WO2023163213A1 - Joint structure - Google Patents

Joint structure Download PDF

Info

Publication number
WO2023163213A1
WO2023163213A1 PCT/JP2023/007316 JP2023007316W WO2023163213A1 WO 2023163213 A1 WO2023163213 A1 WO 2023163213A1 JP 2023007316 W JP2023007316 W JP 2023007316W WO 2023163213 A1 WO2023163213 A1 WO 2023163213A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforcing bars
wall
floor
concrete
reinforcing bar
Prior art date
Application number
PCT/JP2023/007316
Other languages
French (fr)
Japanese (ja)
Inventor
政樹 有田
裕一 西田
Original Assignee
日本製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本製鉄株式会社 filed Critical 日本製鉄株式会社
Priority to JP2023534909A priority Critical patent/JP7335540B1/en
Publication of WO2023163213A1 publication Critical patent/WO2023163213A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/02Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements
    • E04B1/04Structures consisting primarily of load-supporting, block-shaped, or slab-shaped elements the elements consisting of concrete, e.g. reinforced concrete, or other stone-like material
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/58Connections for building structures in general of bar-shaped building elements
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04BGENERAL BUILDING CONSTRUCTIONS; WALLS, e.g. PARTITIONS; ROOFS; FLOORS; CEILINGS; INSULATION OR OTHER PROTECTION OF BUILDINGS
    • E04B1/00Constructions in general; Structures which are not restricted either to walls, e.g. partitions, or floors or ceilings or roofs
    • E04B1/38Connections for building structures in general
    • E04B1/61Connections for building structures in general of slab-shaped building elements with each other

