JP4424112B2 - Multi-layer steel structure - Google Patents

Multi-layer steel structure Download PDF

Info

Publication number
JP4424112B2
JP4424112B2 JP2004225678A JP2004225678A JP4424112B2 JP 4424112 B2 JP4424112 B2 JP 4424112B2 JP 2004225678 A JP2004225678 A JP 2004225678A JP 2004225678 A JP2004225678 A JP 2004225678A JP 4424112 B2 JP4424112 B2 JP 4424112B2
Authority
JP
Japan
Prior art keywords
column
layer
steel
foundation
steel structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2004225678A
Other languages
Japanese (ja)
Other versions
JP2006045821A (en
Inventor
隆行 難波
久哉 加村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004225678A priority Critical patent/JP4424112B2/en
Publication of JP2006045821A publication Critical patent/JP2006045821A/en
Application granted granted Critical
Publication of JP4424112B2 publication Critical patent/JP4424112B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Description

本発明は、耐震性に優れる多層鉄骨構造物に関する。   The present invention relates to a multilayer steel structure having excellent earthquake resistance.

多層の鋼構造骨組に設計上想定した大きさ以上の地震力が入力した場合の崩壊モードは、柱梁接合部40において柱が先行降伏し特定層が崩壊する部分崩壊モード(図6)と各層の梁端に塑性ヒンジ(塑性化部)30が分散する全体崩壊モード(図7)に大別される。   The collapse mode when a seismic force larger than the design assumption is input to the multi-layer steel frame is the partial collapse mode (Fig. 6) in which the column yields at the beam-column joint 40 and the specific layer collapses. Are broadly divided into an overall collapse mode (FIG. 7) in which plastic hinges (plasticized portions) 30 are dispersed at the beam ends.

特定の層の柱が先行降伏し損傷が集中する部分崩壊モードは、骨組構造において柱梁耐力比が低い場合に生じ、骨組全体としてのエネルギー吸収能力が低下し好ましくない。   The partial collapse mode, in which a column of a specific layer yields in advance and damage is concentrated, occurs when the beam-to-beam strength ratio is low in a frame structure, which is not preferable because the energy absorption capacity of the entire frame decreases.

全体崩壊モードは、一定の柱梁耐力比とした骨組構造を用いた場合に生じ、各層の梁端に損傷が分散し、骨組としてのエネルギー吸収能力が高く、鋼構造骨組みとして優れた耐震性が得られる。   The whole collapse mode occurs when a frame structure with a constant beam-to-column strength ratio is used, damage is distributed to the beam ends of each layer, the energy absorption capacity as a frame is high, and the steel structure has excellent earthquake resistance. can get.

そのため、建築構造の設計において耐震性能を向上させるために、全体崩壊モードを担保することを目標とすることが多い。例えば、非特許文献1では柱梁耐力比を1.5以上とすることが推奨されている。
「冷間成形角形鋼管設計・施工マニュアル」(日本建築センター)
Therefore, in order to improve seismic performance in the design of building structures, the goal is often to ensure the overall collapse mode. For example, Non-Patent Document 1 recommends that the column beam strength ratio be 1.5 or more.
"Cold Forming Square Steel Pipe Design and Construction Manual" (Japan Architecture Center)

しかしながら、全体崩壊モードが形成されるように柱梁耐力比を設定した骨組構造からなる多層建築物であっても、大地震により柱に大きな曲げモーメントが作用するようになると図9に模式的に示すように柱脚が損傷し、第1層が層崩壊を生じたり、更に第2層以上で柱上下端部に損傷が生じる場合がある。   However, even in the case of a multi-layered building with a frame structure in which the column beam strength ratio is set so that the overall collapse mode is formed, a large bending moment acts on the column due to a large earthquake, as schematically shown in FIG. As shown, the column base may be damaged, the first layer may collapse, or the upper and lower ends of the column may be damaged at the second layer or more.

