WO2010103812A1 - Seismic resistant steel structure - Google Patents

Seismic resistant steel structure Download PDF

Info

Publication number
WO2010103812A1
WO2010103812A1 PCT/JP2010/001666 JP2010001666W WO2010103812A1 WO 2010103812 A1 WO2010103812 A1 WO 2010103812A1 JP 2010001666 W JP2010001666 W JP 2010001666W WO 2010103812 A1 WO2010103812 A1 WO 2010103812A1
Authority
WO
WIPO (PCT)
Prior art keywords
column
ground
steel
underground
building
Prior art date
Application number
PCT/JP2010/001666
Other languages
French (fr)
Japanese (ja)
Inventor
鈴木孝彦
鈴木悠介
竹内一郎
岡田忠義
Original Assignee
新日本製鐵株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日本製鐵株式会社 filed Critical 新日本製鐵株式会社
Priority to JP2010523233A priority Critical patent/JPWO2010103812A1/en
Publication of WO2010103812A1 publication Critical patent/WO2010103812A1/en

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings

Definitions

  • the present invention relates to a seismic steel frame structure such as a multi-layer building having a subway frame structure.
  • FIG. 11 shows a multi-layered building 104 with a ramen structure having a subway bone structure 115.
  • FIG. 14 shows a multi-layered building 104 with a ramen structure having a subway bone structure 115.
  • FIG. 14 shows bending moments M ⁇ b> 1 and M ⁇ b> 2 that are markedly smaller than the ground column base part 106 act on the columns 101 and the beams 102 provided on the second floor or higher.
  • FIG. 13 is a schematic view for explaining a general subway bone structure 115. As shown in FIG.
  • the subway bone structure 115 includes an SRC or RC underground outer peripheral wall 105 provided in the ground outside the side pillar 101 a or the corner pillar 101 b on the ground, and a first-floor ceiling slab 112.
  • the outer beam 102a to support and the first floor beam 102 are provided.
  • One end of the outer beam 102a is connected to the underground outer peripheral wall 105, and the other end of the outer beam 102a is connected to the column base of the ground side column 101a or the ground corner column 101b.
  • the first floor beam 102 is between the legs of the ground side pillar 101a, between the legs of the ground side pillar 101a and the legs of the corner pillar 101b, or between the legs of the ground side pillar 101a and the middle pillar 101c. Connect between the legs.
  • the subway bone structure 115 is constructed so as to have high rigidity, and, for example, SRC construction is adopted.
  • the seismic design of architectural frames is (1) to exhibit the seismic function by elastic deformation of the frame during small and medium earthquakes, and (2)
  • the basic idea is to exert an earthquake-resistant function by plastic deformation. More specifically, in (2), in anticipation of energy absorption performance by plastic deformation of the frame, plastic deformation is allowed to exhibit an earthquake resistance function. That is, the design strength is reduced by the plastic deformation performance.
  • the collapse mode of the frame be an overall collapse mode suitable for energy absorption.
  • Non-Patent Document 1 it is recommended to set the column beam strength ratio to 1.5 or more at each node in order to realize the overall collapse mode.
  • the column beam strength ratio is a numerical value used as an index for judging the collapse mechanism, and is a value obtained by dividing the column strength by the beam strength.
  • Collapse modes are broadly divided into partial collapse modes in which all the columns of a layer are yielded in advance and one or more specific layers are collapsed, and overall collapse modes in which beams are yielded in advance and plastic hinges are dispersed in all layers.
  • a technique in which diagonal members using low-yield point steel are provided in a portion surrounded by a beam on the upper floor, a beam on the lower floor, and a column connected thereto.
  • This diagonal material connects the upper-level beam (or the corner portion where the upper-level column beam intersects) and the corner portion where the lower-level beam beam intersects.
  • the column and the beam can be kept within the range of elastic deformation. It is also known to design a framework so that seismic energy input to a building that could not be absorbed by the diagonal material is absorbed by plastically deforming the beam member before the column.
  • a steel plate having a tensile strength of 200 N / mm grade 2 to 300 N / mm grade 2 (each design strength is 80 N / mm grade 2 to 205 N / mm grade 2 ) is used for the diagonal member.
  • a steel plate having a tensile strength of 400 N / mm class 2 (400 to 590 N / mm class 2 (each design strength is 325 N / mm class 2 to 440 N / mm class 2 )) is used for the beam member or column member.
  • a part of the upper and lower flanges in the axial direction of the beam is joined with a cross-sectional area smaller than the other parts, or a steel material having a low yield point is interposed at the joint between the column side flange and the beam.
  • the column member a steel material having the same tensile strength as the steel plate for the beam member is used.
  • a vertical compressive load is greatly applied to the pillar on the lower floor. Therefore, the higher the building, the larger the cross-sectional area of the column on the lower floor, such as the box cross-section, and the greater the steel weight. In this case, high skill and quality control are required for welding.
  • a ramen structure composed of a square steel pipe column and an H-shaped cross-section beam is adopted in many steel-framed buildings.
  • the rectangular steel pipe column is often manufactured by assembling thick plates by welding.
  • a steel material having higher design strength and toughness brittle fracture resistance
  • a steel material having a high design strength is used to increase the tensile strength by increasing the amount of hardening strengthening elements such as carbon, the weldability of the steel material deteriorates. This increases the frequency of hardening of the weld heat affected zone and weld cracks.
  • the column In a steel structure building, the column is used in the elastic range, and the beam is designed to yield before the column, thereby preventing damage to the column during a large earthquake and preventing collapse of the building. It is also known to do so (see, for example, Patent Documents 2 to 5).
  • the column When high yield point steel is used for a column to reduce construction costs, the column is likely to break early due to an increase in yield ratio and a decrease in elongation. Therefore, an earthquake-resistant steel structure that prevents early breakage of the column is desired.
  • the ground column base With the exception of the ground column base and the upper part of the underground column, by securing the column beam strength ratio above a certain value, the beam yields ahead of the column and the column stays within the elastic range to prevent the column from breaking. it can.
  • the ground column base is rigidly joined to the underground structure portion, and therefore a reverse shear moment M3 is generated when a horizontal force is applied to the building. For this reason, the outer beam (first floor beam) connected to the ground column base cannot be yielded in advance, and it is difficult to keep the ground column base within the range of elastic deformation.
  • An object of this invention is to provide the earthquake-resistant steel structure which can eliminate the said subject.
  • a first aspect of the present invention is a subway skeleton structure for supporting a building having a ground column, an underground wall; an underground column provided below a column base of the ground column; and the column base And an outer beam connecting the basement wall and a lower yield point than the column base.
  • the outer beam may include a damper portion having a lower yield point than the outer beam.
  • the damper portion may be a steel material joined in series in the axial direction of the outer beam.
  • the damper portion may be a steel plate interposed between the outer beam and the ground column.
  • the yield strength of the above-mentioned ground column and the above-mentioned underground column may be at least 400 N / mm 2 .
  • the column base portion of the ground column and the underground column may be joined by a pin joint structure. .
  • the outer beam yields before the column base of the ground column, plastic deformation of the column base of the ground column can be prevented. For this reason, for example, when a horizontal force is applied to the ground steel structure due to an earthquake or the like, the bending moment M3 generated in the column base portion of the ground column can be absorbed by the plastic deformation of the outer beam. Therefore, even if a steel material (high-tensile steel) with a high yield ratio is used as the material for the above ground column and underground column, the column can be used within the elastic range. As a result, the column cross-sectional area can be reduced, and the steel weight of the column can be reduced. Therefore, a building can be constructed at a lower cost.
  • a steel material high-tensile steel
  • the outer beam can be moved in the horizontal direction because the damper portion expands and contracts when a horizontal force is applied to the ground steel structure due to, for example, an earthquake. Moreover, the bending moment M3 generated in the column base portion of the ground column can be absorbed by the plastic deformation of the damper portion. Furthermore, when an external force is received due to an earthquake or the like in which the damper portion is plastically deformed and the outer beam is not plastically deformed, it can be repaired by replacing only the damper portion.
  • the steel plate has a high yield point steel of 400 N / mm 2 or more, and the thickness of the column material is reduced.
  • the weight of the pillar can be reduced.
  • the leg portion of the ground pillar can be rotated around its lower end portion. Therefore, it is possible to transmit the bending moment acting on the column base portion of the ground column during an earthquake or the like to the outer beam. Further, by allowing the outer beam to yield before the column base, the deformation of the ground column base can be kept within the range of elastic deformation. Therefore, plastic deformation of the column base portion of the ground column can be prevented.
  • FIG. 8 is a cross-sectional view taken along the line AA of FIG. It is a figure which shows the bending moment which acts on each part of a steel structure when a horizontal force acts on the building by an earthquake etc. It is an enlarged front view which shows the modification of the pin junction structure in the 2nd Embodiment of this invention.
  • FIG. 10B is a sectional view taken along line BB in FIG. 10A. It is a front view which shows the multilayer building which has the conventional underground structure. It is sectional drawing of the 1st floor part of the building. It is an expanded sectional view of the pillar part of the building. It is a top view which shows the connection structure of the 1st floor column base part and outer peripheral wall of the building. It is a figure which shows the bending moment which acts on each part of a steel structure when a horizontal force acts on the building by an earthquake etc.
  • FIG. 1 is a front view showing an earthquake-resistant steel frame structure of a multilayer building 4 having a subway frame structure 15.
  • FIG. 2A is a cross-sectional view of the multi-layer building 4 cut horizontally in the vicinity of the first floor pillar.
  • FIG. 2B is an enlarged cross-sectional view of the column portion of FIG. 1A.
  • FIG. 3 is a plan view showing an arrangement state of the damper 3 in FIG.
  • FIG. 4 is a front view showing bending moments acting on each part of the steel structure when a horizontal seismic force acts on the earthquake-resistant steel structure of the multi-layer building 4 during an earthquake.
  • the earthquake-resistant steel structure according to the present embodiment is used in the multi-storey building 4 having the ground steel structure and the subway structure 15.
  • the subway frame structure 15 is designed to be wider than the ground steel structure.
  • an earthquake-resistant steel structure is formed by the plurality of pillars 1 (side pillars 1 a, corner pillars 1 b, and middle pillars 1 c) and the plurality of beams 2.
  • an underground pillar 1 d is provided under the ground pillar 1, an underground pillar 1 d is provided.
  • the side pillar 1a, the corner pillar 1b, and the middle pillar 1c are provided at predetermined intervals. Side columns 1a and corner columns 1b, side columns 1a and middle columns 1c, and two side columns 1a are connected by beams 2.
  • the column 1 is a rectangular steel tube column, box-shaped cross-sectional column, circular steel tube column, H-shaped cross-sectional column, or cross-H cross-sectional column (which has a T-shaped cross section on the H-shaped cross-sectional column web). It may be constituted by a flanged cross-shaped cross-section column in which the legs of the steel material are fixed by welding.
  • a diaphragm (an inner diaphragm, a through diaphragm, or an outer diaphragm) is provided at the beam joint portion of the column (not shown).
  • the flange and web of the beam 2 are welded to this diaphragm.
  • the diaphragm and the beam 2 may be joined via a splice plate (not shown). When the diaphragm and the column are welded, it is preferable to join them by complete penetration welding of a reshaped groove.
  • the column 1 is preferably a square steel pipe by cold forming with high toughness.
  • the subway skeleton structure 15 in the present embodiment includes an underground outer peripheral wall 5 formed in a closed ring shape by SRC or RC in the ground outside the side columns 1a and corner columns 1b on the ground.
  • One end of an outer beam 2a that integrally supports the underground first floor ceiling slab 12 is connected to the underground outer peripheral wall 5.
  • the other end of the outer beam 2a is connected to a column base 6 of a side column 1a on the ground or a corner column 1b on the ground.
  • Between the column base 6 of the ground side column 1a, between the column base 6 of the ground side column 1a and the column base 6 of the corner column 1b, or the column base 6 of the ground side column 1a and the column base 6 of the middle column 1c. are connected by a first-floor beam 2.
  • a damper 3 is provided on the outer beam 2a.
  • the outer beam 2 a is configured by joining the damper 3.
  • the damper 3 is joined to the end of the outer beam 2a. You may comprise the damper 3 with the steel materials which have a yield point lower than the yield point of the outer beam 2a. Thereby, even if the cross-sectional shape of the damper 3 and the cross-sectional shape of the outer beam 2a are made substantially the same and both are joined in series, the role as the damper 3 can be achieved.
  • an attachment portion may be provided on the damper 3 side, and the attachment portion on the pillar 1 or the underground outer peripheral wall portion 5 side may be joined by welding or bolts. Since the damper 3 is a portion that is plastically deformed by a compressive force or tensile force in the beam axis direction, the position of the damper 3 in the beam axis direction may be any position in principle. As shown in FIG. 3, it is simpler and more economical to provide the underground outer peripheral wall.
  • the damper 3 in the outer beam 2a, it is possible to introduce a portion that is more easily plastically deformed than the outer beam main body portion into the outer beam 2a.
  • the damper 3 functions as a part of the outer beam 2a at all times, during a small earthquake, during a strong wind, etc., and when it receives a compressive force in the axial direction of the outer beam 2a during a large earthquake, the damper 3 does not buckle. It is plastically deformed by shrinking so that it does not occur, or plastically deformed by stretching when it receives a tensile force in the axial direction of the outer beam 2a.
  • the joints between the column bases 6 of all the columns on the first floor (side columns 1a, corner columns 1b, and middle column 1c) and the upper portion of the underground column 1d and the first-level beam (outer beam 2a and other beams) 2 The joint part can be moved in the horizontal direction during an earthquake or the like.
  • one damper 3 in the left-right direction in the drawing receives a compressive force and plastically deforms
  • the other damper 3 receives a tensile force and plastically deforms
  • the length of the outer beam 2a changes.
  • the damper 3 As the position of the damper 3 incorporated in the outer beam 2a, it is preferable to arrange the damper 3 on the end portion side of the outer beam 2a on the underground outer peripheral side.
  • the material for the damper 3 for example, the low yield point steel used as the damping damper is used in order to cause plastic deformation and yield before the portion other than the damper portion of the outer beam 2 a. It is preferable.
  • the cross section perpendicular to the beam axis direction may be set smaller by design than the beam body side so as to be easily plastically deformed.
  • the lower part (column base) of the ground pillar 1 is movable in the horizontal direction, as shown in FIG. It is possible to obtain a bending moment distribution similar to that of the beam-column joint of the second or higher floor without any shearing moment acting. And by securing the appropriate column beam strength ratio for the connection between the column base of the ground column 1 and the upper part of the underground column 1d and the beam 2 connecting the first floor outer beam 2a or the ground column base.
  • the first-story beam 2 or the first-story outer beam 2a can be yielded prior to the ground column base 6 to prevent plastic deformation of the ground column base 6.
  • damper steel ⁇ beam steel ⁇ column steel For example, a steel plate having a tensile strength of 200 N / mm grade 2 to 300 N / mm grade 2 (design strength 80 N / mm grade 2 to 205 N / mm grade 2 ) is used for the damper 3, and the tensile strength is applied to the beam member or column member. Steel sheets of 400 N / mm class 2 to 590 N / mm class 2 (design strengths of 325 N / mm class 2 to 440 N / mm class 2 ) are used.
  • a part of the axial direction (upper and lower flanges) of the beam is made smaller in cross section than the other parts, or a steel member having a low yield point is interposed at the junction between the column side flange and the beam.
  • a portion that is easily plastically deformed is provided.
  • the damper 3 part of the low yield point steel which is a part of the outer beam 2a can be plastically deformed in the beam axis direction.
  • the length of the beam in the axial direction can be expanded and contracted, and the one end side of the outer beam 2a and the joint portion of the first floor beam 2 together with the joint portion of the column base portion of the ground column 1 and the underground column 1d. Can be moved in the horizontal direction.
  • first-floor beams 2 outer side beams arranged between the side columns or between the side columns and the corner columns and other inner beams
  • first-floor outer beams 2a are also illustrated. Although omitted, a portion to be plastically deformed may be added.
  • tensile strength of 490 N / mm grade 2 to 590 N / mm grade 2 or higher, 780 N / mm grade 2 tensile strength (design strength (yield strength), 325 N / mm grade 2 to 440 N / mm, respectively) 2 grade to 700 N / mm grade 2 ) can be used within the range in which the column is elastically deformed, but in the present invention, a steel material having a yield strength of at least 400 N / mm 2 is used. It is good to do.
  • column members When adopting the technical idea to be used within the range of elastic deformation of columns, column members, especially side columns and corner columns, are pulled out when seismic energy such as horizontal force is input to the building at the time of earthquake The tensile force or the compressive force of indentation acts equally. However, the corner columns are further burdened by the pulling force and pushing force. For this reason, it is desired to increase the proof stress (or strength) of the corner column rather than the side column.
  • the column beam strength ratio at the side column it is preferable that the column beam strength ratio at the side column is 1.5 or more and the column beam strength ratio at the corner column is 1.7 or more.
  • the hardening strengthening element related to the carbon equivalent or the like is increased in order to improve the tensile strength of the side column or the corner column, the weldability of the steel material is lowered.
  • different treatments are required from the initial stage of the steel material production, which is not economical. Because of these issues, in the case of a technology based on an elastic design that is used in the elastic range without plastically deforming the column, the yield strength can be reduced by heat treatment such as increasing the cooling rate without changing the composition of the column material. The one made higher (increasing the yield ratio) can be an inexpensive column material.
  • the middle column, the side column, and the corner column have the same steel composition and different performance. It is more reasonable to use steel because it can reduce construction costs. In this way, when high yield point steel is used for the column to reduce construction costs, the increase in yield ratio and decrease in elongation at the high yield point may cause premature failure of the column.
  • an earthquake-resistant steel structure is required, a rational earthquake-resistant steel structure can be obtained by adopting the structure of the first embodiment or the second embodiment described later.
  • the ground pillar of the multi-layer building 4 inevitably increases the load load, and thus its cross-sectional area increases.
  • the column cross-sectional area (plate thickness) is small (thin).
  • an inexpensive column capable of reducing the steel weight without degrading the weldability of the column material can be used to provide a rational earthquake-resistant steel structure.
  • the ground column base 6 can be moved horizontally by providing the outer beam 2a with the damper 3 having the low yield point steel.
  • the damper 3 may be in a form other than the above.
  • a damper in a form that allows the outer beam 2a to expand and contract.
  • illustration is abbreviate
  • FIGS. 5 to 9 show an earthquake-resistant steel structure according to the second embodiment of the present invention.
  • FIG. 5 is a front view showing an earthquake-resistant steel frame structure of the multi-layer building 4 having the subway frame structure 15.
  • FIG. 6 is a cross-sectional view cut horizontally in the vicinity of the upper part of the underground pillar in FIG.
  • FIG. 7 shows an embodiment in which, when a horizontal force is applied to the multi-layered building 4, rotation is possible in all horizontal directions around the lower end of the ground column within the range of elastic deformation of the ground column. It is an enlarged front view.
  • FIG. 8 is a cross-sectional view taken along the line AA in FIG.
  • FIG. 9 is a diagram showing bending moments acting on each part of the steel structure when a horizontal force acts on the earthquake-resistant steel structure of the multilayer building 4 shown in FIG. 5 during an earthquake or the like.
  • the damper 3 is not provided on the outer beam 2a.
  • the outer beam 2a in this form is a beam similar to the inner beam 2, for example.
  • the column 1 may be provided with an inclined reduced cylindrical portion 14 that gradually decreases in a tapered shape. Thereby, the bending rigidity of the column 1 gradually decreases downward.
  • the reduced cylindrical portion 16 on the column 1 the lower part of the ground column base 6 can be rotated in all horizontal directions when a horizontal force acts on the column during an earthquake. That is, the pin joint structure 17 is realized by design.
  • a receiving plate 18 is fixed to the lower inner side of the ground pillar 1. Moreover, the lower end part of the ground pillar 1 is inserted in the upper part of the underground pillar 1d, and is mounted on the support plate 7 of the underground pillar 1d. The lower end of the ground pillar 1 and the upper end of the underground pillar 1d may be joined by a bolt 8 such as a one-side bolt.
  • a bolt 8 such as a one-side bolt.
  • one end of the first floor beam 2 or the outer beam 2 a is welded or bolted to a bracket provided on the ground column 1 at a position above the joint between the ground column 1 and the underground column 1 d. (In the case of illustration) It is joined.
  • a steel plate (damper) such as a low yield point steel is interposed as a splicing plate 9 or the like at the joint between the ground column 1 and the first floor beam 2.
  • a buckling restraining material 10 is disposed outside the attachment plate 9 at a predetermined interval in the beam axis direction. This buckling restraint material 10 is fixed by a high strength bolt 11. Further, by using a steel material having a lower yield point than the material of the column 1 as the steel material as the material of the beam 2, it is easy to realize the prior yielding of the beam.
  • the lower part of the column base of the ground column 1 is designed to have a pin joint structure, so that the bending moment acting on the column base of the ground column 1 can be changed to the ground beam (the outer beam 2, the inner beam 2 or the outer beam). Can be transmitted to the beam 2a) 2. Therefore, as in the case of the first embodiment, by securing an appropriate column beam strength ratio, the ground beam 2 is yielded ahead of the column base 6 so that the column base 6 is elastic. It becomes possible to hold in, and the plastic deformation of the ground column base 6 can be prevented.
  • the bending moment distribution acting on the first floor beam 2 is a positive and negative symmetrical bending moment distribution
  • the bending moment distribution of one outer beam 2a is the bending moment distribution that becomes the maximum positive bending at the node on the ground column side
  • the other outer The bending moment distribution of the beam 2a is a bending moment distribution that is the maximum negative bending at a node on the ground column side.
  • the structure of the ground column base portion 6 to be a pin joint structure in design is not limited to the above form.
  • the base plate of the column base 6 of the ground column 1 is placed on the top plate at the upper end of the underground column 1d, and the ground column base is mounted by an anchor bolt or the like disposed at a position from the center of the underground column 1d.
  • the sides may be fixed.
  • the pin joint structure 17 is realized by design. Then, by setting the column beam strength ratio as described above, it is possible to keep the column base within the elastic range by leading the first floor beam 2 ahead of the column 1 and yielding, so that the ground column Plastic deformation of the leg 6 can be prevented.
  • the lower end of the ground column 1 made of a square steel pipe column
  • a cross-shaped cross section at the upper end of the underground pillar 1d composed of a cross H-section pillar is inserted and joined by welding as appropriate, and at a position away from the joint with the ceiling beam 2 on the first basement floor,
  • the lower side from the upper end may be embedded in a cylindrical steel pipe 19 filled with concrete.
  • the steel structure may be realized by combining the pin joint structure described in the present embodiment and the damper described in the first embodiment. As a result, when a horizontal force acts on the building, the bending moment generated in the leg of the ground column is transmitted to the beam by the pin joint structure, and the force transmitted to the beam can be absorbed by the beam damper. .
  • a steel material having a T-section in a web of a circular steel tube column in addition to a square steel tube column or a box-shaped cross-sectional column, a steel material having a T-section in a web of a circular steel tube column, an H-shaped cross-sectional column or an H-shaped cross-sectional column It is good also as a cross-section column with a flange which fixed the leg part of this by welding.
  • an attachment part may be provided in the underground outer peripheral wall part which uses a steel sheet pile continuous wall as a core material, and you may make it connect to the outer beam 2a.