Definitions

  • the present invention relates to a joint structure.
  • This application claims priority based on Japanese Patent Application No. 2022-029521 filed in Japan on February 28, 2022, the content of which is incorporated herein.
  • a semi-rigid joint has been proposed as a conventional technique, considering the effect of restraining the rotation of the joint by the reinforcing bars of the floor slab.
  • These semi-rigid joints are generally applied to the intermediate joints of continuous beams.
  • the intermediate joint mentioned here is a joint where the beams are arranged on both sides of the member (support member) that supports the semi-rigid jointed beam, and the floor slab continues across the support member.
  • Semi-rigid joints are suitable for properties with large floor areas per floor, such as warehouses, factories, and airport terminals, located on the outskirts of cities. On the other hand, buildings located in the city center often have the following frame structure.
  • an RC core wall (hereinafter simply referred to as an RC core wall; the same applies to walls, beams, etc.) is arranged in the center of a relatively small plane.
  • a single-span composite beam is placed between the RC wall and the RC girders of the outer frame. Buildings of this type rarely use continuous beams.
  • a method of bending (hooking) the reinforcing bars of the floor slab may also be considered when using a semi-rigid joint utilizing the reinforcing bars of the floor slab at the joint between the RC wall and the composite beam.
  • the steel frame beam and the RC wall are joined as follows because of the joining of dissimilar materials. That is, as a shear force transmission means, a shear plate is fixed to the wall concrete with a shear connector or the like. The shear plate and the steel beam web are joined with bolts.
  • the rebar of the composite beam floor slab is bent and anchored to the RC wall. Also at the joints between RC walls and composite beams, there is a problem of breakage of RC walls due to the tensile force of bending fixing bars.
  • the present invention has been made in view of such problems, and in the joint structure of the joint where the RC wall and the end of the composite beam are joined, it is possible to suppress the destruction of the RC wall.
  • An object of the present invention is to provide a joint structure.
  • Aspect 1 of the present invention is a joint structure of a joint where an RC wall and an end of a composite beam are joined, wherein the wall has wall concrete, and the composite beam is a floor a slab and a steel beam supporting the floor slab from below, the floor slab having floor concrete and a plurality of reinforcing bars embedded in the floor concrete and the wall concrete; each of the reinforcing bars has a reinforcing bar main body extending in the longitudinal direction of the steel beam in the floor concrete and the wall concrete, and is embedded in the wall concrete, and the length of the reinforcing bar main body in the radial direction of the reinforcing bar main body is and an enlarged diameter portion longer than the diameter of the steel beam is discretely or continuously joined to the floor slab in the longitudinal direction by shear connectors, and the cross-sectional area ratio R Ar of the plurality of reinforcing bars is
  • This joint structure satisfies the formula (1) and the projected fixing length ratio (
  • i is the number of layers of the plurality of reinforcing bars arranged in the floor concrete
  • a r i is the number of the reinforcing bars per one of the plurality of reinforcing bars in the i-th layer, which is the i-th layer from above.
  • wall here means a structure that extends vertically and horizontally, and that has two or more steel beams joined to one surface facing the horizontal plane.
  • the wall means a structure that extends vertically and horizontally and has a width that is at least twice as large as its thickness in a plan view.
  • the inventors conducted a large number of case studies, and as a result, in the joint structure of the joint where the RC wall and the end of the composite beam are joined, the destruction of the RC wall can be suppressed.
  • the conditions As a result, the following conditions were found when the walls had wall concrete and the composite beams had floor concrete and a floor slab with a plurality of rebars and steel beams. That is, the condition is that the cross-sectional area ratio R Ar of the plurality of reinforcing bars satisfies the formula (1), and the projected anchorage length ratio (L h /d r ) satisfies the formula (2).
  • a second aspect of the present invention is the joint structure according to (1), wherein the diameter ratio R dr of the plurality of reinforcing bars fixed to the wall concrete at the joint satisfies the formula (3), good too.
  • the diameter ratio R dr of the plurality of reinforcing bars is the diameter ( ⁇ ) of the plurality of reinforcing bars per unit length in the width direction.
  • the inventors conducted a large number of case studies, and as a result, examined the conditions that can suppress bearing pressure failure in the joint structure of the joint where the RC wall and the end of the composite beam are joined. did.
  • the diameter ratio Rdr of multiple reinforcing bars satisfies the formula (3), it is possible to increase the rigidity and strength of the joint while suppressing the destruction of the RC wall by three failure types in the joint structure. I found what I can do. Therefore, when the diameter ratio Rdr of the plurality of reinforcing bars satisfies the expression (3), it is possible to suppress deflection of the composite beam in the joint structure.
  • a third aspect of the present invention is the joint according to (1) or (2), wherein the plurality of reinforcing bars are fixed to the wall concrete over an area equal to or larger than the effective width of the joint of the floor slab. It may be a structure.
  • the wall is longer than the effective width in the width direction compared to a typical RC column. For this reason, in the joint structure, while fixing multiple reinforcing bars to the wall concrete up to the outermost edge within the effective width that contributes to the rigidity and strength of the joint, the fracture that may occur in the joint structure with the RC column That is, it is possible to suppress cracking of the concrete on the side (covering portion) of the fixing bar (reinforcing bar) in the wall concrete toward the outside in the width direction.
  • Aspect 4 of the present invention is any one of (1) to (3), wherein the enlarged diameter portion extends downward from an end portion of the reinforcing bar body on the wall side with respect to the composite beam.
  • the joint structure described in 1 may be used.
  • the reinforcing bars can be appropriately fixed to the wall only by bending without applying special processing for mechanical fixing, and a joint structure with low cost and good workability can be obtained. .
  • Aspect 5 of the present invention includes a shear plate joined to the wall, and bolts respectively joining the web of the steel beam, which is H-section steel, and the shear plate, wherein the web and the shear plate and the bolt hole through which the bolt is passed may be an elongated hole extending in the longitudinal direction. .
  • the bolt hole diameter is slightly larger than the bolt shaft diameter, so if the rotation of the joint is small, or if the bolt is positioned close to the center of rotation, the clearance between the bolt hole diameter and the bolt shaft diameter will prevent immediate bearing pressure. , no bearing force transmission occurs.
  • the bolt hole has an elongated hole shape extending in the longitudinal direction, the clearance between the bolt hole diameter and the bolt shaft (shaft part) diameter is large, and the composite beam receives a bending moment, and the steel beam is pushed against the shear plate. Relative movement also results in longitudinal movement of the bolt within the bolt hole. Therefore, even if the bolt moves with respect to the wall concrete, the bolt hole and the bolt shaft will not be in a bearing state. Therefore, it is possible to suppress the pull-out due to the bearing force of the bolt acting on the anchor reinforcing bars and the headed studs that join the shear plate to the wall, thereby preventing the wall concrete from breaking.
  • a sixth aspect of the present invention includes a shear plate joined to the wall, and bolts respectively joining the web of the steel beam, which is H-section steel, and the shear plate, wherein the web and the shear plate A bolt hole through which the bolt is passed is formed in at least one of the and the average position of the bolt hole in the height direction of the steel beam is located below the center of the steel beam in the height direction , (1) to (5).
  • the bolts are closer to the lower flange, which is the center of rotation as a whole.
  • FIG. 1 is a floor assembly diagram of a building in which the joint structure of one embodiment of the present invention is used; 2 is a cross-sectional view taken along a cutting line A1-A1 in FIG. 1; FIG. FIG. 3 is a cross-sectional view taken along a cutting line A2-A2 in FIG. 2; It is an enlarged view of the principal part in the shear plate of the same building.
  • FIG. 4 is a cross-sectional view of a main part in a joint structure of a first modified example of one embodiment of the present invention;
  • FIG. 10 is a cross-sectional view of a main part in a joint structure of a second modified example of one embodiment of the present invention; FIG.
  • FIG. 11 is a cross-sectional view of a main part in a joint structure of a third modified example of one embodiment of the present invention. It is sectional drawing which carried out the plan view of the same building for demonstrating rake-out fixing failure. It is sectional drawing which looked at the side of the same building for demonstrating rake-out fixing failure. It is sectional drawing which looked at the side of the same building for demonstrating bearing pressure failure.
  • FIG. 2 is a plan view of a building in which a column and an end of a composite beam are joined, for explaining lateral splitting failure.
  • FIG. 4 is a diagram showing the effect of suppressing destruction of RC walls when the values of cross-sectional area ratios R Ar and (L h /d r ) of floor reinforcing bars are limited.
  • FIG. 10 is a diagram showing the relationship between the axial rigidity of the bending fixing bar of the wall concrete and the diameter ratio R dr of the floor reinforcing bar when the wall thickness is 400 mm.
  • FIG. 4 is a diagram showing the relationship between the diameter ratio R dr of the floor reinforcement and the cross-sectional area ratio R Ar of the floor reinforcement when the wall thickness is 400 mm.
  • FIG. 10 is a diagram showing the relationship between the deflection of the composite beam 25 and the axial stiffness of the bending anchoring bar of the wall concrete.
  • FIG. 5 is a diagram showing the axial stiffness of the bending anchoring bar of wall concrete with respect to the cross-sectional area ratio R Ar of the floor reinforcing bar;
  • FIG. 1 A building in which one embodiment of the joint structure according to the present invention is used will be described below with reference to FIGS. 1 to 16.
  • FIG. 1 A building in which one embodiment of the joint structure according to the present invention is used will be described below with reference to FIGS. 1 to 16.
  • this building 1 comprises a core wall 10, a plurality of columns 20, and composite beams 25.
  • the composite beam 25 (a floor slab 28 to be described later) is indicated by a chain double-dashed line.
  • the core wall 10 has a rectangular tubular shape.
  • the core wall 10 has a pair of first walls (walls) 11 and a pair of second walls (walls) 12 .
  • the first wall 11 and the second wall 12 are each supporting members.
  • a pair of 1st walls 11 and a pair of 2nd walls 12 are RC (Reinforced Concrete) structures, respectively.
  • the first wall 11 has wall concrete 14 , a plurality of wall rebars 15 , a base plate 16 and a plurality of headed studs 17 .
  • the wall concrete 14 has a rectangular plate shape when viewed in its thickness direction.
  • the wall concrete 14 is arranged such that its thickness direction extends along the horizontal plane and extends in the up-down direction Z.
  • a member extending in the A direction means that the angle formed by the extending direction of the member and the A direction is 30 degrees or less. More preferably, this angle is 15 degrees or less.
  • the plurality of wall reinforcing bars 15 have a plurality of vertical bars 15a and a plurality of horizontal bars 15b.
  • a plurality of vertical reinforcements 15 a and a plurality of horizontal reinforcements 15 b are embedded in the wall concrete 14 .
  • the plurality of vertical bars 15a are arranged to be spaced apart from each other and extend in the up-down direction Z.
  • the plurality of horizontal reinforcements 15b extend along the horizontal plane and are arranged so as to be in contact with the plurality of vertical reinforcements 15a.
  • base plate 16 is positioned on the outer surface of wall concrete 14 .
  • a main surface 16b of the base plate 16 is exposed to the outside.
  • a plurality of headed studs 17 are fixed to the main surface 16a of the base plate 16.
  • the main surface 16a is a surface facing the inside of the wall concrete 14 .
  • a plurality of headed studs 17 protrude from the base plate 16 towards the inside of the wall concrete 14 .
  • a plurality of headed studs 17 are embedded in the wall concrete 14 .
  • the pair of first walls 11 face each other in the direction along the horizontal plane.
  • the main surface 16b of the base plate 16 is the surface of the base plate 16 opposite to the main surface 16a.
  • a shear plate 18 is joined to the main surface 16b by welding or the like.
  • a shear plate 18 is joined to the first wall 11 .
  • the shear plate 18 is formed with bolt holes 18a shown in FIG.
  • the bolt hole 18a has an elongated hole shape extending in the longitudinal direction X of the second steel frame beam 27 described later when viewed in the thickness direction of the shear plate 18 .
  • the longitudinal direction X is a direction along the horizontal plane.
  • the longitudinal direction X may be a direction that is inclined with respect to the horizontal plane.
  • a plurality of bolt holes 18 a are formed in the shear plate 18 .
  • the plurality of bolt holes 18a are arranged side by side while being separated from each other in the up-down direction Z. As shown in FIG.
  • the number of bolt holes 18a formed in the shear plate 18 may be one.
  • the pair of second walls 12 are configured similarly to the pair of first walls 11 .
  • the second wall 12 is arranged such that its thickness direction extends along the horizontal plane and extends in the up-down direction Z. As shown in FIG.
  • the pair of second walls 12 face each other in the direction along the horizontal plane.
  • the pair of second walls 12 connects the ends of the first walls 11 in the width direction.
  • an elevator shaft (not shown), a staircase, and the like are arranged.
  • the pillar 20 extends along the vertical direction Z.
  • a plurality of pillars 20 are arranged around the core wall 10 at positions spaced apart from each other and from the core wall 10 .
  • the pillar 20 is RC structure.
  • the columns may be made of steel, SRC (Steel Reinforced Concrete), CFT (Concrete-Filled Steel Tube), or the like.
  • the composite beam 25 has a plurality of first steel beams (steel beams) 26, a plurality of second steel beams (steel beams) 27, and a floor slab 28.
  • first steel beam 26 and the second steel beam 27 are each steel H-beams.
  • the first steel beam 26 and the second steel beam 27 may not be H-shaped steel, but may be T-shaped steel, for example.
  • the first steel beams 26 span between adjacent core walls 10 and columns 20 and between adjacent columns 20, respectively, and extend in a direction along the horizontal plane, which is the longitudinal direction of the first steel beams 26. .
  • the second steel beams 27 extend in the longitudinal direction X between the adjacent core walls 10 and the first steel beams 26 and between the adjacent first steel beams 26 .
  • the 1st wall 11 side with respect to the composite beam 25 among the longitudinal directions X is called 1st side X1.
  • the side of the composite beam 25 with respect to the first wall 11 in the longitudinal direction X is called a second side X2. Since the configurations of the first steel beam 26 and the second steel beam 27 are the same, the second steel beam 27 will be described below as an example.
  • the second steel beam 27 has a first flange 31 , a second flange 32 and a web 33 .
  • the first flange 31 and the second flange 32 are arranged along the horizontal plane and face each other in the vertical direction Z.
  • a direction perpendicular to the vertical direction Z and the longitudinal direction X is hereinafter referred to as a width direction Y.
  • the first flange 31 is arranged above the second flange 32 .
  • a web 33 is arranged between the first flange 31 and the second flange 32 .
  • the web 33 joins the widthwise center of the first flange 31 and the widthwise center of the second flange 32 to each other.
  • a plurality of bolt holes 33a are formed at each end of the web 33 in the longitudinal direction X (only one bolt hole 33a is shown in FIG. 4).
  • the bolt holes 33 a are circular when viewed in the thickness direction of the web 33 .
  • the plurality of bolt holes 33a are arranged side by side while being separated from each other in the vertical direction Z. As shown in FIG.
  • the number of bolt holes 33a formed in the web 33 may be one.
  • the floor slab 28 has a deck plate 36 , floor concrete 37 , multiple floor reinforcing bars (reinforcing bars) 38 , and multiple connecting reinforcing bars 39 .
  • the deck plate 36 is formed by bending a steel plate or the like.
  • the deck plate 36 is arranged on the first flange 31 of the second steel beam 27 .
  • the floor concrete 37 is formed in a flat plate shape and arranged on the deck plate 36 .
  • the multiple floor reinforcing bars 38 have multiple first floor reinforcing bars 42 and multiple second floor reinforcing bars 43 .
  • the first floor reinforcing bar 42 is formed by bending a reinforcing bar.
  • the first floor reinforcing bars 42 are embedded in the floor concrete 37 and the wall concrete 14 .
  • the first floor reinforcing bar 42 has a reinforcing bar main body 42a and a bent portion (expanded diameter portion) 42b.
  • the reinforcing bar main body 42a is formed in a cylindrical shape.
  • the reinforcing bar body 42 a extends in the longitudinal direction X within the floor concrete 37 and the wall concrete 14 .
  • the diameter (length in the radial direction) of the reinforcing bar main body 42a means the nominal diameter of the reinforcing bar main body 42a.
  • the nominal diameters are, for example, 10 mm, 13 mm and 16 mm respectively in the case of deformed steel bars D10, D13 and D16 of JIS G 3112 steel bars for reinforced concrete.
  • the bent portion 42b extends downward from the end of the reinforcing bar main body 42a on the first side X1.
  • the bent portion 42 b is embedded in the wall concrete 14 . That is, the wall concrete 14 is arranged on the first side X1 and the second side X2 of the bent portion 42b.
  • the dimension Lv of the bent portion 42b projected in the vertical direction Z (the length of the bent portion 42b in the radial direction of the reinforcing bar main body 42a) is larger than the diameter of the reinforcing bar main body 42a.
  • the dimension Lv is preferably the maximum radial length of the reinforcing bar main body 42a of the bent portion 42b.
  • the dimension Lv of the bent portion 42b projected in the vertical direction Z is preferably 12 times or more the diameter of the reinforcing bar main body 42a.
  • the expanded diameter portion not only has a width expanded in the vertical direction Z (the dimension L v obtained by projecting the bent portion 42b in the vertical direction Z) than the diameter of the reinforcing bar main body 42a, but also has a width larger than the diameter of the reinforcing bar main body 42a. It may be configured to have a width expanded in the width direction Y (the dimension of the bent portion 42b projected in the width direction Y).
  • the first floor reinforcing bar 42 is bent within a reference plane (XZ plane) parallel to the longitudinal direction X and the vertical direction Z, respectively. In this case, in the first floor reinforcing bar 42, the angle at which the bent portion 42b is bent with respect to the reinforcing bar main body 42a is about 90°.
  • the second floor reinforcing bars 43 are configured similarly to the first floor reinforcing bars 42 .
  • the second floor reinforcing bar 43 has a reinforcing bar main body 43a and a bent portion 43b.
  • the reinforcing bar body 43a extends in the longitudinal direction X. As shown in FIG.
  • the reinforcing bar main body 43a is arranged below the reinforcing bar main body 42a.
  • the bent portion 43b extends downward from the end of the reinforcing bar main body 43a on the first side X1.
  • the bent portion 43 b is embedded in the wall concrete 14 .
  • the lower end of the bent portion 43b and the lower end of the bent portion 42b are at the same position in the up-down direction Z.
  • the dimension of the bent portion 43b projected in the vertical direction Z is defined in the same manner as the dimension Lv of the bent portion 42b, and is larger than the diameter of the reinforcing bar main body 43a. Note that the lower end of the bent portion 43b and the lower end of the bent portion 42b may be arranged at different positions in the vertical direction Z from each other.
  • the reinforcing bar main bodies 42a of the plurality of first floor reinforcing bars 42 are arranged at the same height in the vertical direction Z. As shown in FIG.
  • the reinforcing bar bodies 43a of the plurality of second floor reinforcing bars 43 have the same height in the vertical direction Z and are arranged below the plurality of reinforcing bar bodies 42a.
  • the reinforcing bar bodies 42a of the plurality of first floor reinforcing bars 42 constitute the layer 381 of the first floor reinforcing bar 38 from above.
  • the reinforcing bar bodies 43a of the plurality of second floor reinforcing bars 43 constitute the layer 382 of the second floor reinforcing bar 38 from above.
  • the number of layers of the floor reinforcing bars 38 arranged in the floor concrete 37 is two. Note that the number of layers of the floor reinforcing bars 38 arranged in the floor concrete 37 is not limited.
  • the reinforcing bar bodies 42a of the plurality of first floor reinforcing bars 42 and the reinforcing bar bodies 43a of the plurality of second floor reinforcing bars 43 are divided into the wall concrete 14 side and the floor concrete 37 side, and these are the boundaries between the wall concrete 14 and the floor concrete 37. may be integrated using a screw type or grout injection type coupler.
  • the connecting reinforcing bars 39 extend in the width direction Y. As shown in FIG. A connecting reinforcing bar 391 that is part of the plurality of connecting reinforcing bars 39 is in contact with the reinforcing bar bodies 42 a of the plurality of first floor reinforcing bars 42 . Note that the connecting reinforcing bars 391 may be fixed to the reinforcing bar main bodies 42a of the plurality of first floor reinforcing bars 42 by wire mesh or welding. The remaining connecting reinforcing bars 392 of the plurality of connecting reinforcing bars 39 are in contact with the reinforcing bar main bodies 43 a of the plurality of second floor reinforcing bars 43 . The connecting reinforcing bar 39-1 may be in contact with the reinforcing bar main body 42a, and the connecting reinforcing bar 39-2 may be in contact with the reinforcing bar main body 43a.
  • the floor slab 28 may not have the deck plate 36 and the plurality of connecting reinforcing bars 39 .
  • the number of floor reinforcing bars 38 included in the floor slab 28 may be one. In this case, the number of layers of the floor reinforcing bars 38 arranged in the floor concrete 37 is one.
  • a plurality of headed studs (shear connectors) 46 are fixed to the first flange 31 of the second steel beam 27 .
  • a plurality of headed studs 46 are spaced apart from each other in the longitudinal direction X and the width direction Y. As shown in FIG. A plurality of headed studs 46 are embedded in floor concrete 37 through deck plate 36 of floor slab 28 .
  • the second steel beam 27 is discretely joined to the floor slab 28 in the longitudinal direction X by a plurality of headed studs 46 .
  • the shear connector may be a welding portion that continuously welds the first flange 31 of the second steel beam 27 and the deck plate 36 in the longitudinal direction X. In this case, the second steel beam 27 is continuously joined to the floor slab 28 in the longitudinal direction X by welding.
  • the second flange 32 of the second steel beam 27 and the base plate 16 of the first wall 11 are joined via a contact plate 47 by welding, metal touch, or the like.
  • the plurality of floor reinforcing bars 38 extend over an area equal to or larger than the effective width (shown as B eff in FIG. 3 ) in the width direction Y at the joint 51 where the first wall 11 and the end of the composite beam 25 are joined. It is anchored in concrete 14 .
  • the effective width referred to here is defined in Non-Patent Document 1, Non-Patent Document 2, etc. below.
  • Non-Patent Document 1 “Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings”, December 2004, Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC , Directive 2004/18/EC
  • Non-Patent Document 2 Architectural Institute of Japan, “Various Composite Structure Design Guidelines and Commentaries”, November 2010
  • the effective width B eff of Non-Patent Document 1 is obtained by Equation (5-3) using Equations (5-1) and (5-2).
  • L is the length of the second steel beam 27 .
  • L e is the length of the negative bending region (the region where the second flange (lower flange) 32 of the second steel beam 27 is compressed) on the side in contact with the joint 51 in the longitudinal direction X of the second steel beam 27; be.
  • the length Le is about 0.15 to 0.25 times the length L of the second steel frame beam 27, as in formula (5-1).
  • b g is the width direction of the first flange 31 of the second steel beam 27 from the core position of the headed stud (shear connector) 46 on the second steel beam 27 to the next first steel beam 26 or the first 2 is the distance to the core position of the headed stud (shear connector) 46 on the nearer beam of the steel frame beam 27.
  • the headed studs 46 are arranged in two or more rows in the width direction, the distance between the core positions of the innermost headed studs 46 in the width direction is set core the stud 46).
  • the shear connector is not a headed stud, the effective width can be obtained by the same procedure based on the center of gravity of the shear connector in the width direction.
  • b 0 is the distance in the width direction of the first flange 31 of the second steel beam 27 between the headed studs 46 installed on the first flange 31 of the composite beam 25 . If the headed studs 46 are arranged in one row, the interval b0 is zero.
  • the web 33 of the second steel beam 27 and the shear plate 18 are joined by bolts 48 and nuts 49, respectively. More specifically, the shaft portion 48a of the bolt 48 is passed through the bolt hole 18a of the shear plate 18 and the bolt hole 33a of the web 33 of the second steel beam 27, respectively. The head 48b of the bolt 48 engages the shear plate 18 from the opposite side of the web 33. As shown in FIG.
  • the nut 49 engages the web 33 from the opposite side of the shear plate 18 .
  • the nut 49 is fitted with the shaft portion 48 a of the bolt 48 .
  • the head 48b of the bolt 48 and the nut 49 sandwich the shear plate 18 and the web 33 therebetween. Washers (not shown) are interposed between the nut 49 and the web 33 and between the head 48b of the bolt 48 and the shear plate 18.
  • the bolt holes 18a are assumed to be elongated. However, only the bolt hole 33a may be elongated, or the bolt holes 18a and 33a may be elongated.
  • the second steel beam 27 supports the floor slab 28 from below.
  • the first steel beam 26 supports the floor slab 28 from below the floor slab 28 in the same manner as the second steel beam 27 .
  • the length of the width direction Y of the 1st wall 11 is longer than the length of the width direction Y of a column.
  • the joint structure 52 of the joint portion 51 where the first wall 11 and the end portion of the composite beam 25 are joined is constructed as described above.
  • the joint structure 55 of the joint portion 54 where the second wall 12 and the end portion of the composite beam 25 are joined is configured for the second wall 12 as well as the first wall 11 .
  • the floor slab 28 may be a slab used for roofs (roof slab).
  • the upper end of the first wall 11 preferably extends above the upper end of the composite beam 25 . It is preferable that the length by which the first wall 11 extends upward from the composite beam 25 is equal to or longer than the projected fixing length (L h ).
  • the displacement of the second steel frame beam 27 when a bending moment due to a vertical load or the like acts on the composite beam 25 is indicated by a two-dot chain line.
  • the ends of the second steel beams 27 in the longitudinal direction X rotate around their lower ends.
  • a tensile force acts on the floor reinforcement 38 in the longitudinal direction X of the second steel beam 27 .
  • a second flange 32 of the second steel beam 27 compresses the base plate 16 via the contact plate 47 .
  • the configuration of the first floor reinforcing bar 42 can be modified as follows.
  • the first floor reinforcing bar 65 may have a reinforcing bar body 66 and an enlarged diameter portion 67 .
  • the enlarged diameter portion 67 is formed in an annular shape and provided at the end portion of the reinforcing bar main body 66 on the first side X1.
  • the enlarged diameter portion 67 is fixed to the wall concrete 14 of the first wall 11 .
  • the reinforcing bar main body 66 is configured by providing an annular second enlarged diameter portion 66b on the outer surface of a straight portion 66a extending in the longitudinal direction X. As shown in FIG.
  • the enlarged diameter portion 67 may be provided not at the end portion of the reinforcing bar main body 66 but at the intermediate portion of the reinforcing bar main body 66 or the like as long as it is fixed to the wall concrete 14 .
  • the first floor reinforcing bars 65 are made of deformed reinforcing bars.
  • the enlarged diameter portion 67 is formed by a method of performing high-frequency induction heating with an axial compressive force applied to the reinforcing bar main body 66, rolling, or the like.
  • the first floor reinforcing bar 70 may have the reinforcing bar body 42 a and an enlarged diameter portion 71 .
  • the enlarged diameter portion 71 is formed in a circular or rectangular plate shape.
  • the enlarged diameter portion 71 is arranged coaxially with the reinforcing bar main body 42a at the end of the reinforcing bar main body 42a.
  • the expanded diameter portion 71 may be formed by joining a part other than the reinforcing bar main body 42a by welding or the like. It may be formed by manufacturing or the like.
  • the dimension Lv of the expanded diameter portion 71 projected in the vertical direction Z is preferably 11 times or more the diameter of the reinforcing bar main body 42a.
  • the angle ⁇ at which the bent portion (expanded diameter portion) 42c is bent with respect to the reinforcing bar main body 42a may be greater than approximately 90° and 180° or less.
  • the first floor reinforcing bars 75 are preferably bent on a reference plane (XZ plane) parallel to the longitudinal direction X and the vertical direction Z, respectively.
  • the first floor reinforcing bars 65, 70, 75 can also achieve the same effects as the first floor reinforcing bars 42 of the present embodiment.
  • the inner radius of the bent portion 42c is preferably three times or more the diameter of the floor reinforcement to be bent.
  • the length of the straight portion of the bent portion 42c is 4 times or more the diameter of the floor reinforcement when the angle ⁇ is 180°, and 6 times or more the diameter of the floor reinforcement when the angle ⁇ is 135° or more and less than 180°.
  • the angle ⁇ is 90° or more and less than 135°, it is preferably 8 times or more the diameter of the floor reinforcement.
  • scrape fixing failure lateral splitting failure and bearing pressure failure of the joint structure
  • FIGS. 8 to 11 the configuration is simplified and part of the display is omitted.
  • the rake-out anchoring failure means a failure in which the wall concrete 14 is scraped out like a cone-shaped mass R10 toward the composite beam 25, and the entire floor reinforcing bar 38 loses its bearing strength. do.
  • the wall concrete 14 is located inside the region R1 where the first floor reinforcing bars 42 are bent.
  • a bearing failure means a fracture in which the wall concrete 14 in the region R1 is cracked under bearing pressure when the first floor reinforcing bars 42 are pulled in the longitudinal direction X of the second steel beam 27 .
  • the wall concrete 14 in the area R1 moves to the area R2.
  • the wall concrete 14 in the region R2 is subjected to bearing pressure and cracks.
  • the joint structure 60 is a joint structure of a joint portion 62 where the RC column 61 and the end portion of the composite beam 25 are joined. Since the column 61 is shorter in the width direction Y than the first wall 11 , when the first floor reinforcing bar 42 is pulled in the longitudinal direction X of the second steel beam 27 , the first Lateral splitting failure may occur in which the portion of the region R4, which is the side cover of the floor reinforcing bar 42, is torn toward the side of the column 61 (in the width direction Y). However, since the first wall 11 of the joint structure 52 of the present embodiment has a longer length in the width direction Y than the column 61, the wall concrete 14 serving as the lateral covering is not easily torn, and lateral splitting failure occurs. do not have.
  • sample no. 1 was designed under the following design conditions.
  • the thickness of the first wall 11 is 400 mm.
  • the design strength ⁇ c of the wall concrete 14 is 30 N/mm 2 (Newtons per square millimeter).
  • the design yield strength ⁇ ry,i of the floor reinforcing bars 38 is 550 N/mm 2 .
  • the diameter of the transverse bar 15b of the first wall 11 is 13 mm.
  • the pitch in the vertical direction Z is 200 mm.
  • the diameter of the first floor reinforcing bar 42 is 16 mm.
  • the pitch in the width direction Y is 150 mm.
  • the projection fixing length is 350 mm.
  • the projected anchorage length referred to here is the length in the longitudinal direction X of the portion of the first floor reinforcing bar 42 anchored to the wall concrete 14 (see the projected anchorage length Lh in FIG. 2).
  • a bent portion is provided between the reinforcing bar main body 42a and the bent portion 42b.
  • the radius inside the bend is 96 mm.
  • the radius of the inner side of the bent portion was six times the diameter of the first floor reinforcing bar 42 . This suppressed the bearing pressure failure.
  • the diameter of the second floor reinforcing bar 43 is 10 mm.
  • the pitch in the width direction Y is 200 mm.
  • the projected fixing length is 350 mm, ensuring a cover thickness of 50 mm from the bent portions 42b and 43b to the surface of the wall 11.
  • FIG. The radius inside the bend is 60 mm.
  • the effective width B eff was set to 1050 mm.
  • the reinforcement area of the floor reinforcing bars 38 is 1050 mm or more, and is equal to or less than the control width of the second steel frame beam 27 .
  • the design yield strength of the first floor reinforcement 42 and the second floor reinforcement 43 is 550 N/mm 2 and the design tensile strength is 650 N/mm 2 .
  • Non-Patent Document 4 uses the same bearing force formula regardless of the failure mode of lateral splitting failure and bearing pressure failure.
  • Non-Patent Document 3 Edited by Architectural Institute of Japan, “Toughness Guaranteed Seismic Design Guideline and Commentary for Reinforced Concrete Buildings”, September 2001
  • Non-Patent Document 4 Fujii et al. , Architectural Institute of Japan Structural Papers Report, No. 429, November 1991
  • Non-Patent Document 5 Architectural Institute of Japan, "Building Construction Standard Specifications and Commentary JASS5 Reinforced Concrete Construction", July 2018 Each sample No. Various parameters were investigated, from 1 to 30. The results are described below.
  • the cross-sectional area ratio R Ar of the floor reinforcing bars determined by the formula (6) and the projection fixing length ratio (L h /d r ) determined by the formula (7) were examined.
  • the cross-sectional area ratio R Ar of the floor reinforcing bars is the cross-sectional area ratio of the floor reinforcing bars 38 per unit length in the width direction Y of the floor slab 28 weighted by the strength ratio between the floor reinforcing bars and the wall concrete.
  • i is the number of layers 38 1 and 38 2 of the floor reinforcing bars 38 arranged in the floor concrete 37 .
  • i is a natural number.
  • i is two.
  • the cross-sectional area ratio R Ar of the floor reinforcing bars is the sum of the values of (( ar, i /p i ) ⁇ ( ⁇ ry, i / ⁇ c )) for all layers 38 1 and 38 2 .
  • a r,i is the cross-sectional area (mm 2 ) perpendicular to the longitudinal direction X of each floor reinforcing bar 38 in the i-th layer 38 i that is the i-th layer from above.
  • this cross-sectional area is the average value of the cross-sectional areas of the floor reinforcing bars 38 of the i-th layer 38i.
  • p i (see FIG. 3 for p 1 and p 2 ) is the pitch (mm) in the width direction Y of the floor slab 28 between the floor reinforcing bars 38 of the i-th layer 38 i .
  • ⁇ ry,i is the design yield stress (N/mm 2 ) of the floor reinforcing bars 38 of the i-th layer 38 i .
  • ⁇ c is the compressive strength (N/mm 2 ) of the wall concrete 14; ⁇ ry,i is 550 N/mm 2 .
  • L h,i (mm) is the projected fixing length of each floor reinforcing bar 38 of the i-th layer 38 i .
  • the projected anchorage length L h (mm) is the projected anchorage length of that layer.
  • d r,i is the diameter (mm) per one of the floor reinforcing bars 38 of the i-th layer.
  • dr ,i is the diameter of the floor reinforcing bars dr ,i. is the average diameter of
  • the projected settlement length ratio (L h /d r ) is the minimum value of the projected settlement length ratio (L h,i /d r,i ) of each layer. .
  • Fig. 12 and Table 4 show the trial calculation results.
  • the horizontal axis represents the cross-sectional area ratio R Ar (mm 2 /mm) of the floor reinforcing bars.
  • the vertical axis represents the value of the projection fixing length ratio (L h /d r ).
  • sample no. 1 the cross-sectional area ratio R Ar of the floor reinforcement is 31.77 mm 2 /mm.
  • the value of (L h /d r ) is 21.875.
  • the samples determined not to cause scrape-out fixing failure are marked as "OK” by ⁇ (white circle).
  • the samples determined to cause scrape-out fixing failure are indicated by ⁇ (filled circles) as "NG”. From FIG. 12, it can be seen that if the cross-sectional area ratio R Ar of the floor reinforcement is smaller than 30.70 and the value of (L h /d r ) is larger than 15.600, it can be determined that scraping and fixing failure does not occur. .
  • the floor reinforcing bar diameter ratio R dr is the diameter ( ⁇ ) of the floor reinforcing bar 38 per unit length in the width direction Y of the floor slab 28 .
  • the unit length here is the pitch p i (mm) in the width direction Y of the floor slab 28 between the floor reinforcing bars 38 of the i-th layer 38 i .
  • the diameter ratio R dr of the floor reinforcing bars is the value of ((d r,i /p i ) ⁇ ( ⁇ ry,i / ⁇ c )) for all layers 38 1 , 382 . 13 and 14 and Table 4 show the trial calculation results.
  • sample No. From 1 to 30, the trial calculation results for a wall thickness of 400 mm are extracted and shown.
  • the wall thickness is kept constant because the projection settlement length ratio (L h /d r ) changes when the wall thickness changes.
  • the horizontal axis represents the diameter ratio R dr (mm/mm) of the floor reinforcing bars.
  • the vertical axis in FIG. 13 represents the value of the axial stiffness kr of the floor reinforcement.
  • the vertical axis in FIG. 14 represents the value of the cross-sectional area ratio R Ar of the floor reinforcing bars.
  • the axial stiffness kr can be calculated according to the non-patent document 1 by the formulas (13-1) and (13-2).
  • E r is the Young's modulus (N/mm 2 ) of the reinforcing bar.
  • ⁇ ar ,i is the sum (mm 2 ) of the cross-sectional areas ar,i (mm 2 ) of the floor reinforcing bars 38 within the effective width of the i-th layer 38 i
  • l j,i is the i-th layer 38 i
  • It is the effective length (mm) of the floor reinforcement 38 .
  • Table 4 sample no. 1, the diameter ratio R dr of the floor reinforcement is 2.872 mm/mm, and the axial rigidity k r is 585.8 (kN/mm).
  • ⁇ marks indicate the samples determined not to cause bearing pressure failure as shown in FIG.
  • ⁇ marks indicate samples determined to cause bearing pressure failure as shown in FIG.
  • X marks indicate samples judged to cause scrape fixing failure as shown in FIGS.
  • the rigidity of the reinforcing bar that resists is improved, and the deflection of the composite beam 25 is suppressed.
  • the axial rigidity k r is 400 kN/mm or more.
  • the axial stiffness k r is proportional to the rotational stiffness of the joint 51 .
  • the increased rotational stiffness reduces the deflection of the composite beam 25 .
  • FIG. 15 shows a trial calculation example of the relationship between the axial stiffness kr of the floor reinforcement and the deflection of the composite beam 25 .
  • the cross-sectional dimensions of the first steel beam 26 or the second steel beam 27 are 700 x 200 x 9 x 12 (beam length x flange width x web thickness x flange thickness, unit mm), and the floor slab 28 is 130 mm thick.
  • the length of the composite beam 25 is 10 m
  • the joints 51 at both ends of the composite beam 25 have the same rotational rigidity.
  • region R11 is a region in which bearing pressure failure, lateral splitting failure, and scrape fixing failure do not occur in the case of a column-to-beam joint.
  • the region R12 is a region where bearing failure and lateral splitting failure occur in the case of the beam-to-column joint, and where failure does not occur in the case of the wall-to-beam joint.
  • a region R13 is a region where scrape fixing failure occurs.
  • FIG. 16 shows changes in the axial stiffness k r of the floor reinforcing bars with respect to the cross-sectional area ratio R Ar of the floor reinforcing bars.
  • the thickness of the first wall 11 is assumed to be 400 mm.
  • the axial rigidity kr of the floor reinforcement also increases.
  • the cross-sectional area ratio R Ar of the floor reinforcement is 13.0 or more, the axial rigidity k r exceeds 400 kN/mm. Therefore, as described above, the effect as a semi-rigid joint is increased, and deflection of the beam can be effectively suppressed.
  • the condition is that the reinforcing bar cross-sectional area ratio R Ar satisfies the formula (8), and the projected fixing length ratio (L h /d r ) of the reinforcing bar satisfies the formula (9). Therefore, when the cross-sectional area ratio R Ar satisfies the formula (8) and the projected fixing length ratio (L h /d r ) satisfies the formula (9), scraping fixing failure and lateral splitting failure , and local bearing pressure failure.
  • the diameter ratio R dr of the floor reinforcement satisfies the formula (14).
  • the inventors found that in the joint structure 52 of the joint 51 where the first wall 11 and the end of the composite beam 25 are joined, the bearing pressure failure that can occur at the column-to-beam joint
  • the diameter ratio Rdr of the reinforcing bars satisfies the formula (14)
  • the rigidity and strength of the joint 51 are increased while suppressing the destruction of the first wall 11 of the RC structure by three types of failure in the joint structure 52. I have found that it can be improved.
  • the diameter ratio R dr of the reinforcing bars satisfies the expression (14)
  • bending of the composite beam 25 can be suppressed in the joint structure 52 .
  • the axial stiffness kr exceeds 400 kN/mm when the reinforcing bar diameter ratio Rdr satisfies the formula (14). Therefore, as described above, the effect as a semi-rigid joint is increased, and the deflection of the composite beam 25 can be effectively suppressed.
  • a plurality of floor reinforcing bars 38 are fixed to the wall concrete 14 over an area equal to or larger than the effective width of the joint 51 of the floor slab 28 .
  • the rigidity of the floor reinforcing bars 38 of the joints 51 and the joint structure 52 calculated by the equation (14) can be increased, and the rotation resistance of the joints is increased, so the bending of the composite beam 25 is suppressed.
  • the first wall 11 is longer than the effective width in the width direction Y compared to a general RC column.
  • the bent portion 42b extends downward from the end of the reinforcing bar main body 42a on the side of the first wall 11 with respect to the composite beam 25 . Therefore, for example, when a downward load acts on the composite beam 25, the reaction force of the tensile force acting on the reinforcing bar main body 42a acts on the wall concrete 14 as a compressive force from the inside corner of the bent portion 42b. This reaction force is balanced with the compressive force acting on the wall concrete 14 from the second flange 32 of the composite beam 25, so that the internal force of the wall concrete 14 can be more stably balanced.
  • the bolt hole 18a of the shear plate 18 has an elongated shape extending in the longitudinal direction X.
  • the bolt hole 18a has an elongated hole shape extending in the longitudinal direction X, the clearance between the bolt hole 18a and the shaft portion 48a of the bolt 48 is large, and the composite beam 25 receives a bending moment and the shear plate 18
  • the bolt 48 moves in the longitudinal direction X within the bolt hole 18a. Therefore, even if the bolt 48 moves with respect to the wall concrete 14, the bolt hole 18a and the shaft portion 48a of the bolt 48 are not in a bearing state, and no bearing force acts on the shear plate 18 from the bolt 48. Pulling out of the anchor reinforcing bars 18 and the headed studs 17 can be suppressed, and destruction of the wall concrete 14 can be prevented.
  • the average position of the second steel beam 27 in the height direction (the beam vertical direction of the second steel beam 27) in the plurality of bolt holes 18a is below the center of the second steel beam 27 in the height direction. may be located. In other words, the center of gravity of the multiple bolt holes 18 a may be located below the axis of the second steel beam 27 .
  • the composite beam 25 can reduce the bending moment.
  • the diameter ratio R dr of the floor reinforcing bars does not have to satisfy the expression (14).
  • the bolt holes 18 a of the shear plate 18 may be circular when viewed in the thickness direction of the shear plate 18 .
  • the floor reinforcing bars 38 (42, 43) and the connecting reinforcing bars 39 may be round bars or deformed bars.
  • the joint structure can suppress anchor failure of the RC structure wall in the joint structure of the joint where the RC wall and the end of the composite beam are joined. Therefore, industrial applicability is great.
  • Second steel beam (steel beam) 28 floor slab 37
  • floor reinforcing bar (reinforcing bar) 38 1 , 38 2 layers 46
  • Headed stud (shear connector) 48 bolt 42, 65, 70, 75 1st floor reinforcing bar (reinforcing bar) 42a, 66 Reinforcing bar body 42b, 42c Bent portion (expanded diameter portion)

