of the steel frame beam in the material axial direction and the deformation angle θ generated in the steel frame beam. The solid line in FIG. 1 shows a case where a conventional steel beam without a through hole sufficiently exerts its plastic deformation ability without causing local buckling or fracture. In such a case, the proof stress M of the steel beam reaches the total plastic proof stress Mp, then continues to rise on a gentle slope to reach the maximum proof stress, then descends on a gentle slope, and then the total plastic proof stress again. It behaves as if it drops to Mp. In the example shown in FIG. 1, after the proof stress M of the steel frame beam reaches the total plastic proof stress Mp, the upper limit of the deformation angle capable of maintaining the total plastic proof stress Mp or more is θ3. The larger the upper limit of the deformation angle θ that can maintain the total plastic proof stress Mp or more, the higher the plastic deformation capacity of the steel frame beam.

しかし、鉄骨梁の材軸方向の端部が曲げモーメントを受けて変形角θが増加していき、全塑性耐力Mpを超えた後、図1中に×印で示すように、変形角θがθ1のときに材軸方向の端部が破断すると、この時点で鉄骨梁の塑性変形能力が完全に失われることとなる。すなわち、鉄骨梁が局部座屈や破断を生じることなく塑性変形能力を十分に発揮する場合の上記変形角θ3に比べると、塑性変形能力が大きく低下する。 However, after the end of the steel beam in the material axis direction receives a bending moment and the deformation angle θ increases and exceeds the total plastic bearing capacity Mp, the deformation angle θ becomes as shown by a cross in FIG. If the end portion in the material axial direction breaks at θ1, the plastic deformation ability of the steel beam is completely lost at this point. That is, the plastic deformation ability is significantly reduced as compared with the above-mentioned deformation angle θ3 when the steel beam sufficiently exhibits the plastic deformation ability without causing local buckling or fracture.

鉄骨梁が地震力等の繰返し荷重を受けると、材軸方向の先端にひずみが集中して、この材軸方向の先端の破断が発生することが多い。これを防ぐためには、鉄骨梁の材軸方向の先端のひずみの集中を緩和することが重要である。 When a steel beam is repeatedly loaded with a seismic force or the like, strain is concentrated on the tip in the material axis direction, and fracture of the tip in the material axis direction often occurs. In order to prevent this, it is important to alleviate the concentration of strain at the tip of the steel beam in the material axial direction.

また、鉄骨梁の材軸方向の先端が破断しない場合であっても、ウェブの肉厚が小さい場合等には、鉄骨梁の材軸方向の端部で局部座屈が発生して、図1中に破線で示すように、鉄骨梁の耐力Mが急激に低下することがある。鉄骨梁が地震力等の繰返し荷重に対して十分な耐力を保持しながら、鉄骨梁に入力するエネルギーを吸収するためには、鉄骨梁の材軸方向の先端の破断だけでなく、材軸方向の端部の局部座屈も抑える必要がある。 Further, even if the tip of the steel beam in the material axial direction does not break, if the wall thickness of the web is small, local buckling occurs at the end of the steel beam in the material axial direction, and FIG. 1 As shown by the broken line inside, the bearing capacity M of the steel beam may drop sharply. In order for the steel beam to absorb the energy input to the steel beam while maintaining sufficient yield strength against repeated loads such as seismic force, it is necessary not only to break the tip of the steel beam in the material axial direction but also in the material axial direction. It is also necessary to suppress the local buckling at the end of the beam.

ここで、非特許文献1に開示されるように、鉄骨梁の材軸方向の端部に貫通孔を設けることによって、鉄骨梁の塑性変形能力の向上を図ろうとすると、図1に点線で示すように、貫通孔の位置の断面欠損に起因して、鉄骨梁の最大耐力が低下する。この耐力低下に対しては、上述のとおり、図16や図17に示すような方法で貫通孔の周囲を補強することにより、鉄骨梁の耐力を改善することが考えられる。 Here, as disclosed in Non-Patent Document 1, an attempt is made to improve the plastic deformation capacity of the steel beam by providing a through hole at the end in the material axial direction of the steel beam, which is shown by a dotted line in FIG. As such, the maximum strength of the steel beam is reduced due to the cross-sectional defect at the position of the through hole. As described above, it is conceivable to improve the proof stress of the steel frame beam by reinforcing the periphery of the through hole by the method shown in FIGS. 16 and 17 to deal with this decrease in proof stress.

しかし、図16や図17に示すようなリングやスリーブ管による補強では、鉄骨梁が地震力等の短期荷重が作用して、材軸方向端部が曲げモーメントを受けるとき、この材軸方向の端部のフランジに発生する局部座屈を抑える効果が得られない。また、リングやスリーブ管は、貫通孔の径や形状に合わせて加工して製作する必要があるため、鋳鋼製のものが用いられることが多く、これらの部品のコストが高い問題もある。 However, in the reinforcement by the ring or sleeve pipe as shown in FIGS. 16 and 17, when the steel beam is subjected to a short-term load such as seismic force and the end portion in the material axial direction receives a bending moment, the end portion in the material axial direction is in this material axial direction. The effect of suppressing local buckling that occurs in the flange at the end cannot be obtained. Further, since the ring and the sleeve tube need to be processed and manufactured according to the diameter and shape of the through hole, those made of cast steel are often used, and there is a problem that the cost of these parts is high.

また、図16や図17に示すような方法により貫通孔の周囲を補強して、貫通孔の変形を拘束すると、貫通孔が設けられていない鉄骨梁と同等の塑性変形能力を確保することはできるが、貫通孔が設けられていない鉄骨梁以上に変形能力が向上することは期待できない。これは、リングやスリーブ管等の補強部材とウェブが溶接接合されて、貫通孔の周囲のウェブが拘束され、変形が妨げられるためである。また、リングやスリーブ管とウェブとの溶接は、肉厚が小さく変形が生じやすいウェブに設けられる貫通孔の周囲で行われるため、鉄骨梁や貫通孔が溶接変形を起こさないよう、溶接に高い技量が要求される問題もある。 Further, if the circumference of the through hole is reinforced by the method shown in FIGS. 16 and 17 to restrain the deformation of the through hole, it is possible to secure the same plastic deformation ability as that of the steel beam without the through hole. However, it cannot be expected that the deformation ability will be improved more than that of a steel beam without a through hole. This is because the reinforcing member such as a ring or a sleeve pipe and the web are welded and joined to restrain the web around the through hole and prevent deformation. In addition, since the welding between the ring or sleeve pipe and the web is performed around the through hole provided in the web, which has a small wall thickness and is easily deformed, it is expensive to weld so that the steel beam and the through hole do not undergo welding deformation. There is also a problem that skill is required.