図8は、地震波などの外力が作用した場合の多層鉄骨構造物の第1層における柱の曲げモーメント分布を模式的に示す図で、図において50は基礎(地平面)、20は梁、10は柱、10aは柱脚、10bは第1層柱頭、10cは第2層柱下端、10dは第2層柱上端、Cは中立点を示す。   FIG. 8 is a diagram schematically showing the bending moment distribution of the column in the first layer of the multi-layered steel structure when an external force such as a seismic wave is applied. In the figure, 50 is a foundation (ground plane), 20 is a beam, 10 Is a column, 10a is a column base, 10b is a first layer column head, 10c is a second layer column lower end, 10d is a second layer column upper end, and C is a neutral point.

第1層において柱10に発生する曲げモーメント分布の中立点Cは、梁20と柱頭10bの接合部と、基礎(地平面)50と柱脚10aの接合部での固定度が違うため、階高の1/2より上方または下方に位置するようになる。   The neutral point C of the bending moment distribution generated in the column 10 in the first layer is different in the degree of fixing at the junction between the beam 20 and the column head 10b and the junction between the foundation (horizontal plane) 50 and the column base 10a. It is located above or below half of the height.

図のように基礎(地平面)50と柱脚10aが剛接合されると、中立点Cは階高の1/2位置より柱頭側に位置するようになり、柱脚10aには柱頭10bより大きな曲げモーメントが作用し、柱脚10aが損傷して第1層が崩壊する危険性が高い。   As shown in the figure, when the foundation (ground plane) 50 and the column base 10a are rigidly connected, the neutral point C comes to be located on the side of the column head from the half position of the floor height. There is a high risk that a large bending moment acts, the column base 10a is damaged, and the first layer collapses.

多層鉄骨構造物のある層における柱の曲げモーメント分布は当該層の直上および直下層の曲げモーメント分布の影響を受け、例えば第2層の柱10の柱下端10cには第1層の影響により柱上端10dより大きな曲げモーメントが作用するようになる。   The bending moment distribution of a column in a certain layer of the multi-layered steel structure is affected by the bending moment distribution immediately above and below the layer. For example, the column lower end 10c of the column 10 in the second layer is affected by the first layer. A bending moment larger than the upper end 10d is applied.

本発明は、各層の梁端に損傷を生じさせる崩壊モードを担保した多層鉄骨構造物であって、地震力が大きな場合に第1層の崩壊や特定層の損傷を防止し耐震性に優れたものを提供することを目的とする。   The present invention is a multi-layered steel structure that guarantees a collapse mode that causes damage to the beam ends of each layer. When the seismic force is large, the first layer collapse or damage to a specific layer is prevented and excellent in earthquake resistance. The purpose is to provide things.

本発明の課題は以下の手段により達成できる。
1.柱梁耐力比を1.2超えとした骨組構造からなる多層鉄骨構造物において、柱部材の降伏応力を梁部材の降伏応力より高く設定し、第1層における柱脚と基礎との接合を半剛接合とする際、前記柱部材は高降伏点鋼とし、前記半剛接合における前記柱脚の回転剛性を、前記第1層の柱頭の固定度とほぼ同じとすることを特徴とする多層鉄骨構造物。
2.前記柱脚前記基礎とを、制震装置を介して接合することを特徴とする1記載の多層鉄骨構造物。
3.柱梁耐力比を1.2超えとした骨組構造からなる多層鉄骨構造物において、柱部材の降伏応力を梁部材の降伏応力より高く設定し、第1層におけると基礎梁との接合を半剛接合とする際、前記柱部材は高降伏点鋼とし、前記半剛接合における前記柱脚の回転剛性を、前記第1層の柱頭の固定度とほぼ同じとすることを特徴とする多層鉄骨構造物。
4.前記柱前記基礎梁とを、制震装置を介して接合することを特徴とする3記載の多層鉄骨構造物。
The object of the present invention can be achieved by the following means.
1. In a multi-layer steel structure with a frame structure with a beam-bearing strength ratio exceeding 1.2 , the yield stress of the column member is set higher than the yield stress of the beam member, and the joint between the column base and the foundation in the first layer is half In the case of rigid joining, the column member is made of high yield point steel, and the rotational rigidity of the column base in the semi-rigid joining is made substantially the same as the fixing degree of the column head of the first layer. Structure.
2. 2. The multi-layer steel structure according to claim 1, wherein the column base and the foundation are joined via a vibration control device.
3. In a multi-layered steel structure with a frame structure with a beam-bearing strength ratio exceeding 1.2 , the yield stress of the column member is set higher than the yield stress of the beam member, and the connection between the column and the foundation beam in the first layer is half In the case of rigid joining, the column member is made of high yield point steel, and the rotational rigidity of the column base in the semi-rigid joining is made substantially the same as the fixing degree of the column head of the first layer. Structure.
4). 4. The multi-layered steel structure according to 3, wherein the column and the foundation beam are joined through a vibration control device.