Abstract

An underground steel structure which supports a building having a ground column has an underground wall, an underground column provided below the column base of the ground column, and an external beam coupling the column base and the underground wall and having a yield point lower than that of the column base.

Description

耐震鉄骨構造Seismic steel structure
 本発明は、地下鉄骨構造を有する多層建築物などの耐震鉄骨構造に関する。
 本願は、2009年3月12日に、日本に出願された特願2009-058936号に基づき優先権を主張し、その内容をここに援用する。
The present invention relates to a seismic steel frame structure such as a multi-layer building having a subway frame structure.
This application claims priority based on Japanese Patent Application No. 2009-058936 filed in Japan on March 12, 2009, the contents of which are incorporated herein by reference.
 従来、地下鉄骨構造を有する多層建築物が知られている(例えば、特許文献1参照)。
 図11は、地下鉄骨構造115を有するラーメン構造の多層建築物104を示す。例えば地震時において多層建築物104に水平力が作用した場合、2階以上の地上鉄骨構造は、水平方向に動くことが可能である。このため、図14に示すように、2階以上に設けられる柱101および梁102には、地上柱脚部106に比べて格段に小さい曲げモーメントM1、M2が作用する。
 図13は、一般的な地下鉄骨構造115を説明するための模式図である。図13に示されるように、地下鉄骨構造115は、地上の側柱101a又は隅柱101bの外側地中に設けられるSRC造又はRC造の地下外周部壁105と、地下1階天井スラブ112を支持する外梁102aと、一階梁102とを備える。外梁102aの一端部は、地下外周部壁105に連結され、外梁102aの他端部は、地上の側柱101a又は地上の隅柱101bの柱脚部に連結される。一階梁102は、地上の側柱101aの脚部間、地上の側柱101aの脚部と隅柱101bの脚部との間、又は、地上の側柱101aの脚部と中柱101cの脚部との間を連結する。
 図14に示すように、地震時等において矢印で示すような水平力が建築物104に作用した場合、地盤Gに拘束されている地下外周部壁105は、地盤Gと共に水平方向に動く。このため、外梁102aが連結されている地上柱1の柱脚部と、地下1階柱101dの上部との接合部には、大きな逆せん断の曲げモーメントM3が作用する。
 なお、地下鉄骨構造115は、剛性が高くなるように構築され、例えば、SRC造が採用される。
Conventionally, a multi-layered building having a subway bone structure is known (see, for example, Patent Document 1).
FIG. 11 shows a multi-layered building 104 with a ramen structure having a subway bone structure 115. For example, when a horizontal force is applied to the multi-layered building 104 during an earthquake, the ground steel structure on the second floor or higher can move in the horizontal direction. Therefore, as shown in FIG. 14, bending moments M <b> 1 and M <b> 2 that are markedly smaller than the ground column base part 106 act on the columns 101 and the beams 102 provided on the second floor or higher.
FIG. 13 is a schematic view for explaining a general subway bone structure 115. As shown in FIG. 13, the subway bone structure 115 includes an SRC or RC underground outer peripheral wall 105 provided in the ground outside the side pillar 101 a or the corner pillar 101 b on the ground, and a first-floor ceiling slab 112. The outer beam 102a to support and the first floor beam 102 are provided. One end of the outer beam 102a is connected to the underground outer peripheral wall 105, and the other end of the outer beam 102a is connected to the column base of the ground side column 101a or the ground corner column 101b. The first floor beam 102 is between the legs of the ground side pillar 101a, between the legs of the ground side pillar 101a and the legs of the corner pillar 101b, or between the legs of the ground side pillar 101a and the middle pillar 101c. Connect between the legs.
As shown in FIG. 14, when a horizontal force as indicated by an arrow acts on the building 104 during an earthquake or the like, the underground outer peripheral wall 105 restrained by the ground G moves in the horizontal direction together with the ground G. Therefore, a large reverse shear bending moment M3 acts on the joint between the column base of the ground column 1 to which the outer beam 102a is connected and the upper part of the first basement column 101d.
The subway bone structure 115 is constructed so as to have high rigidity, and, for example, SRC construction is adopted.
 前記のように、建築物104に水平力が作用すると、地上柱1の柱脚部と地下1階柱101dの上部との接合部には大きな逆せん断の曲げモーメントM3が発生する。この曲げモーメントM3に対抗するためには、地上柱101及び地下1階柱101dの塑性変形性能を大きく設計することが考えられる。具体的には、柱の素材として、降伏比が80%以下の鋼材を利用すること、又は、図12A、図12Bに示すように、角形鋼管柱113の板厚t2を厚く設計することが考えられる。 As described above, when a horizontal force acts on the building 104, a large reverse shear bending moment M3 is generated at the joint between the column base of the ground column 1 and the upper part of the first basement column 101d. In order to counter this bending moment M3, it is conceivable to design the plastic deformation performance of the ground column 101 and the underground first floor column 101d to be large. Specifically, it is considered to use a steel material having a yield ratio of 80% or less as the material of the column, or to design the plate thickness t2 of the square steel pipe column 113 to be thick as shown in FIGS. 12A and 12B. It is done.
 なお、建築骨組、特に、柱と梁とが剛接合されているラーメン骨組の耐震設計は、(1)中小地震時には骨組の弾性変形による耐震機能を発揮させること、(2)大地震時には骨組の塑性変形による耐震機能を発揮させること、を基本思想としている。詳述すると、(2)においては、骨組みの塑性変形によるエネルギー吸収性能に期待して、塑性変形を許容して耐震機能を発揮させる。すなわち、塑性変形性能により設計耐力を低減させる。 In addition, the seismic design of architectural frames, especially ramen frames in which columns and beams are rigidly connected, is (1) to exhibit the seismic function by elastic deformation of the frame during small and medium earthquakes, and (2) The basic idea is to exert an earthquake-resistant function by plastic deformation. More specifically, in (2), in anticipation of energy absorption performance by plastic deformation of the frame, plastic deformation is allowed to exhibit an earthquake resistance function. That is, the design strength is reduced by the plastic deformation performance.
 大地震に耐えるためには、より大きなエネルギーを吸収する必要がある。従って、一般的には、骨組を構成する部材として、降伏点YPと引張り強さTSとの比YR(=YP/TS)が0.80以下の低YR鋼材を用いて塑性変形性を向上させる。また、骨組の崩壊モードを、エネルギー吸収に適した全体崩壊モードとすることが推奨されている。 To absorb a large earthquake, it is necessary to absorb more energy. Therefore, generally, as a member constituting the framework, a plastic deformation property is improved by using a low YR steel material having a ratio YR (= YP / TS) between the yield point YP and the tensile strength TS of 0.80 or less. . Moreover, it is recommended that the collapse mode of the frame be an overall collapse mode suitable for energy absorption.
 例えば、非特許文献1では、全体崩壊モードを実現するために、各節点で柱梁耐力比を1.5以上に設定することが推奨されている。柱梁耐力比とは、崩壊メカニズムを判断する際の指標として用いられる数値であり、柱の耐力を梁の耐力で除した値である。 For example, in Non-Patent Document 1, it is recommended to set the column beam strength ratio to 1.5 or more at each node in order to realize the overall collapse mode. The column beam strength ratio is a numerical value used as an index for judging the collapse mechanism, and is a value obtained by dividing the column strength by the beam strength.
 崩壊モードは、ある層の全ての柱が先行降伏し、一層もしくは複数の特定層が崩壊する部分崩壊モードと、梁が先行降伏し塑性ヒンジが全層に分散する全体崩壊モードとに大別される。 Collapse modes are broadly divided into partial collapse modes in which all the columns of a layer are yielded in advance and one or more specific layers are collapsed, and overall collapse modes in which beams are yielded in advance and plastic hinges are dispersed in all layers. The
 ある層の全ての柱が先行降伏する部分崩壊モードでは、発生する塑性ヒンジの数が少なくても崩壊が生じる。 In the partial collapse mode in which all the columns in a layer yield in advance, the collapse occurs even if the number of generated plastic hinges is small.
 一方、梁が先行降伏する全体崩壊モードでは、塑性ヒンジが全層に生成した場合において崩壊が起こる。従って、柱と梁とに同じ塑性変形性能の部材を用いた場合、全体崩壊モードでは、部分崩壊モードと比較して骨組のエネルギー吸収能力が高い(例えば、特許文献2参照)。
 また、柱梁耐力比が1.0を超えるような設計も知られている(例えば、特許文献3,4参照)。
On the other hand, in the overall collapse mode in which the beam yields in advance, the collapse occurs when the plastic hinge is formed in all layers. Therefore, when a member having the same plastic deformation performance is used for the column and the beam, the energy absorption capacity of the frame is higher in the overall collapse mode than in the partial collapse mode (see, for example, Patent Document 2).
A design in which the column beam strength ratio exceeds 1.0 is also known (see, for example, Patent Documents 3 and 4).
 多層建築物の構造において、上階の梁と下階の梁とこれらに連結される柱とで囲まれる部分に、低降伏点鋼を用いた斜材を設ける技術も知られている。この斜材は、上階の梁(又は上階の柱梁が交差するコーナー部)と、下階の柱梁が交差するコーナー部とを連結する。この技術によれば、斜材が柱及び梁に先行して降伏するため、柱と梁とを、弾性変形の範囲に留めることができる。また、斜材で吸収しきれなかった建物に入力される地震エネルギーを、柱よりも先に梁部材を塑性変形させることで吸収するように骨組みを設計することも知られている。 In a multi-layer building structure, a technique is also known in which diagonal members using low-yield point steel are provided in a portion surrounded by a beam on the upper floor, a beam on the lower floor, and a column connected thereto. This diagonal material connects the upper-level beam (or the corner portion where the upper-level column beam intersects) and the corner portion where the lower-level beam beam intersects. According to this technique, since the diagonal member yields ahead of the column and the beam, the column and the beam can be kept within the range of elastic deformation. It is also known to design a framework so that seismic energy input to a building that could not be absorbed by the diagonal material is absorbed by plastically deforming the beam member before the column.
 上述の骨組み設計の一例としては、斜材に引張強度が200N/mm級~300N/mm級(それぞれ設計強度で、80N/mm級~205N/mm級)の鋼板を用いる。そして、梁部材又は柱部材に、引張強度が400N/mm級(400~590N/mm級(それぞれ設計強度で、325N/mm級~440N/mm級))の鋼板を用いる。更に、梁の軸方向の上下フランジの一部を他の部分よりも、断面積を小さくする、又は、柱側のフランジと梁との接合部に低降伏点の鋼材を介在させて接合する。このように骨組みを設計することで、塑性変形しやすくした部位を与えた梁を柱に先行して降伏させることができる。その結果、柱を弾性変形の範囲内で使用できる。 As an example of the above-mentioned framework design, a steel plate having a tensile strength of 200 N / mm grade 2 to 300 N / mm grade 2 (each design strength is 80 N / mm grade 2 to 205 N / mm grade 2 ) is used for the diagonal member. A steel plate having a tensile strength of 400 N / mm class 2 (400 to 590 N / mm class 2 (each design strength is 325 N / mm class 2 to 440 N / mm class 2 )) is used for the beam member or column member. Further, a part of the upper and lower flanges in the axial direction of the beam is joined with a cross-sectional area smaller than the other parts, or a steel material having a low yield point is interposed at the joint between the column side flange and the beam. By designing the framework in this way, it is possible to yield a beam provided with a part that is easily plastically deformed in advance of the column. As a result, the column can be used within the range of elastic deformation.
 柱部材には、梁部材用鋼板と同程度の引張強度の鋼材が使用される。また、下階の柱には、鉛直方向の圧縮荷重が大きくかかる。従って、建物が高い程、下階の柱はボックス断面等の断面積を大きくする必要があり、その鋼材重量が大きくなる。この場合、溶接に関しても高度の熟練と品質管理とが要求される。 For the column member, a steel material having the same tensile strength as the steel plate for the beam member is used. In addition, a vertical compressive load is greatly applied to the pillar on the lower floor. Therefore, the higher the building, the larger the cross-sectional area of the column on the lower floor, such as the box cross-section, and the greater the steel weight. In this case, high skill and quality control are required for welding.