また、非特許文献1では、サイズH-500×200×10×16のH形鋼からなる鉄骨梁の材軸方向の端部が曲げモーメントを受ける場合の挙動を、弾塑性有限要素解析で計算した結果が示されている、しかし、このようなウェブの幅厚比が小さい鉄骨梁ではそもそも座屈が生じにくく、ウェブの肉厚が小さい鉄骨梁に比べると塑性変形能力が高いことが知られている。近年では、建築物の高層化に伴い、鋼材重量の低減を図るべく、ウェブの肉厚が小さい鉄骨梁が採用される例が増加していることに鑑みれば、非特許文献1のように鉄骨梁の材軸方向の端部に貫通孔を設けるだけでは、鉄骨梁の塑性変形能力は必ずしも改善されないため、十分な塑性変形能力を得るには、材軸方向の端部の局部座屈も抑える必要がある。 Further, in Non-Patent Document 1, the behavior when the end portion of a steel beam made of H-shaped steel having a size of H-500 × 200 × 10 × 16 in the material axial direction receives a bending moment is calculated by elasto-plastic finite element analysis. However, it is known that buckling is less likely to occur in such a steel beam with a small width-thickness ratio of the web, and that the plastic deformation ability is higher than that of a steel beam with a small web thickness. ing. In recent years, steel frames as in Non-Patent Document 1 have been increasingly adopted in order to reduce the weight of steel materials due to the increase in the height of buildings. Since the plastic deformation capacity of the steel beam is not necessarily improved only by providing a through hole at the end of the beam in the material axial direction, local buckling of the end in the material axial direction is also suppressed in order to obtain sufficient plastic deformation capacity. There is a need.

また、非特許文献1には、梁せい500mmの鉄骨梁に直径360mmの貫通孔が設けられている例では、貫通孔の近傍のフランジが局部座屈してしまい、鉄骨梁の塑性変形能力が向上していないことが示されている。このため、非特許文献1では、鉄骨梁の材軸方向の端部に貫通孔を形成する際に、小さな貫通穴を多数設ける方法を提案している。しかし、このような方法では、多数の貫通孔を形成するために工数が増加する問題がある。 Further, in Non-Patent Document 1, in the example in which a through hole having a diameter of 360 mm is provided in a steel frame beam having a beam length of 500 mm, the flange in the vicinity of the through hole is locally buckled, and the plastic deformation ability of the steel frame beam is improved. It is shown not to. Therefore, Non-Patent Document 1 proposes a method of providing a large number of small through holes when forming through holes at the end portion of the steel frame beam in the material axial direction. However, such a method has a problem that man-hours increase because a large number of through holes are formed.

本発明は、上記のような事情に鑑みてなされたものであり、単純な構造により、地震力等の短期荷重作用時に材軸方向の端部の塑性変形能力を改善することのできる鉄骨梁、柱梁接合構造およびこれを有する構造物を提供することを目的とする。 The present invention has been made in view of the above circumstances, and is a steel beam capable of improving the plastic deformation ability of the end portion in the material axial direction when a short-term load such as a seismic force is applied by a simple structure. It is an object of the present invention to provide a beam-column joint structure and a structure having the same.

上記課題を解決するため、本発明は以下の特徴を有する。 In order to solve the above problems, the present invention has the following features.

[1] 上フランジと、下フランジと、前記上フランジと前記下フランジとを連結するウェブとを有する鉄骨梁であって、該鉄骨梁の材軸方向の所定位置において、前記上フランジと前記下フランジの間を連結する主スチフナが設けられるとともに、前記ウェブには前記主スチフナと梁幅方向に重なるように貫通孔が形成されていることを特徴とする鉄骨梁。 [1] A steel beam having an upper flange, a lower flange, and a web connecting the upper flange and the lower flange, and the upper flange and the lower flange at a predetermined position in the material axial direction of the steel beam. A steel beam characterized in that a main stiffener connecting between flanges is provided, and a through hole is formed in the web so as to overlap the main stiffener in the beam width direction.

ここで、「主スチフナと梁幅方向に重なるように貫通孔が形成されている」とは、梁幅方向に見たときに貫通孔の少なくとも一部が主スチフナと重なることを意味する。 Here, "the through hole is formed so as to overlap the main stiffener in the beam width direction" means that at least a part of the through hole overlaps with the main stiffener when viewed in the beam width direction.

[2] 前記所定位置は、前記材軸方向の端部であることを特徴とする[1]に記載の鉄骨梁。 [2] The steel beam according to [1], wherein the predetermined position is an end portion in the material axial direction.

ここで、材軸方向の「端部」とは、鉄骨梁の材軸方向の先端が柱に接続されてなる構造物に、地震力等の短期荷重が作用するときの塑性化領域を意味し、例えば、鉄骨梁の材軸方向の先端から材軸方向に梁せいの1.5倍までの領域を指す。 Here, the "end" in the lumber axial direction means a plasticized region when a short-term load such as a seismic force acts on a structure in which the tip of the steel beam in the lumber axial direction is connected to a column. For example, it refers to a region from the tip of the steel beam in the lumber axis direction to 1.5 times the beam length in the lumber axis direction.

[3] 前記主スチフナは、前記ウェブに接合されていないことを特徴とする[1]または[2]に記載の鉄骨梁。 [3] The steel beam according to [1] or [2], wherein the main stiffener is not joined to the web.

[4] 前記主スチフナは、前記上フランジと前記下フランジの梁幅方向の先端部に配設されていることを特徴とする[1]~[3]のいずれかに記載の鉄骨梁。 [4] The steel frame beam according to any one of [1] to [3], wherein the main stiffener is disposed at the tip portions of the upper flange and the lower flange in the beam width direction.

[5] 前記主スチフナは平板状の形状を有し、前記材軸方向と交差する向きに配設されていることを特徴とする[1]~[4]のいずれかに記載の鉄骨梁。 [5] The steel frame beam according to any one of [1] to [4], wherein the main stiffener has a flat plate shape and is arranged in a direction intersecting the material axial direction.

[6] 前記材軸方向の端部のうち、前記貫通孔が形成されていない位置において、前記上フランジと前記下フランジとの間が、副スチフナにより連結されていることを特徴とする[1]~[5]のいずれかに記載の鉄骨梁。 [6] The upper flange and the lower flange are connected by an auxiliary stiffener at a position where the through hole is not formed in the end portion in the material axial direction [1]. ] To the steel beam according to any one of [5].

[7] 前記副スチフナは、前記貫通孔と前記鉄骨梁の長さ方向の先端との間に設けられていることを特徴とする[6]に記載の鉄骨梁。 [7] The steel beam according to [6], wherein the sub-stiffener is provided between the through hole and the tip in the length direction of the steel beam.

[8] 前記副スチフナは、前記ウェブに接合されていないことを特徴とする[67]または[7]に記載の鉄骨梁。 [8] The steel beam according to [67] or [7], wherein the secondary stiffener is not joined to the web.