本発明によれば、柱部材用鋼材の降伏比によらず各層の梁端に損傷が分散する崩壊モードが担保され、且つ柱の損傷に起因する第1層や特定層の崩壊を防止することが可能となるため、現行の許容応力度設計で要求される柱部材用鋼材についての低YR特性を緩和することが可能で、柱部材用鋼材の選択度が飛躍的に拡大する。   According to the present invention, the collapse mode in which damage is dispersed at the beam ends of each layer is secured regardless of the yield ratio of the steel for the column member, and the collapse of the first layer and the specific layer due to the column damage is prevented. Therefore, it is possible to alleviate the low YR characteristic of the steel for column members required in the current allowable stress design, and the selectivity of the steel for column members is greatly expanded.

例えば、従来の許容応力度設計では、柱部材用鋼材にYR<80%の低YR特性が要求されるが柱部材用鋼材には優れた大入熱溶接部靭性も要求されるため、570N/mm級以上の鋼材で柱部材に適用可能なものは限定されていた。本発明によれば、低YR特性の要求が緩和されるため570N/mm級以上の鋼材で柱部材に適用可能な鋼種が拡大される。 For example, in the conventional allowable stress design, the steel for a column member is required to have a low YR characteristic of YR <80%, but the steel for a column member is also required to have excellent high heat input weld toughness. mm Steel grades 2 and higher that are applicable to column members have been limited. According to the present invention, since the requirement for low YR characteristics is relaxed, the steel types that can be applied to column members are expanded with steel materials of 570 N / mm grade 2 or higher.

本発明に係る多層鉄骨構造物は、柱梁耐力比、柱脚と基礎との接合状態、および柱部材用鋼材と梁部材用鋼材の降伏応力比を規定する。   The multilayer steel structure according to the present invention defines the column beam strength ratio, the connection state between the column base and the foundation, and the yield stress ratio between the column member steel and the beam member steel.

本発明に係る多層鉄骨構造物では、柱梁耐力比を1.0超え、好ましくは1.2以上とする。柱梁耐力比が1.0超えとなると柱が梁よりも降伏しにくくなり、各層の梁端部に損傷が分散され、柱梁耐力比が1.0以下の場合と比較して地震エネルギーの吸収が良好となる。1.2以上が好ましいとするのは,材料降伏点のばらつき,高次モードの影響などで,柱梁耐力比が1.0を少し超えた程度では,柱が先行降伏する可能性が比較的高くなるためである。   In the multilayer steel structure according to the present invention, the column beam strength ratio exceeds 1.0, preferably 1.2 or more. When the beam-to-column strength ratio exceeds 1.0, the column is less likely to yield than the beam, damage is dispersed at the beam ends of each layer, and the seismic energy is less than that when the column-beam strength ratio is 1.0 or less. Absorption is good. The value of 1.2 or higher is preferable because of the variation in the yield point of materials and the influence of higher-order modes. This is because it becomes higher.