 ところで、鉄骨造の建物の多くには、角形鋼管柱とH形断面梁とからなるラーメン構造が採用されている。前記の角形鋼管柱は、厚板を溶接により組み立てて製作される場合も多い。
 前記のように、柱を弾性範囲内で使用する場合の柱素材としては、塑性変形性能よりも、むしろ設計強度と靭性(耐脆性破壊)の高い鋼材が求められている。しかし、設計強度が高い鋼材として、炭素をはじめとする硬化強化元素の量を増加させて、引張強度を増すようにする場合、鋼材の溶接性は劣化する。これにより、溶接熱影響部の硬化や溶接割れの発生頻度が高まる。
 また、硬化や割れを防止するために柱の予熱を行うようにして溶接する場合、施工コストがかさみ、経済的でなくなる。予熱を必要としない一般的な鋼材(設計強度235~325N/mm級)を用いると、角形鋼管柱を構成する各側面板の板厚が厚くなり、溶接金属が多く必要になると共に、角形鋼管柱の鋼重が重くなる。結果として、建築物の重量も重くなり、コストが増加する。
By the way, a ramen structure composed of a square steel pipe column and an H-shaped cross-section beam is adopted in many steel-framed buildings. The rectangular steel pipe column is often manufactured by assembling thick plates by welding.
As described above, as a column material when a column is used within the elastic range, a steel material having higher design strength and toughness (brittle fracture resistance) is required rather than plastic deformation performance. However, when a steel material having a high design strength is used to increase the tensile strength by increasing the amount of hardening strengthening elements such as carbon, the weldability of the steel material deteriorates. This increases the frequency of hardening of the weld heat affected zone and weld cracks.
In addition, when welding is performed by preheating the columns in order to prevent hardening and cracking, the construction cost is high and it is not economical. When using a general steel material that does not require preheating (design strength: 235 to 325 N / mm class 2 ), the thickness of each side plate that forms the square steel pipe column becomes thick, and a lot of weld metal is required. The steel weight of the steel pipe column becomes heavy. As a result, the weight of the building increases and the cost increases.
 鉄骨構造の建築物では、柱を弾性範囲で使用し、梁を柱よりも先行して降伏するように設計することで、大地震時等に柱の損傷を防止し、建物の崩壊を防止するようにすることも知られている(例えば、特許文献2~5参照)。 In a steel structure building, the column is used in the elastic range, and the beam is designed to yield before the column, thereby preventing damage to the column during a large earthquake and preventing collapse of the building. It is also known to do so (see, for example, Patent Documents 2 to 5).
特開平11-336101号公報Japanese Patent Laid-Open No. 11-336101 特開2006-291698号公報JP 2006-291698 A 特開2006-45821号公報JP 2006-45821 A 特開2006-45820号公報JP 2006-45820 A 日本国特許第3888244号公報Japanese Patent No. 3888244
 建設コスト削減のために柱に高降伏点鋼を使用する場合、降伏比の上昇と伸びの減少とに起因して、柱が早期に破断しやすい。従って、柱の早期破断を防ぐ耐震鉄骨構造が望まれる。
 地上柱脚部および地下柱上部を除けば、柱梁耐力比を一定値以上確保することで、柱よりも梁を先行降伏させて、柱を弾性範囲内に留めて柱の破断を防ぐことができる。しかしながら、一般に、地上柱脚部は、地下構造部分に剛接合されるため、建築物に水平力がかかると逆せん断のモーメントM3が生じる。このため、地上柱脚部に接続する外梁(1階梁)を先行降伏させることができず、地上柱脚部を弾性変形の範囲内に留めることが困難である。
When high yield point steel is used for a column to reduce construction costs, the column is likely to break early due to an increase in yield ratio and a decrease in elongation. Therefore, an earthquake-resistant steel structure that prevents early breakage of the column is desired.
With the exception of the ground column base and the upper part of the underground column, by securing the column beam strength ratio above a certain value, the beam yields ahead of the column and the column stays within the elastic range to prevent the column from breaking. it can. However, in general, the ground column base is rigidly joined to the underground structure portion, and therefore a reverse shear moment M3 is generated when a horizontal force is applied to the building. For this reason, the outer beam (first floor beam) connected to the ground column base cannot be yielded in advance, and it is difficult to keep the ground column base within the range of elastic deformation.
 前記のように、地上柱101と地下柱101dとには、大きな逆せん断の曲げモーメントM3がかかる。このため、その逆せん断の曲げモーメントM3を解消させることができれば、降伏比の高い鋼材(高張力鋼)を柱素材として用いても、柱を弾性範囲内で使用することが可能になる。結果として、柱断面積の低減が可能となる。すなわち、柱の鋼重を低減することが可能になり、建築物をより安価に構築することができる。
 本発明は、前記の課題を解消することができる耐震鉄骨構造を提供することを目的とする。
As described above, a large reverse shear bending moment M3 is applied to the ground column 101 and the underground column 101d. For this reason, if the bending moment M3 of the reverse shear can be eliminated, it is possible to use the column within the elastic range even if a steel material (high tensile steel) having a high yield ratio is used as the column material. As a result, the column cross-sectional area can be reduced. That is, it becomes possible to reduce the steel weight of the column, and the building can be constructed at a lower cost.
An object of this invention is to provide the earthquake-resistant steel structure which can eliminate the said subject.
 本発明は、上述の課題を解決するために以下の手段を採用した。
(1)本発明の第1態様は、地上柱を有する建築物を支持する地下鉄骨構造であって、地下壁と;前記地上柱の柱脚部の下方に設けられる地下柱と;前記柱脚部と前記地下壁とを連結する外梁であって、前記柱脚部よりも降伏点が低い外梁と;を備える。
(2)上記(1)に記載の地下鉄骨構造では、前記外梁が、前記外梁よりも降伏点が低いダンパー部を備えてもよい。
(3)上記(2)に記載の地下鉄骨構造では、前記ダンパー部が、前記外梁の軸方向に直列に接合される鋼材であってもよい。
(4)上記(2)に記載の地下鉄骨構造では、前記ダンパー部が、前記外梁と前記地上柱との間に介在する鋼板であってもよい。
(5)上記(1)に記載の地下鉄骨構造では、前記地上柱及び前記地下柱の降伏強度が少なくとも400N/mmであってもよい。
(6)上記(1)~(5)のいずれか1項に記載の地下鉄骨構造では、前記地上柱の前記柱脚部と、前記地下柱とが、ピン接合構造により接合されていてもよい。
The present invention employs the following means in order to solve the above-described problems.
(1) A first aspect of the present invention is a subway skeleton structure for supporting a building having a ground column, an underground wall; an underground column provided below a column base of the ground column; and the column base And an outer beam connecting the basement wall and a lower yield point than the column base.
(2) In the subway frame structure described in (1) above, the outer beam may include a damper portion having a lower yield point than the outer beam.
(3) In the subway frame structure described in (2) above, the damper portion may be a steel material joined in series in the axial direction of the outer beam.
(4) In the subway bone structure described in (2) above, the damper portion may be a steel plate interposed between the outer beam and the ground column.
(5) In the subway bone structure described in (1) above, the yield strength of the above-mentioned ground column and the above-mentioned underground column may be at least 400 N / mm 2 .
(6) In the subway bone structure described in any one of (1) to (5) above, the column base portion of the ground column and the underground column may be joined by a pin joint structure. .
 上記(1)に記載の構成によれば、外梁が地上柱の柱脚部よりも先に降伏するため、地上柱の柱脚部の塑性変形を防止することができる。このため、例えば地震等で地上鉄骨構造に水平力が付与される際に、地上柱の柱脚部に発生する曲げモーメントM3を、外梁の塑性変形により吸収することができる。従って、地上柱と地下柱との素材として、降伏比の高い鋼材(高張力鋼)を用いても、柱を弾性範囲内で使用することが可能になる。その結果、柱断面積の低減が可能となるため、柱の鋼重を低減することが可能になる。従って、建築物をより安価に構築することができる。
 上記(2)~(4)に記載の構成によれば、例えば地震等で地上鉄骨構造に水平力が付与されたときにダンパー部が伸縮するため、外梁が水平方向に移動可能となる。また、ダンパー部の塑性変形により、地上柱の柱脚部に発生する曲げモーメントM3を吸収することができる。更に、ダンパー部が塑性変形し、外梁が塑性変形しない程度の外力を地震等で受けた場合には、ダンパー部のみを交換することで補修できる。
 上記(5)に記載の構成によれば、柱の素材の降伏強度が少なくとも400N/mm2であるため、400N/mm2以上の高降伏点鋼を用いて、柱素材の板厚寸法を小さくして、柱の軽量化を図ることができる。
 上記(6)に記載の構成によれば、例えば地震等で地上鉄骨構造に水平力が付与される際に、地上柱の脚部をその下端部を中心として回転させることが可能となる。従って、地震時等に地上柱の柱脚部に作用する曲げモーメントを外梁に伝達することができる。また、柱脚部よりも外梁を先行降伏させることで、地上柱脚部の変形を弾性変形の範囲に留めることができる。従って、地上柱の柱脚部の塑性変形を防止することができる。
According to the configuration described in (1) above, since the outer beam yields before the column base of the ground column, plastic deformation of the column base of the ground column can be prevented. For this reason, for example, when a horizontal force is applied to the ground steel structure due to an earthquake or the like, the bending moment M3 generated in the column base portion of the ground column can be absorbed by the plastic deformation of the outer beam. Therefore, even if a steel material (high-tensile steel) with a high yield ratio is used as the material for the above ground column and underground column, the column can be used within the elastic range. As a result, the column cross-sectional area can be reduced, and the steel weight of the column can be reduced. Therefore, a building can be constructed at a lower cost.
According to the configurations described in the above (2) to (4), the outer beam can be moved in the horizontal direction because the damper portion expands and contracts when a horizontal force is applied to the ground steel structure due to, for example, an earthquake. Moreover, the bending moment M3 generated in the column base portion of the ground column can be absorbed by the plastic deformation of the damper portion. Furthermore, when an external force is received due to an earthquake or the like in which the damper portion is plastically deformed and the outer beam is not plastically deformed, it can be repaired by replacing only the damper portion.
According to the configuration described in (5) above, since the yield strength of the column material is at least 400 N / mm 2 , the steel plate has a high yield point steel of 400 N / mm 2 or more, and the thickness of the column material is reduced. Thus, the weight of the pillar can be reduced.
According to the configuration described in (6) above, for example, when a horizontal force is applied to the ground steel structure due to an earthquake or the like, the leg portion of the ground pillar can be rotated around its lower end portion. Therefore, it is possible to transmit the bending moment acting on the column base portion of the ground column during an earthquake or the like to the outer beam. Further, by allowing the outer beam to yield before the column base, the deformation of the ground column base can be kept within the range of elastic deformation. Therefore, plastic deformation of the column base portion of the ground column can be prevented.