[9] [1]~[8]のいずれかに記載の鉄骨梁の前記材軸方向の先端が柱に接続されてなることを特徴とする柱梁接合構造。 [9] A beam-column joint structure characterized in that the tip of the steel frame beam according to any one of [1] to [8] in the lumber direction is connected to a column.

[10] [9]に記載の柱梁接合構造を有することを特徴とする構造物。 [10] A structure characterized by having the beam-column joint structure according to [9].

本発明の鉄骨梁、柱梁接合構造およびこれを有する構造物によれば、地震力等の短期荷重作用時に、貫通孔の周囲のウェブが、鉄骨梁の材軸方向の先端よりも先行して変形し降伏することにより、鉄骨梁の材軸方向の先端でのひずみの集中が緩和され、鉄骨梁の塑性変形能力が向上する。 According to the steel beam, the column-beam joint structure of the present invention, and the structure having the same, the web around the through hole precedes the tip of the steel beam in the material axial direction when a short-term load such as a seismic force is applied. By deforming and yielding, the concentration of strain at the tip of the steel beam in the material axial direction is alleviated, and the plastic deformation capacity of the steel beam is improved.

また、上フランジと下フランジの間が、貫通孔の少なくとも一部と梁幅方向に重なるように配設された主スチフナにより連結されているので、鉄骨梁のウェブの肉厚が小さくても、ウェブの局部座屈が抑えられ、鉄骨梁の塑性変形能力が向上する。 Further, since the upper flange and the lower flange are connected by a main stiffener arranged so as to overlap at least a part of the through hole in the beam width direction, even if the thickness of the web of the steel beam is small, the thickness of the web is small. Local buckling of the web is suppressed and the plastic deformation capacity of the steel beam is improved.

また、上フランジと下フランジの間が、貫通孔の少なくとも一部と梁幅方向に重なるように配設された主スチフナにより連結されて、上フランジと下フランジが補剛されるので、小さな貫通孔を多数設けるような複雑な構造ではなく、比較的大きな貫通孔を一つまたは少数のみ設ける簡単な構造としても、貫通孔の近傍の上フランジおよび下フランジの局部座屈が抑えられ、鉄骨梁の塑性変形能力が向上する。 Further, the upper flange and the lower flange are connected by a main stiffener arranged so as to overlap at least a part of the through hole in the beam width direction, and the upper flange and the lower flange are stiffened, so that a small penetration is made. Even if it is a simple structure in which only one or a small number of relatively large through holes are provided instead of a complicated structure in which many holes are provided, local buckling of the upper and lower flanges in the vicinity of the through holes is suppressed, and the steel beam. The plastic deformation ability of is improved.

また、鉄骨梁のウェブに設ける貫通孔の径を変更することにより、鉄骨梁の全塑性耐力を簡単に調整できる。 Further, the total plastic strength of the steel beam can be easily adjusted by changing the diameter of the through hole provided in the web of the steel beam.

また、主スチフナおよび副スチフナは、上フランジと下フランジの間を連結するように取り付けられているので、これら主スチフナおよび副スチフナの形状を、貫通孔の形状に影響されることなく決定できる。 Further, since the main stiffener and the sub stiffener are attached so as to connect between the upper flange and the lower flange, the shapes of the main stiffener and the sub stiffener can be determined without being influenced by the shape of the through hole.

本発明の鉄骨梁および従来の鉄骨梁における荷重-変形関係を模式的に示すグラフである。It is a graph which shows typically the load-deformation relationship in the steel frame beam of this invention and the conventional steel frame beam. 本発明の一実施形態の鉄骨梁および柱梁接合構造を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the steel frame beam and column beam joint structure of one Embodiment of this invention, (a) is a side view, (b) is a sectional view. 本発明の鉄骨梁の材軸方向の端部に曲げモーメントおよびせん断力が作用するときの変形状況を模式的に示す側面図である。It is a side view schematically showing the deformation state when the bending moment and the shearing force act on the end portion of the steel beam of the present invention in the material axial direction. 本発明の他の実施形態の鉄骨梁および柱梁接合構造を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the steel frame beam and column beam joint structure of another embodiment of this invention, (a) is a side view, (b) is a sectional view. 本発明のさらに他の実施形態の鉄骨梁および柱梁接合構造を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the steel frame beam and column beam joint structure of still another embodiment of this invention, (a) is a side view, (b) is a sectional view. 本発明のさらに他の実施形態の鉄骨梁および柱梁接合構造を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the steel frame beam and column beam joint structure of still another embodiment of this invention, (a) is a side view, (b) is a sectional view. 本発明のさらに他の実施形態の鉄骨梁および柱梁接合構造を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the steel frame beam and column beam joint structure of still another embodiment of this invention, (a) is a side view, (b) is a sectional view. 本発明のさらに他の実施形態の鉄骨梁および柱梁接合構造を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the steel frame beam and column beam joint structure of still another embodiment of this invention, (a) is a side view, (b) is a sectional view. 本発明の鉄骨梁が荷重を受けるときの変形を数値解析により計算するための解析モデルを示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the analysis model for calculating the deformation when the steel frame beam of this invention receives a load by numerical analysis, (a) is a side view, (b) is a sectional view. 従来の鉄骨梁が荷重を受けるときの変形を数値解析により計算するための解析モデルを示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the analysis model for calculating the deformation when a conventional steel beam receives a load by numerical analysis, (a) is a side view, (b) is a sectional view. 従来の鉄骨梁が荷重を受けるときの変形を数値解析により計算するための解析モデルを示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows the analysis model for calculating the deformation when a conventional steel beam receives a load by numerical analysis, (a) is a side view, (b) is a sectional view. 本発明と従来の鉄骨梁における荷重-変形関係を数値解析により計算した結果を比較して示すグラフである。It is a graph which compares and shows the result of having calculated the load-deformation relationship in the present invention and a conventional steel beam by numerical analysis. 本発明の鉄骨梁に発生するひずみ分布の数値解析結果を示すコンター図であり、(a)は側面図、(b)は上面図である。It is a contour diagram which shows the numerical analysis result of the strain distribution generated in the steel frame beam of this invention, (a) is a side view, (b) is a top view. 従来の鉄骨梁に発生するひずみ分布の数値解析結果を示すコンター図であり、(a)は側面図、(b)は上面図である。It is a contour diagram which shows the numerical analysis result of the strain distribution generated in the conventional steel frame beam, (a) is a side view, (b) is a top view. 従来の鉄骨梁に発生するひずみ分布の数値解析結果を示すコンター図であり、(a)は側面図、(b)は上面図である。It is a contour diagram which shows the numerical analysis result of the strain distribution generated in the conventional steel frame beam, (a) is a side view, (b) is a top view. 従来の鉄骨梁の一例を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows an example of the conventional steel frame beam, (a) is a side view, (b) is a sectional view. 従来の鉄骨梁の他の一例を示す図であり、(a)は側面図、(b)は断面図である。It is a figure which shows another example of the conventional steel frame beam, (a) is a side view, (b) is a sectional view.