第1層の柱脚の回転剛性は柱脚に過大な曲げモーメントが負荷されず、柱脚の損傷が防止されるように定め、好ましくは柱の曲げモーメント分布における中立点を略階高中心とする。具体的には柱脚と基礎とを半剛接合とし、柱脚の回転剛性を第1層の柱頭の固定度とほぼ同じとする。   The rotational rigidity of the column base of the first layer is determined so that an excessive bending moment is not applied to the column base and damage to the column base is prevented. Preferably, the neutral point in the distribution of the bending moment of the column is set to be approximately the center of the floor height. To do. Specifically, the column base and the foundation are semi-rigidly connected, and the rotational rigidity of the column base is set to be substantially the same as the degree of fixation of the column head of the first layer.

更に、本発明に係る多層鉄骨構造物では、柱部材用鋼材を梁部材用鋼材より降伏応力が高い高降伏点鋼とし、一定の柱梁耐力比を確保した上で柱梁剛性比を下げることにより,柱の曲げモーメント分布を均整化し,多層鉄骨構造物の全ての層において、特定の層が崩壊することを防止する。   Furthermore, in the multi-layer steel structure according to the present invention, the steel for the column member is a high yield point steel having a higher yield stress than the steel for the beam member, and the column beam rigidity ratio is lowered after ensuring a certain column beam strength ratio. Thus, the bending moment distribution of the column is leveled and a specific layer is prevented from collapsing in all the layers of the multi-layer steel structure.

図4、5に、柱材の降伏応力と柱脚の回転剛性の組合わせによる4パターンの骨組構造について、柱の損傷度をシミュレーション試験で求めた結果を示す。図4は第1層を4パターンのいずれかの骨組構造とした場合の2層以上における柱損傷度の総計を示し、図5は第1層についての柱脚損傷度を示す。   FIGS. 4 and 5 show the results of determining the degree of column damage by a simulation test with respect to the four-pattern frame structure based on the combination of the yield stress of the column member and the rotational rigidity of the column base. FIG. 4 shows the total column damage degree in two or more layers when the first layer has any one of four patterns of frame structures, and FIG. 5 shows the column base damage degree for the first layer.

柱部材用鋼材と梁部材用鋼材を普通鋼とした場合、第1層においては柱脚と基礎とを半剛接合とした効果が得られ柱脚の損傷は軽減するが(図5)、第2層以上での損傷度はむしろ増大し、第2層以上において崩壊層が生じる危険性が増大する(図4)。   When the steel for the column member and the steel for the beam member are made of ordinary steel, the effect of the semi-rigid connection between the column base and the foundation is obtained in the first layer, and damage to the column base is reduced (FIG. 5). The degree of damage at two or more layers is rather increased, and the risk of a collapsed layer at the second and higher layers is increased (FIG. 4).

一方、柱部材用鋼材を高降伏点鋼とすると普通鋼とした場合と比較して、第1層および第2層以上での損傷度が減少する。特に、柱部材用鋼材を高降伏点鋼とし、柱脚と基礎とを半剛接合とした場合、多層鉄骨構造物の第1層を含む全ての層において崩壊層が生じる危険性が減少する。   On the other hand, when the steel material for column members is high yield point steel, the degree of damage in the first layer and the second layer or more is reduced as compared with the case of using ordinary steel. In particular, when the steel material for the column member is made of high yield point steel and the column base and the foundation are semi-rigidly joined, the risk that a collapse layer is generated in all layers including the first layer of the multi-layer steel structure is reduced.