本発明の第1実施形態に係る、地下構造を有する多層建築物の耐震鉄骨構造を示す正面図である。It is a front view which shows the earthquake-resistant steel frame structure of the multilayer building which has an underground structure based on 1st Embodiment of this invention. 同建築物の1階部分の断面図である。It is sectional drawing of the 1st floor part of the building. 同建築物の柱部分の拡大断面図である。It is an expanded sectional view of the pillar part of the building. 同建築物に設けられるダンパーの配置の一例を示す断面図である。It is sectional drawing which shows an example of arrangement | positioning of the damper provided in the building. 地震等により、同建築物に水平な力が作用した時に、鉄骨構造の各部に作用する曲げモーメントを示す図である。It is a figure which shows the bending moment which acts on each part of a steel structure when a horizontal force acts on the building by an earthquake etc. 本発明の第2実施形態に係る、地下構造を有する多層建築物の耐震鉄骨構造を示す正面図である。It is a front view which shows the earthquake-resistant steel frame structure of the multilayer building which has an underground structure based on 2nd Embodiment of this invention. 同建築物の地下1階部分の断面図である。It is sectional drawing of the basement 1st floor part of the building. 同建築物に設けられるピン接合構造の一例を示す拡大正面図である。It is an enlarged front view which shows an example of the pin junction structure provided in the building. 図7のA-A断面図である。FIG. 8 is a cross-sectional view taken along the line AA of FIG. 地震等により、同建築物に水平な力が作用した時に、鉄骨構造の各部に作用する曲げモーメントを示す図である。It is a figure which shows the bending moment which acts on each part of a steel structure when a horizontal force acts on the building by an earthquake etc. 本発明の第2の実施形態におけるピン接合構造の変形例を示す拡大正面図である。It is an enlarged front view which shows the modification of the pin junction structure in the 2nd Embodiment of this invention. 図10AのB-B断面図である。FIG. 10B is a sectional view taken along line BB in FIG. 10A. 従来の地下構造を有する多層建築物を示す正面図である。It is a front view which shows the multilayer building which has the conventional underground structure. 同建築物の1階部分の断面図である。It is sectional drawing of the 1st floor part of the building. 同建築物の柱部分の拡大断面図である。It is an expanded sectional view of the pillar part of the building. 同建築物の1階柱脚部と外周壁との連結構造を示す平面図である。It is a top view which shows the connection structure of the 1st floor column base part and outer peripheral wall of the building. 地震等により、同建築物に水平な力が作用した時に、鉄骨構造の各部に作用する曲げモーメントを示す図である。It is a figure which shows the bending moment which acts on each part of a steel structure when a horizontal force acts on the building by an earthquake etc.
 以下、本発明の好ましい実施形態について説明する。 Hereinafter, preferred embodiments of the present invention will be described.
(第1実施形態)
 以下、図1~図4を参照して、本発明の第1実施形態に係る耐震鉄骨構造について詳細に説明する。
(First embodiment)
Hereinafter, the earthquake-resistant steel structure according to the first embodiment of the present invention will be described in detail with reference to FIGS.
 図1は、地下鉄骨構造15を有する多層建築物4の耐震鉄骨構造を示す正面図である。図2Aは、多層建築物4における1階柱付近で水平に切断した断面図である。図2Bは図1Aの柱部分を拡大して示す断面図である。図3は図1におけるダンパー3の配置状態を示す平面図である。図4は多層建築物4の耐震鉄骨構造に地震時に水平な地震力が作用した時に、鉄骨構造の各部に作用する曲げモーメントを示す正面図である。 FIG. 1 is a front view showing an earthquake-resistant steel frame structure of a multilayer building 4 having a subway frame structure 15. FIG. 2A is a cross-sectional view of the multi-layer building 4 cut horizontally in the vicinity of the first floor pillar. FIG. 2B is an enlarged cross-sectional view of the column portion of FIG. 1A. FIG. 3 is a plan view showing an arrangement state of the damper 3 in FIG. FIG. 4 is a front view showing bending moments acting on each part of the steel structure when a horizontal seismic force acts on the earthquake-resistant steel structure of the multi-layer building 4 during an earthquake.
 本実施形態に係る耐震鉄骨構造は、地上鉄骨構造および地下鉄骨構造15を有する多層階建築物4において利用される。 The earthquake-resistant steel structure according to the present embodiment is used in the multi-storey building 4 having the ground steel structure and the subway structure 15.
 図1に示されるように、地下鉄骨構造15は地上鉄骨構造よりも広く設計されている。多層建築物4における地上鉄骨構造では、複数の柱1(側柱1aと、隅柱1bと、中柱1c)と、複数の梁2とにより、耐震鉄骨構造が形成されている。地上柱1の下部には、地下柱1dが設けられている。 As shown in FIG. 1, the subway frame structure 15 is designed to be wider than the ground steel structure. In the ground steel structure in the multi-layer building 4, an earthquake-resistant steel structure is formed by the plurality of pillars 1 (side pillars 1 a, corner pillars 1 b, and middle pillars 1 c) and the plurality of beams 2. Under the ground pillar 1, an underground pillar 1 d is provided.
 側柱1aと、隅柱1bと、中柱1cとは、互いに所定の間隔をおいて設けられる。側柱1aと隅柱1b、側柱1aと中柱1c、および2本の側柱1a間は、梁2によりそれぞれ連結されている。 The side pillar 1a, the corner pillar 1b, and the middle pillar 1c are provided at predetermined intervals. Side columns 1a and corner columns 1b, side columns 1a and middle columns 1c, and two side columns 1a are connected by beams 2.
 柱1は、厚鋼板を適宜溶接により組み立てて形成される角形鋼管柱、箱形断面柱、円形鋼管柱、H形断面柱、又はクロスH断面柱(H形断面柱のウェブに断面T形の鋼材の脚部を溶接により固定したフランジ付十字形断面柱)により構成されてもよい。前記柱の梁接合部には、ダイアフラム(内ダイアフラム、通しダイアフラム又は外ダイアフラム)が設けられる(図示せず)。このダイアフラムに、梁2のフランジおよびウェブが溶接される。ダイアフラムと梁2とは、スプライスプレート(図示せず)を介して接合されてもよい。ダイアフラムと柱とを溶接する場合は、レ形開先の完全溶け込み溶接により接合することが好ましい。尚、柱1は、例えば、靭性の高い冷間成形による角形鋼管が好ましい。 The column 1 is a rectangular steel tube column, box-shaped cross-sectional column, circular steel tube column, H-shaped cross-sectional column, or cross-H cross-sectional column (which has a T-shaped cross section on the H-shaped cross-sectional column web). It may be constituted by a flanged cross-shaped cross-section column in which the legs of the steel material are fixed by welding. A diaphragm (an inner diaphragm, a through diaphragm, or an outer diaphragm) is provided at the beam joint portion of the column (not shown). The flange and web of the beam 2 are welded to this diaphragm. The diaphragm and the beam 2 may be joined via a splice plate (not shown). When the diaphragm and the column are welded, it is preferable to join them by complete penetration welding of a reshaped groove. For example, the column 1 is preferably a square steel pipe by cold forming with high toughness.
 本実施形態における地下鉄骨構造15は、地上の側柱1a及び隅柱1bの外側地中において、SRC造又はRC造で閉鎖環状に形成された地下外周部壁5を備える。この地下外周部壁5に、地下1階天井スラブ12を一体に支持する外梁2aの一端部が連結される。この外梁2aの他端部には、地上の側柱1a又は地上の隅柱1bの柱脚6が連結される。地上の側柱1aの柱脚6間、地上の側柱1aの柱脚6と隅柱1bの柱脚6との間、又は地上の側柱1aの柱脚6と中柱1cの柱脚6との間は、1階梁2により連結される。
 本実施形態において、外梁2aにはダンパー3が設けられる。具体的な一例としては、地下外周部壁5に剛接合される外側の外梁構成体2bと、側柱1a又は隅柱1bに剛接合される内側の外梁構成体2cとの間に、ダンパー3を接合することで外梁2aを構成する。他の一例としては、外梁2aの端部にダンパー3を接合する。ダンパー3を、外梁2aの降伏点よりも低い降伏点を有する鋼材で構成してもよい。これにより、ダンパー3の断面形状と外梁2aの断面形状とを略同一にして両者を直列に接合しても、ダンパー3としての役割を果たすことができる。ダンパー3の接合に関しては、ダンパー3側に取り付け部を設けて、柱1又は地下外周壁部5側の取り付け部に、溶接又はボルトにより接合するようにすればよい。
 前記のダンパー3は、梁軸方向への圧縮力又は引張力により塑性変形される部分であるから、梁軸方向のダンパー3の位置は、原理的には任意の位置でよいが、図1や図3に示されるように、地下外周部壁に設けたほうが単純で経済的である。
The subway skeleton structure 15 in the present embodiment includes an underground outer peripheral wall 5 formed in a closed ring shape by SRC or RC in the ground outside the side columns 1a and corner columns 1b on the ground. One end of an outer beam 2a that integrally supports the underground first floor ceiling slab 12 is connected to the underground outer peripheral wall 5. The other end of the outer beam 2a is connected to a column base 6 of a side column 1a on the ground or a corner column 1b on the ground. Between the column base 6 of the ground side column 1a, between the column base 6 of the ground side column 1a and the column base 6 of the corner column 1b, or the column base 6 of the ground side column 1a and the column base 6 of the middle column 1c. Are connected by a first-floor beam 2.
In the present embodiment, a damper 3 is provided on the outer beam 2a. As a specific example, between the outer outer beam structure 2b rigidly joined to the underground outer peripheral wall 5 and the inner outer beam structure 2c rigidly joined to the side column 1a or the corner column 1b, The outer beam 2 a is configured by joining the damper 3. As another example, the damper 3 is joined to the end of the outer beam 2a. You may comprise the damper 3 with the steel materials which have a yield point lower than the yield point of the outer beam 2a. Thereby, even if the cross-sectional shape of the damper 3 and the cross-sectional shape of the outer beam 2a are made substantially the same and both are joined in series, the role as the damper 3 can be achieved. Regarding the joining of the damper 3, an attachment portion may be provided on the damper 3 side, and the attachment portion on the pillar 1 or the underground outer peripheral wall portion 5 side may be joined by welding or bolts.
Since the damper 3 is a portion that is plastically deformed by a compressive force or tensile force in the beam axis direction, the position of the damper 3 in the beam axis direction may be any position in principle. As shown in FIG. 3, it is simpler and more economical to provide the underground outer peripheral wall.
 このように、外梁2aにダンパー3を組み込むことにより、外梁本体部分よりも、塑性変形しやすい部分を外梁2aに導入することができる。このダンパー3は、常時、小地震時、又は強風時等には、外梁2aの一部として機能し、大地震時において、外梁2a軸方向に圧縮力を受けた場合に、座屈が起こらないよう縮むことで塑性変形され、あるいは外梁2a軸方向に引張力を受けた場合に、伸びることで塑性変形される。従って、1階におけるすべての柱(側柱1aと隅柱1bと中柱1c)の柱脚6と、地下柱1dの上部との接合部および1階梁(外梁2aおよびその他の梁)2との接合部は、地震時等に水平方向に移動することができる。
 図1に示す形態では、図面の左右方向の一方のダンパー3が圧縮力を受けて塑性変形すると、他方のダンパー3は引張力を受けて塑性変形し、外梁2aの長さが変化する。外梁2aに組み込まれるダンパー3の位置としては、外梁2aの地下外周部側の端部側に配置するのがよい。ダンパー3用の素材としては、外梁2aのダンパー部以外の部分よりも先に、塑性変形させて降伏させるために、例えば、前記の制振用ダンパーとして使用される低降伏点鋼を使用することが好ましい。また、梁軸方向に直角な断面を梁本体側よりも小さく適宜設計により設定して、塑性変形しやすいようにしてもよい。
As described above, by incorporating the damper 3 in the outer beam 2a, it is possible to introduce a portion that is more easily plastically deformed than the outer beam main body portion into the outer beam 2a. The damper 3 functions as a part of the outer beam 2a at all times, during a small earthquake, during a strong wind, etc., and when it receives a compressive force in the axial direction of the outer beam 2a during a large earthquake, the damper 3 does not buckle. It is plastically deformed by shrinking so that it does not occur, or plastically deformed by stretching when it receives a tensile force in the axial direction of the outer beam 2a. Accordingly, the joints between the column bases 6 of all the columns on the first floor (side columns 1a, corner columns 1b, and middle column 1c) and the upper portion of the underground column 1d and the first-level beam (outer beam 2a and other beams) 2 The joint part can be moved in the horizontal direction during an earthquake or the like.
In the form shown in FIG. 1, when one damper 3 in the left-right direction in the drawing receives a compressive force and plastically deforms, the other damper 3 receives a tensile force and plastically deforms, and the length of the outer beam 2a changes. As the position of the damper 3 incorporated in the outer beam 2a, it is preferable to arrange the damper 3 on the end portion side of the outer beam 2a on the underground outer peripheral side. As the material for the damper 3, for example, the low yield point steel used as the damping damper is used in order to cause plastic deformation and yield before the portion other than the damper portion of the outer beam 2 a. It is preferable. Further, the cross section perpendicular to the beam axis direction may be set smaller by design than the beam body side so as to be easily plastically deformed.
 前記のように、地上柱1の下部(柱脚)が水平方向に移動可能にされていることにより、図4に示すように、地上柱1および地下柱1dには、従来のような、逆せん断モーメントが作用することなく、2階以上の階層の柱梁接合部と同様な曲げモーメント分布とすることができる。そして、地上柱1の柱脚部と地下柱1d上部との接続部、および、1階外梁2aあるいは地上柱脚部間を接続する梁2に関して、適切な柱梁耐力比を確保することで、1階梁2あるいは1階外梁2aを、地上柱脚6よりも先行して降伏させて、地上柱脚6の塑性変形を防止することができる。 As described above, since the lower part (column base) of the ground pillar 1 is movable in the horizontal direction, as shown in FIG. It is possible to obtain a bending moment distribution similar to that of the beam-column joint of the second or higher floor without any shearing moment acting. And by securing the appropriate column beam strength ratio for the connection between the column base of the ground column 1 and the upper part of the underground column 1d and the beam 2 connecting the first floor outer beam 2a or the ground column base. The first-story beam 2 or the first-story outer beam 2a can be yielded prior to the ground column base 6 to prevent plastic deformation of the ground column base 6.
 引張強度の大小関係は、ダンパー用鋼材<梁用鋼材<柱用鋼材に設定することが望ましい。例えば、ダンパー3には引張強度が200N/mm級~300N/mm級(設計強度80N/mm級~205N/mm級)の鋼板を用い、梁部材又は柱部材には引張強度が400N/mm級~590N/mm級(それぞれ設計強度で、325N/mm級~440N/mm級)の鋼板を用いる。更に、梁の軸方向の(上下フランジの)一部を他の部分よりも、断面積を小さくしたり、柱側のフランジと梁との接合部に低降伏点の鋼材を介在させて接合させることで、塑性変形しやすい部分を付与する。これにより、大地震時において、外梁2aの一部であるダンパー3(低降伏点鋼の部分)を梁軸方向に塑性変形させることができる。この塑性変形により、梁の軸方向の長さを伸縮可能にさせて、地上柱1の柱脚部および地下柱1d上部の接合部と共に、外梁2aの一端側および1階梁2の接合部を水平方向に移動可能にさせることができる。 It is desirable to set the magnitude relationship of tensile strength as follows: damper steel <beam steel <column steel. For example, a steel plate having a tensile strength of 200 N / mm grade 2 to 300 N / mm grade 2 (design strength 80 N / mm grade 2 to 205 N / mm grade 2 ) is used for the damper 3, and the tensile strength is applied to the beam member or column member. Steel sheets of 400 N / mm class 2 to 590 N / mm class 2 (design strengths of 325 N / mm class 2 to 440 N / mm class 2 ) are used. Furthermore, a part of the axial direction (upper and lower flanges) of the beam is made smaller in cross section than the other parts, or a steel member having a low yield point is interposed at the junction between the column side flange and the beam. Thus, a portion that is easily plastically deformed is provided. Thereby, at the time of a big earthquake, the damper 3 (part of the low yield point steel) which is a part of the outer beam 2a can be plastically deformed in the beam axis direction. By this plastic deformation, the length of the beam in the axial direction can be expanded and contracted, and the one end side of the outer beam 2a and the joint portion of the first floor beam 2 together with the joint portion of the column base portion of the ground column 1 and the underground column 1d. Can be moved in the horizontal direction.
 また、1階外梁2a以外の1階梁2(側柱間又は側柱と隅柱間の外周側に配置される外周側梁と、それ以外の内梁)の端部にも、図示を省略するが、塑性変形させる部分を付与してもよい。 In addition, the ends of the first-floor beams 2 (outer side beams arranged between the side columns or between the side columns and the corner columns and other inner beams) other than the first-floor outer beams 2a are also illustrated. Although omitted, a portion to be plastically deformed may be added.
 このようにすると、地上柱1および地下地上柱1dに作用する逆せん断曲げモーメントを抑えることができ、図4に示すように、2階以上の階層の柱1と同様な曲げモーメント分布に、変化させることができる。
 そのため、降伏比の高い鋼材(高張力鋼)を柱素材として用いても、地上柱1の塑性変形を防止して柱を弾性範囲内で使用することが可能になるため、柱断面積の低減を図り、柱の鋼重を低減することが可能になり、建築物をより安価に構築することができる。
In this way, the reverse shear bending moment acting on the ground column 1 and the underground column 1d can be suppressed, and as shown in FIG. 4, the bending moment distribution changes to the same bending moment distribution as the column 1 in the second and higher floors. Can be made.
Therefore, even if a steel material with high yield ratio (high tensile steel) is used as the column material, it is possible to prevent the plastic deformation of the ground column 1 and to use the column within the elastic range, thereby reducing the column cross-sectional area. Therefore, it becomes possible to reduce the steel weight of the pillar, and the building can be constructed at a lower cost.
 柱部材用鋼板として引張強度が490N/mm級~590N/mm級あるいはこれを超える780N/mm級の引張強度(それぞれ設計強度(降伏強度)で、325N/mm級~440N/mm級~700N/mm級)のものを用い、柱を弾性変形させる範囲内において使用することも可能になるが、本発明においては、降伏強度が、少なくとも400N/mmである鋼材を使用するのがよい。
 柱を弾性変形させる範囲内において使用するような技術思想を採用する場合、柱部材、特に、側柱と隅柱とには、地震時に建物に水平力等の地震エネルギーが入力された場合、引き抜きの引張力あるいは押し込みの圧縮力が同等に作用する。しかし、隅柱には、前記の引抜き力および押込み力の負担がさらに大きくなる。このため、側柱よりも隅柱の耐力(もしくは強度)を高めるようにすることが望まれる。尚、適切な柱梁耐力比の設計としては、側柱での柱梁耐力比を1.5以上とし、隅柱での柱梁耐力比を1.7以上とすることが好ましい。
As a steel plate for column members, tensile strength of 490 N / mm grade 2 to 590 N / mm grade 2 or higher, 780 N / mm grade 2 tensile strength (design strength (yield strength), 325 N / mm grade 2 to 440 N / mm, respectively) 2 grade to 700 N / mm grade 2 ) can be used within the range in which the column is elastically deformed, but in the present invention, a steel material having a yield strength of at least 400 N / mm 2 is used. It is good to do.
When adopting the technical idea to be used within the range of elastic deformation of columns, column members, especially side columns and corner columns, are pulled out when seismic energy such as horizontal force is input to the building at the time of earthquake The tensile force or the compressive force of indentation acts equally. However, the corner columns are further burdened by the pulling force and pushing force. For this reason, it is desired to increase the proof stress (or strength) of the corner column rather than the side column. As an appropriate design of the column beam strength ratio, it is preferable that the column beam strength ratio at the side column is 1.5 or more and the column beam strength ratio at the corner column is 1.7 or more.
 しかし、側柱あるいは隅柱の引張り強さを向上させるために、炭素当量等に関わる硬化強化元素を増加させると、鋼材の溶接性が低下する。また、柱素材の組成が異なる異質の鋼材が用いられる場合、鋼材の製造初期の段階から異なる処理が必要になるため、経済的でなくなる。
 このような課題があるため、柱を塑性変形させずに弾性範囲において使用する弾性設計を前提にした技術の場合、柱素材の組成を変えずに冷却速度を高める等の熱処理により、降伏強度を高めるようにした方(降伏比を高めること)が、安価な柱素材とすることができる。また、中柱と側柱および隅柱とは、前記のように地震時に水平力が作用した場合の負担が異なるため、中柱と側柱および隅柱とを、鋼材組成が同じで性能の異なる鋼材にするほうが、建設コスト削減ができて、より合理的である。
 このように、建設コスト削減のために柱に高降伏点鋼を使用する場合、高降伏点での降伏比の上昇と伸びの減少により、柱の早期破断の恐れが生じるため、これを排除した耐震鉄骨構造が必要になるが、前記第1実施形態又は後記の第2実施形態の構造とすることで、合理的な耐震鉄骨構造とすることが可能になる。
 多層建築物4の地上柱は、必然的に荷重負担が大きくなるため、その断面積が大きくなるが、前記のような高降伏点の鋼材とすると、柱断面積(板厚)を小さく(薄く)することができ、また、柱素材の溶接性を低下させることなく、鋼重を低減することができる安価な柱で合理的な構造の耐震鉄骨構造とすることができる。
However, when the hardening strengthening element related to the carbon equivalent or the like is increased in order to improve the tensile strength of the side column or the corner column, the weldability of the steel material is lowered. In addition, when different types of steel materials having different column material compositions are used, different treatments are required from the initial stage of the steel material production, which is not economical.
Because of these issues, in the case of a technology based on an elastic design that is used in the elastic range without plastically deforming the column, the yield strength can be reduced by heat treatment such as increasing the cooling rate without changing the composition of the column material. The one made higher (increasing the yield ratio) can be an inexpensive column material. In addition, since the burden when horizontal force is applied during an earthquake is different between the middle column, the side column, and the corner column, the middle column, the side column, and the corner column have the same steel composition and different performance. It is more reasonable to use steel because it can reduce construction costs.
In this way, when high yield point steel is used for the column to reduce construction costs, the increase in yield ratio and decrease in elongation at the high yield point may cause premature failure of the column. Although an earthquake-resistant steel structure is required, a rational earthquake-resistant steel structure can be obtained by adopting the structure of the first embodiment or the second embodiment described later.
The ground pillar of the multi-layer building 4 inevitably increases the load load, and thus its cross-sectional area increases. However, when the steel material has a high yield point as described above, the column cross-sectional area (plate thickness) is small (thin). In addition, an inexpensive column capable of reducing the steel weight without degrading the weldability of the column material can be used to provide a rational earthquake-resistant steel structure.
 前記の第1実施形態では、外梁2aに、低降伏点鋼を備えたダンパー3を設けることで、地上柱脚6を水平移動可能にしているが、ダンパー3としては、前記以外の形態でもよく、大地震時において、水平力が作用した場合に、外梁2aを伸縮可能にする形態のダンパーを組み込んでも同様な作用効果を得ることができる。
 なお、外梁2a以外の梁2に、図示を省略するが、低降伏点鋼などの塑性変形可能な部材を組み込んで、柱1側のフランジに接合するようにしてもよい。
In the first embodiment, the ground column base 6 can be moved horizontally by providing the outer beam 2a with the damper 3 having the low yield point steel. However, the damper 3 may be in a form other than the above. Well, when a horizontal force is applied during a large earthquake, a similar effect can be obtained by incorporating a damper in a form that allows the outer beam 2a to expand and contract.
In addition, although illustration is abbreviate | omitted in the beams 2 other than the outer beam 2a, you may make it join the member of the pillar 1 side by incorporating a plastically deformable member, such as low yield point steel.
 (第2実施形態)
 以下、図5~図9を参照して本発明の第2実施形態について詳細に説明する。尚、第1実施形態で説明した部材と実質的に同様な部材には、同一の参照番号を付して重複説明を省く。
 以下に説明する第2実施形態では、地上柱1の柱脚6の下部にピン接合構造(pin connected structure)を導入する。すなわち、本実施形態では、ピン接合構造により、柱脚に作用する曲げモーメントを1階梁に伝達させる。これにより、地上柱脚6あるいはこれに接合される地下柱1dに作用する逆せん断の曲げモーメントM3の発生を抑えることができる。
(Second Embodiment)
Hereinafter, a second embodiment of the present invention will be described in detail with reference to FIGS. In addition, the same reference number is attached | subjected to the member substantially the same as the member demonstrated in 1st Embodiment, and duplication description is abbreviate | omitted.
In the second embodiment described below, a pin connected structure is introduced below the column base 6 of the ground pillar 1. In other words, in the present embodiment, the bending moment acting on the column base is transmitted to the first floor beam by the pin joint structure. Thereby, generation | occurrence | production of the bending moment M3 of the reverse shear which acts on the ground column base 6 or the underground pillar 1d joined to this can be suppressed.
 図5~図9には、本発明の第2実施形態に係る耐震鉄骨構造が示されている。 FIGS. 5 to 9 show an earthquake-resistant steel structure according to the second embodiment of the present invention.