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Joining Of Building Structures In Genera (AREA)

Abstract

This joint structure is for a joint where a wall of an RC building and an end of a composite beam are joined. The wall has wall concrete, the composite beam has a floor slab and a steel frame beam that supports the floor slab from below, and the floor slab has floor concrete and a plurality of reinforcing bars embedded in the floor concrete and the wall concrete. Each of the plurality of reinforcing bars includes a reinforcing bar body extending in the longitudinal direction of the steel frame beam in the floor concrete and the wall concrete, and an enlarged-diameter portion embedded in the wall concrete and having a length in the radial direction of the reinforcing bar body longer than the diameter of the reinforcing bar body. The steel frame beam is joined to the floor slab discretely or continuously in the longitudinal direction by a shear connector, the cross-sectional area ratio of the plurality of reinforcing bars satisfies equation 1, and the projected anchorage length ratio satisfies equation 2.

Description

接合構造junction structure
 本発明は、接合構造に関する。
 本願は、2022年2月28日に、日本に出願された特願2022-029521号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a joint structure.
This application claims priority based on Japanese Patent Application No. 2022-029521 filed in Japan on February 28, 2022, the content of which is incorporated herein.
 床スラブの鉄筋による接合部の回転拘束効果を考慮した半剛接合が、既往技術として提案されている。これらの半剛接合は、一般に連続梁の中間接合部へ適用される。ここで言う中間接合部とは、半剛接合された梁を支持する部材(支持部材)を挟んで、両側に梁が配置され、床スラブが支持部材を跨いで連続している接合部のことを意味する。
 半剛接合は、倉庫や工場、空港ターミナル等、都市の郊外に立地する1階当たりの床面積の大きな物件に適していた。一方で、都心に立地するビルディングでは、以下のような架構形式となることが多い。すなわち、比較的小さな平面の中央に、RC造のコア壁(以下では、単にRCコア壁とも言う。壁、梁等についても同様である)を配置している。そして、RC壁と外周フレームのRC大梁との間に、単スパンの合成梁を配置している。この種のビルディングでは、連続梁を用いることが少ない。
A semi-rigid joint has been proposed as a conventional technique, considering the effect of restraining the rotation of the joint by the reinforcing bars of the floor slab. These semi-rigid joints are generally applied to the intermediate joints of continuous beams. The intermediate joint mentioned here is a joint where the beams are arranged on both sides of the member (support member) that supports the semi-rigid jointed beam, and the floor slab continues across the support member. means
Semi-rigid joints are suitable for properties with large floor areas per floor, such as warehouses, factories, and airport terminals, located on the outskirts of cities. On the other hand, buildings located in the city center often have the following frame structure. That is, an RC core wall (hereinafter simply referred to as an RC core wall; the same applies to walls, beams, etc.) is arranged in the center of a relatively small plane. A single-span composite beam is placed between the RC wall and the RC girders of the outer frame. Buildings of this type rarely use continuous beams.
 このような架構形式の場合、床スラブの鉄筋は、RC壁を跨いで連続させることができない。このため、一般に接合部はピン接合とする。従って、梁のたわみが大きくなり、不経済な設計となっている。 In the case of such a frame format, the reinforcing bars of the floor slab cannot be continuous across the RC wall. For this reason, the joints are generally pin joints. Therefore, the deflection of the beam becomes large, resulting in an uneconomical design.
 一方、RC柱とRC梁の接合部には、梁の主筋をRC柱に折曲げ定着する方法が用いられる(例えば、特許文献1及び2参照)。RC柱とRC梁の接合部の場合、梁の端部に作用する曲げモーメントは、接合部の折曲げ定着筋の引張力とコンクリートの圧縮力によって柱に伝達される。梁の端部に作用するせん断力は、柱と梁のコンクリートを一体打設し、せん断補強筋を配することで伝達される。なお、RC梁の折曲げ定着筋の引張力によるRC柱の破壊形式は、既往文献によると、掻出し定着破壊(raking out failure)、側方割裂破壊(side splitting failure)、及び局所支圧破壊(local compression failure)の3つが報告されている。 On the other hand, at the joints between RC columns and RC beams, a method of bending and fixing the main reinforcing bars of the beams to the RC columns is used (see Patent Documents 1 and 2, for example). In the case of RC column-to-RC beam joints, the bending moment acting on the end of the beam is transferred to the column by the tensile forces of the bending anchor bars and the compressive forces of the concrete at the joint. The shear force acting on the ends of the beams is transmitted by placing the concrete of the columns and beams integrally and placing shear reinforcing bars. According to existing literature, the failure modes of RC columns due to the tensile force of bending anchoring bars of RC beams are raking out failure, side splitting failure, and local bearing failure. (local compression failure) have been reported.
日本国特許第3826354号公報Japanese Patent No. 3826354 日本国特開平11-148172号公報Japanese Patent Laid-Open No. 11-148172
 RC壁と合成梁の接合部に床スラブの鉄筋を活用した半剛接合を用いる場合にも、床スラブの鉄筋を折曲げ(フック)定着する方法が考えられる。しかし、鉄骨梁とRC壁とを接合する場合、異種材料の接合のため、鉄骨梁とRC壁とを以下のように接合する。すなわち、せん断力の伝達手段として、壁コンクリートにシアプレートをシアコネクタ等で定着する。このシアプレートと鉄骨梁のウェブとを、ボルトで接合する。
 この接合部をさらにモーメント伝達可能な半剛接合とするために、合成梁の床スラブの鉄筋をRC壁に折曲げ定着する。
 RC壁と合成梁との接合部においても、折曲げ定着筋の引張力によるRC壁の破壊が問題となる。
A method of bending (hooking) the reinforcing bars of the floor slab may also be considered when using a semi-rigid joint utilizing the reinforcing bars of the floor slab at the joint between the RC wall and the composite beam. However, when joining a steel frame beam and an RC wall, the steel frame beam and the RC wall are joined as follows because of the joining of dissimilar materials. That is, as a shear force transmission means, a shear plate is fixed to the wall concrete with a shear connector or the like. The shear plate and the steel beam web are joined with bolts.
In order to make this joint more moment-transmissible semi-rigid joint, the rebar of the composite beam floor slab is bent and anchored to the RC wall.
Also at the joints between RC walls and composite beams, there is a problem of breakage of RC walls due to the tensile force of bending fixing bars.
 本発明は、このような問題点に鑑みてなされたものであって、RC造の壁と合成梁の端部とが接合される接合部の接合構造において、RC造の壁の破壊を抑制できる接合構造を提供することを目的とする。 The present invention has been made in view of such problems, and in the joint structure of the joint where the RC wall and the end of the composite beam are joined, it is possible to suppress the destruction of the RC wall. An object of the present invention is to provide a joint structure.
 前記課題を解決するために、この発明は以下の手段を提案している。
(1)本発明の態様1は、RC造の壁と合成梁の端部とが接合される接合部の接合構造であって、前記壁は、壁コンクリートを有し、前記合成梁は、床スラブと、前記床スラブを下方から支持する鉄骨梁と、を有し、前記床スラブは、床コンクリートと、前記床コンクリート及び前記壁コンクリートに埋設される複数の鉄筋と、を有し、前記複数の鉄筋のそれぞれは、前記床コンクリート及び前記壁コンクリート内で前記鉄骨梁の長手方向に延びる鉄筋本体と、前記壁コンクリートに埋設され、自身における前記鉄筋本体の径方向の長さが、前記鉄筋本体の径よりも長い拡径部と、を有し、前記鉄骨梁は、シアコネクタによって前記長手方向に離散的又は連続的に前記床スラブに接合され、前記複数の鉄筋の断面積比RArが(1)式を満たし、投影定着長さ比(L/d)が(2)式を満たす、接合構造である。
 ここで、iは前記床コンクリート内で配筋される前記複数の鉄筋の層の数、ar,iは上方からi番目の前記層である第i層における、前記複数の鉄筋の一本当たりの前記複数の鉄筋の前記長手方向に直交する断面積(mm)、pは前記第i層の前記複数の鉄筋同士の前記床スラブの幅方向におけるピッチ(mm)、σry,iは前記第i層の前記複数の鉄筋の降伏応力(N/mm)、σは前記壁コンクリートの圧縮強度(N/mm)、Lh,iは前記第i層において前記複数の鉄筋のうち前記壁コンクリートに定着される部分の前記長手方向の長さである投影定着長さ(mm)、dr,iは前記第i層の前記複数の鉄筋の一本当たりの径(mm)である。
In order to solve the above problems, the present invention proposes the following means.
(1) Aspect 1 of the present invention is a joint structure of a joint where an RC wall and an end of a composite beam are joined, wherein the wall has wall concrete, and the composite beam is a floor a slab and a steel beam supporting the floor slab from below, the floor slab having floor concrete and a plurality of reinforcing bars embedded in the floor concrete and the wall concrete; each of the reinforcing bars has a reinforcing bar main body extending in the longitudinal direction of the steel beam in the floor concrete and the wall concrete, and is embedded in the wall concrete, and the length of the reinforcing bar main body in the radial direction of the reinforcing bar main body is and an enlarged diameter portion longer than the diameter of the steel beam is discretely or continuously joined to the floor slab in the longitudinal direction by shear connectors, and the cross-sectional area ratio R Ar of the plurality of reinforcing bars is This joint structure satisfies the formula (1) and the projected fixing length ratio (L h /d r ) satisfies the formula (2).
Here, i is the number of layers of the plurality of reinforcing bars arranged in the floor concrete, and a r, i is the number of the reinforcing bars per one of the plurality of reinforcing bars in the i-th layer, which is the i-th layer from above. cross-sectional area (mm 2 ) of the plurality of reinforcing bars perpendicular to the longitudinal direction, p i is the pitch (mm) between the plurality of reinforcing bars of the i-th layer in the width direction of the floor slab, σ ry,i is Yield stress (N/mm 2 ) of the plurality of reinforcing bars of the i-th layer, σ c is the compressive strength (N/mm 2 ) of the wall concrete, L h,i is the strength of the plurality of reinforcing bars in the i-th layer Projected fixing length (mm), which is the length of the portion fixed to the wall concrete in the longitudinal direction, dr,i is the diameter (mm) per one of the plurality of reinforcing bars of the i-th layer. be.
Figure JPOXMLDOC01-appb-M000003
Figure JPOXMLDOC01-appb-M000003
 ここで言う壁とは、上下方向及び水平方向にそれぞれ延びる構造物であって、水平面に沿う方向に向く1つの面に、2本以上の鉄骨梁が接合される構造物を意味する。又は、壁とは、上下方向及び水平方向にそれぞれ延びる構造物であって、平面視における自身の厚さに対する自身の幅が2倍以上である構造物を意味する。 The term "wall" here means a structure that extends vertically and horizontally, and that has two or more steel beams joined to one surface facing the horizontal plane. Alternatively, the wall means a structure that extends vertically and horizontally and has a width that is at least twice as large as its thickness in a plan view.
 この開示では、発明者等は、多数のケーススタディを行う検討の結果、RC造の壁と合成梁の端部とが接合される接合部の接合構造において、RC造の壁の破壊を抑制できる条件を検討した。その結果、壁が壁コンクリートを有し、合成梁が、床コンクリート及び複数の鉄筋を有する床スラブと、鉄骨梁と、を有する場合に、以下の条件を見出した。すなわち、複数の鉄筋の断面積比RArが(1)式を満たし、投影定着長さ比(L/d)が(2)式を満たすという条件である。
 従って、断面積比RArが(1)式を満たし投影定着長さ比(L/d)が(2)式を満たすことにより、接合構造において、3つの破壊形式によるRC造の壁の破壊を抑制することができる。
In this disclosure, the inventors conducted a large number of case studies, and as a result, in the joint structure of the joint where the RC wall and the end of the composite beam are joined, the destruction of the RC wall can be suppressed. Considered the conditions. As a result, the following conditions were found when the walls had wall concrete and the composite beams had floor concrete and a floor slab with a plurality of rebars and steel beams. That is, the condition is that the cross-sectional area ratio R Ar of the plurality of reinforcing bars satisfies the formula (1), and the projected anchorage length ratio (L h /d r ) satisfies the formula (2).
Therefore, when the cross-sectional area ratio R Ar satisfies the formula (1) and the projection fixing length ratio (L h /d r ) satisfies the formula (2), in the joint structure, the RC wall by three failure types Destruction can be suppressed.
(2)本発明の態様2は、前記接合部において、前記壁コンクリートに定着される前記複数の鉄筋の径比Rdrが(3)式を満たす、(1)に記載の接合構造であってもよい。
 ここで、前記複数の鉄筋の径比Rdrは、前記幅方向の単位長さ当たりの前記複数の鉄筋の径(-)である。
(2) A second aspect of the present invention is the joint structure according to (1), wherein the diameter ratio R dr of the plurality of reinforcing bars fixed to the wall concrete at the joint satisfies the formula (3), good too.
Here, the diameter ratio R dr of the plurality of reinforcing bars is the diameter (−) of the plurality of reinforcing bars per unit length in the width direction.
Figure JPOXMLDOC01-appb-M000004
Figure JPOXMLDOC01-appb-M000004
 この開示では、発明者等は、多数のケーススタディを行う検討の結果、RC造の壁と合成梁の端部とが接合される接合部の接合構造において、支圧破壊を抑制できる条件を検討した。その結果、複数の鉄筋の径比Rdrが(3)式を満たすときに、接合構造において、3つの破壊形式によるRC造の壁の破壊を抑制しながら接合部の剛性と耐力を高めることができることを見出した。
 このため、複数の鉄筋の径比Rdrが(3)式を満たすことにより、接合構造において、合成梁のたわみを抑制することができる。
In this disclosure, the inventors conducted a large number of case studies, and as a result, examined the conditions that can suppress bearing pressure failure in the joint structure of the joint where the RC wall and the end of the composite beam are joined. did. As a result, when the diameter ratio Rdr of multiple reinforcing bars satisfies the formula (3), it is possible to increase the rigidity and strength of the joint while suppressing the destruction of the RC wall by three failure types in the joint structure. I found what I can do.
Therefore, when the diameter ratio Rdr of the plurality of reinforcing bars satisfies the expression (3), it is possible to suppress deflection of the composite beam in the joint structure.
(3)本発明の態様3は、前記複数の鉄筋が、前記床スラブの前記接合部における有効幅以上の領域にわたって前記壁コンクリートに定着されている、(1)又は(2)に記載の接合構造であってもよい。
 この開示では、壁は、一般的なRC造の柱に比べて幅方向に有効幅以上に長くなる。このため、接合構造において、接合部の剛性と耐力に寄与する有効幅内の最外縁まで複数の鉄筋を壁コンクリートに定着しながら、RC造の柱との接合構造で生じる可能性がある破壊、すなわち壁コンクリートにおける定着筋(鉄筋)の側方(のかぶり部分の)コンクリートが、幅方向の外側に向かって割れるのを、抑制することができる。
(3) A third aspect of the present invention is the joint according to (1) or (2), wherein the plurality of reinforcing bars are fixed to the wall concrete over an area equal to or larger than the effective width of the joint of the floor slab. It may be a structure.
In this disclosure, the wall is longer than the effective width in the width direction compared to a typical RC column. For this reason, in the joint structure, while fixing multiple reinforcing bars to the wall concrete up to the outermost edge within the effective width that contributes to the rigidity and strength of the joint, the fracture that may occur in the joint structure with the RC column That is, it is possible to suppress cracking of the concrete on the side (covering portion) of the fixing bar (reinforcing bar) in the wall concrete toward the outside in the width direction.
(4)本発明の態様4は、前記拡径部は、前記鉄筋本体における、前記合成梁に対する前記壁側の端部から下方に向かって延びている、(1)から(3)のいずれか一に記載の接合構造であってもよい。
 この開示では、前記鉄筋に機械式定着のための特殊な加工を施すことなく、曲げ加工のみで前記壁に適切に定着することができ、低コストで施工性が良い接合構造とすることができる。
(4) Aspect 4 of the present invention is any one of (1) to (3), wherein the enlarged diameter portion extends downward from an end portion of the reinforcing bar body on the wall side with respect to the composite beam. The joint structure described in 1 may be used.
In this disclosure, the reinforcing bars can be appropriately fixed to the wall only by bending without applying special processing for mechanical fixing, and a joint structure with low cost and good workability can be obtained. .
(5)本発明の態様5は、前記壁に接合されたシアプレートと、H形鋼である前記鉄骨梁のウェブ及び前記シアプレートをそれぞれ接合するボルトと、を備え、前記ウェブ及び前記シアプレートの少なくとも一方に形成され、前記ボルトが通されるボルト孔は、前記長手方向に延びた長孔形状である、(1)から(4)のいずれか一に記載の接合構造であってもよい。 (5) Aspect 5 of the present invention includes a shear plate joined to the wall, and bolts respectively joining the web of the steel beam, which is H-section steel, and the shear plate, wherein the web and the shear plate and the bolt hole through which the bolt is passed may be an elongated hole extending in the longitudinal direction. .
 例えば、鉄骨梁が有する一対のフランジが上下方向に対向して配置される場合について説明する。鉛直荷重を支持する合成梁の端部の下フランジが、後述するコンタクトプレートや溶接接合等で壁コンクリートに圧縮力を伝達できるよう接合されている場合、鉄骨梁の端部は、その下端(下フランジ)を略中心に回転する。このため、この回転中心となる下端から離間するボルトほど、長手方向の移動量が大きくなる。ボルトが、ウェブ等におけるボルト孔の開口周縁部と接触することで、支圧力が伝達される。一般に、ボルト孔径はボルト軸径に対し若干大きいため、接合部の回転が小さい場合や、回転中心に近い位置にあるボルトは、ボルト孔径とボルト軸径のクリアランスにより、直ちに支圧状態にならず、支圧力の伝達は生じない。 For example, a case where a pair of flanges of a steel frame beam are arranged to face each other in the vertical direction will be described. When the lower flanges of the ends of composite beams that support vertical loads are joined so as to transmit compressive force to the wall concrete by means of contact plates or welded joints, which will be described later, the ends of steel beams are flange). Therefore, the further apart the bolt is from the lower end, which is the center of rotation, the greater the amount of movement in the longitudinal direction. The bearing force is transmitted by the bolt contacting the opening peripheral edge of the bolt hole in the web or the like. In general, the bolt hole diameter is slightly larger than the bolt shaft diameter, so if the rotation of the joint is small, or if the bolt is positioned close to the center of rotation, the clearance between the bolt hole diameter and the bolt shaft diameter will prevent immediate bearing pressure. , no bearing force transmission occurs.
 しかし、接合部の回転が大きくなると、回転中心となる下端から遠くにあるボルトほど、クリアランスの大きさに対して回転によるボルトの移動量が大きくなり、ボルトの支圧が生じやすい。鉄骨梁の端部の下端(下フランジ)を中心とした回転は、回転中心となる下端から遠くにあるボルトほど、シアプレートを壁コンクリートから引き抜く方向に支圧力を生じる。シアプレートはアンカー鉄筋や頭付きスタッド等で壁コンクリートに固定されているが、支圧力によりアンカー鉄筋や頭付きスタッドの引き抜き力が作用すると、折曲げ定着筋の引き抜き力との複合力が壁コンクリートに作用するため、壁コンクリートの破壊が生じやすくなり、接合部の荷重支持能力が失われやすくなる。 However, when the rotation of the joint increases, the farther the bolt is from the bottom end, which is the center of rotation, the larger the amount of bolt movement due to rotation relative to the size of the clearance, and the more likely the bolt is to bear bearing pressure. Rotation about the lower end (lower flange) of the end portion of the steel beam produces bearing force in the direction of pulling the shear plate out of the wall concrete, the farther the bolt is from the lower end, which is the center of rotation. The shear plate is fixed to the wall concrete with anchor reinforcing bars, headed studs, etc., but when the pull-out force of the anchor reinforcing bars and headed studs acts due to the bearing force, the combined force with the pull-out force of the bending anchoring bar is exerted on the wall concrete. As a result, the wall concrete is likely to break, and the load-bearing capacity of the joint is likely to be lost.
 この開示では、ボルト孔が長手方向に延びた長孔形状であるため、ボルト孔径とボルト軸(軸部)径のクリアランスが大きく、合成梁が曲げモーメントを受けてシアプレートに対して鉄骨梁が相対的に移動しても、ボルト孔内でボルトが長手方向に移動する。
 従って、壁コンクリートに対してボルトが移動しても、ボルト孔とボルト軸が支圧状態にならない。このため、シアプレートを壁に接合するアンカー鉄筋や頭付きスタッドに作用する、ボルトの支圧力による引き抜きを抑制し、壁コンクリートの破壊を防止することができる。
 特に、何らかのアクシデントにより設計で想定する以上の外的な力が建物に作用した場合、接合部には過大な回転が生じる恐れがある。このような場合にも、壁コンクリートに複合的な引張力が作用するのを防止し、壁コンクリートの破壊を防止することができる。
In this disclosure, since the bolt hole has an elongated hole shape extending in the longitudinal direction, the clearance between the bolt hole diameter and the bolt shaft (shaft part) diameter is large, and the composite beam receives a bending moment, and the steel beam is pushed against the shear plate. Relative movement also results in longitudinal movement of the bolt within the bolt hole.
Therefore, even if the bolt moves with respect to the wall concrete, the bolt hole and the bolt shaft will not be in a bearing state. Therefore, it is possible to suppress the pull-out due to the bearing force of the bolt acting on the anchor reinforcing bars and the headed studs that join the shear plate to the wall, thereby preventing the wall concrete from breaking.
In particular, if an external force beyond what is assumed in the design acts on the building due to some accident, there is a risk of excessive rotation at the joints. Even in such a case, it is possible to prevent multiple tensile forces from acting on the wall concrete and prevent the wall concrete from breaking.
(6)本発明の態様6は、前記壁に接合されたシアプレートと、H形鋼である前記鉄骨梁のウェブ及び前記シアプレートをそれぞれ接合するボルトと、を備え、前記ウェブ及び前記シアプレートの少なくとも一方には、前記ボルトが通されるボルト孔が形成され、前記ボルト孔における前記鉄骨梁の高さ方向における平均位置は、前記鉄骨梁における前記高さ方向の中心よりも下方に位置する、(1)から(5)のいずれか一に記載の接合構造であってもよい。
 この開示では、前記高さ方向におけるボルト孔の平均位置(重心)が鉄骨梁における前記高さ方向の中心に一致している場合に比べてボルトが全体的に回転中心である下フランジに近くなるため、合成梁が曲げモーメントを受けてシアプレートに対して鉄骨梁が相対的に移動したときに、壁コンクリートに対してボルトが移動し難くなる。
 従って、壁コンクリートに対してボルトが移動しても、ボルト孔とボルト軸が支圧状態にならず、シアプレートを壁に接合するアンカー鉄筋や頭付きスタッドに作用する、ボルトの支圧力による引き抜きを抑制し、壁コンクリートの破壊を防止することができる。
(6) A sixth aspect of the present invention includes a shear plate joined to the wall, and bolts respectively joining the web of the steel beam, which is H-section steel, and the shear plate, wherein the web and the shear plate A bolt hole through which the bolt is passed is formed in at least one of the and the average position of the bolt hole in the height direction of the steel beam is located below the center of the steel beam in the height direction , (1) to (5).
In this disclosure, compared to when the average position (center of gravity) of the bolt holes in the height direction coincides with the center of the steel beam in the height direction, the bolts are closer to the lower flange, which is the center of rotation as a whole. Therefore, when the composite beam receives a bending moment and the steel frame beam moves relative to the shear plate, it becomes difficult for the bolt to move with respect to the wall concrete.
Therefore, even if the bolt moves relative to the wall concrete, the bolt hole and the bolt shaft will not be under pressure, and the bolt will pull out due to the bearing force acting on the anchor reinforcing bar or headed stud that joins the shear plate to the wall. can be suppressed and the destruction of the wall concrete can be prevented.
 本発明の接合構造では、RC造の壁と合成梁の端部とが接合される接合部の接合構造において、RC造の壁の破壊を抑制することができる。 In the joint structure of the present invention, it is possible to suppress the destruction of the RC wall in the joint structure of the joint where the RC wall and the end of the composite beam are joined.
本発明の一実施形態の接合構造が用いられる建築物の床組図である。1 is a floor assembly diagram of a building in which the joint structure of one embodiment of the present invention is used; 図1中の切断線A1-A1の断面図である。2 is a cross-sectional view taken along a cutting line A1-A1 in FIG. 1; FIG. 図2中の切断線A2-A2の断面図である。FIG. 3 is a cross-sectional view taken along a cutting line A2-A2 in FIG. 2; 同建築物のシアプレートにおける要部の拡大図である。It is an enlarged view of the principal part in the shear plate of the same building. 本発明の一実施形態の第1変形例の接合構造における要部の断面図である。FIG. 4 is a cross-sectional view of a main part in a joint structure of a first modified example of one embodiment of the present invention; 本発明の一実施形態の第2変形例の接合構造における要部の断面図である。FIG. 10 is a cross-sectional view of a main part in a joint structure of a second modified example of one embodiment of the present invention; 本発明の一実施形態の第3変形例の接合構造における要部の断面図である。FIG. 11 is a cross-sectional view of a main part in a joint structure of a third modified example of one embodiment of the present invention; 掻出し定着破壊を説明するための、同建築物を平面視した断面図である。It is sectional drawing which carried out the plan view of the same building for demonstrating rake-out fixing failure. 掻出し定着破壊を説明するための、同建築物を側面視した断面図である。It is sectional drawing which looked at the side of the same building for demonstrating rake-out fixing failure. 支圧破壊を説明するための、同建築物を側面視した断面図である。It is sectional drawing which looked at the side of the same building for demonstrating bearing pressure failure. 側方割裂破壊を説明するための、柱と合成梁の端部とが接合される建築物を平面視した断面図である。FIG. 2 is a plan view of a building in which a column and an end of a composite beam are joined, for explaining lateral splitting failure. 床鉄筋の断面積比RArと(L/d)の値を制限した場合の、RC壁の破壊の抑制効果を示す図である。FIG. 4 is a diagram showing the effect of suppressing destruction of RC walls when the values of cross-sectional area ratios R Ar and (L h /d r ) of floor reinforcing bars are limited. 壁厚400mmの場合の、床鉄筋の径比Rdrに対する、壁コンクリートの折り曲げ定着筋の軸剛性の関係を示す図である。FIG. 10 is a diagram showing the relationship between the axial rigidity of the bending fixing bar of the wall concrete and the diameter ratio R dr of the floor reinforcing bar when the wall thickness is 400 mm. 壁厚400mmの場合の、床鉄筋の径比Rdrと、床鉄筋の断面積比RArの関係を示す図である。FIG. 4 is a diagram showing the relationship between the diameter ratio R dr of the floor reinforcement and the cross-sectional area ratio R Ar of the floor reinforcement when the wall thickness is 400 mm. 壁コンクリートの折り曲げ定着筋の軸剛性に対する、合成梁25のたわみの関係を示す図である。FIG. 10 is a diagram showing the relationship between the deflection of the composite beam 25 and the axial stiffness of the bending anchoring bar of the wall concrete. 床鉄筋の断面積比RArに対する、壁コンクリートの折り曲げ定着筋の軸剛性を示す図である。FIG. 5 is a diagram showing the axial stiffness of the bending anchoring bar of wall concrete with respect to the cross-sectional area ratio R Ar of the floor reinforcing bar;