尚、シミュレーション試験は10層3スパン骨組モデル(階高4m,スパン長8m,構造特性係数Ds=0.25にて設計し、柱梁耐力比1.5)に、YokohamaSURFACE、ELCentroNS、HachinoheEW、KobeNS,TaftEW波をそれぞれ最大速度200kineに調節した地震波形として入力し、5波平均の損傷状態を求めた。   The simulation test was performed on a 10-layer, 3-span framework model (designed with a floor height of 4 m, span length of 8 m, structural characteristic coefficient Ds = 0.25, column beam yield ratio of 1.5), Yokohama SURFACE, EL CentroNS, HachinoheEW, KobeNS. , TaftEW waves were input as seismic waveforms adjusted to a maximum speed of 200 kine respectively, and the average damage state of the five waves was obtained.

試験においては、10層3スパン骨組モデルにおける柱材の降伏耐力を325N/mm(普通鋼),650N/mm(高降伏点鋼)の2水準、柱脚の回転剛性は剛、半剛の2種類とした。 In the test, the yield strength of the column material in the 10-layer 3-span frame model is 325 N / mm 2 (ordinary steel) and 650 N / mm 2 (high yield point steel), and the rotational rigidity of the column base is rigid and semi-rigid. The two types were as follows.

半剛接合する柱脚の回転剛性は、第1層の柱頭節点の回転剛性(但し第1層柱の影響は除く)と同じとし、地震波形の最大速度200kineは現行法(建築基準法)の二次設計で想定するレベルの約4倍である。   The rotational stiffness of the column bases that are semi-rigidly connected is the same as that of the first layer column head node (excluding the effect of the first layer column), and the maximum velocity of the seismic waveform of 200 kine is It is about 4 times the level assumed in the next design.

図1は本発明の第一の実施形態を模式的に示す図で、柱1を高降伏点鋼とし、梁2を普通鋼とした多層鉄骨構造物において、柱脚1aと基礎4を半剛接合とした場合を示す。   FIG. 1 schematically shows a first embodiment of the present invention. In a multi-layer steel structure in which a column 1 is made of high yield steel and a beam 2 is made of ordinary steel, the column base 1a and the foundation 4 are made semi-rigid. The case of joining is shown.

図2は図1に示した多層鉄骨構造物の第1層における柱の曲げモーメント分布を模式的に示す図で、柱脚1aと基礎4を第1層の柱頭の固定度と同じ半剛接合とすることにより、曲げモーメント分布における中立点bが階高の略1/2に位置し、柱脚1aに過大な曲げモーメントが負荷されることが防止される。(図では、半剛接合を示すため、曲げモーメントの中立点bは階高中心より上方に表示されている。)
図3は本発明の第二の実施形態を示す図で、第1層において、基礎梁5を用い、基礎梁5と柱1を半剛接合する場合を示す。
FIG. 2 is a diagram schematically showing the bending moment distribution of the column in the first layer of the multi-layered steel structure shown in FIG. 1. The column base 1a and the foundation 4 are semi-rigidly connected with the same degree of fixing of the column head of the first layer. By doing so, the neutral point b in the bending moment distribution is located at approximately half of the floor height, and an excessive bending moment is prevented from being applied to the column base 1a. (In the figure, the neutral point b of the bending moment is displayed above the center of the floor height to show a semi-rigid connection.)
FIG. 3 is a diagram showing a second embodiment of the present invention. In the first layer, the foundation beam 5 is used and the foundation beam 5 and the column 1 are semi-rigidly joined.

柱脚1aと基礎4、柱1と基礎梁5の接合部において、柱脚1a,柱1を制震装置を介して基礎(地平面4)や基礎梁5に接合することも可能であり,その場合柱の損傷がさらに低減される。制震装置は曲げモーメントに対して作用する履歴型ダンパーが適しており,降伏耐力は柱の曲げ降伏耐力よりも低く,初期回転剛性は第1層の柱頭節点の回転剛性(但し第1層柱の影響は除く)よりも大きいことが望ましい。
本発明に係る多層鉄骨構造物を設計する際、柱の曲げモーメント分布は設計用水平地震力を入力して求める。
It is also possible to join the column base 1a and the column 1 to the foundation (the ground plane 4) and the foundation beam 5 through a vibration control device at the joint between the column base 1a and the foundation 4 and the column 1 and the foundation beam 5. In that case, damage to the column is further reduced. Hysteretic dampers that act on the bending moment are suitable for the vibration control device , the yield strength is lower than the bending yield strength of the column, and the initial rotational stiffness is the rotational stiffness of the first layer column head node (however, the first layer column It is desirable to be greater than
When designing the multi-layered steel structure according to the present invention, the bending moment distribution of the column is obtained by inputting the horizontal seismic force for design.