 図5は、地下鉄骨構造15を有する多層建築物4の耐震鉄骨構造を示す正面図である。図6は図5における地下柱上部付近で水平に切断した断面図である。図7は、水平力が多層建築物4に与えられた際に、地上柱の弾性変形の範囲で地上柱の下端部を中心として水平方向の全方向に回転可能にする場合の一形態を示す拡大正面図である。図8は図7のA-A断面図である。図9は図5に示す多層建築物4の耐震鉄骨構造に地震時等に水平力が作用した時に、鉄骨構造の各部に作用する曲げモーメントを示す図である。 FIG. 5 is a front view showing an earthquake-resistant steel frame structure of the multi-layer building 4 having the subway frame structure 15. FIG. 6 is a cross-sectional view cut horizontally in the vicinity of the upper part of the underground pillar in FIG. FIG. 7 shows an embodiment in which, when a horizontal force is applied to the multi-layered building 4, rotation is possible in all horizontal directions around the lower end of the ground column within the range of elastic deformation of the ground column. It is an enlarged front view. FIG. 8 is a cross-sectional view taken along the line AA in FIG. FIG. 9 is a diagram showing bending moments acting on each part of the steel structure when a horizontal force acts on the earthquake-resistant steel structure of the multilayer building 4 shown in FIG. 5 during an earthquake or the like.
 本実施形態においては、実施形態1のように外梁2aにダンパー3を設けない。この形態の外梁2aは、例えば、内梁2と同様な梁である。 In this embodiment, unlike the first embodiment, the damper 3 is not provided on the outer beam 2a. The outer beam 2a in this form is a beam similar to the inner beam 2, for example.
 また、前記の地上柱1の柱脚部と地下のSRC造の柱1d上部の接続部に関しては、例えば、図7に示すように、地上柱1の下方に向かって、横断面の外形寸法がテーパー状に漸次小さくなる傾斜縮小筒状部14を柱1に設けてもよい。これにより、柱1は下方に向かって漸次曲げ剛性が小さくなる。この柱1に縮小筒状部16を設けることで、地上柱脚6の下部が、地震時に水平力が柱に作用した場合、水平方向の全方向に回転可能にされる。すなわち、設計上、ピン接合構造17が実現される。 In addition, with regard to the connecting portion of the column base of the ground column 1 and the upper part of the underground SRC column 1d, for example, as shown in FIG. The column 1 may be provided with an inclined reduced cylindrical portion 14 that gradually decreases in a tapered shape. Thereby, the bending rigidity of the column 1 gradually decreases downward. By providing the reduced cylindrical portion 16 on the column 1, the lower part of the ground column base 6 can be rotated in all horizontal directions when a horizontal force acts on the column during an earthquake. That is, the pin joint structure 17 is realized by design.
 図示の形態では、前記地上柱1の下部内側に受け板18が固定される。また、地上柱1の下端部が、地下柱1dの上部に挿入されて、地下柱1dの支持板7に載置される。地上柱1の下端部と、地下柱1dの上端部とは、ワンサイドボルト等のボルト8により接合されてもよい。
 また、図7の例では、地上柱1と地下柱1dの接合部よりも上部の位置において、1階梁2又は外梁2aの一端部が、地上柱1に設けられたブラケットに溶接又はボルト(図示の場合)接合されている。地上柱1と前記の1階梁2の接合部には、低降伏点鋼などの鋼板(ダンパー)がスプライスプレート等の添え板9として介在される。この添え板9の外側で梁軸方向に所定の間隔をおいて座屈拘束材10が配置される。この座屈拘束材10は、高力ボルト11により固定される。また、梁2の素材としての鋼材に、柱1の素材よりも、降伏点が低い鋼材を用いることで、梁の先行降伏を実現しやすくなる。
In the illustrated embodiment, a receiving plate 18 is fixed to the lower inner side of the ground pillar 1. Moreover, the lower end part of the ground pillar 1 is inserted in the upper part of the underground pillar 1d, and is mounted on the support plate 7 of the underground pillar 1d. The lower end of the ground pillar 1 and the upper end of the underground pillar 1d may be joined by a bolt 8 such as a one-side bolt.
In the example of FIG. 7, one end of the first floor beam 2 or the outer beam 2 a is welded or bolted to a bracket provided on the ground column 1 at a position above the joint between the ground column 1 and the underground column 1 d. (In the case of illustration) It is joined. A steel plate (damper) such as a low yield point steel is interposed as a splicing plate 9 or the like at the joint between the ground column 1 and the first floor beam 2. A buckling restraining material 10 is disposed outside the attachment plate 9 at a predetermined interval in the beam axis direction. This buckling restraint material 10 is fixed by a high strength bolt 11. Further, by using a steel material having a lower yield point than the material of the column 1 as the steel material as the material of the beam 2, it is easy to realize the prior yielding of the beam.
 前記のように、地上柱1の柱脚の下部を設計上、ピン接合構造とすることで、地上柱1の柱脚に作用する曲げモーメントを、地上梁(外周梁2、内梁2又は外梁2a)2に伝達することができる。従って、前記の第1実施形態の場合と同様に、適切な柱梁耐力比を確保することにより、地上梁2を柱脚6よりも先行して先行降伏させることで、柱脚6を弾性範囲内に留めることが可能となり、地上柱脚6の塑性変形を防止することができる。また、1階梁2に作用する曲げモーメント分布は正負対称な曲げモーメント分布に、一方の外梁2aの曲げモーメント分布は地上柱側の節点で最大正曲げとなる曲げモーメント分布に、他方の外梁2aの曲げモーメント分布は地上柱側の節点で最大負曲げとなる曲げモーメント分布になる。 As described above, the lower part of the column base of the ground column 1 is designed to have a pin joint structure, so that the bending moment acting on the column base of the ground column 1 can be changed to the ground beam (the outer beam 2, the inner beam 2 or the outer beam). Can be transmitted to the beam 2a) 2. Therefore, as in the case of the first embodiment, by securing an appropriate column beam strength ratio, the ground beam 2 is yielded ahead of the column base 6 so that the column base 6 is elastic. It becomes possible to hold in, and the plastic deformation of the ground column base 6 can be prevented. In addition, the bending moment distribution acting on the first floor beam 2 is a positive and negative symmetrical bending moment distribution, the bending moment distribution of one outer beam 2a is the bending moment distribution that becomes the maximum positive bending at the node on the ground column side, and the other outer The bending moment distribution of the beam 2a is a bending moment distribution that is the maximum negative bending at a node on the ground column side.
 設計上、ピン接合構造となる地上柱脚部6の構造としては、前記形態に限られない。例えば変形例として、地下柱1dの上端部のトッププレートに、地上柱1の柱脚6のベースプレートを載置し、地下柱1dの中心部よりの位置に配置したアンカーボルト等により、地上柱脚側を固定してもよい。このような変形例によっても、地震時に水平力が建物に入力した場合、地上柱脚6の下部は水平方向の全方向に回転可能になる。すなわち、設計上、ピン接合構造17が実現される。そして、前記のように柱梁耐力比を設定することで、1階梁2を柱1よりも先行して、先行降伏させることで、柱脚を弾性範囲内に留めることが可能となり、地上柱脚6の塑性変形を防止することができる。 設計 The structure of the ground column base portion 6 to be a pin joint structure in design is not limited to the above form. For example, as a modified example, the base plate of the column base 6 of the ground column 1 is placed on the top plate at the upper end of the underground column 1d, and the ground column base is mounted by an anchor bolt or the like disposed at a position from the center of the underground column 1d. The sides may be fixed. Even in such a modification, when a horizontal force is input to the building during an earthquake, the lower part of the ground column base 6 can be rotated in all horizontal directions. That is, the pin joint structure 17 is realized by design. Then, by setting the column beam strength ratio as described above, it is possible to keep the column base within the elastic range by leading the first floor beam 2 ahead of the column 1 and yielding, so that the ground column Plastic deformation of the leg 6 can be prevented.
 設計上、ピン接合構造となる地上柱脚部6下端の構造としては、前記以外にも、図10A、図10Bに示す変形例のように、角形鋼管柱からなる地上柱1の下端部に、クロスH断面柱からなる地下柱1dの上端部の断面十字状部分を挿入して適宜溶接により接合し、地下1階の天井梁2との接合部から下方に離れた位置において、地下柱1dの上端部より下側を、コンクリートを充填した円柱状鋼管19内に埋め込み配置した形態としてもよい。地上柱脚部6の下端部と地下柱1dの上端部の剛性を弱めることで、この部分で、水平方向の全方向に回転可能にすることでピン接合構造17となる。これにより、地上柱脚よりも1階梁2を先行降伏させて、地上柱脚6の塑性変形を防止することができ、前記図7および図8に示す形態と同様な作用効果を得ることができる。 In the design, as the structure of the lower end of the ground column base 6 that becomes the pin joint structure, in addition to the above, as in the modification shown in FIGS. 10A and 10B, the lower end of the ground column 1 made of a square steel pipe column, A cross-shaped cross section at the upper end of the underground pillar 1d composed of a cross H-section pillar is inserted and joined by welding as appropriate, and at a position away from the joint with the ceiling beam 2 on the first basement floor, The lower side from the upper end may be embedded in a cylindrical steel pipe 19 filled with concrete. By reducing the rigidity of the lower end portion of the ground column base 6 and the upper end portion of the underground column 1d, the pin joint structure 17 can be obtained by making this portion rotatable in all horizontal directions. Thereby, the first floor beam 2 can be yielded earlier than the ground column base, and the plastic deformation of the ground column base 6 can be prevented, and the same effect as the embodiment shown in FIGS. 7 and 8 can be obtained. it can.
 本実施形態で説明したピン接合構造と、第1実施形態で説明したダンパーとを組み合わせて鉄骨構造を実現してもよい。これにより、建築物に水平力が作用した際に地上柱の脚部に発生する曲げモーメントはピン接合構造により梁に伝達され、梁に伝達された力を梁のダンパー部で吸収させることができる。 The steel structure may be realized by combining the pin joint structure described in the present embodiment and the damper described in the first embodiment. As a result, when a horizontal force acts on the building, the bending moment generated in the leg of the ground column is transmitted to the beam by the pin joint structure, and the force transmitted to the beam can be absorbed by the beam damper. .
 本発明を実施する場合、1階以上の階層の柱としては、角形鋼管柱又は箱形断面柱以外にも、円形鋼管柱、H形断面柱あるいはH形断面柱のウェブに断面T形の鋼材の脚部を溶接により固定したフランジ付十字形断面柱としてもよい。また、地下外周部壁5としては、鋼矢板連続壁を芯材とする地下外周壁部に取り付け部を設けて、外梁2aに接続するようにしてもよい。 In the case of carrying out the present invention, as a column of the first or higher floor, in addition to a square steel tube column or a box-shaped cross-sectional column, a steel material having a T-section in a web of a circular steel tube column, an H-shaped cross-sectional column or an H-shaped cross-sectional column It is good also as a cross-section column with a flange which fixed the leg part of this by welding. Moreover, as an underground outer peripheral part wall 5, an attachment part may be provided in the underground outer peripheral wall part which uses a steel sheet pile continuous wall as a core material, and you may make it connect to the outer beam 2a.
 本発明によれば、柱の鋼重を低減することが可能になり、建築物をより安価に構築することができる。従って、産業上の利用可能性は大きい。 According to the present invention, it becomes possible to reduce the steel weight of a pillar, and a building can be constructed at a lower cost. Therefore, industrial applicability is great.
1 地上柱(又は2階以上の階層の柱)
1a 側柱
1b 隅柱
1c 中柱
1d 地下柱
2 梁
2a 外梁
2b 外側の外梁構成体
2c 内側の外梁構成体
3 ダンパー
4 多層建築物
5 地下外周部壁
6 柱脚
7 支持板
8 ボルト
9 添え板
10 座屈拘束材
11 高力ボルト
12 地下1階天井スラブ(もしくは1階床スラブ)
13 角形鋼管柱
14 傾斜縮小筒状部
15 地下鉄骨構造
16 縮小筒状部
17 ピン接合構造
18 受け板
19 円柱状鋼管
G  地盤
1 Ground pillar (or pillar of the second floor or higher)
1a side column 1b corner column 1c middle column 1d underground column 2 beam 2a outer beam 2b outer outer beam component 2c inner outer beam component 3 damper 4 multi-layered building 5 underground outer peripheral wall 6 column base 7 support plate 8 bolt 9 Bending plate 10 Buckling restraint material 11 High-strength bolt 12 Basement 1st floor ceiling slab (or 1st floor slab)
13 Square steel pipe column 14 Inclined reduced cylindrical part 15 Subway bone structure 16 Reduced cylindrical part 17 Pin joint structure 18 Base plate 19 Cylindrical steel pipe G Ground