 以下、本発明に係る接合構造の一実施形態が用いられる建築物を、図1から図16を参照しながら説明する。 A building in which one embodiment of the joint structure according to the present invention is used will be described below with reference to FIGS. 1 to 16. FIG.
〔1.接合構造が用いられた建築物の構成〕
 図1及び図2に示すように、この建築物1は、コア壁10と、複数の柱20と、合成梁25と、を備える。なお、図1では、合成梁25(後述する床スラブ28)を二点鎖線で示す。
 コア壁10は、角筒状である。コア壁10は、一対の第1壁(壁)11と、一対の第2壁(壁)12と、を有する。第1壁11及び第2壁12は、それぞれ支持部材である。一対の第1壁11及び一対の第2壁12は、それぞれRC(Reinforced Concrete)造である。
[1. Construction of a building using a joint structure]
As shown in FIGS. 1 and 2, this building 1 comprises a core wall 10, a plurality of columns 20, and composite beams 25. As shown in FIG. In addition, in FIG. 1, the composite beam 25 (a floor slab 28 to be described later) is indicated by a chain double-dashed line.
The core wall 10 has a rectangular tubular shape. The core wall 10 has a pair of first walls (walls) 11 and a pair of second walls (walls) 12 . The first wall 11 and the second wall 12 are each supporting members. A pair of 1st walls 11 and a pair of 2nd walls 12 are RC (Reinforced Concrete) structures, respectively.
 図2に示すように、第1壁11は、壁コンクリート14と、複数の壁鉄筋15と、ベースプレート16と、複数の頭付きスタッド17と、を有する。
 壁コンクリート14は、自身の厚さ方向に見たときに矩形となる板状である。壁コンクリート14は、自身の厚さ方向が水平面に沿うとともに、上下方向Zに延びた状態に配置されている。本明細書で言う部材がA方向に延びるとは、部材が延びる方向とA方向とがなす角度が30度以下であることを意味する。この角度は、15度以下であることがより好ましい。
As shown in FIG. 2 , the first wall 11 has wall concrete 14 , a plurality of wall rebars 15 , a base plate 16 and a plurality of headed studs 17 .
The wall concrete 14 has a rectangular plate shape when viewed in its thickness direction. The wall concrete 14 is arranged such that its thickness direction extends along the horizontal plane and extends in the up-down direction Z. As shown in FIG. In this specification, a member extending in the A direction means that the angle formed by the extending direction of the member and the A direction is 30 degrees or less. More preferably, this angle is 15 degrees or less.
 複数の壁鉄筋15は、複数の縦筋15aと、複数の横筋15bと、を有する。複数の縦筋15a及び複数の横筋15bは、壁コンクリート14に埋設されている。複数の縦筋15aは、互いに離間するように配置されるとともに、上下方向Zに延びている。複数の横筋15bは、水平面に沿って延び、複数の縦筋15aにそれぞれ接するように配置されている。 The plurality of wall reinforcing bars 15 have a plurality of vertical bars 15a and a plurality of horizontal bars 15b. A plurality of vertical reinforcements 15 a and a plurality of horizontal reinforcements 15 b are embedded in the wall concrete 14 . The plurality of vertical bars 15a are arranged to be spaced apart from each other and extend in the up-down direction Z. As shown in FIG. The plurality of horizontal reinforcements 15b extend along the horizontal plane and are arranged so as to be in contact with the plurality of vertical reinforcements 15a.
 図2及び図3に示すように、ベースプレート16は、壁コンクリート14の外面に配置されている。ベースプレート16は、その主面16bが外部に露出している。
 図2に示すように、複数の頭付きスタッド17は、ベースプレート16の主面16aに固定されている。主面16aは、壁コンクリート14の内側を向く面である。複数の頭付きスタッド17は、ベースプレート16から壁コンクリート14の内側に向かって突出している。複数の頭付きスタッド17は、壁コンクリート14に埋設されている。
 図1に示すように、一対の第1壁11は、水平面に沿う方向に対向している。
As shown in FIGS. 2 and 3, base plate 16 is positioned on the outer surface of wall concrete 14 . A main surface 16b of the base plate 16 is exposed to the outside.
As shown in FIG. 2, a plurality of headed studs 17 are fixed to the main surface 16a of the base plate 16. As shown in FIG. The main surface 16a is a surface facing the inside of the wall concrete 14 . A plurality of headed studs 17 protrude from the base plate 16 towards the inside of the wall concrete 14 . A plurality of headed studs 17 are embedded in the wall concrete 14 .
As shown in FIG. 1, the pair of first walls 11 face each other in the direction along the horizontal plane.
 図2に示すように、ベースプレート16の主面16bは、ベースプレート16のうち主面16aとは反対側の面である。主面16bには、シアプレート18が溶接等により接合されている。シアプレート18は、第1壁11に接合されている。
 シアプレート18には、図4に示すボルト孔18aが形成されている。ボルト孔18aは、シアプレート18の厚さ方向に見たときに、後述する第2鉄骨梁27の長手方向Xに延びた長孔形状である。本実施形態では、長手方向Xは、水平面に沿う方向である。しかし、長手方向Xは、水平面に対して傾斜する方向であってもよい。
 シアプレート18には、ボルト孔18aが複数形成されている。複数のボルト孔18aは、互いに上下方向Zに離間した状態で並べて配置されている。
 なお、シアプレート18に形成されるボルト孔18aの数は、1つでもよい。
As shown in FIG. 2, the main surface 16b of the base plate 16 is the surface of the base plate 16 opposite to the main surface 16a. A shear plate 18 is joined to the main surface 16b by welding or the like. A shear plate 18 is joined to the first wall 11 .
The shear plate 18 is formed with bolt holes 18a shown in FIG. The bolt hole 18a has an elongated hole shape extending in the longitudinal direction X of the second steel frame beam 27 described later when viewed in the thickness direction of the shear plate 18 . In this embodiment, the longitudinal direction X is a direction along the horizontal plane. However, the longitudinal direction X may be a direction that is inclined with respect to the horizontal plane.
A plurality of bolt holes 18 a are formed in the shear plate 18 . The plurality of bolt holes 18a are arranged side by side while being separated from each other in the up-down direction Z. As shown in FIG.
The number of bolt holes 18a formed in the shear plate 18 may be one.
 図1に示すように、一対の第2壁12は、一対の第1壁11と同様に構成される。
 第2壁12は、自身の厚さ方向が水平面に沿うとともに、上下方向Zに延びた状態に配置されている。一対の第2壁12は、水平面に沿う方向に対向している。一対の第2壁12は、各第1壁11の幅方向の端部同士を連結している。
 コア壁10内の空間には、図示しないエレベータのシャフトや、階段室等が配置される。
As shown in FIG. 1 , the pair of second walls 12 are configured similarly to the pair of first walls 11 .
The second wall 12 is arranged such that its thickness direction extends along the horizontal plane and extends in the up-down direction Z. As shown in FIG. The pair of second walls 12 face each other in the direction along the horizontal plane. The pair of second walls 12 connects the ends of the first walls 11 in the width direction.
In the space within the core wall 10, an elevator shaft (not shown), a staircase, and the like are arranged.
 柱20は、上下方向Zに沿って延びている。複数の柱20は、コア壁10の周囲に、互いに間隔を開けるとともに、コア壁10から離間した位置に配置されている。例えば、柱20は、RC造である。なお、柱は、鋼製、SRC(Steel Reinforced Concrete)造、CFT(Concrete-Filled steel Tube)造等でもよい。 The pillar 20 extends along the vertical direction Z. A plurality of pillars 20 are arranged around the core wall 10 at positions spaced apart from each other and from the core wall 10 . For example, the pillar 20 is RC structure. The columns may be made of steel, SRC (Steel Reinforced Concrete), CFT (Concrete-Filled Steel Tube), or the like.
 図1及び図2に示すように、合成梁25は、複数の第1鉄骨梁(鉄骨梁)26と、複数の第2鉄骨梁(鉄骨梁)27と、床スラブ28と、を有している。
 例えば、第1鉄骨梁26及び第2鉄骨梁27は、それぞれ鋼製のH形鋼である。なお、第1鉄骨梁26及び第2鉄骨梁27は、H形鋼でなくてもよく、例えばT形鋼等でもよい。
As shown in FIGS. 1 and 2, the composite beam 25 has a plurality of first steel beams (steel beams) 26, a plurality of second steel beams (steel beams) 27, and a floor slab 28. there is
For example, the first steel beam 26 and the second steel beam 27 are each steel H-beams. The first steel beam 26 and the second steel beam 27 may not be H-shaped steel, but may be T-shaped steel, for example.
 第1鉄骨梁26は、隣り合うコア壁10と柱20との間、及び隣り合う柱20の間にそれぞれかけ渡され、第1鉄骨梁26の長手方向である水平面に沿う方向に延びている。第2鉄骨梁27は、隣り合うコア壁10と第1鉄骨梁26との間、及び隣り合う第1鉄骨梁26の間にそれぞれかけ渡され、長手方向Xに延びている。
 以下では、長手方向Xのうち、合成梁25に対する第1壁11側を、第1側X1と言う。長手方向Xのうち、第1壁11に対する合成梁25側を、第2側X2と言う。
 第1鉄骨梁26及び第2鉄骨梁27の構成は、互いに同等であるため、以下では第2鉄骨梁27を例にとって説明する。
The first steel beams 26 span between adjacent core walls 10 and columns 20 and between adjacent columns 20, respectively, and extend in a direction along the horizontal plane, which is the longitudinal direction of the first steel beams 26. . The second steel beams 27 extend in the longitudinal direction X between the adjacent core walls 10 and the first steel beams 26 and between the adjacent first steel beams 26 .
Below, the 1st wall 11 side with respect to the composite beam 25 among the longitudinal directions X is called 1st side X1. The side of the composite beam 25 with respect to the first wall 11 in the longitudinal direction X is called a second side X2.
Since the configurations of the first steel beam 26 and the second steel beam 27 are the same, the second steel beam 27 will be described below as an example.
 図2及び図3に示すように、第2鉄骨梁27は、第1フランジ31と、第2フランジ32と、ウェブ33と、を備えている。第1フランジ31及び第2フランジ32は、それぞれ水平面に沿って配置され、互いに上下方向Zに対向している。以下では、上下方向Z及び長手方向Xにそれぞれ直交する方向を、幅方向Yと言う。
 第1フランジ31は、第2フランジ32よりも上方に配置されている。
 ウェブ33は、第1フランジ31と第2フランジ32との間に配置されている。ウェブ33は、第1フランジ31の幅方向の中心及び第2フランジ32の幅方向の中心を互いに接合している。
 図4に示すように、ウェブ33の長手方向Xの各端部には、複数のボルト孔33aが形成されている(図4中には、1つのボルト孔33aのみを示す)。例えば、ボルト孔33aは、ウェブ33の厚さ方向に見たときに円形状である。複数のボルト孔33aは、互いに上下方向Zに離間した状態で並べて配置されている。
 なお、ウェブ33に形成されるボルト孔33aの数は、1つでもよい。
As shown in FIGS. 2 and 3 , the second steel beam 27 has a first flange 31 , a second flange 32 and a web 33 . The first flange 31 and the second flange 32 are arranged along the horizontal plane and face each other in the vertical direction Z. As shown in FIG. A direction perpendicular to the vertical direction Z and the longitudinal direction X is hereinafter referred to as a width direction Y. As shown in FIG.
The first flange 31 is arranged above the second flange 32 .
A web 33 is arranged between the first flange 31 and the second flange 32 . The web 33 joins the widthwise center of the first flange 31 and the widthwise center of the second flange 32 to each other.
As shown in FIG. 4, a plurality of bolt holes 33a are formed at each end of the web 33 in the longitudinal direction X (only one bolt hole 33a is shown in FIG. 4). For example, the bolt holes 33 a are circular when viewed in the thickness direction of the web 33 . The plurality of bolt holes 33a are arranged side by side while being separated from each other in the vertical direction Z. As shown in FIG.
The number of bolt holes 33a formed in the web 33 may be one.
 図2及び図3に示すように、床スラブ28は、デッキプレート36と、床コンクリート37と、複数の床鉄筋(鉄筋)38と、複数の連結鉄筋39と、を有している。
 デッキプレート36は、鋼板を折り曲げること等により形成されている。デッキプレート36は、第2鉄骨梁27の第1フランジ31上に配置されている。
 床コンクリート37は、平板状に形成され、デッキプレート36上に配置されている。複数の床鉄筋38は、複数の第1床鉄筋42と、複数の第2床鉄筋43と、を有する。
As shown in FIGS. 2 and 3 , the floor slab 28 has a deck plate 36 , floor concrete 37 , multiple floor reinforcing bars (reinforcing bars) 38 , and multiple connecting reinforcing bars 39 .
The deck plate 36 is formed by bending a steel plate or the like. The deck plate 36 is arranged on the first flange 31 of the second steel beam 27 .
The floor concrete 37 is formed in a flat plate shape and arranged on the deck plate 36 . The multiple floor reinforcing bars 38 have multiple first floor reinforcing bars 42 and multiple second floor reinforcing bars 43 .
 例えば、第1床鉄筋42は、鉄筋を曲げ加工することにより形成される。第1床鉄筋42は、床コンクリート37及び壁コンクリート14に埋設されている。第1床鉄筋42は、鉄筋本体42aと、折れ部(拡径部)42bと、を有する。
 例えば、鉄筋本体42aは、円柱状に形成されている。鉄筋本体42aは、床コンクリート37及び壁コンクリート14内で長手方向Xに延びている。
 ここで、鉄筋本体42aの径(径方向の長さ)は、鉄筋本体42aの公称径を意味する。公称径とは、例えばJIS G 3112 鉄筋コンクリート用棒鋼の異形棒鋼D10、D13、D16の場合、それぞれ順に10mm、13mm、16mmである。
For example, the first floor reinforcing bar 42 is formed by bending a reinforcing bar. The first floor reinforcing bars 42 are embedded in the floor concrete 37 and the wall concrete 14 . The first floor reinforcing bar 42 has a reinforcing bar main body 42a and a bent portion (expanded diameter portion) 42b.
For example, the reinforcing bar main body 42a is formed in a cylindrical shape. The reinforcing bar body 42 a extends in the longitudinal direction X within the floor concrete 37 and the wall concrete 14 .
Here, the diameter (length in the radial direction) of the reinforcing bar main body 42a means the nominal diameter of the reinforcing bar main body 42a. The nominal diameters are, for example, 10 mm, 13 mm and 16 mm respectively in the case of deformed steel bars D10, D13 and D16 of JIS G 3112 steel bars for reinforced concrete.
 折れ部42bは、鉄筋本体42aの第1側X1の端部から下方に向かって延びている。折れ部42bは、壁コンクリート14に埋設されている。すなわち、折れ部42bの第1側X1及び第2側X2には、それぞれ壁コンクリート14が配置されている。
 折れ部42bを上下方向Zに投影した寸法(折れ部42bの鉄筋本体42aの径方向の長さ)Lは、鉄筋本体42aの径よりも大きい。寸法Lは、折れ部42bの鉄筋本体42aの径方向の最大長さであることが好ましい。折れ部42bを上下方向Zに投影した寸法Lは、鉄筋本体42aの径の12倍以上であることが好ましい。
The bent portion 42b extends downward from the end of the reinforcing bar main body 42a on the first side X1. The bent portion 42 b is embedded in the wall concrete 14 . That is, the wall concrete 14 is arranged on the first side X1 and the second side X2 of the bent portion 42b.
The dimension Lv of the bent portion 42b projected in the vertical direction Z (the length of the bent portion 42b in the radial direction of the reinforcing bar main body 42a) is larger than the diameter of the reinforcing bar main body 42a. The dimension Lv is preferably the maximum radial length of the reinforcing bar main body 42a of the bent portion 42b. The dimension Lv of the bent portion 42b projected in the vertical direction Z is preferably 12 times or more the diameter of the reinforcing bar main body 42a.
 なお、拡径部は、鉄筋本体42aの径よりも上下方向Zに拡大された幅(折れ部42bを上下方向Zに投影した寸法L)を持つのみでなく、鉄筋本体42aの径よりも幅方向Yに拡大された幅(折れ部42bを幅方向Yに投影した寸法)を持つように構成されていてもよい。
 第1床鉄筋42は、長手方向X及び上下方向Zにそれぞれ平行な基準面(XZ平面)内で、折り曲げられている。この場合、第1床鉄筋42において、鉄筋本体42aに対して折れ部42bが折り曲げられる角度は、約90°である。
In addition, the expanded diameter portion not only has a width expanded in the vertical direction Z (the dimension L v obtained by projecting the bent portion 42b in the vertical direction Z) than the diameter of the reinforcing bar main body 42a, but also has a width larger than the diameter of the reinforcing bar main body 42a. It may be configured to have a width expanded in the width direction Y (the dimension of the bent portion 42b projected in the width direction Y).
The first floor reinforcing bar 42 is bent within a reference plane (XZ plane) parallel to the longitudinal direction X and the vertical direction Z, respectively. In this case, in the first floor reinforcing bar 42, the angle at which the bent portion 42b is bent with respect to the reinforcing bar main body 42a is about 90°.
 第2床鉄筋43は、第1床鉄筋42と同様に構成される。第2床鉄筋43は、鉄筋本体43aと、折れ部43bと、を有する。
 鉄筋本体43aは、長手方向Xに延びている。鉄筋本体43aは、鉄筋本体42aよりも下方に配置されている。
 折れ部43bは、鉄筋本体43aの第1側X1の端部から下方に向かって延びている。折れ部43bは、壁コンクリート14に埋設されている。
The second floor reinforcing bars 43 are configured similarly to the first floor reinforcing bars 42 . The second floor reinforcing bar 43 has a reinforcing bar main body 43a and a bent portion 43b.
The reinforcing bar body 43a extends in the longitudinal direction X. As shown in FIG. The reinforcing bar main body 43a is arranged below the reinforcing bar main body 42a.
The bent portion 43b extends downward from the end of the reinforcing bar main body 43a on the first side X1. The bent portion 43 b is embedded in the wall concrete 14 .
 折れ部43bの下端、及び折れ部42bの下端は、上下方向Zにおいて互いに同等の位置である。
 折れ部43bを上下方向Zに投影した寸法は、折れ部42bの寸法Lと同様に規定され、鉄筋本体43aの径よりも大きい。なお、折れ部43bの下端、及び折れ部42bの下端は、上下方向Zにおいて互いに異なる位置に配置されてもよい。
The lower end of the bent portion 43b and the lower end of the bent portion 42b are at the same position in the up-down direction Z. As shown in FIG.
The dimension of the bent portion 43b projected in the vertical direction Z is defined in the same manner as the dimension Lv of the bent portion 42b, and is larger than the diameter of the reinforcing bar main body 43a. Note that the lower end of the bent portion 43b and the lower end of the bent portion 42b may be arranged at different positions in the vertical direction Z from each other.
 複数の第1床鉄筋42の鉄筋本体42aは、上下方向Zにおいて同じ高さに配置されている。複数の第2床鉄筋43の鉄筋本体43aは、上下方向Zにおいて同じ高さであって、複数の鉄筋本体42aよりも下方に配置されている。
 このように、複数の第1床鉄筋42の鉄筋本体42aは、上方から1番目の床鉄筋38の層38を構成する。複数の第2床鉄筋43の鉄筋本体43aは、上方から2番目の床鉄筋38の層38を構成する。本実施形態では、床コンクリート37内で配筋される床鉄筋38の層の数は、2である。なお、床コンクリート37内で配筋される床鉄筋38の層の数は、限定されない。
The reinforcing bar main bodies 42a of the plurality of first floor reinforcing bars 42 are arranged at the same height in the vertical direction Z. As shown in FIG. The reinforcing bar bodies 43a of the plurality of second floor reinforcing bars 43 have the same height in the vertical direction Z and are arranged below the plurality of reinforcing bar bodies 42a.
In this way, the reinforcing bar bodies 42a of the plurality of first floor reinforcing bars 42 constitute the layer 381 of the first floor reinforcing bar 38 from above. The reinforcing bar bodies 43a of the plurality of second floor reinforcing bars 43 constitute the layer 382 of the second floor reinforcing bar 38 from above. In this embodiment, the number of layers of the floor reinforcing bars 38 arranged in the floor concrete 37 is two. Note that the number of layers of the floor reinforcing bars 38 arranged in the floor concrete 37 is not limited.
 複数の第1床鉄筋42の鉄筋本体42a、及び複数の第2床鉄筋43の鉄筋本体43aは、壁コンクリート14側と床コンクリート37側に分割され、これらが壁コンクリート14と床コンクリート37の境界でネジ式やグラウト注入式のカプラーなどを用いて一体化されていてもよい。 The reinforcing bar bodies 42a of the plurality of first floor reinforcing bars 42 and the reinforcing bar bodies 43a of the plurality of second floor reinforcing bars 43 are divided into the wall concrete 14 side and the floor concrete 37 side, and these are the boundaries between the wall concrete 14 and the floor concrete 37. may be integrated using a screw type or grout injection type coupler.
 連結鉄筋39は、幅方向Yに延びている。複数の連結鉄筋39の一部である連結鉄筋39は、複数の第1床鉄筋42の鉄筋本体42aに接している。なお、連結鉄筋39は、複数の第1床鉄筋42の鉄筋本体42aに番線、または溶接で固定されていてもよい。
 複数の連結鉄筋39の残部である連結鉄筋39は、複数の第2床鉄筋43の鉄筋本体43aに接している。
 なお、連結鉄筋39は鉄筋本体42aに接していればよく、連結鉄筋39は鉄筋本体43aに接していればよい。
The connecting reinforcing bars 39 extend in the width direction Y. As shown in FIG. A connecting reinforcing bar 391 that is part of the plurality of connecting reinforcing bars 39 is in contact with the reinforcing bar bodies 42 a of the plurality of first floor reinforcing bars 42 . Note that the connecting reinforcing bars 391 may be fixed to the reinforcing bar main bodies 42a of the plurality of first floor reinforcing bars 42 by wire mesh or welding.
The remaining connecting reinforcing bars 392 of the plurality of connecting reinforcing bars 39 are in contact with the reinforcing bar main bodies 43 a of the plurality of second floor reinforcing bars 43 .
The connecting reinforcing bar 39-1 may be in contact with the reinforcing bar main body 42a, and the connecting reinforcing bar 39-2 may be in contact with the reinforcing bar main body 43a.
 なお、床スラブ28は、デッキプレート36及び複数の連結鉄筋39を有さなくてもよい。床スラブ28が有する床鉄筋38の数は、1つでもよい。この場合、床コンクリート37内で配筋される床鉄筋38の層の数は、1である。 Note that the floor slab 28 may not have the deck plate 36 and the plurality of connecting reinforcing bars 39 . The number of floor reinforcing bars 38 included in the floor slab 28 may be one. In this case, the number of layers of the floor reinforcing bars 38 arranged in the floor concrete 37 is one.
 第2鉄骨梁27の第1フランジ31には、複数の頭付きスタッド(シアコネクタ)46が固定されている。複数の頭付きスタッド46は、長手方向X及び幅方向Yに互いに間隔を開けて配置されている。複数の頭付きスタッド46は、床スラブ28のデッキプレート36を通して、床コンクリート37に埋設されている。
 以上のように、第2鉄骨梁27は、複数の頭付きスタッド46によって長手方向Xに離散的に床スラブ28に接合される。
 なお、シアコネクタは、第2鉄骨梁27の第1フランジ31とデッキプレート36とを長手方向Xに連続的に溶接する溶接部であってもよい。この場合、第2鉄骨梁27は、溶接部によって長手方向Xに連続的に床スラブ28に接合される。
A plurality of headed studs (shear connectors) 46 are fixed to the first flange 31 of the second steel beam 27 . A plurality of headed studs 46 are spaced apart from each other in the longitudinal direction X and the width direction Y. As shown in FIG. A plurality of headed studs 46 are embedded in floor concrete 37 through deck plate 36 of floor slab 28 .
As described above, the second steel beam 27 is discretely joined to the floor slab 28 in the longitudinal direction X by a plurality of headed studs 46 .
In addition, the shear connector may be a welding portion that continuously welds the first flange 31 of the second steel beam 27 and the deck plate 36 in the longitudinal direction X. In this case, the second steel beam 27 is continuously joined to the floor slab 28 in the longitudinal direction X by welding.
 図2に示すように、第2鉄骨梁27の第2フランジ32と第1壁11のベースプレート16とは、コンタクトプレート47を介して溶接やメタルタッチ等により接合されている。
 複数の床鉄筋38は、第1壁11と合成梁25の端部とが接合される接合部51において、幅方向Yで有効幅(図3中に、Beffとして示す)以上の領域にわたって壁コンクリート14に定着されている。ここで言う有効幅は、下記の非特許文献1、非特許文献2等に規定される。
非特許文献1:“Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings”, December 2004, Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC, Directive 2004/18/EC
非特許文献2:日本建築学会編、「各種合成構造設計指針・同解説」、2010年11月
As shown in FIG. 2, the second flange 32 of the second steel beam 27 and the base plate 16 of the first wall 11 are joined via a contact plate 47 by welding, metal touch, or the like.
The plurality of floor reinforcing bars 38 extend over an area equal to or larger than the effective width (shown as B eff in FIG. 3 ) in the width direction Y at the joint 51 where the first wall 11 and the end of the composite beam 25 are joined. It is anchored in concrete 14 . The effective width referred to here is defined in Non-Patent Document 1, Non-Patent Document 2, etc. below.
Non-Patent Document 1: “Eurocode 4: Design of composite steel and concrete structures - Part 1-1: General rules and rules for buildings”, December 2004, Authority: The European Union Per Regulation 305/2011, Directive 98/34/EC , Directive 2004/18/EC
Non-Patent Document 2: Architectural Institute of Japan, “Various Composite Structure Design Guidelines and Commentaries”, November 2010
 具体的には、非特許文献1の有効幅Beffは、(5-1)式及び(5-2)式を用いて、(5-3)式により求められる。 Specifically, the effective width B eff of Non-Patent Document 1 is obtained by Equation (5-3) using Equations (5-1) and (5-2).
Figure JPOXMLDOC01-appb-M000005
Figure JPOXMLDOC01-appb-M000005
 ただし、Lは、第2鉄骨梁27の長さである。Lは、第2鉄骨梁27の長手方向Xにおける、接合部51に接する側の負曲げ領域(第2鉄骨梁27の第2フランジ(下フランジ)32が圧縮となる領域)の長さである。半剛接合の場合、(5-1)式のように、長さLは、第2鉄骨梁27の長さLの0.15倍以上0.25倍以下程度となる。 However, L is the length of the second steel beam 27 . L e is the length of the negative bending region (the region where the second flange (lower flange) 32 of the second steel beam 27 is compressed) on the side in contact with the joint 51 in the longitudinal direction X of the second steel beam 27; be. In the case of a semi-rigid joint, the length Le is about 0.15 to 0.25 times the length L of the second steel frame beam 27, as in formula (5-1).
 bは、第2鉄骨梁27の第1フランジ31の幅方向における、第2鉄骨梁27上の頭付きスタッド(シアコネクタ)46の芯の位置から、その隣の第1鉄骨梁26又は第2鉄骨梁27の近い方の梁上の頭付きスタッド(シアコネクタ)46の芯の位置までの間隔である。頭付きスタッド46が前記幅方向に2列以上配置されている場合は、前記幅方向における最も内側の頭付きスタッド46の芯の位置同士の間隔とする(bが最も小さくなるように頭付きスタッド46の芯をとる)。