本発明の一実施形態を示す図。The figure which shows one Embodiment of this invention. 本発明の作用効果を示す図。The figure which shows the effect of this invention. 本発明の第二の実施形態を示す図。The figure which shows 2nd embodiment of this invention. 2層以上の柱の損傷に及ぼす柱梁の降伏応力と柱端の回転剛性の影響を示す図。The figure which shows the influence of the yield stress of a column beam and the rotation rigidity of a column end which gives to the damage of the column of two or more layers. 第1層の柱の損傷に及ぼす柱梁の降伏応力と柱端の回転剛性の影響を示す図。The figure which shows the influence of the yield stress of a column beam and the rotational rigidity of a column end which gives to the damage of the column of the 1st layer. 部分崩壊モードを説明する図。The figure explaining partial collapse mode. 全体崩壊モードを説明する図。The figure explaining the whole collapse mode. 柱の曲げモーメント分布図。Bending moment distribution chart of a column. 各層の梁端に損傷が分散する崩壊モードにおいて第1層が崩壊層となる場合を模式的に示す図。The figure which shows typically the case where a 1st layer turns into a collapsed layer in the collapse mode where damage disperse | distributes to the beam end of each layer.

符号の説明Explanation of symbols

1 柱
1a 柱脚
2 梁
3 柱梁接合部
4 基礎(地平面)
5 基礎梁
10 柱(従来例)
10a柱脚
10b柱頭
10c柱下端
10d柱上端
20 梁(従来例)
30 塑性ヒンジ(従来例)
40 柱梁接合部(従来例)
50 基礎(地平面)(従来例)
1 Column 1a Column base 2 Beam 3 Beam-column joint 4 Foundation (ground plane)
5 foundation beam 10 pillar (conventional example)
10a column base 10b column head 10c column bottom 10d column top 20 beam (conventional example)
30 Plastic hinge (conventional example)
40 Beam-column joint (conventional example)
50 foundation (ground plane) (conventional example)

Claims (4)

柱梁耐力比を1.2超えとした骨組構造からなる多層鉄骨構造物において、柱部材の降伏応力を梁部材の降伏応力より高く設定し、第1層における柱脚と基礎との接合を半剛接合とする際、前記柱部材は高降伏点鋼とし、前記半剛接合における前記柱脚の回転剛性を、前記第1層の柱頭の固定度とほぼ同じとすることを特徴とする多層鉄骨構造物。 In a multi-layer steel structure with a frame structure with a beam-bearing strength ratio exceeding 1.2 , the yield stress of the column member is set higher than the yield stress of the beam member, and the joint between the column base and the foundation in the first layer is half In the case of rigid joining, the column member is made of high yield point steel, and the rotational rigidity of the column base in the semi-rigid joining is made substantially the same as the fixing degree of the column head of the first layer. Structure. 前記柱脚前記基礎とを、制震装置を介して接合することを特徴とする請求項1記載の多層鉄骨構造物。 The multilayer steel structure according to claim 1, wherein the column base and the foundation are joined via a vibration control device. 柱梁耐力比を1.2超えとした骨組構造からなる多層鉄骨構造物において、柱部材の降伏応力を梁部材の降伏応力より高く設定し、第1層におけると基礎梁との接合を半剛接合とする際、前記柱部材は高降伏点鋼とし、前記半剛接合における前記柱脚の回転剛性を、前記第1層の柱頭の固定度とほぼ同じとすることを特徴とする多層鉄骨構造物。 In a multi-layered steel structure with a frame structure with a beam-bearing strength ratio exceeding 1.2 , the yield stress of the column member is set higher than the yield stress of the beam member, and the connection between the column and the foundation beam in the first layer is half In the case of rigid joining, the column member is made of high yield point steel, and the rotational rigidity of the column base in the semi-rigid joining is made substantially the same as the fixing degree of the column head of the first layer. Structure. 前記柱前記基礎梁とを、制震装置を介して接合することを特徴とする請求項3記載の多層鉄骨構造物。 The multilayer steel structure according to claim 3, wherein the column and the foundation beam are joined via a vibration control device.
JP2004225678A 2004-08-02 2004-08-02 Multi-layer steel structure Expired - Fee Related JP4424112B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004225678A JP4424112B2 (en) 2004-08-02 2004-08-02 Multi-layer steel structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004225678A JP4424112B2 (en) 2004-08-02 2004-08-02 Multi-layer steel structure