Claims (6)

  1.  地上柱を有する建築物を支持する地下鉄骨構造であって、
     地下壁と;
     前記地上柱の柱脚部の下方に設けられる地下柱と;
     前記柱脚部と前記地下壁とを連結する外梁であって、前記柱脚部よりも降伏点が低い外梁と;
    を備えることを特徴とする地下鉄骨構造。
    A subway bone structure that supports a building having a ground pillar,
    With the underground wall;
    An underground column provided below a column base of the ground column;
    An outer beam connecting the column base and the underground wall, the outer beam having a lower yield point than the column base;
    Subway bone structure characterized by comprising.
  2.  前記外梁が、前記外梁よりも降伏点が低いダンパー部を備えることを特徴とする請求項1に記載の地下鉄骨構造。 The subway bone structure according to claim 1, wherein the outer beam includes a damper portion having a lower yield point than the outer beam.
  3.  前記ダンパー部が、前記外梁の軸方向に直列に接合される鋼材であることを特徴とする請求項2に記載の地下鉄骨構造。 The subway bone structure according to claim 2, wherein the damper portion is a steel material joined in series in the axial direction of the outer beam.
  4.  前記ダンパー部が、前記外梁と前記地上柱との間に介在する鋼板であることを特徴とする請求項2に記載の地下鉄骨構造。 3. The subway bone structure according to claim 2, wherein the damper portion is a steel plate interposed between the outer beam and the ground pillar.
  5.  前記地上柱及び前記地下柱の降伏強度が少なくとも400N/mmであることを特徴とする請求項1に記載の鉄骨構造。 The steel structure according to claim 1, wherein the yield strength of the ground column and the underground column is at least 400 N / mm 2 .
  6.  前記地上柱の前記柱脚部と、前記地下柱とが、ピン接合構造により接合されていることを特徴とする、請求項1~5のいずれか1項に記載の鉄骨構造。 The steel structure according to any one of claims 1 to 5, wherein the column base portion of the ground column and the underground column are joined by a pin joint structure.
PCT/JP2010/001666 2009-03-12 2010-03-09 Seismic resistant steel structure WO2010103812A1 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010523233A JPWO2010103812A1 (en) 2009-03-12 2010-03-09 Seismic steel structure

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009-058936 2009-03-12
JP2009058936 2009-03-12

Publications (1)

Publication Number Publication Date
WO2010103812A1 true WO2010103812A1 (en) 2010-09-16

Family

ID=42728108

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2010/001666 WO2010103812A1 (en) 2009-03-12 2010-03-09 Seismic resistant steel structure

Country Status (3)

Country Link
JP (1) JPWO2010103812A1 (en)
TW (1) TW201116687A (en)
WO (1) WO2010103812A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196698A (en) * 2018-05-02 2019-11-14 日本製鉄株式会社 Structural steelwork and design method of structural steelwork

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136445A (en) * 1988-11-16 1990-05-25 Takenaka Komuten Co Ltd Construction of structure including superframe
JPH0626107A (en) * 1991-08-31 1994-02-01 Nobutaka Tamura Joint for building and civil engineering structure, and construction thereof and fixture therefor
JPH06240756A (en) * 1993-02-12 1994-08-30 Fujita Corp Structure of column/beam connection part
JP2000144901A (en) * 1998-11-05 2000-05-26 Nkk Corp Splice plate and beam joint construction
JP2001049740A (en) * 1999-08-05 2001-02-20 Okumura Corp Rigid-frame structure
JP2003090053A (en) * 2001-09-18 2003-03-28 Sumitomo Metal Ind Ltd Structure for joining pile and foundation together
JP2004162319A (en) * 2002-11-11 2004-06-10 Sumitomo Mitsui Construction Co Ltd Earthquake damping structure having basement

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4424112B2 (en) * 2004-08-02 2010-03-03 Jfeスチール株式会社 Multi-layer steel structure

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02136445A (en) * 1988-11-16 1990-05-25 Takenaka Komuten Co Ltd Construction of structure including superframe
JPH0626107A (en) * 1991-08-31 1994-02-01 Nobutaka Tamura Joint for building and civil engineering structure, and construction thereof and fixture therefor
JPH06240756A (en) * 1993-02-12 1994-08-30 Fujita Corp Structure of column/beam connection part
JP2000144901A (en) * 1998-11-05 2000-05-26 Nkk Corp Splice plate and beam joint construction
JP2001049740A (en) * 1999-08-05 2001-02-20 Okumura Corp Rigid-frame structure
JP2003090053A (en) * 2001-09-18 2003-03-28 Sumitomo Metal Ind Ltd Structure for joining pile and foundation together
JP2004162319A (en) * 2002-11-11 2004-06-10 Sumitomo Mitsui Construction Co Ltd Earthquake damping structure having basement

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019196698A (en) * 2018-05-02 2019-11-14 日本製鉄株式会社 Structural steelwork and design method of structural steelwork

Also Published As

Publication number Publication date
TW201116687A (en) 2011-05-16
JPWO2010103812A1 (en) 2012-09-13

Similar Documents

Publication Publication Date Title
JP4861067B2 (en) Steel frame
Shin et al. Seismic behaviour of composite concrete-filled tube column-to-beam moment connections
KR101767677B1 (en) Compisite column structure for steel and concrete
JP2008088758A (en) Earthquake-resisting wall using corrugated steel plate manufactured by ultra-high strength steel
JP2011001792A (en) Beam-column joint part structure of rigid frame skeleton and rolled h-steel
JP2000213200A (en) Damping construction
JP4691210B2 (en) Seismic steel structure and its design method
JP4664997B2 (en) Buildings with joint hardware
JP6447777B2 (en) Column beam connection structure and steel reinforced concrete column
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP2008025236A (en) Precast prestressed concrete beam using tension material different in strength between end part and central part
JP2012188872A (en) Concrete filled circular steel pipe column
WO2010103812A1 (en) Seismic resistant steel structure
JP5654060B2 (en) Damper brace and damping structure
JP2017082904A (en) Rod-like vibration isolation member
JP2006299576A (en) Triple pipe damping brace having slot
JP5292881B2 (en) Vibration control panel
JP3392027B2 (en) Braces
JP2016216905A (en) Column-beam frame
WO2018012495A1 (en) Beam-column connection structure
JP7335540B1 (en) junction structure
JP4923641B2 (en) Column-beam joints, steel frames and steel structures with excellent seismic performance
WO2023163213A1 (en) Joint structure
JP6022435B2 (en) Bearing wall with brace and brace
JP3215633U (en) Brace mounting structure

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2010523233

Country of ref document: JP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 10750569

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 10750569

Country of ref document: EP

Kind code of ref document: A1