以下、図面を参照して、本発明の鉄骨梁、柱梁接合構造およびこれを有する構造物の実施形態を詳細に説明する。 Hereinafter, embodiments of the steel beam, column-beam joint structure, and the structure having the same will be described in detail with reference to the drawings.

本実施の形態の鉄骨梁は、鉄骨造の建築物(構造物)(図示せず)に設けられるものである。図2(a)および図2(b)はそれぞれ、本実施の形態の鉄骨梁1の側面図、および、後述する貫通孔13hの位置で材軸方向に直交する面で切断した断面図である。この鉄骨梁1では、上フランジ11と、下フランジ12と、これら上フランジ11と下フランジ12とを連結するウェブ13とを有するH形鋼の材軸方向の端部、すなわち建築物の柱2に接続される部分の近傍において、H形鋼の上フランジ11と下フランジ12の間を連結する主スチフナ14が設けられている。 The steel beam of the present embodiment is provided in a steel-framed building (structure) (not shown). 2 (a) and 2 (b) are a side view of the steel frame beam 1 of the present embodiment and a cross-sectional view cut along a plane orthogonal to the lumber axis at the position of the through hole 13h described later, respectively. .. In the steel beam 1, the end portion of the H-shaped steel having the upper flange 11, the lower flange 12, and the web 13 connecting the upper flange 11 and the lower flange 12 in the material axial direction, that is, the pillar 2 of the building. A main stiffener 14 for connecting between the upper flange 11 and the lower flange 12 of the H-shaped steel is provided in the vicinity of the portion connected to the H-shaped steel.

さらに、H形鋼のウェブ13には、主スチフナ14と梁幅方向に重なるように貫通孔13hが形成されている。つまり、上フランジ11と下フランジ12の間を連結する主スチフナ14は、貫通孔13hの少なくとも一部と梁幅方向に重なるように配設されている。図2(b)に示すように、主スチフナ14は、平板状の形状を有し、鉄骨梁1の材軸方向と交差する向き、すなわちウェブ13、上フランジ11および下フランジ12の各々に対して垂直に配設されている。 Further, the web 13 of the H-shaped steel is formed with a through hole 13h so as to overlap the main stiffener 14 in the beam width direction. That is, the main stiffener 14 connecting between the upper flange 11 and the lower flange 12 is arranged so as to overlap at least a part of the through hole 13h in the beam width direction. As shown in FIG. 2B, the main stiffener 14 has a flat plate-like shape, and the direction intersecting the material axial direction of the steel frame beam 1, that is, with respect to each of the web 13, the upper flange 11, and the lower flange 12. Is arranged vertically.

また、図2に示すように、鉄骨梁1の材軸方向の端部のうち、貫通孔13hが形成されていない位置では、上フランジ11と下フランジ12との間が、鉄骨梁1のウェブ13の両側に配設された副スチフナ16により連結されている。具体的には、鉄骨梁1の材軸方向の先端と貫通孔13hとの間の一箇所に、副スチフナ16が設けられている。図2(a)に示すように、副スチフナ16および主スチフナ14は、鉄骨梁1の材軸方向に均等な間隔で配設されている。副スチフナ16は、主スチフナ14と同様に、平板状の形状を有し、鉄骨梁1の材軸方向と交差する向き、すなわちウェブ13、上フランジ11および下フランジ12の各々に対して垂直に配設されている。 Further, as shown in FIG. 2, at the position where the through hole 13h is not formed in the end portion of the steel frame beam 1 in the material axial direction, the web of the steel frame beam 1 is between the upper flange 11 and the lower flange 12. It is connected by the auxiliary stiffeners 16 arranged on both sides of the 13. Specifically, the auxiliary stiffener 16 is provided at one position between the tip of the steel frame beam 1 in the lumber direction and the through hole 13h. As shown in FIG. 2A, the sub stiffener 16 and the main stiffener 14 are arranged at equal intervals in the lumber axis direction of the steel frame beam 1. Like the main stiffener 14, the sub stiffener 16 has a flat plate shape and is perpendicular to each of the web 13, the upper flange 11, and the lower flange 12 in a direction intersecting the material axial direction of the steel frame beam 1. It is arranged.

主スチフナ14および副スチフナ16は、上フランジ11と下フランジ12の梁幅方向の先端に接合されて、上フランジ11および下フランジ12の面外変形を拘束している。主スチフナ14および副スチフナ16は、ウェブ13との間に隙間が形成されるように配設されており、ウェブ13には接合されていない。 The main stiffener 14 and the sub stiffener 16 are joined to the tips of the upper flange 11 and the lower flange 12 in the beam width direction to restrain the out-of-plane deformation of the upper flange 11 and the lower flange 12. The main stiffener 14 and the sub stiffener 16 are arranged so as to form a gap between the main stiffener 14 and the sub stiffener 16, and are not joined to the web 13.

そして、鉄骨梁1の材軸方向の先端が柱2に接続されて、柱梁接合構造3が構成される。 Then, the tip of the steel frame beam 1 in the lumber direction is connected to the column 2 to form the column-beam joint structure 3.

本実施の形態の鉄骨梁1の材軸方向の端部に曲げモーメントが作用するときの変形状態を、図3に模式的に示す。 FIG. 3 schematically shows a deformed state when a bending moment acts on the end portion of the steel frame beam 1 of the present embodiment in the material axial direction.

上述のとおり、主スチフナ14および副スチフナ16は、ウェブ13には接合されていないため、貫通孔13hの周囲のウェブ13の変形が拘束されない。したがって、図3に示すように、貫通孔13hの周囲のウェブ13が、鉄骨梁1の材軸方向の先端よりも先行して変形し降伏することにより、鉄骨梁1の材軸方向の先端でのひずみの集中が緩和され鉄骨梁1の塑性変形能力が向上する。 As described above, since the main stiffener 14 and the sub stiffener 16 are not joined to the web 13, the deformation of the web 13 around the through hole 13h is not restrained. Therefore, as shown in FIG. 3, the web 13 around the through hole 13h is deformed and yields ahead of the tip of the steel beam 1 in the material axis direction, so that the web 13 is deformed and yields at the tip of the steel frame beam 1 in the material axis direction. The concentration of strain is relaxed and the plastic deformation capacity of the steel beam 1 is improved.

また、貫通孔13hの断面欠損やウェブ13の肉厚が小さいことに起因する、貫通孔13hの近傍の上フランジ11、下フランジ12およびウェブ13の局部座屈が、主スチフナ14および副スチフナ16によって上フランジ11と下フランジ12の間が連結されることによって抑えられる。 Further, the local buckling of the upper flange 11, the lower flange 12 and the web 13 in the vicinity of the through hole 13h due to the cross-sectional defect of the through hole 13h and the small wall thickness of the web 13 causes the main stiffener 14 and the sub stiffener 16. It is suppressed by connecting between the upper flange 11 and the lower flange 12.

この結果、本実施形態の鉄骨梁は、図1中に一点鎖線で示すように、全塑性耐力Mpに到達した後、貫通孔が設けられていない従来の鉄骨梁よりも緩やかな勾配で、耐力Mが上昇し、その後低下していくこととなる。そして、本実施形態の鉄骨梁では、耐力Mが全塑性耐力Mp以上を維持できる限界の変形角がθ5となり、貫通孔が設けられていない従来の鉄骨梁や、貫通孔は設けられるが主スチフナや副スチフナが設けられていない従来の鉄骨梁に比べて、塑性変形能力が向上する。 As a result, as shown by the alternate long and short dash line in FIG. 1, the steel beam of the present embodiment has a proof stress with a gentler slope than the conventional steel beam having no through hole after reaching the total plastic strength Mp. M will rise and then fall. In the steel beam of the present embodiment, the deformation angle at the limit where the proof stress M can maintain the total plastic proof stress Mp or more is θ5, and a conventional steel beam without a through hole or a main stiffener having a through hole is provided. The plastic deformation ability is improved as compared with the conventional steel beam without the provision of the or secondary stiffener.

図4~8に、本発明の鉄骨梁および柱梁接合構造の他の実施の形態を示す。 4 to 8 show other embodiments of the steel beam and column-beam joint structure of the present invention.

図4(a)および図4(b)に示す鉄骨梁1Aおよび柱梁接合構造3Aでは、図2(a)および図2(b)に示す鉄骨梁1および柱梁接合構造3とは異なり、主スチフナ14Aは、鉄骨梁1のウェブ13に平行な向きに配設され、また副スチフナ16が配設されていない。その他は、図2(a)および図2(b)に示す鉄骨梁1および柱梁接合構造3と同様に構成されている。 The steel beam 1A and the column-beam joint structure 3A shown in FIGS. 4 (a) and 4 (b) are different from the steel beam 1 and the column-beam joint structure 3 shown in FIGS. 2 (a) and 2 (b). The main stiffener 14A is arranged in a direction parallel to the web 13 of the steel frame beam 1, and the sub stiffener 16 is not disposed. Others are configured in the same manner as the steel frame beam 1 and the column-beam joint structure 3 shown in FIGS. 2 (a) and 2 (b).

このように、平板状の形状を有する主スチフナ14Aを鉄骨梁1のウェブ13に平行な向きに配設することにより、面外変形が大きく発生しやすい上フランジ11や下フランジ12の梁幅方向の先端において、これら上フランジ11や下フランジ12の面外変形がより効果的に抑えられ、上フランジ11や下フランジ12の局部座屈を防止できる。 By arranging the main stiffener 14A having a flat plate shape in a direction parallel to the web 13 of the steel beam 1, in this way, the beam width direction of the upper flange 11 and the lower flange 12 where out-of-plane deformation is likely to occur. Out-of-plane deformation of the upper flange 11 and the lower flange 12 can be more effectively suppressed at the tip of the upper flange 11, and local buckling of the upper flange 11 and the lower flange 12 can be prevented.

図5(a)および図5(b)に示す鉄骨梁1Bおよび柱梁接合構造3Bでは、図2(a)および図2(b)に示す鉄骨梁1および柱梁接合構造3とは異なり、平板状の形状を有する主スチフナ14Bが貫通孔13hの全体を覆うようにして、貫通孔13hの周囲のウェブ13の両側に重ねて配設され、上フランジ11と下フランジ12に接合されている。主スチフナ14Bは、ウェブ13に重ねて配設されているが、ウェブ13には接合されていないため、ウェブ13の面該変形を拘束するが、ウェブ13のせん断変形を拘束しない。 The steel beam 1B and the column-beam joint structure 3B shown in FIGS. 5 (a) and 5 (b) are different from the steel beam 1 and the column-beam joint structure 3 shown in FIGS. 2 (a) and 2 (b). The main stiffener 14B having a flat plate shape is arranged so as to cover the entire through hole 13h so as to be overlapped on both sides of the web 13 around the through hole 13h, and is joined to the upper flange 11 and the lower flange 12. .. The main stiffener 14B is arranged so as to overlap the web 13, but is not joined to the web 13, so that the surface deformation of the web 13 is constrained, but the shear deformation of the web 13 is not constrained.

このように、平板状の形状を有する主スチフナ14Bを貫通孔13hの全体を覆うようにして貫通孔13hの周囲のウェブ13の両側に重ねて配設することで、ウェブ13の面外変形が抑えられ、鉄骨梁1のねじり変形が抑えられる。 In this way, by arranging the main stiffener 14B having a flat plate shape on both sides of the web 13 around the through hole 13h so as to cover the entire through hole 13h, the out-of-plane deformation of the web 13 can be caused. It is suppressed and the torsional deformation of the steel frame beam 1 is suppressed.

図6(a)および図6(b)に示す鉄骨梁1Cおよび柱梁接合構造3Cは、図5(a)および図5(b)に示す鉄骨梁1Bおよび柱梁接合構造3Bの平板状の主スチフナ14Bを、形鋼などの成形品により構成された主スチフナ14Cで置き換えたものである。このように、必要に応じて主スチフナの形状を変えてもよい。 The steel beam 1C and the column-beam joint structure 3C shown in FIGS. 6 (a) and 6 (b) are flat plates of the steel beam 1B and the column-beam joint structure 3B shown in FIGS. 5 (a) and 5 (b). The main stiffener 14B is replaced with the main stiffener 14C made of a molded product such as a shaped steel. In this way, the shape of the main stiffener may be changed as needed.

図7(a)および図7(b)、ならびに図8(a)および図8(b)に示す鉄骨梁1D、1Eおよび柱梁接合構造3D、3Eでは、図2(a)および図2(b)に示す鉄骨梁1および柱梁接合構造3とは異なり、貫通孔13hD、13hEの形状が円形ではなく楕円形または多角形に形成されている。このように、必要に応じて貫通孔の形状を変えても良い。 7 (a) and 7 (b), and in the steel beam 1D and 1E and the column-beam joint structure 3D and 3E shown in FIGS. 8 (a) and 8 (b), FIGS. 2 (a) and 2 ( Unlike the steel beam 1 and the column-beam joint structure 3 shown in b), the through holes 13hD and 13hE are formed in an elliptical shape or a polygonal shape instead of a circular shape. In this way, the shape of the through hole may be changed as needed.

なお、本発明の鉄骨梁においては、貫通孔の大きさを梁せいの半分以下とすることが好ましく、その範囲内で貫通孔の大きさを変更することにより、鉄骨梁の全塑性耐力を調整することができる。 In the steel beam of the present invention, the size of the through hole is preferably half or less of that of the beam, and the total plastic strength of the steel beam is adjusted by changing the size of the through hole within that range. can do.

貫通孔、主スチフナおよび副スチフナが設けられている本発明の鉄骨梁(本発明例)と、貫通孔、主スチフナ、副スチフナのいずれも設けられていない従来の鉄骨梁(従来例1)と、貫通孔が設けられ主スチフナ、副スチフナが設けられていない従来の鉄骨梁(従来例2)を対象として、有限要素法による数値解析を行い、耐力および変形能力を確認した。 A steel beam of the present invention provided with a through hole, a main stiffener and a sub stiffener (example of the present invention), and a conventional steel beam beam provided with no through hole, a main stiffener or a sub stiffener (conventional example 1). , A numerical analysis by the finite element method was performed on a conventional steel beam (conventional example 2) in which a through hole was provided and a main stiffener and a sub stiffener were not provided, and the yield strength and deformation ability were confirmed.

本数値解析における解析モデルを、図9~図11に示す。図9に示すように、本発明例の鉄骨梁1Fの解析モデルとして、H-1000(H)×300(B)×12×25、全長L=20000mmのH形鋼のウェブ13に、直径500mmの貫通孔13hが形成され、H形鋼の上フランジ11と下フランジ12の間が、材軸方向と直交する向きに配設された主スチフナ14および副スチフナ16、17により連結されているものを設定した。主スチフナ14および副スチフナ16、17のサイズは、高さ950mm、幅144mm、厚さ12mmとした。 The analysis models in this numerical analysis are shown in FIGS. 9 to 11. As shown in FIG. 9, as an analysis model of the steel beam 1F of the example of the present invention, an H-shaped steel web 13 having an H-1000 (H) × 300 (B) × 12 × 25 and a total length L = 20000 mm has a diameter of 500 mm. Through holes 13h are formed, and the upper flange 11 and the lower flange 12 of the H-shaped steel are connected by a main stiffener 14 and sub stiffeners 16 and 17 arranged in a direction orthogonal to the material axis direction. It was set. The sizes of the main stiffener 14 and the sub stiffeners 16 and 17 were 950 mm in height, 144 mm in width, and 12 mm in thickness.

貫通孔13hの中心位置は、鉄骨梁1Fの材軸方向の先端から600mmの位置とした。また、鉄骨梁1Fのウェブ13の両側の各々に、材軸方向の先端から順に、副スチフナ16が一箇所、主スチフナ14が一箇所、副スチフナ17が二箇所、材軸方向に均等な間隔L1=300mmで配設されているものとした。また、主スチフナ14および副スチフナ16、17は、鉄骨梁1Fの上フランジ11の下面および下フランジ12の上面に接合される一方、ウェブ13には接合されていないものとした。各溶接部はノンスカラップ型とした。 The center position of the through hole 13h was set to a position 600 mm from the tip of the steel frame beam 1F in the material axial direction. Further, on each of both sides of the web 13 on the steel beam 1F, in order from the tip in the lumber direction, there is one sub-stiffener 16, one main stiffener 14, two sub-stiffeners 17, and even intervals in the lumber direction. It was assumed that the arrangement was L1 = 300 mm. Further, the main stiffener 14 and the sub stiffeners 16 and 17 are joined to the lower surface of the upper flange 11 and the upper surface of the lower flange 12 of the steel frame beam 1F, but are not joined to the web 13. Each weld is a non-scallop type.

そして、本発明例の鉄骨梁1Fが逆対称曲げを受けることを想定し、対称性を考慮して、鉄骨梁1Fの全長Lの半分L/2までを解析モデル化した。 Then, assuming that the steel beam 1F of the example of the present invention is subjected to antisymmetric bending, in consideration of symmetry, an analysis model is made up to half L / 2 of the total length L of the steel beam 1F.

H形鋼の力学特性としては、JIS G3136(建築構造用圧延鋼材)のSN490B相当(引張強度:557N/mm、降伏強度:385N/mm、ヤング係数:205000)を想定した応力-歪関係を用いた。また、主スチフナ14および副スチフナ16、17の力学特性としては、JIS G3101(一般構造用圧延鋼材)のSS400相当(引張強度:425N/mm、降伏強度:295N/mm、ヤング係数:205000)を想定した応力-歪関係を用いた。 As the mechanical properties of H-section steel, stress-strain relationship assuming SN490B equivalent (tensile strength: 557N / mm 2 , yield strength: 385N / mm 2 , Young coefficient: 205000) of JIS G3136 (rolled steel for building structure) Was used. The mechanical properties of the main stiffener 14 and the sub stiffeners 16 and 17 are equivalent to SS400 of JIS G3101 (rolled steel for general structure) (tensile strength: 425 N / mm 2 , yield strength: 295 N / mm 2 , Young coefficient: 205000. ) Was used for the stress-strain relationship.

また、図10に示すように、従来例1として、本発明例の貫通孔13h、主スチフナ14、副スチフナ16、17のいずれも設けられておらず、その他は本発明例と同じとした解析モデルを設定した。さらに、図11に示すように、従来例2として、本発明例の主スチフナ14および副スチフナ16、17が設けられておらず、貫通孔13hは本発明例と同様に形成され、その他も本発明例と同じとした解析モデルを設定した。 Further, as shown in FIG. 10, as the conventional example 1, none of the through hole 13h, the main stiffener 14, the sub stiffeners 16 and 17 of the present invention example is provided, and the other parts are the same as the present invention example. I set up the model. Further, as shown in FIG. 11, as the conventional example 2, the main stiffener 14 and the sub stiffeners 16 and 17 of the present invention example are not provided, the through hole 13h is formed in the same manner as the present invention example, and the others are also present. An analysis model was set to be the same as that of the invention example.

これらの解析モデルについて、鉄骨梁1Fの材軸方向の先端(本発明例および比較例2においては、貫通孔13hが形成されている側の先端)を完全固定とし、全長Lの半分L/2の位置を載荷点とした。この載荷点に、図9~図11に示すように、梁せい方向上向きの荷重Pを作用させ、この荷重Pを漸増させていき、弾塑性有限要素法解析により、解析モデルの各部位の変形量および相当塑性ひずみを計算した。 For these analysis models, the tip of the steel beam 1F in the lumber direction (the tip on the side where the through hole 13h is formed in the examples of the present invention and Comparative Example 2) is completely fixed, and half of the total length L is L / 2. The position of was used as the loading point. As shown in FIGS. 9 to 11, a load P upward in the beam strain direction is applied to this loading point, and this load P is gradually increased. Deformation of each part of the analysis model by elasto-plastic finite element method analysis. The quantity and equivalent plastic strain were calculated.

本発明例、従来例1、従来例2の各々について上記数値解析を行った結果得られた、鉄骨梁の材軸方向の先端にかかる曲げモーメントMと、鉄骨梁の変形角θとの関係を、図12に示す。ここで、鉄骨梁の材軸方向の先端にかかる曲げモーメントMは、載荷点に作用させる荷重Pと、載荷点から固定端までの距離L/2の積により算出した。鉄骨梁の変形角θは、鉄骨梁の載荷点の鉛直変位δを、上記距離L/2で除すことによって算出した。図12のグラフでは、縦軸は、上記曲げモーメントMを、従来例1の全塑性モーメントMpで除した値M/Mpである。また、横軸は、上記変形角θを、従来例1の全塑性モーメントMp時の変形角θpで除した無次元化変形角θ/θpである。 The relationship between the bending moment M applied to the tip of the steel beam in the lumber axis direction and the deformation angle θ of the steel beam obtained as a result of performing the above numerical analysis for each of the examples of the present invention, the conventional example 1 and the conventional example 2. , FIG. 12. Here, the bending moment M applied to the tip of the steel beam in the material axial direction was calculated by the product of the load P acting on the loading point and the distance L / 2 from the loading point to the fixed end. The deformation angle θ of the steel frame beam was calculated by dividing the vertical displacement δ of the loading point of the steel frame beam by the above distance L / 2. In the graph of FIG. 12, the vertical axis is a value M / Mp obtained by dividing the bending moment M by the total plastic moment Mp of the conventional example 1. Further, the horizontal axis is a dimensionless deformation angle θ / θp obtained by dividing the deformation angle θ by the deformation angle θp at the time of the total plastic moment Mp of the conventional example 1.

図12に示すように、貫通孔が設けられ主スチフナおよび副スチフナが設けられていない従来例2では、貫通孔、主スチフナ、副スチフナのいずれも設けられていない従来例1に比べて、最大耐力発揮時、すなわち曲げモーメントMが最大となるときの変形角θが大きくなっており、貫通孔が設けられることにより鉄骨梁の変形能力が向上していることがわかる。しかし、従来例2の最大耐力は、従来例1の最大耐力を下回っており、貫通孔が設けられている影響で最大耐力が低下してしまっていることがわかる。 As shown in FIG. 12, in the conventional example 2 in which the through hole is provided and the main stiffener and the sub stiffener are not provided, the maximum is compared with the conventional example 1 in which none of the through hole, the main stiffener, and the sub stiffener is provided. It can be seen that the deformation angle θ at the time of exerting the proof stress, that is, when the bending moment M is maximized is large, and the deformation ability of the steel frame beam is improved by providing the through hole. However, it can be seen that the maximum proof stress of the conventional example 2 is lower than the maximum proof stress of the conventional example 1, and the maximum proof stress is lowered due to the influence of the through hole.

これに対し、貫通孔に加えて主スチフナおよび副スチフナが設けられている本発明例では、従来例1および従来例2に比べて、最大耐力発揮時の変形角θ、すなわち変形性能が大幅に向上している。また、本発明例の最大耐力は、従来例1および従来例2の最大耐力を上回っている。 On the other hand, in the example of the present invention in which the main stiffener and the sub stiffener are provided in addition to the through hole, the deformation angle θ at the time of demonstrating the maximum proof stress, that is, the deformation performance is significantly higher than that of the conventional example 1 and the conventional example 2. It is improving. Further, the maximum proof stress of the present invention example exceeds the maximum proof stress of the conventional example 1 and the conventional example 2.

図13~図15は、上記数値解析を行った結果得られた、無次元化変形角θ/θp=5.0時点での鉄骨梁の各部位の相当塑性ひずみを、本発明例および従来例1、2の各々についてそれぞれ濃淡のコンターで示した図である。 13 to 15 show the equivalent plastic strains of each part of the steel beam at the dimensionless deformation angle θ / θp = 5.0, which were obtained as a result of the above numerical analysis, in the examples of the present invention and conventional examples. It is the figure which showed the contour of the shade for each of 1 and 2.

従来例1では、図13に示すように、相当塑性ひずみは、鉄骨梁の材軸方向の先端の近傍で集中的に発生しており、相当塑性ひずみが最大となる位置は、鉄骨梁の材軸方向の先端の上フランジである。 In Conventional Example 1, as shown in FIG. 13, the equivalent plastic strain is intensively generated near the tip in the material axial direction of the steel beam, and the position where the equivalent plastic strain is maximum is the material of the steel beam. The upper flange at the tip in the axial direction.

また、従来例2では、図14に示すように、相当塑性ひずみが最大となる位置は、鉄骨梁の貫通孔の近傍の上フランジとなっている。つまり、従来例2のように、貫通孔が設けられることにより、相当塑性ひずみが集中的に発生する位置が、鉄骨梁の材軸方向の先端から貫通孔の近傍に移動して、鉄骨梁が柱に接合される溶接部での破断を防ぐ効果が得られることがわかる。 Further, in the conventional example 2, as shown in FIG. 14, the position where the equivalent plastic strain is maximum is the upper flange near the through hole of the steel frame beam. That is, as in the conventional example 2, the position where the equivalent plastic strain is intensively generated is moved from the tip in the material axial direction of the steel frame beam to the vicinity of the through hole due to the provision of the through hole, and the steel frame beam is formed. It can be seen that the effect of preventing breakage at the welded portion joined to the column can be obtained.

さらに、本発明例では、図15に示すように、相当塑性ひずみが最大となる位置は、鉄骨梁の貫通孔の上側のウェブとなっている。つまり、本発明例のように、貫通孔に加えて主スチフナおよび副スチフナが設けられることにより、相当塑性ひずみが集中的に発生する位置が、貫通孔の近傍の上フランジから貫通孔の上側のウェブに移動して、貫通孔の近傍のフランジの局部座屈を抑える効果がさらに得られることがわかる。フランジの局部座屈は、鉄骨梁の最大耐力を決定する主な要因であり、本発明例ではフランジの局部座屈が抑えられることで、鉄骨梁の塑性変形能力が大幅に向上することが確認された。 Further, in the example of the present invention, as shown in FIG. 15, the position where the equivalent plastic strain is maximized is the web above the through hole of the steel beam. That is, as in the example of the present invention, the position where the equivalent plastic strain is intensively generated by providing the main stiffener and the sub stiffener in addition to the through hole is located above the through hole from the upper flange near the through hole. It can be seen that the effect of moving to the web and suppressing the local buckling of the flange near the through hole is further obtained. Local buckling of the flange is the main factor that determines the maximum strength of the steel beam, and in the example of the present invention, it was confirmed that the plastic deformation capacity of the steel beam is significantly improved by suppressing the local buckling of the flange. Was done.

1、1A~1F 鉄骨梁
2 柱
3、3A~3E 柱梁接合構造
11 上フランジ
12 下フランジ
13 ウェブ
13h、13hD、13hE 貫通孔
14、14A~14C、14F 主スチフナ
16、17 副スチフナ
1, 1A ~ 1F Steel beam 2 columns 3, 3A ~ 3E Column beam joint structure 11 Upper flange 12 Lower flange 13 Web 13h, 13hD, 13hE Through hole 14, 14A ~ 14C, 14F Main stiffener 16, 17 Sub stiffener

Claims (10)

上フランジと、下フランジと、前記上フランジと前記下フランジとを連結するウェブとを有する鉄骨梁であって、
該鉄骨梁の材軸方向の所定位置において、前記上フランジと前記下フランジの間を連結する主スチフナが設けられるとともに、前記ウェブには前記主スチフナと梁幅方向に重なるように貫通孔が形成されていること
を特徴とする鉄骨梁。
A steel beam having an upper flange, a lower flange, and a web connecting the upper flange and the lower flange.
A main stiffener connecting the upper flange and the lower flange is provided at a predetermined position in the material axis direction of the steel frame beam, and a through hole is formed in the web so as to overlap the main stiffener in the beam width direction. A steel beam characterized by being.
前記所定位置は、前記材軸方向の端部であることを特徴とする請求項1に記載の鉄骨梁。 The steel beam according to claim 1, wherein the predetermined position is an end portion in the lumber axial direction. 前記主スチフナは、前記ウェブに接合されていないことを特徴とする請求項1または2に記載の鉄骨梁。 The steel beam according to claim 1 or 2, wherein the main stiffener is not joined to the web. 前記主スチフナは、前記上フランジと前記下フランジの梁幅方向の先端部に配設されていることを特徴とする請求項1~3のいずれかに記載の鉄骨梁。 The steel frame beam according to any one of claims 1 to 3, wherein the main stiffener is disposed at the tip portions of the upper flange and the lower flange in the beam width direction. 前記主スチフナは平板状の形状を有し、前記材軸方向と交差する向きに配設されていることを特徴とする請求項1~4のいずれかに記載の鉄骨梁。 The steel beam according to any one of claims 1 to 4, wherein the main stiffener has a flat plate shape and is arranged in a direction intersecting the material axial direction. 前記材軸方向の端部のうち、前記貫通孔が形成されていない位置において、前記上フランジと前記下フランジとの間が、副スチフナにより連結されていることを特徴とする請求項1~5のいずれかに記載の鉄骨梁。 Claims 1 to 5 are characterized in that the upper flange and the lower flange are connected by an auxiliary stiffener at a position where the through hole is not formed in the end portion in the material axial direction. Steel beam described in any of. 前記副スチフナは、前記貫通孔と前記鉄骨梁の長さ方向の先端との間に設けられていることを特徴とする請求項6に記載の鉄骨梁。 The steel frame beam according to claim 6, wherein the sub-stiffener is provided between the through hole and the tip in the length direction of the steel frame beam. 前記副スチフナは、前記ウェブに接合されていないことを特徴とする請求項6または7に記載の鉄骨梁。 The steel beam according to claim 6 or 7, wherein the sub-stiffener is not joined to the web. 請求項1~8のいずれかに記載の鉄骨梁の前記材軸方向の先端が柱に接続されてなることを特徴とする柱梁接合構造。 A beam-column joint structure characterized in that the tip of the steel frame beam according to any one of claims 1 to 8 in the material axial direction is connected to a column. 請求項9に記載の柱梁接合構造を有することを特徴とする構造物。 A structure characterized by having the beam-column joint structure according to claim 9.
JP2020134374A 2020-08-07 2020-08-07 Steel beams, column-beam joint structures, and structures containing them Active JP7351271B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2020134374A JP7351271B2 (en) 2020-08-07 2020-08-07 Steel beams, column-beam joint structures, and structures containing them

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020134374A JP7351271B2 (en) 2020-08-07 2020-08-07 Steel beams, column-beam joint structures, and structures containing them

Publications (2)

Publication Number Publication Date
JP2022030382A true JP2022030382A (en) 2022-02-18
JP7351271B2 JP7351271B2 (en) 2023-09-27

Family

ID=80324009

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020134374A Active JP7351271B2 (en) 2020-08-07 2020-08-07 Steel beams, column-beam joint structures, and structures containing them

Country Status (1)

Country Link
JP (1) JP7351271B2 (en)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041631A1 (en) * 2012-09-12 2014-03-20 中国電力株式会社 Structure for reinforcing web opening in steel frame
JP2015004254A (en) * 2013-06-24 2015-01-08 株式会社ショーワ Structural material and manufacturing method of this structural material
JP2018172892A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Reinforcing structure of beam and reinforcing method of beam

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014041631A1 (en) * 2012-09-12 2014-03-20 中国電力株式会社 Structure for reinforcing web opening in steel frame
JP2015004254A (en) * 2013-06-24 2015-01-08 株式会社ショーワ Structural material and manufacturing method of this structural material
JP2018172892A (en) * 2017-03-31 2018-11-08 Jfeスチール株式会社 Reinforcing structure of beam and reinforcing method of beam

Also Published As

Publication number Publication date
JP7351271B2 (en) 2023-09-27

Similar Documents

Publication Publication Date Title
WO1998036134A1 (en) Joint for steel structure, and combining structure using the same joints for steel structure
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP2010121384A (en) Seismic retrofitting method and building
KR102034116B1 (en) Damage controlled coupling structure and reinforcement method for steel beam to column connection
JP4819605B2 (en) Precast prestressed concrete beams using tendons with different strength at the end and center
JP5798359B2 (en) Seismic device with built-in damper with deformation limiting function
JP5577676B2 (en) Column and beam welded joint structure
JP6681277B2 (en) Joint strength evaluation method of beam-column joint structure, method of designing beam-column joint structure, and beam-column joint structure
JP5967642B2 (en) Building reinforcement structure
JP2022030382A (en) Steel beam, column-beam joint structure and structure provided therewith
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP6128058B2 (en) Beam end joint structure
JP6832048B2 (en) Joint structure of seismic isolation device and steel pipe column and seismic isolation building
JP5758207B2 (en) Concrete filled steel pipe column
KR101226778B1 (en) Structure of connecting steel beam and column having improved earthquake resistance ability
JP6754552B2 (en) Column beam frame
JP6976653B2 (en) Axial force member
JP3638142B2 (en) Column and beam joining device
JP2021055464A (en) Steel beam with floor slab and reinforcement method thereof
JP2020012329A (en) Beam joint structure
JP7335143B2 (en) Steel beams with floor slabs with steps
JP7335540B1 (en) junction structure
JP7262518B2 (en) Stud type steel damper
JP3215633U (en) Brace mounting structure
WO2023163213A1 (en) Joint structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20220323

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230124

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20230125

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230324

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20230516

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20230622

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230815

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230828

R150 Certificate of patent or registration of utility model

Ref document number: 7351271

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150