 シアコネクタが頭付きスタッド以外の場合にも同様に、前記幅方向におけるシアコネクタの重心を基準に同様の手順で有効幅を得ることができる。
b g is the width direction of the first flange 31 of the second steel beam 27 from the core position of the headed stud (shear connector) 46 on the second steel beam 27 to the next first steel beam 26 or the first 2 is the distance to the core position of the headed stud (shear connector) 46 on the nearer beam of the steel frame beam 27. When the headed studs 46 are arranged in two or more rows in the width direction, the distance between the core positions of the innermost headed studs 46 in the width direction is set core the stud 46).
Similarly, when the shear connector is not a headed stud, the effective width can be obtained by the same procedure based on the center of gravity of the shear connector in the width direction.
 bは、合成梁25の第1フランジ31に設置された頭付きスタッド46の、第2鉄骨梁27の第1フランジ31の幅方向における間隔である。頭付きスタッド46が1列配置の場合は、間隔bを0とする。
 beff,iは、合成梁25の床スラブ28の片側あたりの有効幅である。片側とは、第1フランジ31の幅方向において第2鉄骨梁27の軸を境に両側に分割したうちの片側を意味する。両側スラブ(床スラブ28が両側に延びる)の場合、i=2、片側スラブ(床スラブ28が片側のみに延びる)の場合、i=1となる。
 長さL等の単位には、SI単位等が用いられる。
b 0 is the distance in the width direction of the first flange 31 of the second steel beam 27 between the headed studs 46 installed on the first flange 31 of the composite beam 25 . If the headed studs 46 are arranged in one row, the interval b0 is zero.
b eff,i is the effective width of the composite beam 25 per side of the floor slab 28; One side means one side of the width direction of the first flange 31 divided into both sides with the axis of the second steel beam 27 as a boundary. For a double-sided slab (floor slab 28 extends on both sides), i=2, and for a single-sided slab (floor slab 28 extends on only one side), i=1.
SI units and the like are used for the units of the length L and the like.
 図3及び図4に示すように、第2鉄骨梁27のウェブ33及びシアプレート18は、ボルト48及びナット49によりそれぞれ接合されている。より詳しく説明すると、ボルト48の軸部48aは、シアプレート18のボルト孔18a、及び第2鉄骨梁27のウェブ33のボルト孔33aにそれぞれ通されている。ボルト48の頭部48bは、シアプレート18に、ウェブ33とは反対側から係止している。 As shown in FIGS. 3 and 4, the web 33 of the second steel beam 27 and the shear plate 18 are joined by bolts 48 and nuts 49, respectively. More specifically, the shaft portion 48a of the bolt 48 is passed through the bolt hole 18a of the shear plate 18 and the bolt hole 33a of the web 33 of the second steel beam 27, respectively. The head 48b of the bolt 48 engages the shear plate 18 from the opposite side of the web 33. As shown in FIG.
 ナット49は、ウェブ33に、シアプレート18とは反対側から係止している。ナット49は、ボルト48の軸部48aと嵌め合っている。ボルト48の頭部48b及びナット49は、シアプレート18及びウェブ33を挟み込んでいる。ナット49とウェブ33の間、及びボルト48の頭部48bとシアプレート18の間には、図示はしないが、ワッシャが挟まれている。
 なお、シアプレート18のボルト孔18a及びウェブ33のボルト孔33aのうち、ボルト孔18aが長孔形状であるとした。しかし、ボルト孔33aのみが長孔形状であるとしてもよいし、ボルト孔18a及びボルト孔33aが長孔形状であるとしてもよい。
The nut 49 engages the web 33 from the opposite side of the shear plate 18 . The nut 49 is fitted with the shaft portion 48 a of the bolt 48 . The head 48b of the bolt 48 and the nut 49 sandwich the shear plate 18 and the web 33 therebetween. Washers (not shown) are interposed between the nut 49 and the web 33 and between the head 48b of the bolt 48 and the shear plate 18. As shown in FIG.
Of the bolt holes 18a of the shear plate 18 and the bolt holes 33a of the web 33, the bolt holes 18a are assumed to be elongated. However, only the bolt hole 33a may be elongated, or the bolt holes 18a and 33a may be elongated.
 以上のように、第2鉄骨梁27は、床スラブ28を、床スラブ28の下方から支持する。第1鉄骨梁26は、第2鉄骨梁27と同様に、床スラブ28を、床スラブ28の下方から支持する。
 なお、一般的に、第1壁11の幅方向Yの長さは、柱の幅方向Yの長さよりも長い。
As described above, the second steel beam 27 supports the floor slab 28 from below. The first steel beam 26 supports the floor slab 28 from below the floor slab 28 in the same manner as the second steel beam 27 .
In addition, generally, the length of the width direction Y of the 1st wall 11 is longer than the length of the width direction Y of a column.
 図2及び図3に示すように、以上のようにして、第1壁11と合成梁25の端部とが接合される接合部51の接合構造52が構成される。
 図1に示すように、第2壁12についても第1壁11と同様に、第2壁12と合成梁25の端部とが接合される接合部54の接合構造55が構成される。
 なお、床スラブ28は、屋根に用いられるスラブ(屋根スラブ)でもよい。
 また、第1壁11の上端は、合成梁25の上端よりも上方に延びていることが好ましい。第1壁11が合成梁25よりも上方に延びる長さは、投影定着長さ(L)以上であることが好ましい。
As shown in FIGS. 2 and 3, the joint structure 52 of the joint portion 51 where the first wall 11 and the end portion of the composite beam 25 are joined is constructed as described above.
As shown in FIG. 1 , the joint structure 55 of the joint portion 54 where the second wall 12 and the end portion of the composite beam 25 are joined is configured for the second wall 12 as well as the first wall 11 .
The floor slab 28 may be a slab used for roofs (roof slab).
Also, the upper end of the first wall 11 preferably extends above the upper end of the composite beam 25 . It is preferable that the length by which the first wall 11 extends upward from the composite beam 25 is equal to or longer than the projected fixing length (L h ).
 図2中に、合成梁25に鉛直荷重等による曲げモーメントが作用したときの第2鉄骨梁27の変位を二点鎖線で示す。この場合、第2鉄骨梁27の長手方向Xの端部は、その下端を中心に回転する。
 このとき、床鉄筋38には、第2鉄骨梁27の長手方向Xに引張り力が作用する。第2鉄骨梁27の第2フランジ32は、コンタクトプレート47を介してベースプレート16を圧縮する。
In FIG. 2, the displacement of the second steel frame beam 27 when a bending moment due to a vertical load or the like acts on the composite beam 25 is indicated by a two-dot chain line. In this case, the ends of the second steel beams 27 in the longitudinal direction X rotate around their lower ends.
At this time, a tensile force acts on the floor reinforcement 38 in the longitudinal direction X of the second steel beam 27 . A second flange 32 of the second steel beam 27 compresses the base plate 16 via the contact plate 47 .
 なお、第1床鉄筋42の構成は、以下のように変形することができる。
 図5に示すように、第1床鉄筋65は、鉄筋本体66と、拡径部67と、を有してもよい。拡径部67は、環状に形成され、鉄筋本体66の第1側X1の端部に設けられている。拡径部67は、第1壁11の壁コンクリート14に定着されている。鉄筋本体66は、長手方向Xに延びる直状部66aの外面に、環状の第2拡径部66bが設けられて構成されている。なお、拡径部67は、壁コンクリート14に定着されていれば、鉄筋本体66の端部に設けられず、鉄筋本体66の中間部等に設けられてもよい。
 例えば、第1床鉄筋65は、異形鉄筋により構成される。拡径部67は、鉄筋本体66に軸方向の圧縮力を加えた状態で高周波誘導加熱する方法や転造等により形成される。
Note that the configuration of the first floor reinforcing bar 42 can be modified as follows.
As shown in FIG. 5 , the first floor reinforcing bar 65 may have a reinforcing bar body 66 and an enlarged diameter portion 67 . The enlarged diameter portion 67 is formed in an annular shape and provided at the end portion of the reinforcing bar main body 66 on the first side X1. The enlarged diameter portion 67 is fixed to the wall concrete 14 of the first wall 11 . The reinforcing bar main body 66 is configured by providing an annular second enlarged diameter portion 66b on the outer surface of a straight portion 66a extending in the longitudinal direction X. As shown in FIG. It should be noted that the enlarged diameter portion 67 may be provided not at the end portion of the reinforcing bar main body 66 but at the intermediate portion of the reinforcing bar main body 66 or the like as long as it is fixed to the wall concrete 14 .
For example, the first floor reinforcing bars 65 are made of deformed reinforcing bars. The enlarged diameter portion 67 is formed by a method of performing high-frequency induction heating with an axial compressive force applied to the reinforcing bar main body 66, rolling, or the like.
 図6に示すように、第1床鉄筋70は、前記鉄筋本体42aと、拡径部71と、を有してもよい。拡径部71は、円や矩形の板状に形成されている。拡径部71は、鉄筋本体42aの端部に、鉄筋本体42aと同軸に配置されている。拡径部71は、前記鉄筋本体42aとは別の部品を溶接等で接合したものであってもよく、前記鉄筋本体42aに軸方向の圧縮力を加えた状態で高周波誘導加熱する方法や転造等により形成されてもよい。拡径部71を上下方向Zに投影した寸法Lは、鉄筋本体42aの径の11倍以上であることが好ましい。 As shown in FIG. 6 , the first floor reinforcing bar 70 may have the reinforcing bar body 42 a and an enlarged diameter portion 71 . The enlarged diameter portion 71 is formed in a circular or rectangular plate shape. The enlarged diameter portion 71 is arranged coaxially with the reinforcing bar main body 42a at the end of the reinforcing bar main body 42a. The expanded diameter portion 71 may be formed by joining a part other than the reinforcing bar main body 42a by welding or the like. It may be formed by manufacturing or the like. The dimension Lv of the expanded diameter portion 71 projected in the vertical direction Z is preferably 11 times or more the diameter of the reinforcing bar main body 42a.
 図7に示す第1床鉄筋75のように、鉄筋本体42aに対して折れ部(拡径部)42cが折り曲げられる角度θは、約90°を超えて、180°以下でもよい。この場合、第1床鉄筋75は、長手方向X及び上下方向Zにそれぞれ平行な基準面(XZ平面)上で、折り曲げられることが好ましい。
 第1床鉄筋65,70,75でも、本実施形態の第1床鉄筋42と同様の効果を奏することができる。
 なお、角度θによらず、折れ部42cの内側の半径は、折り曲げられる床鉄筋の直径の3倍以上とすることが好ましい。折れ部42cのうちの直線部の長さは、角度θが180°の場合は床鉄筋の直径の4倍以上、角度θが135°以上180°未満の場合は床鉄筋の直径の6倍以上、角度θが90°以上135°未満の場合は床鉄筋の直径の8倍以上とすることが好ましい。
As in the first floor reinforcing bar 75 shown in FIG. 7, the angle θ at which the bent portion (expanded diameter portion) 42c is bent with respect to the reinforcing bar main body 42a may be greater than approximately 90° and 180° or less. In this case, the first floor reinforcing bars 75 are preferably bent on a reference plane (XZ plane) parallel to the longitudinal direction X and the vertical direction Z, respectively.
The first floor reinforcing bars 65, 70, 75 can also achieve the same effects as the first floor reinforcing bars 42 of the present embodiment.
In addition, regardless of the angle θ, the inner radius of the bent portion 42c is preferably three times or more the diameter of the floor reinforcement to be bent. The length of the straight portion of the bent portion 42c is 4 times or more the diameter of the floor reinforcement when the angle θ is 180°, and 6 times or more the diameter of the floor reinforcement when the angle θ is 135° or more and less than 180°. When the angle θ is 90° or more and less than 135°, it is preferably 8 times or more the diameter of the floor reinforcement.
 次に、以上のように構成された接合構造52において、掻出し定着破壊、側方割裂破壊及び支圧破壊の抑制を検討した結果について説明する。 Next, in the joint structure 52 configured as described above, the results of examining the suppression of scrape fixing failure, lateral splitting failure, and bearing pressure failure will be described.
〔2.接合構造の掻出し定着破壊、側方割裂破壊及び支圧破壊の説明〕
 まず、掻出し定着破壊、側方割裂破壊及び支圧破壊について、図8から図11を用いて説明する。なお、図8から図11では、構成を簡略化するとともに、一部の表示を省略して示している。
 図8及び図9に示すように、掻出し定着破壊は、壁コンクリート14が合成梁25側にコーン形状の塊R10のように掻出され、全床鉄筋38が耐力を失う破壊のことを意味する。
[2. Description of scrape fixing failure, lateral splitting failure and bearing pressure failure of the joint structure]
First, scrape fixing failure, lateral splitting failure and bearing pressure failure will be described with reference to FIGS. 8 to 11. FIG. 8 to 11, the configuration is simplified and part of the display is omitted.
As shown in FIGS. 8 and 9, the rake-out anchoring failure means a failure in which the wall concrete 14 is scraped out like a cone-shaped mass R10 toward the composite beam 25, and the entire floor reinforcing bar 38 loses its bearing strength. do.
 図10に示すように、第1床鉄筋42が折れ曲がっている内側の領域R1に、壁コンクリート14がある。支圧破壊は、第1床鉄筋42が第2鉄骨梁27の長手方向Xに引張られる際に、領域R1の壁コンクリート14が支圧を受けて割れる破壊のことを意味する。第1床鉄筋42が引張られて二点鎖線L1で示すように移動すると、領域R1の壁コンクリート14が領域R2に移動する。この際に、領域R2の壁コンクリート14が、支圧を受けて割れる。 As shown in FIG. 10, the wall concrete 14 is located inside the region R1 where the first floor reinforcing bars 42 are bent. A bearing failure means a fracture in which the wall concrete 14 in the region R1 is cracked under bearing pressure when the first floor reinforcing bars 42 are pulled in the longitudinal direction X of the second steel beam 27 . When the first floor reinforcing bar 42 is pulled and moved as indicated by the two-dot chain line L1, the wall concrete 14 in the area R1 moves to the area R2. At this time, the wall concrete 14 in the region R2 is subjected to bearing pressure and cracks.
 一方で、図11に示す、比較例の接合構造60について説明する。接合構造60は、RC造の柱61と合成梁25の端部とが接合される接合部62の接合構造である。
 柱61は、第1壁11に比べて幅方向Yの長さが短いため、第1床鉄筋42が第2鉄骨梁27の長手方向Xに引張られる際に、壁コンクリート14のうち、第1床鉄筋42の側方かぶりとなる領域R4の部分が、柱61の側方(幅方向Y)に向かって引き裂かれる、側方割裂破壊が生じうる。しかし、本実施形態の接合構造52の第1壁11は、柱61に比べて幅方向Yの長さが長いため、側方かぶりとなる壁コンクリート14が引き裂かれ難く、側方割裂破壊が生じない。
On the other hand, a joint structure 60 of a comparative example shown in FIG. 11 will be described. The joint structure 60 is a joint structure of a joint portion 62 where the RC column 61 and the end portion of the composite beam 25 are joined.
Since the column 61 is shorter in the width direction Y than the first wall 11 , when the first floor reinforcing bar 42 is pulled in the longitudinal direction X of the second steel beam 27 , the first Lateral splitting failure may occur in which the portion of the region R4, which is the side cover of the floor reinforcing bar 42, is torn toward the side of the column 61 (in the width direction Y). However, since the first wall 11 of the joint structure 52 of the present embodiment has a longer length in the width direction Y than the column 61, the wall concrete 14 serving as the lateral covering is not easily torn, and lateral splitting failure occurs. do not have.
〔3.接合構造の掻出し定着破壊、側方割裂破壊及び支圧破壊の抑制の検討〕
〔3.1.ケーススタディの条件〕
 発明者等は、接合構造の仕様を変えて、表1から表3に示すサンプルNo.1から30のケーススタディ(事例研究法)を行った。サンプルNo.1から30における床鉄筋38の層の数は、2である。
[3. Investigation of Suppression of Bonding Structure Scraping Failure, Lateral Splitting Failure, and Bearing Pressure Failure]
[3.1. Case study conditions]
The inventors changed the specifications of the joint structure and made sample Nos. shown in Tables 1 to 3. 1 to 30 case studies were conducted. Sample no. The number of layers of floor reinforcing bars 38 from 1 to 30 is two.
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000008
 例えば、サンプルNo.1は、以下の設計条件で設計した。
 第1壁11の厚さは、400mmである。壁コンクリート14の設計強度σは、30N/mm(ニュートン・パー・平方ミリメートル)である。床鉄筋38の設計降伏強度σry,iは、550N/mmである。第1壁11の横筋15bにおいて、直径は、13mmである。上下方向Zのピッチは、200mmである。
For example, sample no. 1 was designed under the following design conditions.
The thickness of the first wall 11 is 400 mm. The design strength σ c of the wall concrete 14 is 30 N/mm 2 (Newtons per square millimeter). The design yield strength σ ry,i of the floor reinforcing bars 38 is 550 N/mm 2 . The diameter of the transverse bar 15b of the first wall 11 is 13 mm. The pitch in the vertical direction Z is 200 mm.
 第1床鉄筋42において、直径は、16mmである。幅方向Yのピッチは、150mmである。投影定着長さは、350mmである。ここで言う投影定着長さとは、第1床鉄筋42のうち壁コンクリート14に定着される部分の長手方向Xの長さ(図2における投影定着長さLを参照)である。第1床鉄筋42において、鉄筋本体42aと折れ部42bとの間に、曲げ部を設けた。曲げ部の内側の半径は、96mmである。なお、曲げ部の内側の半径は、第1床鉄筋42の直径の6倍とした。これにより、支圧破壊を抑制した。
 第2床鉄筋43において、直径は、10mmである。幅方向Yのピッチは、200mmである。投影定着長さは、折れ部42b及び43bから壁11の表面まで50mmのかぶり厚を確保し、350mmである。曲げ部の内側の半径は、60mmである。
The diameter of the first floor reinforcing bar 42 is 16 mm. The pitch in the width direction Y is 150 mm. The projection fixing length is 350 mm. The projected anchorage length referred to here is the length in the longitudinal direction X of the portion of the first floor reinforcing bar 42 anchored to the wall concrete 14 (see the projected anchorage length Lh in FIG. 2). In the first floor reinforcing bar 42, a bent portion is provided between the reinforcing bar main body 42a and the bent portion 42b. The radius inside the bend is 96 mm. In addition, the radius of the inner side of the bent portion was six times the diameter of the first floor reinforcing bar 42 . This suppressed the bearing pressure failure.
The diameter of the second floor reinforcing bar 43 is 10 mm. The pitch in the width direction Y is 200 mm. The projected fixing length is 350 mm, ensuring a cover thickness of 50 mm from the bent portions 42b and 43b to the surface of the wall 11. FIG. The radius inside the bend is 60 mm.
 なお、サンプルNo.1から30において、有効幅Beffは1050mmとした。床鉄筋38の配筋領域は、1050mm以上であって、第2鉄骨梁27の支配幅以下とした。
 第1床鉄筋42及び第2床鉄筋43の設計降伏強度は、550N/mmであり、設計引張強度は、650N/mmである。
In addition, sample No. From 1 to 30, the effective width B eff was set to 1050 mm. The reinforcement area of the floor reinforcing bars 38 is 1050 mm or more, and is equal to or less than the control width of the second steel frame beam 27 .
The design yield strength of the first floor reinforcement 42 and the second floor reinforcement 43 is 550 N/mm 2 and the design tensile strength is 650 N/mm 2 .
 サンプルNo.1から30において、下記の非特許文献3による掻出し定着破壊耐力が、非特許文献1によるスラブ有効幅内の鉄筋の引張降伏耐力よりも小さいときに、掻出し定着破壊が生じると判定した。すなわち、掻出し定着破壊及び引張降伏のうち、最小の耐力を与える破壊形式になるとした。下記の非特許文献4による折り曲げ定着部の耐力が、非特許文献1によるスラブ有効幅内の鉄筋の引張降伏耐力よりも小さいときに、側方割裂破壊が生じると判定した。支圧破壊については、非特許文献4によれば曲げ部の寸法が非特許文献5の規程を満たせば防止できる。  Sample No. In 1 to 30, it was determined that scraping anchorage failure occurred when the scrape anchorage failure strength according to Non-Patent Document 3 below was smaller than the tensile yield strength of the reinforcing bars within the slab effective width according to Non-Patent Document 1. In other words, it was assumed that the fracture type that gives the minimum proof stress should be selected from among scraping-fixing fracture and tensile yield. It was determined that the lateral splitting failure occurred when the proof stress of the bending fixing portion according to Non-Patent Document 4 below was smaller than the tensile yield strength of the reinforcing bars within the effective width of the slab according to Non-Patent Document 1. According to Non-Patent Document 4, bearing pressure failure can be prevented if the dimension of the bent portion satisfies the regulations of Non-Patent Document 5.
 サンプルNo.1から30において、非特許文献5の規程を満たすよう、曲げ部の内側の半径は、第1床鉄筋42の直径の6倍とした。なお、非特許文献4は、側方割裂破壊と支圧破壊の破壊形式によらず同じ耐力式を用いている。
非特許文献3:日本建築学会編、「鉄筋コンクリート造建物の靭性保証型耐震設計指針・同解説」、2001年9月
非特許文献4:藤井ら、「90°折り曲げ鉄筋の定着耐力の再評価」、日本建築学会構造系論文報告集、第429号、1991年11月
非特許文献5:日本建築学会編、「建築工事標準仕様書・同解説 JASS5 鉄筋コンクリート工事」、2018年7月
 各サンプルNo.1から30に対して、様々なパラメータを検討した。以下では、その結果について説明する。
Sample no. 1 to 30, the inner radius of the bent portion was set to 6 times the diameter of the first floor reinforcing bar 42 so as to satisfy the regulation of Non-Patent Document 5. It should be noted that Non-Patent Document 4 uses the same bearing force formula regardless of the failure mode of lateral splitting failure and bearing pressure failure.
Non-Patent Document 3: Edited by Architectural Institute of Japan, “Toughness Guaranteed Seismic Design Guideline and Commentary for Reinforced Concrete Buildings”, September 2001 Non-Patent Document 4: Fujii et al. , Architectural Institute of Japan Structural Papers Report, No. 429, November 1991 Non-Patent Document 5: Architectural Institute of Japan, "Building Construction Standard Specifications and Commentary JASS5 Reinforced Concrete Construction", July 2018 Each sample No. Various parameters were investigated, from 1 to 30. The results are described below.
〔3.2.掻出し定着破壊を抑制する条件〕
 (6)式によって求められる床鉄筋の断面積比RAr、及び、(7)式によって求められる投影定着長さ比(L/d)について検討を行った。なお、床鉄筋の断面積比RArは、床鉄筋と壁コンクリートの強度比で重みづけした床スラブ28の幅方向Yの単位長さ当たりの床鉄筋38の断面積比である。
[3.2. Conditions for Suppressing Destruction of Fixation by Scraping]
The cross-sectional area ratio R Ar of the floor reinforcing bars determined by the formula (6) and the projection fixing length ratio (L h /d r ) determined by the formula (7) were examined. The cross-sectional area ratio R Ar of the floor reinforcing bars is the cross-sectional area ratio of the floor reinforcing bars 38 per unit length in the width direction Y of the floor slab 28 weighted by the strength ratio between the floor reinforcing bars and the wall concrete.
Figure JPOXMLDOC01-appb-M000009
Figure JPOXMLDOC01-appb-M000009
 ここで、iは、床コンクリート37内で配筋される床鉄筋38の層38,38の数である。iは、自然数である。この例では、iは2である。床鉄筋の断面積比RArは、((ar,i/p)・(σry,i/σ))の値を、全ての層38,38に対して足した値をとる。
 ar,iは、上方からi番目の層である第i層38における、床鉄筋38の一本当たりの床鉄筋38の長手方向Xに直交する断面積(mm)である。第i層38が断面積の異なる複数の種類の床鉄筋38を有する場合には、この断面積は、第i層38の各床鉄筋38の断面積の平均値である。
 p(p,pについて、図3参照)は、第i層38の床鉄筋38同士の床スラブ28の幅方向Yのピッチ(mm)である。σry,iは、第i層38の床鉄筋38の設計降伏応力(N/mm)である。σは、壁コンクリート14の圧縮強度(N/mm)である。σry,iは、550N/mmである。
Here, i is the number of layers 38 1 and 38 2 of the floor reinforcing bars 38 arranged in the floor concrete 37 . i is a natural number. In this example, i is two. The cross-sectional area ratio R Ar of the floor reinforcing bars is the sum of the values of (( ar, i /p i )·(σ ry, ic )) for all layers 38 1 and 38 2 . Take.
a r,i is the cross-sectional area (mm 2 ) perpendicular to the longitudinal direction X of each floor reinforcing bar 38 in the i-th layer 38 i that is the i-th layer from above. When the i-th layer 38i has a plurality of types of floor reinforcing bars 38 with different cross-sectional areas, this cross-sectional area is the average value of the cross-sectional areas of the floor reinforcing bars 38 of the i-th layer 38i.
p i (see FIG. 3 for p 1 and p 2 ) is the pitch (mm) in the width direction Y of the floor slab 28 between the floor reinforcing bars 38 of the i-th layer 38 i . σ ry,i is the design yield stress (N/mm 2 ) of the floor reinforcing bars 38 of the i-th layer 38 i . σ c is the compressive strength (N/mm 2 ) of the wall concrete 14; σ ry,i is 550 N/mm 2 .
 Lh,i(mm)は、第i層38の各床鉄筋38の投影定着長さである。なお、合成梁25が1つの層を有する場合には、投影定着長さL(mm)はその層の投影定着長さである。dr,iは、第i層の床鉄筋38の一本当たりの径(mm)である。第i層38が断面積の異なる複数の種類の床鉄筋38を有する場合には、dr,iは、この床鉄筋の径dr,iは、第i層38の各床鉄筋38の径の平均値である。
 合成梁25が複数の層を有する場合には、投影定着長さ比(L/d)は、各層の投影定着長さ比(Lh,i/dr,i)の最小値である。
L h,i (mm) is the projected fixing length of each floor reinforcing bar 38 of the i-th layer 38 i . When the composite beam 25 has one layer, the projected anchorage length L h (mm) is the projected anchorage length of that layer. d r,i is the diameter (mm) per one of the floor reinforcing bars 38 of the i-th layer. When the i-th layer 38i has a plurality of types of floor reinforcing bars 38 with different cross-sectional areas, dr ,i is the diameter of the floor reinforcing bars dr ,i. is the average diameter of
When the composite beam 25 has multiple layers, the projected settlement length ratio (L h /d r ) is the minimum value of the projected settlement length ratio (L h,i /d r,i ) of each layer. .
 図12及び表4に、試算結果を示す。
 図12において、横軸は、床鉄筋の断面積比RAr(mm/mm)を表す。縦軸は、投影定着長さ比(L/d)の値を表す。
Fig. 12 and Table 4 show the trial calculation results.
In FIG. 12 , the horizontal axis represents the cross-sectional area ratio R Ar (mm 2 /mm) of the floor reinforcing bars. The vertical axis represents the value of the projection fixing length ratio (L h /d r ).
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000010
 例えば、サンプルNo.1において、床鉄筋の断面積比RArは、31.77mm/mmである。(L/d)の値は、21.875ある。
 図12において、掻出し定着破壊が生じないと判定したサンプルを、「OK」として○(白抜きの丸)印で表す。図12において、掻出し定着破壊が生じると判定したサンプルを、「NG」として●(塗り潰した丸)印で表す。
 図12から、床鉄筋の断面積比RArが30.70よりも小さく、(L/d)の値が15.600よりも大きければ、掻出し定着破壊が生じないと判定できることが分かる。すなわち、床鉄筋の断面積比RArが、(8)式を満たし、かつ、投影定着長さ比(L/d)が(9)式を満たせば、接合構造52において、掻出し定着破壊を抑制できることが分かった。
For example, sample no. 1, the cross-sectional area ratio R Ar of the floor reinforcement is 31.77 mm 2 /mm. The value of (L h /d r ) is 21.875.
In FIG. 12, the samples determined not to cause scrape-out fixing failure are marked as "OK" by ◯ (white circle). In FIG. 12, the samples determined to cause scrape-out fixing failure are indicated by  (filled circles) as "NG".
From FIG. 12, it can be seen that if the cross-sectional area ratio R Ar of the floor reinforcement is smaller than 30.70 and the value of (L h /d r ) is larger than 15.600, it can be determined that scraping and fixing failure does not occur. . That is, if the cross-sectional area ratio R Ar of the floor reinforcement satisfies the formula (8) and the projected anchorage length ratio (L h /d r ) satisfies the equation (9), then in the joint structure 52, the rake anchor It was found that destruction can be suppressed.
Figure JPOXMLDOC01-appb-M000011
Figure JPOXMLDOC01-appb-M000011
〔3.3.支圧破壊及び側方割裂破壊を抑制する条件〕
 (12)式によって求められる床鉄筋の径比Rdrについて検討を行った。
[3.3. Conditions for Suppressing Bearing Failure and Lateral Splitting Failure]
(12) The diameter ratio R dr of the floor reinforcing bars determined by the formula was examined.
Figure JPOXMLDOC01-appb-M000012
Figure JPOXMLDOC01-appb-M000012
 床鉄筋の径比Rdrは、床スラブ28の幅方向Yの単位長さ当たりの床鉄筋38の径(-)である。ここでいう単位長さとは、第i層38の床鉄筋38同士の床スラブ28の幅方向Yにおけるピッチp(mm)である。この例では、iは2であるから、床鉄筋の径比Rdrは、((dr,i/p)・(σry,i/σ))の値を、全ての層38,38に対して足した値をとる。
 図13及び図14、表4に、試算結果を示す。ここでは、サンプルNo.1から30のうち、壁の厚さ400mmの試算結果を抽出して示す。
 壁の厚さを一定にしているのは、壁の厚さが変わると、投影定着長さ比(L/d)が変わるためである。
The floor reinforcing bar diameter ratio R dr is the diameter (−) of the floor reinforcing bar 38 per unit length in the width direction Y of the floor slab 28 . The unit length here is the pitch p i (mm) in the width direction Y of the floor slab 28 between the floor reinforcing bars 38 of the i-th layer 38 i . In this example, since i is 2, the diameter ratio R dr of the floor reinforcing bars is the value of ((d r,i /p i )·(σ ry,ic )) for all layers 38 1 , 382 .
13 and 14 and Table 4 show the trial calculation results. Here, sample No. From 1 to 30, the trial calculation results for a wall thickness of 400 mm are extracted and shown.
The wall thickness is kept constant because the projection settlement length ratio (L h /d r ) changes when the wall thickness changes.
 図13及び図14において、横軸は、床鉄筋の径比Rdr(mm/mm)を表す。図13の縦軸は、床鉄筋の軸剛性kの値を表す。図14の縦軸は、床鉄筋の断面積比RArの値を表す。
 軸剛性kは、非特許文献1に従い、(13-1)式、(13-2)式で計算できる。
In FIGS. 13 and 14, the horizontal axis represents the diameter ratio R dr (mm/mm) of the floor reinforcing bars. The vertical axis in FIG. 13 represents the value of the axial stiffness kr of the floor reinforcement. The vertical axis in FIG. 14 represents the value of the cross-sectional area ratio R Ar of the floor reinforcing bars.
The axial stiffness kr can be calculated according to the non-patent document 1 by the formulas (13-1) and (13-2).
Figure JPOXMLDOC01-appb-M000013
Figure JPOXMLDOC01-appb-M000013
 ここで、Eは鉄筋のヤング係数(N/mm)である。Σar,iは第i層38の有効幅内にある床鉄筋38の断面積ar,i(mm)の総和(mm)であり、lj,iは第i層38の床鉄筋38の有効長さ(mm)である。
 例えば、表4に示すように、サンプルNo.1において、床鉄筋の径比Rdrは、2.872mm/mm、軸剛性kは585.8(kN/mm)である。
 図13及び図14において、柱梁接合部を対象とする非特許文献4に基づくと図11に示すような支圧破壊が生じないと判定したサンプルを○印で表す。図13及び図14において、柱梁接合部を対象とする非特許文献4に基づくと図11に示すような支圧破壊が生じると判定したサンプルを、●印で表す。図13及び図14において、非特許文献3に基づくと図8及び図9に示すような掻出し定着破壊が生じると判定したサンプルを、×印で表す。
Here, E r is the Young's modulus (N/mm 2 ) of the reinforcing bar. Σar ,i is the sum (mm 2 ) of the cross-sectional areas ar,i (mm 2 ) of the floor reinforcing bars 38 within the effective width of the i-th layer 38 i , and l j,i is the i-th layer 38 i It is the effective length (mm) of the floor reinforcement 38 .
For example, as shown in Table 4, sample no. 1, the diameter ratio R dr of the floor reinforcement is 2.872 mm/mm, and the axial rigidity k r is 585.8 (kN/mm).
In FIGS. 13 and 14, ◯ marks indicate the samples determined not to cause bearing pressure failure as shown in FIG. In FIGS. 13 and 14,  marks indicate samples determined to cause bearing pressure failure as shown in FIG. In FIGS. 13 and 14, X marks indicate samples judged to cause scrape fixing failure as shown in FIGS.
 図13及び図14から、床鉄筋の径比Rdrが1.57以上の場合、図11に示すような支圧破壊が生じると判定できることが分かる。ところが、図11のような破壊は、側方かぶりとなる領域R4の部分が十分に大きい場合、生じないことを、発明者らは実験により確認した。
 図11の側方割裂破壊は、図10に示すように第1床鉄筋42が引張られて二点鎖線L1で示すように移動することで、第1床鉄筋42の側方かぶりとなる領域R4の部分が柱61の側方(幅方向Y)に向かって引き裂かれて生じる。ところが、側方かぶりとなる領域R4の部分が十分に大きい場合、第1床鉄筋42が領域R4のコンクリートによって拘束されるため、二点鎖線L1で示すような移動が生じにくいことを、実験により知見した。
From FIGS. 13 and 14, it can be seen that when the diameter ratio R dr of the floor reinforcement is 1.57 or more, it can be determined that bearing pressure failure as shown in FIG. 11 occurs. However, the inventors have confirmed by experiments that such destruction as shown in FIG. 11 does not occur when the portion of the region R4 that becomes the side fogging is sufficiently large.
11, the first floor reinforcing bar 42 is pulled as shown in FIG. 10 and moves as indicated by a two-dot chain line L1, resulting in a region R4 that becomes the side cover of the first floor reinforcing bar 42. is torn toward the side of the pillar 61 (in the width direction Y). However, when the portion of the region R4 that becomes the side cover is sufficiently large, the first floor reinforcing bars 42 are restrained by the concrete of the region R4, so that the movement shown by the two-dot chain line L1 is difficult to occur through experiments. I found out.
 すなわち、本発明が対象とする第1壁11と合成梁25の端部とが接合される接合部51の接合構造52、第2壁12と合成梁25の端部とが接合される接合部54の接合構造55においては、床鉄筋の径比Rdrが(14)式を満たすような過密な鉄筋量の場合でも、支圧破壊及び側方割裂破壊が生じない。
 一方で、図13に示すように、壁コンクリート14に定着する合成梁25の床鉄筋38の量を多くするほど、言い換えればRdrを大きくするほど、接合部51及び接合構造52の回転に対して抵抗する鉄筋の剛性は向上し、合成梁25のたわみは抑制される。床鉄筋の径比Rdrが1.570以上の場合、軸剛性kが400kN/mm以上となる。軸剛性kは接合部51の回転剛性と比例する。回転剛性が増大すると、合成梁25のたわみが低減される。
That is, the joint structure 52 of the joint portion 51 where the first wall 11 and the end portion of the composite beam 25 are joined to the object of the present invention, and the joint portion where the second wall 12 and the end portion of the composite beam 25 are joined In the joint structure 55 of 54, bearing pressure failure and lateral splitting failure do not occur even when the amount of reinforcing bars is so dense that the diameter ratio R dr of the floor reinforcing bars satisfies the formula (14).
On the other hand, as shown in FIG. 13 , as the amount of the floor reinforcing bars 38 of the composite beam 25 anchored to the wall concrete 14 is increased, in other words, as the R dr is increased, the rotation of the joint 51 and the joint structure 52 increases. The rigidity of the reinforcing bar that resists is improved, and the deflection of the composite beam 25 is suppressed. When the diameter ratio R dr of the floor reinforcement is 1.570 or more, the axial rigidity k r is 400 kN/mm or more. The axial stiffness k r is proportional to the rotational stiffness of the joint 51 . The increased rotational stiffness reduces the deflection of the composite beam 25 .
 図15に、床鉄筋の軸剛性kと合成梁25のたわみの関係の試算例を示す。本試算例は、第1鉄骨梁26又は第2鉄骨梁27の断面寸法が700x200x9x12(梁せいxフランジ幅xウェブ厚xフランジ厚、単位mm)のH形鋼で、床スラブ28は厚さ130mm、合成梁25の長さは10m、合成梁25の両端の接合部51が同じ回転剛性を有するとの条件に基づく。
 この条件によると、合成梁25の梁中央のたわみδの、両端がピン接合で支持される合成梁25のたわみδpinに対する比率は、軸剛性kが400kN/mmでおおよそδ/δpin=2/3=66.7%まで低減できる。
FIG. 15 shows a trial calculation example of the relationship between the axial stiffness kr of the floor reinforcement and the deflection of the composite beam 25 . In this calculation example, the cross-sectional dimensions of the first steel beam 26 or the second steel beam 27 are 700 x 200 x 9 x 12 (beam length x flange width x web thickness x flange thickness, unit mm), and the floor slab 28 is 130 mm thick. , the length of the composite beam 25 is 10 m, and the joints 51 at both ends of the composite beam 25 have the same rotational rigidity.
According to this condition, the ratio of the deflection δ at the beam center of the composite beam 25 to the deflection δpin of the composite beam 25 whose both ends are supported by pin joints is approximately δ/δpin=2/ It can be reduced to 3=66.7%.
 なお、その他の条件の場合、例えば梁せい1200mm、梁長さ25mの場合、軸剛性kが400kN/mmでおおよそδ/δpin=2/5=40%まで低減できる。梁せい400mm、梁長さ8mの場合、軸剛性kが400kN/mmでおおよそδ/δpin=4/5=80%まで低減できる。これより小さい軸剛性kでは、たわみの低減効果が小さくなり、第1鉄骨梁26又は第2鉄骨梁27に圧延H形鋼を用いる場合は、同一のたわみ量を保ったまま第1鉄骨梁26又は第2鉄骨梁27の断面を軽量化することが難しくなる。
 言い換えると、圧延H形鋼は断面寸法の選択肢が限られるため、軸剛性kが400kN/mmを下回る場合に第1鉄骨梁26または第2鉄骨梁27を軽量化すると、たわみの低減効果を上回る断面の軽量化となってしまい、軽量化によりたわみが大きくなってしまう。
Under other conditions, for example, when the beam height is 1200 mm and the beam length is 25 m, the axial stiffness kr is 400 kN/mm, and can be reduced to approximately δ/δpin=2/5=40%. When the beam height is 400 mm and the beam length is 8 m, the axial rigidity kr is 400 kN/mm, which can be reduced to approximately δ/δ pin = 4/5 = 80%. If the axial rigidity kr is smaller than this, the effect of reducing the deflection becomes small. It becomes difficult to reduce the weight of the cross section of 26 or the second steel beam 27 .
In other words, since rolled H-section steel has limited options for cross-sectional dimensions, if the axial rigidity kr is less than 400 kN/mm, reducing the weight of the first steel beam 26 or the second steel beam 27 will reduce the deflection. The weight of the cross section will be reduced, and the deflection will increase due to the weight reduction.
 以上から、軸剛性kが400kN/mm以上となると、梁せいや梁長さの条件によらず、半剛接合としての効果が高まり、梁のたわみを有効に抑制できる。これにより、第1鉄骨梁26又は第2鉄骨梁27が圧延H形鋼の場合、断面寸法を小さくでき、軽量化によって省材料化、経済設計が可能になる。
 一方で、床鉄筋38の量を多くするほど、図14に示すように、前述の掻出し定着破壊は生じやすくなる。
From the above, when the axial stiffness kr is 400 kN/mm or more, the effect as a semi-rigid joint increases regardless of the conditions of beam thickness and beam length, and beam deflection can be effectively suppressed. As a result, when the first steel beam 26 or the second steel beam 27 is a rolled H-section steel, the cross-sectional dimension can be reduced, and the weight reduction enables material saving and economic design.
On the other hand, as the amount of the floor reinforcing bars 38 is increased, as shown in FIG.
 従って、(14)式を満たすことで接合部51及び接合構造52の剛性を高め、(8)式かつ(9)式を満たすことで掻出し定着破壊を防止し、これらにより接合部51及び接合構造52が破壊しない安全な範囲で最大限に接合部51及び接合構造52の回転抵抗を高め、合成梁25のたわみを抑制することが可能となる。
 なお、図14において、領域R11は、柱梁接合部の場合に支圧破壊、側方割裂破壊及び掻出し定着破壊が生じない領域である。領域R12は、柱梁接合部の場合に支圧破壊及び側方割裂破壊が生じ、壁梁接合部の場合は破壊しない領域である。領域R13は、掻出し定着破壊が生じる領域である。
Therefore, by satisfying the formula (14), the rigidity of the joint 51 and the joint structure 52 is increased, and by satisfying the formulas (8) and (9), the scraping and fixing failure is prevented. It is possible to increase the rotation resistance of the joint portion 51 and the joint structure 52 to the maximum within a safe range where the structure 52 is not destroyed, and suppress the deflection of the composite beam 25 .
In FIG. 14, region R11 is a region in which bearing pressure failure, lateral splitting failure, and scrape fixing failure do not occur in the case of a column-to-beam joint. The region R12 is a region where bearing failure and lateral splitting failure occur in the case of the beam-to-column joint, and where failure does not occur in the case of the wall-to-beam joint. A region R13 is a region where scrape fixing failure occurs.
Figure JPOXMLDOC01-appb-M000014
Figure JPOXMLDOC01-appb-M000014
 図16に、床鉄筋の断面積比RArに対する床鉄筋の軸剛性kの変化を示す。図16では、第1壁11の厚さは、400mmであるとした。
 一般的に、床鉄筋の断面積比RArが大きくなるのに従い、床鉄筋の軸剛性kも大きくなる。床鉄筋の断面積比RArが13.0以上であると、軸剛性kが400kN/mmを超える。従って、前述の通り、半剛接合としての効果が高まり、梁のたわみを有効に抑制できる。
FIG. 16 shows changes in the axial stiffness k r of the floor reinforcing bars with respect to the cross-sectional area ratio R Ar of the floor reinforcing bars. In FIG. 16, the thickness of the first wall 11 is assumed to be 400 mm.
In general, as the cross-sectional area ratio RAr of the floor reinforcement increases, the axial rigidity kr of the floor reinforcement also increases. When the cross-sectional area ratio R Ar of the floor reinforcement is 13.0 or more, the axial rigidity k r exceeds 400 kN/mm. Therefore, as described above, the effect as a semi-rigid joint is increased, and deflection of the beam can be effectively suppressed.
〔4.本実施形態の効果〕
 以上説明したように、本実施形態の接合構造52では、発明者等は、多数のケーススタディを行う検討の結果、RC造の第1壁11と合成梁25の端部とが接合される接合部51の接合構造52において、掻出し定着破壊を抑制できる条件を検討した。その結果、第1壁11が壁コンクリート14を有し、合成梁25が、床コンクリート37及び床鉄筋38を有する床スラブ28と、第2鉄骨梁27と、を有する場合に、以下の条件を見出した。すなわち、鉄筋の断面積比RArが(8)式を満たし、鉄筋の投影定着長さ比(L/d)が(9)式を満たすという条件である。
 従って、断面積比RArが(8)式を満たし投影定着長さ比(L/d)が(9)式を満たすことにより、接合構造52において、掻出し定着破壊、側方割裂破壊、及び局所支圧破壊という3つの破壊形式によるRC造の第1壁11の破壊を抑制することができる。
[4. Effects of the present embodiment]
As described above, in the joint structure 52 of the present embodiment, as a result of many case studies, the inventors have found that the first wall 11 of the RC structure and the end of the composite beam 25 are jointed. In the joint structure 52 of the portion 51, the conditions for suppressing the rake-out fixing failure were examined. As a result, when the first wall 11 has the wall concrete 14 and the composite beam 25 has the floor slab 28 with the floor concrete 37 and the floor reinforcing bars 38 and the second steel beam 27, the following conditions are satisfied: Found it. That is, the condition is that the reinforcing bar cross-sectional area ratio R Ar satisfies the formula (8), and the projected fixing length ratio (L h /d r ) of the reinforcing bar satisfies the formula (9).
Therefore, when the cross-sectional area ratio R Ar satisfies the formula (8) and the projected fixing length ratio (L h /d r ) satisfies the formula (9), scraping fixing failure and lateral splitting failure , and local bearing pressure failure.
 床鉄筋の径比Rdrが、(14)式を満たす。発明者等は、多数のケーススタディを行う検討の結果、第1壁11と合成梁25の端部とが接合される接合部51の接合構造52において、柱梁接合部で生じうる支圧破壊が壁梁接合部では生じない特性を実験により確認し、これを活用することで、接合部の剛性を向上できる条件を検討した。その結果、鉄筋の径比Rdrが(14)式を満たすときに、接合構造52において、3つの破壊形式によるRC造の第1壁11の破壊を抑制しながら接合部51の剛性と耐力を高めることができることを見出した。
 このため、鉄筋の径比Rdrが(14)式を満たすことにより、接合構造52において、合成梁25のたわみを抑制することができる。具体的には、鉄筋の径比Rdrが(14)式を満たすことにより、軸剛性kが400kN/mmを超える。従って、前述の通り、半剛接合としての効果が高まり、合成梁25のたわみを有効に抑制できる。
The diameter ratio R dr of the floor reinforcement satisfies the formula (14). As a result of the examination of many case studies, the inventors found that in the joint structure 52 of the joint 51 where the first wall 11 and the end of the composite beam 25 are joined, the bearing pressure failure that can occur at the column-to-beam joint We confirmed through experiments that a characteristic that does not occur at wall-to-beam joints, and investigated the conditions for improving the rigidity of joints by utilizing this. As a result, when the diameter ratio Rdr of the reinforcing bars satisfies the formula (14), the rigidity and strength of the joint 51 are increased while suppressing the destruction of the first wall 11 of the RC structure by three types of failure in the joint structure 52. I have found that it can be improved.
Therefore, when the diameter ratio R dr of the reinforcing bars satisfies the expression (14), bending of the composite beam 25 can be suppressed in the joint structure 52 . Specifically, the axial stiffness kr exceeds 400 kN/mm when the reinforcing bar diameter ratio Rdr satisfies the formula (14). Therefore, as described above, the effect as a semi-rigid joint is increased, and the deflection of the composite beam 25 can be effectively suppressed.
 複数の床鉄筋38は、床スラブ28の接合部51の有効幅以上の領域にわたって壁コンクリート14に定着されている。これにより、(14)式で計算される接合部51、接合構造52の床鉄筋38の剛性が大きくでき、接合部の回転抵抗が大きくなるため合成梁25のたわみが抑制される。第1壁11は、一般的なRC造の柱に比べて幅方向Yに有効幅以上に長くなる。このため、接合構造52において、接合部51の剛性と耐力に寄与する有効幅内の最外縁まで複数の床鉄筋38を壁コンクリート14に定着しながら、RC造の柱との接合構造52で生じる可能性がある破壊、すなわち壁コンクリート14における複数の床鉄筋38の側方コンクリートが幅方向Yの外側に向かって割れるのを、抑制することができる。 A plurality of floor reinforcing bars 38 are fixed to the wall concrete 14 over an area equal to or larger than the effective width of the joint 51 of the floor slab 28 . As a result, the rigidity of the floor reinforcing bars 38 of the joints 51 and the joint structure 52 calculated by the equation (14) can be increased, and the rotation resistance of the joints is increased, so the bending of the composite beam 25 is suppressed. The first wall 11 is longer than the effective width in the width direction Y compared to a general RC column. For this reason, in the joint structure 52, while fixing a plurality of floor reinforcing bars 38 to the wall concrete 14 up to the outermost edge within the effective width that contributes to the rigidity and strength of the joint 51, A possible fracture, ie, cracking of the lateral concrete of the plurality of floor reinforcing bars 38 in the wall concrete 14 toward the outside in the width direction Y can be suppressed.
 折れ部42bは、鉄筋本体42aにおける、合成梁25に対する第1壁11側の端部から下方に向かって延びている。このため、例えば、合成梁25に下方に向かう荷重が作用したときに、鉄筋本体42aに作用する引張力の反力が折れ部42bの入隅部から圧縮力として壁コンクリート14に作用する。この反力は合成梁25の第2フランジ32から壁コンクリート14に作用する圧縮力と釣り合うことで、壁コンクリート14の内力がより安定的に平衡を保つことができる。 The bent portion 42b extends downward from the end of the reinforcing bar main body 42a on the side of the first wall 11 with respect to the composite beam 25 . Therefore, for example, when a downward load acts on the composite beam 25, the reaction force of the tensile force acting on the reinforcing bar main body 42a acts on the wall concrete 14 as a compressive force from the inside corner of the bent portion 42b. This reaction force is balanced with the compressive force acting on the wall concrete 14 from the second flange 32 of the composite beam 25, so that the internal force of the wall concrete 14 can be more stably balanced.
 シアプレート18のボルト孔18aは、長手方向Xに延びた長孔形状である。鉛直荷重を支持する合成梁25の端部の第2フランジ32が、コンタクトプレート47や溶接接合等で壁コンクリート14に圧縮力を伝達できるよう接合されている場合、合成梁25が曲げモーメントを受けると、鉄骨梁の端部は、その下端を中心に回転する。このため、この回転中心となる下端から離間するボルトほど、長手方向の移動量が大きくなり、壁コンクリートに与える支圧(圧縮力)が大きくなる。 The bolt hole 18a of the shear plate 18 has an elongated shape extending in the longitudinal direction X. When the second flange 32 at the end of the composite beam 25 that supports the vertical load is joined to transmit the compressive force to the wall concrete 14 by means of contact plates 47, welded joints or the like, the composite beam 25 is subjected to a bending moment. , the end of the steel beam rotates around its lower end. Therefore, the farther the bolt is from the lower end, which is the center of rotation, the larger the amount of movement in the longitudinal direction, and the greater the bearing pressure (compressive force) applied to the wall concrete.
 この開示では、ボルト孔18aが長手方向Xに延びた長孔形状であるため、ボルト孔18aとボルト48の軸部48aとのクリアランスが大きく、合成梁25が曲げモーメントを受けてシアプレート18に対して第2鉄骨梁27が相対的に移動しても、ボルト孔18a内でボルト48が長手方向Xに移動する。
 従って、壁コンクリート14に対してボルト48が移動しても、ボルト孔18aとボルト48の軸部48aが支圧状態にならず、ボルト48からシアプレート18に支圧力が作用しないため、シアプレート18のアンカー鉄筋や頭付きスタッド17の引き抜きを抑制し、壁コンクリート14の破壊を防止することができる。
In this disclosure, since the bolt hole 18a has an elongated hole shape extending in the longitudinal direction X, the clearance between the bolt hole 18a and the shaft portion 48a of the bolt 48 is large, and the composite beam 25 receives a bending moment and the shear plate 18 On the other hand, even if the second steel beam 27 moves relatively, the bolt 48 moves in the longitudinal direction X within the bolt hole 18a.
Therefore, even if the bolt 48 moves with respect to the wall concrete 14, the bolt hole 18a and the shaft portion 48a of the bolt 48 are not in a bearing state, and no bearing force acts on the shear plate 18 from the bolt 48. Pulling out of the anchor reinforcing bars 18 and the headed studs 17 can be suppressed, and destruction of the wall concrete 14 can be prevented.
 なお、複数のボルト孔18aにおける、第2鉄骨梁27の高さ方向(第2鉄骨梁27の梁せい方向)の平均位置は、第2鉄骨梁27の前記高さ方向の中心よりも下方に位置してもよい。言い換えれば、複数のボルト孔18aの重心は、第2鉄骨梁27の軸心よりも下方に位置してもよい。
 このように構成することにより、複数のボルト孔18aの前記高さ方向の平均位置が第2鉄骨梁27の前記高さ方向の中心に一致している場合に比べて、合成梁25が曲げモーメントを受けてシアプレート18に対して第2鉄骨梁27が相対的に移動したときに、壁コンクリート14に対してボルト48が移動し難くなる。
 従って、壁コンクリート14に対してボルト48が移動する量が抑えられ、ボルト48が壁コンクリート14に与える支圧を抑制することができる。
Note that the average position of the second steel beam 27 in the height direction (the beam vertical direction of the second steel beam 27) in the plurality of bolt holes 18a is below the center of the second steel beam 27 in the height direction. may be located. In other words, the center of gravity of the multiple bolt holes 18 a may be located below the axis of the second steel beam 27 .
With this configuration, compared to the case where the average position of the plurality of bolt holes 18a in the height direction coincides with the center of the second steel frame beam 27 in the height direction, the composite beam 25 can reduce the bending moment. When the second steel frame beam 27 is moved relative to the shear plate 18 by receiving the force, the bolt 48 becomes difficult to move with respect to the wall concrete 14 .
Therefore, the amount of movement of the bolts 48 with respect to the wall concrete 14 is suppressed, and the bearing pressure applied to the wall concrete 14 by the bolts 48 can be suppressed.
 以上、本発明の一実施形態について図面を参照して詳述したが、具体的な構成はこの実施形態に限られるものではなく、本発明の要旨を逸脱しない範囲の構成の変更、組み合わせ、削除等も含まれる。
 例えば、前記実施形態では、床鉄筋の径比Rdrは(14)式を満たさなくてもよい。シアプレート18のボルト孔18aは、シアプレート18の厚さ方向に見たときに円形状であってもよい。床鉄筋38(42,43)及び連結鉄筋39は丸鋼でもよく、異形鉄筋でもよい。
As described above, one embodiment of the present invention has been described in detail with reference to the drawings, but the specific configuration is not limited to this embodiment, and the configuration can be changed, combined, or deleted without departing from the scope of the present invention. etc. are also included.
For example, in the above embodiment, the diameter ratio R dr of the floor reinforcing bars does not have to satisfy the expression (14). The bolt holes 18 a of the shear plate 18 may be circular when viewed in the thickness direction of the shear plate 18 . The floor reinforcing bars 38 (42, 43) and the connecting reinforcing bars 39 may be round bars or deformed bars.
 接合構造は、RC造の壁と合成梁の端部とが接合される接合部の接合構造において、RC造の壁の定着破壊を抑制できる。よって、産業上の利用可能性は大きい。 The joint structure can suppress anchor failure of the RC structure wall in the joint structure of the joint where the RC wall and the end of the composite beam are joined. Therefore, industrial applicability is great.
 11 第1壁(壁)
 12 第2壁(壁)
 14 壁コンクリート
 18 シアプレート
 18a ボルト孔
 20 柱
 25 合成梁
 26 第1鉄骨梁(鉄骨梁)
 27 第2鉄骨梁(鉄骨梁)
 28 床スラブ
 37 床コンクリート
 38 床鉄筋(鉄筋)
 38,38 層
 46 頭付きスタッド(シアコネクタ)
 48 ボルト
 42,65,70,75 第1床鉄筋(鉄筋)
 42a,66 鉄筋本体
 42b,42c 折れ部(拡径部)
 43 第2床鉄筋(鉄筋)
 51,54 接合部
 52,55 接合構造
 67,71 拡径部
 X  長手方向
11 First wall (wall)
12 second wall (wall)
14 Wall concrete 18 Shear plate 18a Bolt hole 20 Column 25 Composite beam 26 First steel beam (steel beam)
27 Second steel beam (steel beam)
28 floor slab 37 floor concrete 38 floor reinforcing bar (reinforcing bar)
38 1 , 38 2 layers 46 Headed stud (shear connector)
48 bolt 42, 65, 70, 75 1st floor reinforcing bar (reinforcing bar)
42a, 66 Reinforcing bar body 42b, 42c Bent portion (expanded diameter portion)
43 Second floor reinforcing bar (reinforcing bar)
51, 54 joint portion 52, 55 joint structure 67, 71 enlarged diameter portion X longitudinal direction

Claims (6)

  1.  RC造の壁と合成梁の端部とが接合される接合部の接合構造であって、
     前記壁は、壁コンクリートを有し、
     前記合成梁は、床スラブと、前記床スラブを下方から支持する鉄骨梁と、を有し、
     前記床スラブは、床コンクリートと、前記床コンクリート及び前記壁コンクリートに埋設される複数の鉄筋と、を有し、
     前記複数の鉄筋のそれぞれは、
      前記床コンクリート及び前記壁コンクリート内で前記鉄骨梁の長手方向に延びる鉄筋本体と、
      前記壁コンクリートに埋設され、自身における前記鉄筋本体の径方向の長さが、前記鉄筋本体の径よりも長い拡径部と、を有し、
     前記鉄骨梁は、シアコネクタによって前記長手方向に離散的又は連続的に前記床スラブに接合され、
     前記複数の鉄筋の断面積比RArが(1)式を満たし、
     投影定着長さ比(L/d)が(2)式を満たす、接合構造。
     ここで、iは前記床コンクリート内で配筋される前記複数の鉄筋の層の数、ar,iは上方からi番目の前記層である第i層における、前記複数の鉄筋の一本当たりの前記複数の鉄筋の前記長手方向に直交する断面積(mm)、pは前記第i層の前記複数の鉄筋同士の前記床スラブの幅方向におけるピッチ(mm)、σry,iは前記第i層の前記複数の鉄筋の降伏応力(N/mm)、σは前記壁コンクリートの圧縮強度(N/mm)、Lh,iは前記第i層において前記複数の鉄筋のうち前記壁コンクリートに定着される部分の前記長手方向の長さである投影定着長さ(mm)、dr,iは前記第i層の前記複数の鉄筋の一本当たりの径(mm)である。
    Figure JPOXMLDOC01-appb-M000001
    A joint structure of a joint where an RC wall and an end of a composite beam are joined,
    the wall comprises wall concrete;
    The composite beam has a floor slab and a steel beam supporting the floor slab from below,
    The floor slab has floor concrete and a plurality of reinforcing bars embedded in the floor concrete and the wall concrete,
    Each of the plurality of reinforcing bars includes:
    a reinforcing bar body extending in the longitudinal direction of the steel beam in the floor concrete and the wall concrete;
    an enlarged diameter portion embedded in the wall concrete and having a length in the radial direction of the reinforcing bar body longer than the diameter of the reinforcing bar body;
    The steel beams are discretely or continuously joined to the floor slab in the longitudinal direction by shear connectors,
    The cross-sectional area ratio R Ar of the plurality of reinforcing bars satisfies the formula (1),
    A joint structure in which the projected fixing length ratio (L h /d r ) satisfies the formula (2).
    Here, i is the number of layers of the plurality of reinforcing bars arranged in the floor concrete, and a r, i is the number of the reinforcing bars per one of the plurality of reinforcing bars in the i-th layer, which is the i-th layer from above. cross-sectional area (mm 2 ) of the plurality of reinforcing bars perpendicular to the longitudinal direction, p i is the pitch (mm) between the plurality of reinforcing bars of the i-th layer in the width direction of the floor slab, σ ry,i is Yield stress (N/mm 2 ) of the plurality of reinforcing bars of the i-th layer, σ c is the compressive strength (N/mm 2 ) of the wall concrete, L h,i is the strength of the plurality of reinforcing bars in the i-th layer Projected fixing length (mm), which is the length of the portion fixed to the wall concrete in the longitudinal direction, dr,i is the diameter (mm) per one of the plurality of reinforcing bars of the i-th layer. be.
    Figure JPOXMLDOC01-appb-M000001
  2.  前記接合部において、前記壁コンクリートに定着される前記複数の鉄筋の径比Rdrが(3)式を満たす、請求項1に記載の接合構造。
     ここで、前記複数の鉄筋の径比Rdrは、前記幅方向の単位長さ当たりの前記複数の鉄筋の径(-)である。
    Figure JPOXMLDOC01-appb-M000002
    The joint structure according to claim 1, wherein the diameter ratio R dr of the plurality of reinforcing bars fixed to the wall concrete at the joint satisfies the formula (3).
    Here, the diameter ratio R dr of the plurality of reinforcing bars is the diameter (−) of the plurality of reinforcing bars per unit length in the width direction.
    Figure JPOXMLDOC01-appb-M000002
  3.  前記複数の鉄筋が、前記床スラブの前記接合部における有効幅以上の領域にわたって前記壁コンクリートに定着されている、請求項1又は2に記載の接合構造。  The joint structure according to claim 1 or 2, wherein the plurality of reinforcing bars are fixed to the wall concrete over an area equal to or larger than the effective width of the joint of the floor slab.
  4.  前記拡径部は、前記鉄筋本体における、前記合成梁に対する前記壁側の端部から下方に向かって延びている、請求項1又は2に記載の接合構造。 The joint structure according to claim 1 or 2, wherein the enlarged diameter portion extends downward from an end portion of the reinforcing bar main body on the wall side with respect to the composite beam.
  5.  前記壁に接合されたシアプレートと、
     H形鋼である前記鉄骨梁のウェブ及び前記シアプレートをそれぞれ接合するボルトと、
     を備え、
     前記ウェブ及び前記シアプレートの少なくとも一方に形成され、前記ボルトが通されるボルト孔は、前記長手方向に延びた長孔形状である、請求項1又は2に記載の接合構造。
    a shear plate joined to the wall;
    bolts respectively joining the steel beam web and the shear plate, which are H-beams;
    with
    3. The joining structure according to claim 1, wherein a bolt hole formed in at least one of said web and said shear plate and through which said bolt is passed has an elongated hole shape extending in said longitudinal direction.
  6.  前記壁に接合されたシアプレートと、
     H形鋼である前記鉄骨梁のウェブ及び前記シアプレートをそれぞれ接合するボルトと、
     を備え、
     前記ウェブ及び前記シアプレートの少なくとも一方には、前記ボルトが通されるボルト孔が形成され、
     前記ボルト孔における前記鉄骨梁の高さ方向における平均位置は、前記鉄骨梁における前記高さ方向の中心よりも下方に位置する、請求項1又は2に記載の接合構造。
    a shear plate joined to the wall;
    bolts respectively joining the steel beam web and the shear plate, which are H-beams;
    with
    At least one of the web and the shear plate is formed with a bolt hole through which the bolt is passed,
    The joint structure according to claim 1 or 2, wherein an average position of the bolt holes in the height direction of the steel beam is located below a center of the steel beam in the height direction.
PCT/JP2023/007316 2022-02-28 2023-02-28 Joint structure WO2023163213A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2023534909A JP7335540B1 (en) 2022-02-28 2023-02-28 junction structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2022029521 2022-02-28
JP2022-029521 2022-02-28

Publications (1)

Publication Number Publication Date
WO2023163213A1 true WO2023163213A1 (en) 2023-08-31

Family

ID=87766286

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2023/007316 WO2023163213A1 (en) 2022-02-28 2023-02-28 Joint structure

Country Status (1)

Country Link
WO (1) WO2023163213A1 (en)

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523393A (en) * 2002-04-18 2005-08-04 キル ハン、ボン Construction method of high-rise building structure with steel frame and reinforced concrete structure
JP2020079479A (en) * 2018-11-12 2020-05-28 日本製鉄株式会社 Junction structure

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005523393A (en) * 2002-04-18 2005-08-04 キル ハン、ボン Construction method of high-rise building structure with steel frame and reinforced concrete structure
JP2020079479A (en) * 2018-11-12 2020-05-28 日本製鉄株式会社 Junction structure

Similar Documents

Publication Publication Date Title
JP4261607B2 (en) Moment resistant structure, support member, and construction method
KR101767677B1 (en) Compisite column structure for steel and concrete
JP4649360B2 (en) Seismic joint structure and construction method thereof
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
CN109797871B (en) Double-steel-plate composite shear wall connected by supporting angle steel and composite floor slab connecting node
JP2000144905A (en) Mixed structural beam
JP6227452B2 (en) Wall pillar structure
Yu et al. Seismic behavior of bottom-flange-bolted type through-diaphragm connection considering the slab effect
JP7335540B1 (en) junction structure
WO2023163213A1 (en) Joint structure
JP5532852B2 (en) Steel pipe concrete pillar
JP4238991B2 (en) Seismic isolation structure on the middle floor of the building
JP7234084B2 (en) Steel beam with floor slab and its reinforcement method
Schneider et al. The design and construction of concrete-filled steel tube column frames
JP5558156B2 (en) H-shaped steel beam
JP2010053556A (en) Reinforcing structure of steel column-beam joint portion
JP3232630U (en) Joining structure of mountain retaining material
JP5769458B2 (en) Reinforcement structure of frame
JP3516927B2 (en) Seismic reinforcement frame
JP7364510B2 (en) floor structure
WO2023190350A1 (en) Joining structure
JP7335143B2 (en) Steel beams with floor slabs with steps
JP2001295365A (en) Steel framed structure
WO2010103812A1 (en) Seismic resistant steel structure
Tran Calculation and study of variable connections for precast concrete wall against shear forces in different load categories and consequence classes

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2023534909

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 23760211

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 11202401742R

Country of ref document: SG