Publications (2)

Publication Number Publication Date
JP2006045821A JP2006045821A (en) 2006-02-16
JP4424112B2 true JP4424112B2 (en) 2010-03-03

Family

ID=36024719

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004225678A Expired - Fee Related JP4424112B2 (en) 2004-08-02 2004-08-02 Multi-layer steel structure

Country Status (1)

Country Link
JP (1) JP4424112B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5196638B2 (en) * 2007-09-26 2013-05-15 大成建設株式会社 Column base semi-rigid joint building
WO2010103801A1 (en) * 2009-03-12 2010-09-16 新日本製鐵株式会社 Seismic resistant steel structure and method for designing same
TW201116687A (en) * 2009-03-12 2011-05-16 Nippon Steel Corp Seismic-resistant steel framed structure
JP6434765B2 (en) * 2014-09-30 2018-12-05 高周波熱錬株式会社 Design method for reinforced concrete structures
JP6739206B2 (en) * 2016-03-30 2020-08-12 大成建設株式会社 Joint structure of foundation and steel reinforced concrete column and building structure provided with the joint structure
JP2019196698A (en) * 2018-05-02 2019-11-14 日本製鉄株式会社 Structural steelwork and design method of structural steelwork

Also Published As

Publication number Publication date
JP2006045821A (en) 2006-02-16

Similar Documents

Publication Publication Date Title
JP6786224B2 (en) Column-beam structure with anti-vibration structure
JP6136680B2 (en) Damping damper for building and damping structure of building
JP4424112B2 (en) Multi-layer steel structure
JP6899264B2 (en) Architectural structure with roof frame
JP6274792B2 (en) Building ramen frame
JP2009185469A (en) Beam flexual yielding preceding type frame
JP2006045820A (en) Multistoried steel-frame structure
JP2008075314A (en) Aseismic control structure of connected buildings
JP4450391B2 (en) Damping structure and panel for building wall
JP2002221252A (en) Vibration-resistant damper
JP6009432B2 (en) Bearing wall with brace and brace
JP6837865B2 (en) Vibration control building
JP6415879B2 (en) Steel structure
JP2009281074A (en) Connecting vibration control structure of building
JP6364225B2 (en) Connected vibration control structure
JP2009185531A (en) Seismic response controlled building
JP7371824B2 (en) Building load-bearing wall structure and building load-bearing wall construction method
JP7022015B2 (en) Building reinforcement method
JP5664330B2 (en) Connected structure
JP2006336336A (en) Earthquake resistant structure of building
JPH11172953A (en) Flexible and rigid combination structure
JP6144033B2 (en) Load bearing wall frame
JP2016166465A (en) Brace type vibration control device
JP3790755B2 (en) Damping structure of wooden buildings
JP2008063914A (en) Seismic response control frame

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20060921

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090423

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090512

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090612

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20091117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20091130

R150 Certificate of patent or registration of utility model

Ref document number: 4424112

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121218

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131218

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees