JP2010121384A - Seismic retrofitting method and building - Google Patents

Seismic retrofitting method and building Download PDF

Info

Publication number
JP2010121384A
JP2010121384A JP2008297287A JP2008297287A JP2010121384A JP 2010121384 A JP2010121384 A JP 2010121384A JP 2008297287 A JP2008297287 A JP 2008297287A JP 2008297287 A JP2008297287 A JP 2008297287A JP 2010121384 A JP2010121384 A JP 2010121384A
Authority
JP
Japan
Prior art keywords
corrugated
earthquake
opening
seismic
steel plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008297287A
Other languages
Japanese (ja)
Inventor
Ai Urabe
藍 卜部
Yoshihiro Ota
義弘 太田
Mitsuru Takeuchi
満 竹内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Komuten Co Ltd
Original Assignee
Takenaka Komuten Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Komuten Co Ltd filed Critical Takenaka Komuten Co Ltd
Priority to JP2008297287A priority Critical patent/JP2010121384A/en
Publication of JP2010121384A publication Critical patent/JP2010121384A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Panels For Use In Building Construction (AREA)
  • Working Measures On Existing Buildindgs (AREA)
  • Load-Bearing And Curtain Walls (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a seismic retrofitting method capable of reducing labor for work. <P>SOLUTION: While strength is decreased by forming slits 46A and 46B in an existing wall 40, the toughness of the whole frame 12 is increased by fixing a corrugated earthquake-resisting member 26 to upper and lower interior walls 42A and 42B of an opening 42. In other words, the amount of the story deformation of the frame 12 is increased by forming the slits 46A and 46B in the existing wall 40; and the amount of the shear deformation of the corrugated earthquake-resisting member 26 fixed to the upper and lower interior walls 42A and 42B of the opening 42 is increased. Consequently, an earthquake-resisting effect is exerted. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

架構の構面に設けられた既存壁の耐震改修方法、及び建物に関する。   The present invention relates to a seismic repair method for existing walls provided on the construction surface of a frame and a building.

開口部を備える既存壁の耐震改修では、コンクリートを増し打ちしたり、制振ブレース等の制振要素を設置したりして、耐力、靭性を高めることが一般的に行われる。しかしながら、コンクリートを増し打ちした場合、建物の重量が増加するだけでなく、耐力の増強に伴って剛性が増大して建物周期が短くなり、建物に作用する地震力が増大する恐れがある。更に、コンクリート増し打ち工法では、型枠の設置、コンクリート打設、コンクリート養生等の煩雑な作業を伴うため、工期が長期化する懸念がある。   In the seismic retrofitting of existing walls with openings, it is common practice to increase the strength and toughness by adding more concrete or installing damping elements such as damping braces. However, when concrete is struck repeatedly, not only the weight of the building increases, but also the rigidity increases as the proof stress increases, the building cycle becomes shorter, and the seismic force acting on the building may increase. Further, the concrete reinforcement method involves complicated work such as installation of formwork, concrete placement, and concrete curing, and there is a concern that the construction period will be prolonged.

一方、制振ブレース等のエネルギー吸収機構を備える制振部材と、剛性の大きい既存壁とを併用すると、既存壁の剛性によって建物の変形が小さくなり、建物の変形によってエネルギーを吸収する制振部材の制振効果を低下する恐れがある。   On the other hand, when a damping member having an energy absorbing mechanism such as a damping brace and an existing wall with high rigidity are used in combination, the deformation of the building is reduced by the rigidity of the existing wall, and the damping member absorbs energy by the deformation of the building. There is a risk of reducing the vibration control effect.

ところで、特許文献1には、既存建物の架構に波形鋼板を設置する耐震補強方法が提案されている。また、特許文献2には、架構を構成する左右の柱との間にスペースを空けて波形鋼板を設置した制振間柱が提案されている。これらの特許文献1、2に開示された波形鋼板は、鋼板を波形形状に加工して構成され、その折り筋を横にして架構の構面に配置される。従って、この波形鋼板は、鉛直方向にアコーディオンのように伸縮するため架構の構成する上下の梁等を拘束せず、ラーメン構造としての変形性能(靭性)を阻害しない。一方、波形鋼板は水平力に対しては抵抗可能であり、架構に耐力を付与することができる。更に、鋼板の材質強度、板厚、重ね合わせ枚数、波形のピッチ、波高等を変えることでその耐力を調整可能であり、設計自由度が高く、優れた耐震性能を有している。しかしながら、特許文献1、2は既存壁を活用するものではない。
特開2006−37628号公報 特開2006−37581号公報
By the way, Patent Document 1 proposes a seismic reinforcement method in which corrugated steel plates are installed on the frame of an existing building. Further, Patent Document 2 proposes a vibration suppression pillar in which corrugated steel plates are installed with a space between the left and right pillars constituting the frame. The corrugated steel sheets disclosed in these Patent Documents 1 and 2 are formed by processing a steel sheet into a corrugated shape, and are arranged on the frame of the frame with the crease line lying sideways. Therefore, since this corrugated steel sheet expands and contracts like an accordion in the vertical direction, the upper and lower beams constituting the frame are not constrained, and the deformation performance (toughness) as a rigid frame structure is not hindered. On the other hand, the corrugated steel sheet can resist horizontal force and can give strength to the frame. Furthermore, the strength of the steel sheet can be adjusted by changing the material strength, thickness, number of stacked sheets, corrugated pitch, wave height, etc., and the design flexibility is high and the seismic performance is excellent. However, Patent Documents 1 and 2 do not utilize existing walls.
JP 2006-37628 A JP 2006-37581 A

本発明は、上記の事実を考慮し、既存壁を活用した耐震改修方法を提供する目的とする。   In view of the above facts, the present invention has an object to provide an earthquake-proof repair method using existing walls.

請求項1に記載の耐震改修方法は、柱と上下の水平部材とから構成された架構の構面に設けられた既存壁の開口部の上下の内壁に鋼板の横辺を固定し、該鋼板の縦辺に沿って又は平行に、前記既存壁に前記水平部材に至るスリット又は溝を形成する。   The seismic retrofitting method according to claim 1, wherein the lateral sides of the steel plate are fixed to the upper and lower inner walls of the opening portion of the existing wall provided on the construction surface of the frame composed of columns and upper and lower horizontal members, A slit or a groove reaching the horizontal member is formed in the existing wall along or in parallel with the vertical side.

上記の方法によれば、既存壁にスリット又は溝を形成して耐力を小さくする一方で、開口部の上下の内壁に鋼板の横辺を固定して架構全体の靭性を大きくする、いわゆる靭性型の耐震補強を行う。即ち、鋼板の縦辺に沿って又は縦辺と平行に、既存壁にスリット又は溝を形成することで架構の層間変形量を大きくすると共に、開口部の上下の内壁に横辺が固定された鋼板のせん断変形量を大きくして耐震効果を発揮させる。   According to the above method, a so-called toughness type is formed in which slits or grooves are formed in the existing wall to reduce the proof stress, while the lateral sides of the steel plate are fixed to the upper and lower inner walls of the opening to increase the toughness of the entire frame. Seismic reinforcement of That is, the amount of inter-layer deformation of the frame is increased by forming slits or grooves in the existing wall along or parallel to the longitudinal side of the steel plate, and the lateral sides are fixed to the inner walls above and below the opening. Increase the amount of shear deformation of the steel plate to exert the seismic effect.

ここで、地震等により架構に水平力が作用すると、架構がラーメン構造としての耐震性能を発揮すると共に、開口部の上下の内壁が水平方向に相対変位し、鋼板に水平力が伝達される。これにより、鋼板がせん断変形して耐震効果を発揮する。また、水平力に対して鋼板が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。このように、既存壁を活用して鋼板を架構に設置することで、耐震性能に優れた耐震改修を行うことができる。   Here, when a horizontal force acts on the frame due to an earthquake or the like, the frame exhibits seismic performance as a rigid frame structure, and the inner walls above and below the opening are relatively displaced in the horizontal direction, and the horizontal force is transmitted to the steel plate. Thereby, a steel plate carries out a shear deformation and exhibits an earthquake resistance effect. In addition, by designing the steel plate to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel plate, and a damping effect is exhibited. In this way, by using the existing wall and installing the steel plate on the frame, it is possible to perform earthquake-resistant repair with excellent earthquake resistance.

また、既存壁が外壁等の場合に、スリットではなく溝を既存壁に形成することで、建物内部に浸入する雨等を防止することができる。この場合、想定される地震等の水平力に応じて溝の深さを調整し、地震時に溝を境に既存壁が分離するように構成することで、スリットと同様の効果を得ることができる。   In addition, when the existing wall is an outer wall or the like, it is possible to prevent rain or the like entering the building by forming a groove instead of a slit in the existing wall. In this case, it is possible to obtain the same effect as the slit by adjusting the depth of the groove according to the assumed horizontal force such as an earthquake and separating the existing wall from the groove at the time of the earthquake. .

請求項2に記載の耐震改修方法は、柱と上下の水平部材とから構成された架構の構面に設けられた既存壁の開口部の内壁から前記水平部材に至るスリット又は溝を形成し、対向する前記スリット又は前記溝で挟まれた前記開口部の上下の内壁に鋼板の横辺を固定する。   The seismic retrofit method according to claim 2 forms a slit or groove extending from the inner wall of the opening of the existing wall provided on the construction surface of the frame composed of columns and upper and lower horizontal members to the horizontal member, The lateral sides of the steel plate are fixed to the upper and lower inner walls of the opening sandwiched between the opposing slits or grooves.

上記の方法によれば、既存壁にスリット又は溝を形成して耐力を小さくする一方で、開口部の上下の内壁に鋼板の横辺を固定して架構全体の靭性を大きくする、いわゆる靭性型の耐震補強を行う。即ち、開口部の内壁から水平部材に至るスリット又は溝を既存壁に形成することで架構の層間変形量を大きくすると共に、対向するスリット又は溝で挟まれた開口部の上下の内壁に横辺が固定された鋼板のせん断変形量を大きくして耐震効果を発揮させる。   According to the above method, a so-called toughness type is formed in which slits or grooves are formed in the existing wall to reduce the proof stress, while the lateral sides of the steel plate are fixed to the upper and lower inner walls of the opening to increase the toughness of the entire frame. Seismic reinforcement of That is, a slit or groove extending from the inner wall of the opening to the horizontal member is formed on the existing wall to increase the amount of inter-layer deformation of the frame, and the side walls on the upper and lower inner walls of the opening sandwiched by the opposing slit or groove Increases the amount of shear deformation of the steel plate to which is fixed, and demonstrates the seismic effect.

ここで、地震等により架構に水平力が作用すると、架構がラーメン構造としての耐震性能を発揮すると共に、開口部の上下の内壁が水平方向に相対変位し、鋼板に水平力が伝達される。これにより、鋼板がせん断変形して耐震効果を発揮する。また、水平力に対して鋼板が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。このように、既存壁を活用して鋼板を架構に設置することで、耐震性能に優れた耐震改修を行うことができる。   Here, when a horizontal force acts on the frame due to an earthquake or the like, the frame exhibits seismic performance as a rigid frame structure, and the inner walls above and below the opening are relatively displaced in the horizontal direction, and the horizontal force is transmitted to the steel plate. Thereby, a steel plate carries out a shear deformation and exhibits an earthquake resistance effect. In addition, by designing the steel plate to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel plate, and a damping effect is exhibited. In this way, by using the existing wall and installing the steel plate on the frame, it is possible to perform earthquake-resistant repair with excellent earthquake resistance.

請求項3に記載の耐震改修方法は、請求項1又は請求項2に記載の耐震改修方法において、前記既存壁の複数の前記開口部のそれぞれに、前記鋼板を固定する。   The earthquake-resistant repair method according to claim 3 is the earthquake-resistant repair method according to claim 1 or 2, wherein the steel plate is fixed to each of the plurality of openings of the existing wall.

上記の方法によれば、既存壁の複数の開口部のそれぞれに鋼板を固定する。このように、求められる耐震性能に応じて鋼板を設置することができる。   According to said method, a steel plate is fixed to each of the some opening part of the existing wall. Thus, a steel plate can be installed according to the required seismic performance.

請求項4に記載の耐震改修方法は、請求項1又は請求項2に記載の耐震改修方法において、前記開口部に、横方向に間隔を空けて複数の鋼板を固定する。   The earthquake-resistant repair method according to claim 4 is the earthquake-resistant repair method according to claim 1 or 2, wherein a plurality of steel plates are fixed to the opening portion at intervals in the lateral direction.

上記の方法によれば、一つの開口部に、横方向に間を空けて複数の鋼板を固定し、各鋼板の縦辺に沿って又は平行に、既存壁にスリット又は溝を形成する。若しくは、一つの開口部の内壁から水平部材に至るスリット又は溝を既存壁に形成し、これらの対向する複数組みのスリット又は溝で挟まれた開口部の上下の内壁にそれぞれ鋼板の横辺を固定する。このように、求められる耐震性能に応じて鋼板を設置することができる。この場合、1つの開口部の形状、大きさに合わせた鋼板を特別製造するのではなく、標準化された鋼板(規格品)を複数取りつけることで、製造効率を向上しつつ所定の耐震性能、制振性能を得ることができる。   According to the above method, a plurality of steel plates are fixed to one opening portion in the transverse direction, and slits or grooves are formed in the existing wall along or in parallel with the vertical sides of each steel plate. Alternatively, a slit or groove extending from the inner wall of one opening to the horizontal member is formed in the existing wall, and the horizontal sides of the steel plates are respectively formed on the upper and lower inner walls of the opening sandwiched between these opposed sets of slits or grooves. Fix it. Thus, a steel plate can be installed according to the required seismic performance. In this case, instead of specially manufacturing a steel plate that matches the shape and size of a single opening, a plurality of standardized steel plates (standard products) can be attached to improve the manufacturing efficiency and achieve a predetermined seismic performance and control. Vibration performance can be obtained.

請求項5に記載の耐震改修方法は、請求項1〜4の何れか1項に記載の耐震改修方法において、前記鋼板が固定された前記既存壁を残して、他の前記既存壁の一部又は全部を撤去する。   The earthquake-resistant repair method according to claim 5 is the earthquake-resistant repair method according to any one of claims 1 to 4, wherein the existing wall to which the steel plate is fixed is left and a part of the other existing wall is left. Or remove all.

上記の方法によれば、鋼板の横辺が固定された既存壁を残して、他の既存壁の一部又は全部を撤去する。このように他の既存壁を一部又は全部を撤去することで、既存壁の耐力を調整することができる。また、架構の層間変形量が大きくなると共に鋼板のせん断変形量が大きくなり、架構全体の靭性が向上する。更に、採光性、通風性、設備の配線・配管性、意匠性が増し、更に設計自由度が向上する。   According to said method, the existing wall where the horizontal side of the steel plate was fixed was left, and some or all of the other existing walls are removed. Thus, the proof stress of the existing wall can be adjusted by removing a part or all of the other existing wall. Further, the amount of interlayer deformation of the frame increases and the amount of shear deformation of the steel plate increases, improving the toughness of the entire frame. Furthermore, daylighting, ventilation, facility wiring / pipeability, and design are increased, and design flexibility is further improved.

請求項6に記載の耐震改修方法は、請求項1〜5の何れか1項に記載の耐震改修方法において、前記鋼板が、波形鋼板である。   The earthquake-resistant repair method according to claim 6 is the earthquake-resistant repair method according to any one of claims 1 to 5, wherein the steel plate is a corrugated steel plate.

上記の方法によれば、鋼板が波形鋼板とされている。波形鋼板は、水平力に対しては抵抗可能であり、せん断変形することで耐震性能を発揮する。また、水平力に対して波形鋼板耐震壁が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。従って、耐震性能・制振性能に優れた耐震改修を行うことができる。更に、鋼板を波形形状とすることで、せん断座屈耐力・変形性能を向上させることができ、通常の鋼板を用いる場合よりもせん断座屈防止手段としての補剛リブを減らすことができる。また、波形鋼板は、折り筋と直交する方向には剛性が弱いというアコーディオン効果を有するため(図1(A)では鉛直方向の剛性が弱い)、上下の水平部材の曲げ変形を阻害しない特性、及びクリープや積載荷重の変化による水平部材のたわみ増大に起因する軸力変動がない特性を有するため、既存建物の性能を向上させることが容易である。   According to said method, the steel plate is made into the corrugated steel plate. Corrugated steel plates can resist horizontal forces and exhibit seismic performance by shear deformation. Moreover, by designing the corrugated steel shear wall to yield with respect to the horizontal force, the vibration energy is absorbed by the hysteresis energy of the steel plate, and the damping effect is exhibited. Therefore, it is possible to perform earthquake-resistant repair with excellent seismic performance and damping performance. Furthermore, by making the steel plate into a corrugated shape, the shear buckling strength and deformation performance can be improved, and stiffening ribs as means for preventing shear buckling can be reduced as compared with the case of using a normal steel plate. In addition, the corrugated steel sheet has an accordion effect in which the rigidity is weak in the direction perpendicular to the crease (the rigidity in the vertical direction is weak in FIG. 1A), and therefore does not hinder the bending deformation of the upper and lower horizontal members, In addition, since it has a characteristic that there is no axial force fluctuation caused by an increase in the deflection of the horizontal member due to a change in creep or loading load, it is easy to improve the performance of the existing building.

請求項7に記載の建物は、請求項1〜6の何れか1項に記載の耐震改修方法によって改修されている。   The building according to claim 7 is repaired by the earthquake-resistant repair method according to any one of claims 1 to 6.

上記の構成によれば、請求項1〜6の何れか1項に記載の耐震改修方法を用いることで、耐震性能に優れた建物にすることができる。   According to said structure, it can be set as the building excellent in earthquake-resistant performance by using the earthquake-proof repair method of any one of Claims 1-6.

本発明は、上記の構成としたので、耐力及び靭性を増強しつつ、作業の手間を低減できる。   Since this invention was set as said structure, the effort of a work can be reduced, strengthening proof stress and toughness.

以下、図面を参照しながら本発明の実施形態に係る耐震改修方法、及び耐震改修方法によって改修された建物について説明する。図1(A)及び図1(B)には、本発明の実施形態に係る耐震改修方法によって改修された建物10が示されている。   Hereinafter, an earthquake-proof repair method according to an embodiment of the present invention and a building repaired by the earthquake-proof repair method will be described with reference to the drawings. FIG. 1 (A) and FIG. 1 (B) show a building 10 that has been repaired by the earthquake-resistant repair method according to the embodiment of the present invention.

建物10を構成する架構12は、左右の鉄筋コンクリート(以下、「RC」という)造の柱14、16とRC造の上下の梁18、20(水平部材)によって構成され、ラーメン構造とされている。上下の梁18、20にはそれぞれ上連結部40A、下連結部40Bが設けられている。上連結部40A及び下連結部40Bは後述するように既存壁40の一部で構成されており、上連結部40Aは梁18の下面から下向きに突出して設けられ、下連結部40Bは梁20の上面から上向きに突出して設けられている。   A frame 12 constituting the building 10 is composed of left and right reinforced concrete (hereinafter referred to as “RC”) columns 14 and 16 and RC upper and lower beams 18 and 20 (horizontal members), and has a ramen structure. . The upper and lower beams 18 and 20 are provided with an upper connecting portion 40A and a lower connecting portion 40B, respectively. As will be described later, the upper connecting portion 40A and the lower connecting portion 40B are configured by a part of the existing wall 40. The upper connecting portion 40A is provided so as to protrude downward from the lower surface of the beam 18, and the lower connecting portion 40B is provided on the beam 20. Is provided so as to protrude upward from the upper surface.

上連結部40Aと下連結部40Bとの間には波形耐震部材26が配置されている。波形耐震部材26は波形鋼板28(鋼板)と枠体30とを備えている。波形鋼板28は、鋼板を波形形状に折り曲げ加工して構成されており、その折り筋を横(折り筋の向きを横方向)にして架構12の構面に配置されている。波形鋼板28の材料としては、普通鋼(例えば、SM490、SS400等)や低降伏点鋼(例えば、LY225等)等が用いられる。   A corrugated seismic member 26 is disposed between the upper connecting portion 40A and the lower connecting portion 40B. The corrugated seismic member 26 includes a corrugated steel plate 28 (steel plate) and a frame 30. The corrugated steel sheet 28 is configured by bending a steel sheet into a corrugated shape, and is disposed on the surface of the frame 12 with the crease being lateral (the direction of the crease is lateral). As the material of the corrugated steel plate 28, ordinary steel (for example, SM490, SS400, etc.), low yield point steel (for example, LY225, etc.), or the like is used.

波形鋼板28の左右の端部には、縦フランジ32A、32Bがそれぞれ設けられている。この縦フランジ32A、32Bはプレート状に形成されており、波形鋼板28の左右の端部に沿って溶接固定されている。また、波形鋼板28の上下の端部には、鋼製の横フランジ34A、34Bがそれぞれ設けられている。この横フランジ34A、34Bは、プレート状に形成されており、波形鋼板28の上下の端部に沿って溶接固定されている。これらの縦フランジ32A、32B及び横フランジ34A、34Bは、各々の端部同士が溶接等によって接合されており、これによって波形鋼板28の外周部を囲む枠体30が構成されている。なお、縦フランジ32A、32B及び横フランジ34A、34Bはそれぞれ波形耐震部材26の縦辺、横辺に相当する。   Vertical flanges 32 </ b> A and 32 </ b> B are respectively provided at the left and right ends of the corrugated steel sheet 28. The vertical flanges 32 </ b> A and 32 </ b> B are formed in a plate shape, and are fixed by welding along the left and right ends of the corrugated steel sheet 28. Further, steel lateral flanges 34 </ b> A and 34 </ b> B are provided at upper and lower ends of the corrugated steel sheet 28, respectively. The lateral flanges 34A and 34B are formed in a plate shape, and are fixed by welding along upper and lower ends of the corrugated steel sheet 28. The end portions of the vertical flanges 32A and 32B and the horizontal flanges 34A and 34B are joined together by welding or the like, thereby forming a frame body 30 surrounding the outer peripheral portion of the corrugated steel sheet 28. The vertical flanges 32A and 32B and the horizontal flanges 34A and 34B correspond to the vertical and horizontal sides of the corrugated seismic resistant member 26, respectively.

横フランジ34A、34Bはそれぞれ上連結部40Aの内壁42A(開口部の上の内壁)、下連結部40Bの内壁42B(開口部の下の内壁)に固定されており、これによって上連結部40Aと下連結部40Bとが波形耐震部材26によって連結されている。波形耐震部材26と左右の柱14、16との間にはそれぞれ開口36A、36Bが設けられており、これらの上連結部40A、下連結部40B、及び波形耐震部材26によって間柱が構成されている。   The lateral flanges 34A and 34B are respectively fixed to an inner wall 42A (an inner wall above the opening) of the upper connecting portion 40A and an inner wall 42B (an inner wall below the opening) of the lower connecting portion 40B, thereby the upper connecting portion 40A. And the lower connecting portion 40 </ b> B are connected by the corrugated seismic member 26. Openings 36A and 36B are provided between the corrugated seismic member 26 and the left and right columns 14 and 16, respectively, and the upper connecting portion 40A, the lower connecting portion 40B, and the corrugated seismic member 26 constitute an intermediary column. Yes.

なお、枠体30を構成する縦フランジ32A、32B及び横フランジ34A、34Bはプレート状に限らず、H型鋼、L型鋼、チャネル鋼等でも良い。また、波形耐震部材26のせん断座屈強度・耐力が小さい場合には、波形鋼板28に上下方向に延びる補剛リブを溶接等により接合してせん断座屈を防止することが望ましい。   The vertical flanges 32A and 32B and the horizontal flanges 34A and 34B constituting the frame body 30 are not limited to plates, and may be H-shaped steel, L-shaped steel, channel steel, or the like. Further, when the corrugated seismic member 26 has a small shear buckling strength and proof strength, it is desirable to prevent shear buckling by joining the corrugated steel plate 28 with a stiffening rib extending in the vertical direction by welding or the like.

次に、実施形態に係る耐震改修方法について説明する。   Next, the earthquake-proof repair method according to the embodiment will be described.

図2(A)には、架構12の構面に設けられた既存壁40が示されている。RC造からなる既存壁40は、左右の柱14、16及び上下の梁18、20と一体化されており、その中央部には窓や設備配線、配管等に用いられる開口部42が設けられている。   FIG. 2A shows an existing wall 40 provided on the construction surface of the frame 12. The existing wall 40 made of RC is integrated with the left and right columns 14 and 16 and the upper and lower beams 18 and 20, and an opening 42 used for windows, facility wiring, piping, etc. is provided at the center. ing.

先ず、図2(B)に示すように、波形耐震部材26を開口部42に設置する。次に、波形耐震部材26の横フランジ34A、34B(横辺)を開口部42の上下の内壁42A、42Bにそれぞれ固定する。横フランジ34A、34Bと内壁42A、42Bとは水平力を伝達可能に接合(固定)されていれば良く、エポキシ樹脂等の接着剤によって接着接合(接着工法)しても良いし、後述するようにスタッド等を用いて接合しても良い。一方、波形耐震部材26は、開口部42の左右の内壁42C、42Dとの間に隙間を空けて配置され、縦フランジ32A、32Bと左右の内壁42C、42Dとは接合されていない。   First, as shown in FIG. 2B, the corrugated seismic member 26 is installed in the opening 42. Next, the lateral flanges 34 </ b> A and 34 </ b> B (lateral sides) of the corrugated seismic member 26 are fixed to the upper and lower inner walls 42 </ b> A and 42 </ b> B of the opening 42, respectively. The horizontal flanges 34A and 34B and the inner walls 42A and 42B may be joined (fixed) so as to be able to transmit a horizontal force, and may be adhesively joined (adhesion method) with an adhesive such as epoxy resin, as will be described later. May be joined using a stud or the like. On the other hand, the corrugated seismic member 26 is disposed with a gap between the left and right inner walls 42C and 42D of the opening 42, and the vertical flanges 32A and 32B and the left and right inner walls 42C and 42D are not joined.

なお、本実施形態の波形耐震部材26は、開口部42の形状、大きさに合せて製作されているが、波形耐震部材26の大きさ、形状に合せて開口部42を広げても良い。また、開口部42はもともと既存壁40に設けられていたものに限らず、必要に応じて現場で設けても良い。   The corrugated seismic member 26 of this embodiment is manufactured according to the shape and size of the opening 42, but the opening 42 may be widened according to the size and shape of the corrugated earthquake resistant member 26. Moreover, the opening part 42 is not restricted to what was originally provided in the existing wall 40, You may provide in the field as needed.

次に、図3(A)に示すように、開口部42の上下にある既存壁40に、ダイヤモンドカッター等によりスリット46A、46Bをそれぞれ形成する。このスリット46A、46Bは波形耐震部材26の縦辺に沿って、即ち、縦フランジ32A、32Bの延長線上に沿って上下方向に形成される。スリット46Aは開口部42の上の内壁42Aから梁18の下面に至る長さを有し、スリット46Bは開口部42の下の内壁42Bから梁20の上面に至る長さを有している。これにより、対向するスリット46A又は対向するスリット46Bにより挟まれた既存壁40の部位が他の既存壁40の部位から分離され、開口部42の上方に上連結部40Aが形成され、開口部42の下方に下連結部40Bが形成される。なお、説明の便宜上、開口部42の左右に位置し、上連結部40A及び下連結部40Bと分離された他の既存壁の部位をそれぞれ既存壁40C、40Dとする。   Next, as shown in FIG. 3A, slits 46A and 46B are formed in the existing wall 40 above and below the opening 42 by a diamond cutter or the like. The slits 46A and 46B are formed in the vertical direction along the vertical side of the corrugated seismic member 26, that is, along the extended lines of the vertical flanges 32A and 32B. The slit 46 </ b> A has a length from the inner wall 42 </ b> A above the opening 42 to the lower surface of the beam 18, and the slit 46 </ b> B has a length from the inner wall 42 </ b> B below the opening 42 to the upper surface of the beam 20. Thereby, the site | part of the existing wall 40 pinched by the slit 46A which opposes, or the slit 46B which opposes is isolate | separated from the site | part of the other existing wall 40, 40 A of upper connection parts are formed above the opening part 42, and the opening part 42 A lower connecting portion 40B is formed below the lower portion. For convenience of explanation, other existing wall portions that are located on the left and right of the opening 42 and separated from the upper connecting portion 40A and the lower connecting portion 40B are referred to as existing walls 40C and 40D, respectively.

なお、スリット46A、46Bは、厳密に波形耐震部材26の縦フランジ32A、32Bに沿う必要はなく、横フランジ34A、34Bを固定するスペースを確保できれば良い。即ち、波形耐震部材26の縦辺(縦フランジ32A、32B)と略平行(厳密に平行である必要はなく、施工誤差等も含む)にスリット46A、46Bを形成しても良く、上連結部40A及び下連結部40Bの端部と縦フランジ32A、32Bとが面一になっていなくても良い。また、スリット46A及びスリット46Bは、同一線上にある必要はなく、水平方向にずれていても良い。   The slits 46A and 46B do not have to be strictly along the vertical flanges 32A and 32B of the corrugated seismic member 26, and it is only necessary to secure a space for fixing the horizontal flanges 34A and 34B. That is, the slits 46A and 46B may be formed substantially parallel to the vertical sides (vertical flanges 32A and 32B) of the corrugated seismic resistant member 26 (not necessarily strictly parallel, including construction errors, etc.). 40A and the edge part of the lower connection part 40B, and the vertical flanges 32A and 32B do not need to be flush. Moreover, the slit 46A and the slit 46B do not need to be on the same line, and may be shifted in the horizontal direction.

次に、図3(B)に示すように、既存壁40C、40Dの外周に沿って、既存壁40C、40Dと左右の柱14、16との間、及び既存壁40C、40Dと上下の梁18、20との間にダイヤモンドカッター等でスリット48をそれぞれ形成し、これらの既存壁40C、40Dを撤去する。これにより、波形耐震部材26と左右の柱14、16との間に、開口36A、36Bが形成される。   Next, as shown in FIG. 3B, along the outer peripheries of the existing walls 40C and 40D, between the existing walls 40C and 40D and the left and right columns 14 and 16, and between the existing walls 40C and 40D and the upper and lower beams. The slits 48 are respectively formed with a diamond cutter or the like between 18 and 20, and the existing walls 40C and 40D are removed. Thereby, openings 36 </ b> A and 36 </ b> B are formed between the corrugated earthquake-resistant member 26 and the left and right columns 14 and 16.

なお、上連結部40A又は下連結部40Bの剛性、耐力が小さい場合には、コンクリートを増し打ちしたり、鉄板等を沿わせて接合したりするなど適宜補強を施すことが望ましい。   When the upper connecting portion 40A or the lower connecting portion 40B has low rigidity and proof strength, it is desirable to reinforce appropriately by, for example, striking concrete or joining along an iron plate or the like.

次に、実施形態に係る耐震改修方法の作用について説明する。   Next, the effect | action of the earthquake-proof repair method which concerns on embodiment is demonstrated.

図4は、地震時等における架構12及び波形耐震部材26の変形状態を示している。なお、図4では、理解を容易にするために架構12及び波形耐震部材26の変形状態を誇張して示している。   FIG. 4 shows a deformed state of the frame 12 and the corrugated seismic member 26 during an earthquake or the like. In FIG. 4, the deformed state of the frame 12 and the corrugated seismic member 26 is exaggerated for easy understanding.

図4に示すように、風や地震等によって架構12に水平力(矢印F方向)が作用し、架構12に層間変形が生じると、波形鋼板28のアコーディオン効果によって上下の梁18、20の曲げ変形が阻害されないため、架構12がラーメン構造としての耐震性能を発揮する。また、上連結部40A及び下連結部40Bから水平力が波形耐震部材26に伝達され、波形鋼板28がせん断変形する。これにより、波形鋼板28が水平力に抵抗して耐震効果を発揮する。また、水平力に対して波形鋼板28が降伏するように設計することで、鋼板の履歴エネルギーによって振動エネルギーが吸収され、制振効果を発揮する。   As shown in FIG. 4, when a horizontal force (in the direction of arrow F) acts on the frame 12 due to wind, earthquake, or the like, and interlayer deformation occurs in the frame 12, the bending of the upper and lower beams 18, 20 is caused by the accordion effect of the corrugated steel sheet 28. Since the deformation is not hindered, the frame 12 exhibits seismic performance as a ramen structure. Further, the horizontal force is transmitted from the upper connecting portion 40A and the lower connecting portion 40B to the corrugated earthquake resistant member 26, and the corrugated steel plate 28 undergoes shear deformation. Thereby, the corrugated steel plate 28 resists a horizontal force and exhibits an earthquake resistance effect. Further, by designing the corrugated steel sheet 28 to yield with respect to the horizontal force, vibration energy is absorbed by the hysteresis energy of the steel sheet, and a damping effect is exhibited.

このように波形耐震部材26を用いることで、耐震性能、制振性能に優れた耐震補強を行うことができる。即ち、既存壁40C、40Dを撤去し、既存壁40の耐力を小さくする一方で、変形性能に優れた波形耐震部材26を設置して耐力を付与する。これにより、架構12の層間変形量が大きくなり、架構12がラーメン構造としての耐震性能を発揮すると共に、開口部42の上下の内壁42A、42Bに固定された波形耐震部材26に水平力が伝達されて耐震性能を発揮する。   By using the corrugated seismic member 26 as described above, it is possible to perform seismic reinforcement excellent in seismic performance and damping performance. That is, the existing walls 40C and 40D are removed to reduce the proof stress of the existing wall 40, while the corrugated seismic member 26 having excellent deformation performance is installed to give the proof strength. As a result, the amount of inter-layer deformation of the frame 12 increases, and the frame 12 exhibits seismic performance as a rigid frame structure, and a horizontal force is transmitted to the corrugated seismic members 26 fixed to the upper and lower inner walls 42A and 42B of the opening 42. Has been demonstrated seismic performance.

ここで、例えば、建物10に要求される目標耐震性能(耐震改修後の耐震性能)が、図5に示す曲線50で表せる場合、本実施形態の耐震改修方法によれば、耐震改修前の耐震性能52を耐震性能58へ移動(矢印C方向)させることができる。なお、符号52は耐震改修前の建物10の耐震性能であり、符号54、56、58は耐震改修後の建物10の耐震性能である。   Here, for example, when the target seismic performance required for the building 10 (seismic performance after seismic retrofit) can be represented by the curve 50 shown in FIG. 5, according to the seismic retrofit method of this embodiment, The performance 52 can be moved to the seismic performance 58 (arrow C direction). Reference numeral 52 denotes the earthquake resistance performance of the building 10 before the earthquake-resistant repair, and reference numerals 54, 56 and 58 denote earthquake resistance performance of the building 10 after the earthquake-proof repair.

耐震改修は、強度型(矢印A)と靭性型(矢印B)に大別されるところ、強度型を追求する場合、過度な増し打ち工法等によって地震力の増加、工期の長期化等の問題を生じ、靭性型を追求する場合、架構に対して大掛かりな補強が必要となり、強度型と同様の問題を生じる。この点、増し打ち工法と制振ブレース等を併用することで、耐力及び建物の変形性能を確保可能であるが、制振ブレースはその設置幅が大きくなり易く、室内等の利用スペースが狭くなる。更に、制振ブレースと剛性の大きい既存壁とを併用すると、既存壁の剛性によって建物の変形性能が低下し、建物の変形によってエネルギーを吸収する制振部材の制振効果が低下する恐れがある。   Seismic retrofits are broadly divided into strength type (arrow A) and toughness type (arrow B). When pursuing strength type, there are problems such as increase in seismic force and prolonged construction period due to excessive striking method. In the case of pursuing a tough type, a large amount of reinforcement is required for the frame, and the same problem as that of the strength type arises. In this regard, it is possible to secure the strength and deformation performance of the building by using the additional striking method and vibration suppression brace together, but the installation width of the vibration suppression brace tends to be large, and the use space such as indoors becomes narrow. . Furthermore, if the vibration suppression brace and the existing wall having high rigidity are used in combination, the deformation performance of the building is lowered due to the rigidity of the existing wall, and the vibration damping effect of the vibration damping member that absorbs energy may be reduced due to the deformation of the building. .

これに対して本実施形態における波形耐震部材26は、板厚、波形の形状(波形のピッチ、波高等)を変えることでその設置幅を調整可能であり、制振ブレースと比較して室内等のスペースを有効利用することができる。また、既存壁40にスリット46A、46Bを設け、更には既存壁40C、40Dを撤去することで、既存壁40の剛性・耐力を調整可能であるため、波形耐震部材26に耐震性能、制振性能を発揮させることができる。   On the other hand, the corrugated seismic member 26 in this embodiment can be adjusted in its installation width by changing the plate thickness and corrugated shape (corrugated pitch, wave height, etc.). Can be used effectively. In addition, since the existing wall 40 is provided with slits 46A and 46B, and the existing walls 40C and 40D are removed, the rigidity and strength of the existing wall 40 can be adjusted. Performance can be demonstrated.

また、開口部42に波形耐震部材26を設置して開口部42を塞ぐものの、既存壁40C、40Dを撤去して開口36A、36Bを形成することで、耐震改修前の既存壁40の開口率と同等、若しくはそれ以上の開口率を確保することができ、採光性、通風性、設備の配線・配管性、意匠性等を向上させることができる。   In addition, although the corrugated seismic member 26 is installed in the opening 42 to close the opening 42, the existing walls 40C and 40D are removed to form the openings 36A and 36B, so that the opening ratio of the existing wall 40 before the earthquake-resistant repair is formed. As a result, it is possible to ensure an aperture ratio equal to or higher than the above, and to improve lighting, ventilation, wiring / piping of equipment, design, and the like.

更に、波形耐震部材26とラーメン構造としての架構12とは、ともに変形性能が優れるため、これらの波形耐震部材26及び架構12の耐力を加算することができる。即ち、一般的にRC造の既存壁40の最大耐力を呈する変形角(以下、「最大耐力変形角」という)は、RC造の壁を設けないラーメン構造の最大耐力変形角よりも大幅に小さく、これらの耐力を単純に加算することはできない。一方、波形耐震部材26の最大耐力変形角は、板厚、波形の形状(波形のピッチ、波高等)を変えることで調整可能であり、また、その変形角は通常、RC造の壁を設けないラーメン架構の最大耐力変形角と近い値となるため、これらの耐力を加算することができる。   In addition, since the corrugated seismic member 26 and the frame 12 as a rigid frame structure are both excellent in deformation performance, the proof strength of the corrugated seismic member 26 and the frame 12 can be added. That is, generally, the deformation angle (hereinafter referred to as “maximum proof stress deformation angle”) of the existing RC wall 40 is significantly smaller than the maximum proof stress angle of the ramen structure without the RC wall. These proof strengths cannot simply be added. On the other hand, the maximum proof deformation angle of the corrugated seismic member 26 can be adjusted by changing the plate thickness and corrugated shape (corrugated pitch, wave height, etc.), and the deformation angle is usually provided with an RC wall. Since this is a value close to the maximum proof stress angle of the non-ramen frame, these proof strengths can be added.

また、波形鋼板28は、鋼板を波形形状とすることで、せん断座屈耐力・変形性能を向上させることができ、通常の鋼板を用いる場合よりもせん断座屈防止手段としての補剛リブを減らすことができる。また、波形鋼板28は、折り筋と直交する方向には剛性が弱いというアコーディオン効果を有するため、上下の梁18、20の曲げ変形を阻害しない特性、及びクリープや積載荷重の変化による梁18、20のたわみ増大に起因する軸力変動がない特性を有するため、建物10の性能を向上させることが容易である。   In addition, the corrugated steel sheet 28 can improve the shear buckling strength and deformation performance by making the corrugated steel sheet into a corrugated shape, and reduce the number of stiffening ribs as means for preventing shear buckling as compared with the case of using a normal steel sheet. be able to. Further, the corrugated steel sheet 28 has an accordion effect that the rigidity is weak in the direction orthogonal to the crease, so that the bending deformation of the upper and lower beams 18 and 20 is not inhibited, and the beam 18 due to a change in creep or load load, Since it has the characteristic which does not have the axial force fluctuation | variation resulting from 20 deflection | deviation increase, it is easy to improve the performance of the building 10. FIG.

次に、実施形態に係る耐震改修方法の変形例について説明する。なお、上記の実施形態と同じ構成のものは同符号を付すると共に適宜省略して説明する。   Next, the modification of the earthquake-proof repair method which concerns on embodiment is demonstrated. In addition, the thing of the same structure as said embodiment attaches | subjects a same sign, and abbreviate | omits suitably and demonstrates.

図6(A)に示すように、既存壁40には2つの開口部60、62が設けられている。この場合、2つの開口部60、62のそれぞれに波形耐震部材26を設置することができる。なお、開口部60、62はもともと既存壁40に設けられていたものに限らず、必要に応じて現場で設けても良い。   As shown in FIG. 6A, the existing wall 40 is provided with two openings 60 and 62. In this case, the corrugated seismic member 26 can be installed in each of the two openings 60 and 62. Note that the openings 60 and 62 are not limited to those originally provided in the existing wall 40, and may be provided on-site as necessary.

具体的には、図6(B)に示すように、既存壁40に設けられた2つの開口部60、62に、波形耐震部材26をそれぞれ配置する。次に、波形耐震部材26の横フランジ34A、34Bを開口部60上下の内壁60A、60B、62A、62Bにそれぞれ固定する。次に、図7(A)に示すように、開口部60、62の上下にある既存壁40に、波形耐震部材26の縦フランジ32A、32B(縦辺)に沿って又は縦フランジ32A、32Bと略平行に、上下の梁18、20に至るスリット46A、46Bをそれぞれ形成する。これにより、対向するスリット46A又は対向するスリット46Bにより挟まれた既存壁40の部位が他の既存壁40の部位から分離され、開口部42の上方に2つの上連結部40Aが形成され、開口部42の下方に2つの下連結部40Bが形成される。次に、図7(B)に示すように、既存壁40C、40D、40Eの外周に沿って、既存壁40C〜40Eと左右の柱14、16との間、及び既存壁40C〜40Eと上下の梁18、20との間にダイヤモンドカッター等でスリット48をそれぞれ形成し、これらの既存壁40C〜40Eを撤去する。これにより、波形耐震部材26と左右の柱14、16との間及び隣接する波形耐震部材26の間に、開口36A、36B、36Cが形成される。なお、既存壁40に設ける開口部60、62は2つに限らず、3つ以上あっても良い。   Specifically, as shown in FIG. 6B, the corrugated seismic members 26 are respectively disposed in the two openings 60 and 62 provided in the existing wall 40. Next, the lateral flanges 34A and 34B of the corrugated seismic member 26 are fixed to the inner walls 60A, 60B, 62A and 62B above and below the opening 60, respectively. Next, as shown in FIG. 7A, along the vertical flanges 32A and 32B (longitudinal sides) of the corrugated seismic member 26, or along the vertical flanges 32A and 32B, on the existing walls 40 above and below the openings 60 and 62, respectively. The slits 46A and 46B reaching the upper and lower beams 18 and 20 are formed substantially parallel to each other. Thereby, the site | part of the existing wall 40 pinched by the slit 46A which opposes, or the slit 46B which opposes is isolate | separated from the site | part of the other existing wall 40, and two upper connection parts 40A are formed above the opening part 42, and opening Two lower connecting portions 40 </ b> B are formed below the portion 42. Next, as shown in FIG. 7B, along the outer peripheries of the existing walls 40C, 40D, and 40E, between the existing walls 40C to 40E and the left and right pillars 14 and 16, and the existing walls 40C to 40E and the upper and lower sides. The slits 48 are respectively formed with a diamond cutter or the like between the beams 18 and 20, and the existing walls 40C to 40E are removed. Thereby, openings 36A, 36B, and 36C are formed between the corrugated seismic member 26 and the left and right columns 14 and 16 and between the adjacent corrugated seismic members 26. In addition, the opening parts 60 and 62 provided in the existing wall 40 are not limited to two, and may be three or more.

また、図8(A)及び図8(B)に示すように、既存壁40に2つの開口部60、62が設けられている場合、開口部60、62を隔てる既存壁40の部位40Xをダイヤモンドカッター等で切断して撤去し、開口部60、62を連結して一つの開口部64を設けても良い。開口部64には、図9(A)に示すように、開口部64の形状、大きさに応じた波形耐震部材26を設置し、横フランジ34A、34Bを開口部64の上下の内壁64A、64Bにそれぞれ固定する。次に、図9(B)に示すように、開口部64の上下にある既存壁40に、波形耐震部材26の縦フランジ32A、32Bに沿って又は縦フランジ32A、32Bと略平行に上下の梁18、20に至るスリット46A、46Bをそれぞれ形成する。次に、図9(B)に示すように、既存壁40C、40Dの外周に沿って、既存壁40C、40Dと左右の柱14、16との間、及び既存壁40C、40Dと上下の梁18、20との間にダイヤモンドカッター等でスリット48をそれぞれ形成し、これらの既存壁40C、40Dを撤去する。これにより、波形耐震部材26と左右の柱14、16との間に、開口36A、36Bが形成される。   8A and 8B, when two openings 60 and 62 are provided in the existing wall 40, the portion 40X of the existing wall 40 that separates the openings 60 and 62 is provided. It may be cut and removed with a diamond cutter or the like, and the openings 60 and 62 may be connected to provide one opening 64. As shown in FIG. 9A, the corrugated earthquake-resistant member 26 corresponding to the shape and size of the opening 64 is installed in the opening 64, and the horizontal flanges 34A and 34B are connected to the inner walls 64A above and below the opening 64, It fixes to 64B, respectively. Next, as shown in FIG. 9B, the upper and lower walls 40 on the upper and lower sides of the opening 64 are vertically moved along the vertical flanges 32A and 32B of the corrugated seismic member 26 or substantially parallel to the vertical flanges 32A and 32B. Slits 46A and 46B reaching the beams 18 and 20 are formed, respectively. Next, as shown in FIG. 9B, along the outer peripheries of the existing walls 40C, 40D, between the existing walls 40C, 40D and the left and right columns 14, 16, and between the existing walls 40C, 40D and the upper and lower beams. The slits 48 are respectively formed with a diamond cutter or the like between 18 and 20, and the existing walls 40C and 40D are removed. Thereby, openings 36 </ b> A and 36 </ b> B are formed between the corrugated earthquake-resistant member 26 and the left and right columns 14 and 16.

更に、図10(A)及び図10(B)に示すように、間口が広い開口部66に波形耐震部材26を設置しても良い。開口部66は、上の梁18から垂れ下げられた垂れ壁68と架構12の下部に設けられた腰壁70との間に設けられており、その間口は左右の柱14、16まである。   Further, as shown in FIGS. 10A and 10B, the corrugated seismic member 26 may be installed in the opening 66 having a wide frontage. The opening 66 is provided between a hanging wall 68 hanging down from the upper beam 18 and a waist wall 70 provided at the lower part of the frame 12, and the opening extends to the left and right columns 14 and 16.

先ず、開口部66の略中央部に波形耐震部材26を設置し、横フランジ34A、34Bを開口部66の上下の内壁66A、66Bにそれぞれ固定する。波形耐震部材26は、開口部66の間口より幅が狭く、開口部66に設置した時点で波形耐震部材26と左右の柱14、16との間に開口が形成されている。なお、図10(B)では、波形耐震部材26を開口部66の中央部に設置しているがこれに限らず、柱14側又は柱16側にずらして設置しても良い。   First, the corrugated seismic member 26 is installed at a substantially central portion of the opening 66, and the lateral flanges 34A and 34B are fixed to the upper and lower inner walls 66A and 66B of the opening 66, respectively. The corrugated seismic member 26 is narrower than the opening of the opening 66, and an opening is formed between the corrugated seismic member 26 and the left and right columns 14, 16 when installed in the opening 66. In FIG. 10B, the corrugated seismic member 26 is installed at the center of the opening 66, but the present invention is not limited to this, and it may be shifted to the column 14 side or the column 16 side.

次に、図11(A)に示すように、開口部66の上下にある垂れ壁68、腰壁70に、波形耐震部材26の縦フランジ32A、32Bに沿って又は縦フランジ32A、32Bと略平行に、上下の梁18、20に至るスリット46A、46Bをそれぞれ形成し、これらの垂れ壁68及び腰壁70を横方向に分割する。これにより、対向するスリット46A又は対向するスリット46Bにより挟まれた垂れ壁68、腰壁70の部位が他の垂れ壁68、腰壁70の部位から分離され、開口部66の上方に上連結部68Aが形成され、開口部66の下方に下連結部70Aが形成される。   Next, as shown in FIG. 11 (A), the drooping wall 68 and the waist wall 70 above and below the opening 66 are formed along the vertical flanges 32A and 32B of the corrugated seismic resistant member 26 or substantially as the vertical flanges 32A and 32B. In parallel, slits 46A and 46B reaching the upper and lower beams 18 and 20 are formed, respectively, and the hanging wall 68 and the waist wall 70 are divided in the lateral direction. As a result, the part of the hanging wall 68 and the waist wall 70 sandwiched between the facing slit 46A or the facing slit 46B is separated from the other hanging wall 68 and the part of the waist wall 70, and the upper connecting part is located above the opening 66. 68A is formed, and a lower connecting portion 70A is formed below the opening 66.

次に、上連結部68A及び下連結部70Aと分離された垂れ壁68B、68C及び腰壁70B、70Cの外周に沿って、垂れ壁68B、68C、腰壁70B、70Cと左右の柱14、16との間、及び垂れ壁68B、68C、腰壁70B、70Cと上下の梁18、20との間にダイヤモンドカッター等でスリット48をそれぞれ形成し、これらの垂れ壁68B、68C、腰壁70B、70Cを撤去する。これにより、波形耐震部材26と左右の柱14、16との間に、開口36A、36Bが形成される。   Next, along the outer peripheries of the hanging walls 68B, 68C and the waist walls 70B, 70C separated from the upper connecting portion 68A and the lower connecting portion 70A, the hanging walls 68B, 68C, the waist walls 70B, 70C and the left and right columns 14, 16 are provided. And slits 48 are formed by a diamond cutter or the like between the hanging walls 68B and 68C, the waist walls 70B and 70C, and the upper and lower beams 18 and 20, respectively, and the hanging walls 68B and 68C, the waist wall 70B, 70C is removed. Thereby, openings 36 </ b> A and 36 </ b> B are formed between the corrugated earthquake-resistant member 26 and the left and right columns 14 and 16.

また、図12(A)及び図12(B)に示すように、排煙等に用いられる開口部72に波形耐震部材26を設置しても良く、また、一つの開口部72に複数の波形耐震部材26を設置しても良い。開口部72は間口が広く、既存壁40の上部に設けられている。   In addition, as shown in FIGS. 12A and 12B, the corrugated seismic member 26 may be installed in the opening 72 used for exhausting smoke or the like. You may install the earthquake-resistant member 26. FIG. The opening 72 has a wide frontage and is provided in the upper part of the existing wall 40.

先ず、図12(B)に示すように、開口部72に3つの波形耐震部材26を横方向(水平方向)に間を空けて配置する。次に、波形耐震部材26の横フランジ34A、34Bを開口部72の上下の内壁72A、72Bにそれぞれ固定する。なお、図12(B)では、3つの波形耐震部材26を開口部72に設置しているがこれに限らず、1つ以上の波形耐震部材26を設置することができる。   First, as shown in FIG. 12B, the three corrugated seismic members 26 are arranged in the opening 72 with a gap in the horizontal direction (horizontal direction). Next, the lateral flanges 34 </ b> A and 34 </ b> B of the corrugated seismic member 26 are fixed to the upper and lower inner walls 72 </ b> A and 72 </ b> B of the opening 72, respectively. In FIG. 12B, the three corrugated seismic members 26 are installed in the opening 72, but the present invention is not limited to this, and one or more corrugated seismic members 26 can be installed.

次に、図13(A)に示すように、開口部72の上下にある既存壁40に、波形耐震部材26の縦フランジ32A、32Bに沿って又は縦フランジ32A、32Bと略平行に上下の梁18、20に至るスリット46A、46Bをそれぞれ形成する。これにより、対向するスリット46A又は対向するスリット46Bにより挟まれた既存壁40の部位が他の既存壁40の部位から分離され、開口部72の上方に各波形耐震部材26に対応した3つの上連結部40Aが形成され、開口部72の下方に各波形耐震部材26に対応した3つの下連結部40Bが形成される。   Next, as shown in FIG. 13A, the existing walls 40 above and below the opening 72 are vertically moved along the vertical flanges 32A and 32B of the corrugated seismic resistant member 26 or substantially parallel to the vertical flanges 32A and 32B. Slits 46A and 46B reaching the beams 18 and 20 are formed, respectively. Thereby, the site | part of the existing wall 40 pinched | interposed by the slit 46A which opposes, or the slit 46B which opposes is isolate | separated from the site | part of the other existing wall 40, and three upper corresponding to each corrugated earthquake-resistant member 26 above the opening part 72 is obtained. A connecting portion 40A is formed, and three lower connecting portions 40B corresponding to the corrugated seismic members 26 are formed below the opening 72.

次に、既存壁40C、40D、40Eの外周に沿って、既存壁40C〜40Eと左右の柱14、16との間、及び既存壁40C〜40Eと上下の梁18、20との間にダイヤモンドカッター等でそれぞれスリット48を形成し、これらの既存壁40C〜40Eを撤去する。これにより、波形耐震部材26と左右の柱14、16との間及び隣接する波形耐震部材26の間に、開口36A、36B、46C、46Dが形成される。   Next, along the outer peripheries of the existing walls 40C, 40D, and 40E, diamonds are provided between the existing walls 40C to 40E and the left and right columns 14 and 16, and between the existing walls 40C to 40E and the upper and lower beams 18, 20. Each slit 48 is formed with a cutter or the like, and these existing walls 40C to 40E are removed. Thereby, openings 36A, 36B, 46C, and 46D are formed between the corrugated seismic member 26 and the left and right columns 14 and 16 and between the adjacent corrugated seismic members 26.

また、図14(A)及び図14(B)に示すように、出入り口等に用いられる開口部74に波形耐震部材26を設置しても良い。開口部74は下の梁20まである、いわゆる掃き出し窓とされている。   Further, as shown in FIGS. 14A and 14B, the corrugated seismic member 26 may be installed in an opening 74 used for an entrance and the like. The opening 74 is a so-called sweeping window extending to the lower beam 20.

先ず、図14(B)に示すように、開口部74に波形耐震部材26を配置する。次に、波形耐震部材26の横フランジ34A、34Bを開口部74の上の内壁74A及び梁20の上面20Aにそれぞれ固定する。次に、図14(A)に示すように、開口部74の上にある既存壁40に、波形耐震部材26の縦フランジ32A、32Bに沿って又は縦フランジ32A、32Bと略平行に、上の梁18に至るスリット46Aをそれぞれ形成する。これにより、対向するスリット46Aで挟まれた既存壁40の部位が他の既存壁40の部位から分離され、開口部74の上方に上連結部40Aが形成される。なお、梁20の上面20Aは、開口部74の下の内壁を構成している。   First, as shown in FIG. 14B, the corrugated seismic member 26 is disposed in the opening 74. Next, the lateral flanges 34 </ b> A and 34 </ b> B of the corrugated seismic member 26 are fixed to the inner wall 74 </ b> A above the opening 74 and the upper surface 20 </ b> A of the beam 20, respectively. Next, as shown in FIG. 14 (A), on the existing wall 40 above the opening 74, along the longitudinal flanges 32A and 32B of the corrugated seismic member 26 or substantially parallel to the longitudinal flanges 32A and 32B. The slits 46A reaching the beams 18 are respectively formed. Thereby, the site | part of the existing wall 40 pinched | interposed by the slit 46A which opposes is isolate | separated from the site | part of the other existing wall 40, and 40 A of upper connection parts are formed above the opening part 74. FIG. Note that the upper surface 20 </ b> A of the beam 20 constitutes an inner wall below the opening 74.

次に、図15(A)に示すように、既存壁40C、40Dの外周に沿って、既存壁40C、40Dと左右の柱14、16との間、及び既存壁40C、40Dと上下の梁18、20との間にダイヤモンドカッター等でスリット48をそれぞれ形成し、図15(B)に示すように、これらの既存壁40C、40Dを撤去する。これにより、波形耐震部材26と左右の柱14、16との間に、開口36A、36Bが形成される。なお、図14(A)及び図14(B)に示す構成において、開口部74が上の梁18まであり、開口部74と梁20との間に既存壁40がある場合は、波形耐震部材26を上の梁18の下面と、開口部74の下の内壁に固定すれば良い。   Next, as shown in FIG. 15A, along the outer periphery of the existing walls 40C and 40D, between the existing walls 40C and 40D and the left and right pillars 14 and 16, and between the existing walls 40C and 40D and the upper and lower beams. The slits 48 are respectively formed with a diamond cutter or the like between 18 and 20, and the existing walls 40C and 40D are removed as shown in FIG. Thereby, openings 36 </ b> A and 36 </ b> B are formed between the corrugated earthquake-resistant member 26 and the left and right columns 14 and 16. 14A and 14B, when the opening 74 is up to the upper beam 18 and the existing wall 40 is between the opening 74 and the beam 20, the corrugated seismic member 26 may be fixed to the lower surface of the upper beam 18 and the inner wall below the opening 74.

また、上記の実施形態では、既存壁40の開口部に波形耐震部材26を設置した後に、開口部の上方又は下方にある既存壁40にスリット46A、46Bを形成したがこれに限らない。例えば、図2(A)に示す既存壁40に対して、先ず、図16(A)に示すように、開口部42の上下の内壁42A、42Bから上下の梁18、20に至るスリット46A、46Bをそれぞれ形成し、即ち、開口部42の上方及び下方にある既存壁40に上下方向に延びるスリット46A、46Bをそれぞれ形成し、対向するスリット46A、46Bの間に上連結部40A及び下連結部40Bを形成する。次に、図3(B)に示すように、これらの上連結部40A及び下連結部40Bの間に波形耐震部材26を配置し、スリット46A、46Bで挟まれた開口部42の上下の内壁42A、42Bに横フランジ34A、34Bをそれぞれ固定して、上連結部40Aと下連結部40Bとを波形耐震部材26で連結しても良い。また、図10(A)に示す既存の垂れ壁68及び腰壁70に対しては、先ず、図16(B)に示すように、開口部66の上下の内壁66A、66Bから上下の梁18、20に至るスリット46A、46Bをそれぞれ形成し、対向するスリット46A、46Bの間に上連結部68A及び下連結部70Aを形成する。この際、上連結部68A及び下連結部70Aに波形耐震部材26の横フランジ34A、34Bを固定するスペースを確保できれば良く、スリット46A、46Bは開口部66の上下の内壁66A、66Bの任意の位置に形成することができる。このように、本実施形態の耐震改修方法は、少なくとも波形耐震部材26を設置する工程と、開口部の上方又は下方にスリット46A、46Bを設ける工程と、があれば良くその順序は問わない。   Moreover, in said embodiment, after installing the waveform earthquake-resistant member 26 in the opening part of the existing wall 40, although slit 46A, 46B was formed in the existing wall 40 above or below an opening part, it is not restricted to this. For example, with respect to the existing wall 40 shown in FIG. 2A, first, as shown in FIG. 16A, slits 46A extending from the upper and lower inner walls 42A and 42B of the opening 42 to the upper and lower beams 18 and 20, 46B is formed, that is, slits 46A and 46B extending in the vertical direction are formed in the existing wall 40 above and below the opening 42, respectively, and the upper connection portion 40A and the lower connection are formed between the opposing slits 46A and 46B. Part 40B is formed. Next, as shown in FIG. 3 (B), the corrugated seismic member 26 is disposed between the upper connecting portion 40A and the lower connecting portion 40B, and the inner walls above and below the opening 42 sandwiched between the slits 46A and 46B. The lateral flanges 34A and 34B may be fixed to 42A and 42B, respectively, and the upper connecting portion 40A and the lower connecting portion 40B may be connected by the corrugated seismic member 26. Further, with respect to the existing hanging wall 68 and waist wall 70 shown in FIG. 10 (A), first, as shown in FIG. 16 (B), the upper and lower beams 18, 20 slits 46A and 46B are formed, and an upper connecting portion 68A and a lower connecting portion 70A are formed between the opposing slits 46A and 46B. At this time, it is only necessary to secure a space for fixing the horizontal flanges 34A, 34B of the corrugated seismic member 26 to the upper connecting portion 68A and the lower connecting portion 70A. The slits 46A, 46B are arbitrary on the inner walls 66A, 66B above and below the opening 66 Can be formed in position. As described above, the seismic retrofit method of the present embodiment may be any order as long as it includes at least the step of installing the corrugated seismic member 26 and the step of providing the slits 46A and 46B above or below the opening.

また、上記の実施形態では、波形耐震部材26が固定された既存壁(上連結部40A、下連結部40B)以外の既存壁(既存壁40C、40D、40E)を架構12から撤去したがこれに限らない。これらの既存壁40C等は、建物10に要求される耐震性能、即ち、建物10に要求される耐力及び変形性能に応じて適宜撤去すれば良い。従って、建物10の耐力を増強したい場合は、例えば図3(A)に示す構成のように、既存壁40にスリット46A、46Bのみを形成して、既存壁40C、40Dを残しても良い。この場合、上連結部40A及び下連結部40Bはスリット46A、40Bによって他の既存壁40C、40Dと分離(縁切り)されるため、波形鋼板28のせん断変形を拘束せず、波形耐震部材26に耐震性能、制振性能を発揮させることができる。   In the above embodiment, the existing walls (existing walls 40C, 40D, 40E) other than the existing walls (the upper connecting portion 40A, the lower connecting portion 40B) to which the corrugated seismic member 26 is fixed are removed from the frame 12. Not limited to. These existing walls 40 </ b> C and the like may be removed as appropriate according to the seismic performance required for the building 10, that is, the proof stress and deformation performance required for the building 10. Therefore, when it is desired to increase the proof strength of the building 10, for example, as shown in FIG. 3A, only the slits 46A and 46B may be formed in the existing wall 40, and the existing walls 40C and 40D may be left. In this case, the upper connecting portion 40A and the lower connecting portion 40B are separated (edge-cut) from the other existing walls 40C and 40D by the slits 46A and 40B, so that the shear deformation of the corrugated steel plate 28 is not restricted, and the corrugated seismic member 26 Seismic performance and vibration control performance can be demonstrated.

更に、図17に示すように部分的に既存壁40S、40T(袖壁)を残しても良い。この場合、既存壁40S、40Tの開口36A、36B側端部に鉄板、炭素繊維シート等の補強部材76を設けて補強することが望ましく、また、当該端部に鉄筋等を配筋してコンクリートを増し打ちしても良い。   Furthermore, as shown in FIG. 17, the existing walls 40S and 40T (sleeve walls) may be partially left. In this case, it is desirable to reinforce the existing walls 40S and 40T by providing reinforcing members 76 such as iron plates and carbon fiber sheets at the ends of the openings 36A and 36B, and reinforcing bars and the like are arranged at the ends to provide concrete. You may hit more.

また、図18(A)〜図18(C)に示すように、波形耐震部材26の縦フランジ32A、32Bを上下方向に延ばし、上連結部40A及び下連結部40Bの側面に沿わせて接合しても良い。具体的には、図18(A)に示すように、波形鋼板28の上端及び下端から突出する縦フランジ32A、32Bを左右の端部に備える波形鋼板28を、図18(B)に示すように、上連結部34Aと下連結部34Bとの間に配置し、接着工法等により横フランジ34A、34Bを上連結部34A及び下連結部34Bに接合する。この際、縦フランジ32A、32Bは、上連結部40A及び下連結部40Bの左右の側面に沿うように配置され、接着工法等により上連結部40A及び下連結部40Bの左右の側面にそれぞれ接合される。   Further, as shown in FIGS. 18A to 18C, the longitudinal flanges 32A and 32B of the corrugated seismic member 26 are extended in the vertical direction and joined along the side surfaces of the upper connecting portion 40A and the lower connecting portion 40B. You may do it. Specifically, as shown in FIG. 18 (A), a corrugated steel sheet 28 having vertical flanges 32A and 32B protruding from the upper and lower ends of the corrugated steel sheet 28 at the left and right ends is shown in FIG. 18 (B). Furthermore, it arrange | positions between 34 A of upper connection parts and the lower connection part 34B, and joins the horizontal flanges 34A and 34B to the upper connection part 34A and the lower connection part 34B by the adhesive method. At this time, the vertical flanges 32A and 32B are arranged along the left and right side surfaces of the upper connecting portion 40A and the lower connecting portion 40B, and are joined to the left and right side surfaces of the upper connecting portion 40A and the lower connecting portion 40B by an adhesive method or the like. Is done.

ここで、図1(A)に示す構成の場合、横フランジ34A、34Bの軸方向両端部は他の部位と比較して上連結部40A、40Bから剥がれ易く、また、波形鋼板28がせん断変形した場合、縦フランジ32A、32Bに発生する鉛直力が上連結部40A、下連結部40Bの角部に集中して作用するため、当該角部が破損、損傷する場合がある。これに対して、図18(B)に示すように、縦フランジ32A、32Bを上下方向に延ばし、上連結部40A及び下連結部40Bに接合することで、横フランジ34A、34Bの剥がれを防止でき、また、縦フランジ32A、32Bに発生する鉛直力が上連結部40A、40Bの側面に分散して伝達されるため、上連結部40A及び下連結部40Bの角部の破損、損傷を防止できる。更に、縦フランジ32A、32Bが上連結部40A及び下連結部40Bを補剛すると共に、その内部に配筋された鉄筋等の突出を防ぐことができる。   Here, in the case of the configuration shown in FIG. 1A, both axial end portions of the horizontal flanges 34A and 34B are more easily peeled off from the upper connecting portions 40A and 40B than other portions, and the corrugated steel sheet 28 is shear-deformed. In this case, since the vertical force generated in the vertical flanges 32A and 32B is concentrated on the corners of the upper connecting portion 40A and the lower connecting portion 40B, the corner portions may be broken or damaged. On the other hand, as shown in FIG. 18B, the longitudinal flanges 32A and 32B are extended in the vertical direction and joined to the upper connecting portion 40A and the lower connecting portion 40B, thereby preventing the horizontal flanges 34A and 34B from peeling off. In addition, since the vertical force generated in the vertical flanges 32A and 32B is distributed and transmitted to the side surfaces of the upper connecting portions 40A and 40B, the corner portions of the upper connecting portion 40A and the lower connecting portion 40B are prevented from being damaged or damaged. it can. Further, the vertical flanges 32A and 32B can stiffen the upper connecting portion 40A and the lower connecting portion 40B, and can prevent protrusion of reinforcing bars or the like arranged therein.

また、図18(C)の二点鎖線で示すように、横フランジ34A、32Bの幅(波形鋼板28の板面と直交する方向の長さ)を大きくすることで、波形耐震部材26のせん断座屈強度・耐力が大きくすることができる。   Further, as shown by a two-dot chain line in FIG. 18C, the shear of the corrugated seismic member 26 is increased by increasing the width of the horizontal flanges 34A and 32B (the length in the direction perpendicular to the plate surface of the corrugated steel sheet 28). Buckling strength and yield strength can be increased.

また、上記の実施形態では、横フランジ34A、34Bと上連結部40A及び下連結部40Bを接着工法で接合したがこれに限らず、図19に示すようにスタッド78、80等のせん断力伝達要素を用いて接合しても良い。具体的には、先ず、開口部42の上下の内壁42A、42Bに複数のスタッド78を打ち込み等により立設し、他方、波形耐震部材26の横フランジ34A、34Bに複数のスタッド80をそれぞれ溶接等により立設する。この際、開口部42の上下の内壁42A、42Bを削って開口面積を広くしても良い。次に、スペーサ82を介して波形耐震部材26を開口部42に設置し、スタッドの周囲に型枠等(不図示)を架設して、モルタル、セメント等の充填材を点線Gまで充填して波形耐震部材26を開口部42の内壁42A、42Bに固定する。これにより、スタッド78、80を介して波形耐震部材26と上連結部40A、下連結部40Bとが、せん断力を相互に伝達可能に連結される。   In the above embodiment, the lateral flanges 34A, 34B, the upper connecting portion 40A, and the lower connecting portion 40B are joined by the bonding method. However, the present invention is not limited to this, and shear force transmission of the studs 78, 80, etc. as shown in FIG. You may join using an element. Specifically, first, a plurality of studs 78 are erected on the upper and lower inner walls 42A and 42B of the opening 42 by driving or the like, and on the other hand, a plurality of studs 80 are welded to the lateral flanges 34A and 34B of the corrugated earthquake resistant member 26, respectively. Etc. At this time, the upper and lower inner walls 42 </ b> A and 42 </ b> B of the opening 42 may be cut to widen the opening area. Next, the corrugated anti-seismic member 26 is installed in the opening 42 through the spacer 82, a formwork or the like (not shown) is installed around the stud, and a filler such as mortar and cement is filled up to the dotted line G. The corrugated seismic member 26 is fixed to the inner walls 42 </ b> A and 42 </ b> B of the opening 42. As a result, the corrugated seismic member 26, the upper connecting portion 40A, and the lower connecting portion 40B are connected via the studs 78 and 80 so that the shearing force can be transmitted to each other.

更に、図20(A)及び図20(B)に示すように、既存壁40にスリット46A、46B、48を設けるのではなく、溝86A、86B、88を形成しても良い。これらの溝86A、86B、88は既存壁40を貫通せずに1/4程度の壁厚を残して設けられている。これにより、架構に水平力が作用したときに、各溝86A、86B、88に亀裂が入り、各溝86A、86B、88を境に上連結部40A及び下連結部40Bと他の既存壁40C、40D、40Eとが分離され、スリット46A、46B、48と同様の作用効果を得ることができる。これらの溝86A、86B、88は、既存壁40が外壁のように外に面している場合に特に有効であり、建物の内部に浸入する雨、風等を防止することができる。なお、既存壁40に残す壁厚、即ち、各溝86A、86B、88の深さは、既存壁40の材質、強度、架構12に作用する水平力によって適宜調整すれば良い。   Further, as shown in FIGS. 20A and 20B, grooves 86A, 86B, and 88 may be formed instead of providing slits 46A, 46B, and 48 in the existing wall 40. These grooves 86 </ b> A, 86 </ b> B, 88 are provided leaving a wall thickness of about ¼ without penetrating the existing wall 40. Thus, when a horizontal force is applied to the frame, the grooves 86A, 86B, 88 are cracked, and the upper connecting portion 40A, the lower connecting portion 40B, and the other existing wall 40C, with the grooves 86A, 86B, 88 as boundaries. , 40D, 40E are separated, and the same effect as the slits 46A, 46B, 48 can be obtained. These grooves 86A, 86B, and 88 are particularly effective when the existing wall 40 faces outward like an outer wall, and can prevent rain, wind, and the like entering the building. The wall thickness left on the existing wall 40, that is, the depth of each of the grooves 86A, 86B, and 88 may be appropriately adjusted according to the material and strength of the existing wall 40 and the horizontal force acting on the frame 12.

また、上記の実施形態では、波形鋼板28をその折り筋を横(折り筋の向きを横方向)にして開口部42等に設置したがこれに限らず、その折り筋を縦(折り筋の向きを上下方向)にして開口部42等に設置しても良い。折り筋を縦にした場合は、波形鋼板28に軸力が導入されないように、波形耐震部材26を上連結部40A及び下連結部40Bに固定する時期を考慮することが望ましい。具体的な対策の1つとして、施工中の柱部材等の軸変形が収束する、耐震改修の最終段階で波形耐震部材26を上連結部40A及び下連結部40Bに設置することが望ましい。更に、同一の開口部42内に複数の波形耐震部材26を対向させて配置しても良いし、波形耐震部材26には、図23(A)〜(D)の断面形状を有する波形鋼板28を用いても良い。更に、架構12には、少なくとも一つの波形鋼板26が配置されていれば良い。   Further, in the above embodiment, the corrugated steel sheet 28 is installed in the opening 42 or the like with the crease being lateral (the direction of the crease is lateral), but the present invention is not limited thereto, and the crease is vertically (folded). You may install in the opening part 42 grade | etc., For direction. When the crease is made vertical, it is desirable to consider the time when the corrugated seismic member 26 is fixed to the upper connecting portion 40A and the lower connecting portion 40B so that axial force is not introduced into the corrugated steel plate 28. As one specific measure, it is desirable to install the corrugated anti-seismic member 26 in the upper connecting part 40A and the lower connecting part 40B at the final stage of the anti-seismic repair in which the axial deformation of the column member or the like under construction converges. Further, a plurality of corrugated seismic members 26 may be arranged to face each other in the same opening 42, and the corrugated steel plate 28 having the cross-sectional shapes of FIGS. May be used. Furthermore, it is sufficient that at least one corrugated steel plate 26 is disposed on the frame 12.

また、上記の実施形態では、波形耐震部材26を用いたがこれに限らず、図21(A)及び図21(B)に示すように、平板状の鋼板98を用いた耐震部材96を用いても良い。耐震部材96は、鋼板98及び枠体99から構成されている。鋼板98には、波形鋼板28と同様に、左右の端部に鋼製の縦フランジ100A、100Bが設けられ、上下の端部に鋼製の横フランジ102A、102Bが設けられており、これらの縦フランジ100A、100B及び横フランジ102A、102Bによって鋼板98の外周部を囲む枠体99が構成されている。そして、横フランジ102A、102Bを開口部42の上下の内壁面42A、42B(上連結部40Aの下面、及び下連結部40Bの上面)に接着工法又はスタッド等によってそれぞれ固定することで、上連結部40A及び下連結部40Bが耐震部材96によって連結され、間柱が構成される。また、鋼板98の鋼板面にはせん断座屈防止用の補剛リブ104が格子状に設けられている。この補剛リブ104は適宜省略可能であるが、波形鋼板28と比較して平板状の鋼板98はせん断座屈し易いため、補剛リブ104を設けることが望ましい。   In the above embodiment, the corrugated seismic member 26 is used. However, the present invention is not limited to this. As shown in FIGS. 21A and 21B, the seismic member 96 using a flat steel plate 98 is used. May be. The earthquake-resistant member 96 is composed of a steel plate 98 and a frame body 99. As with the corrugated steel sheet 28, the steel plate 98 is provided with steel vertical flanges 100A and 100B at the left and right ends, and steel horizontal flanges 102A and 102B at the upper and lower ends. A frame 99 surrounding the outer peripheral portion of the steel plate 98 is constituted by the vertical flanges 100A and 100B and the horizontal flanges 102A and 102B. Then, the horizontal flanges 102A and 102B are fixed to the upper and lower inner wall surfaces 42A and 42B (the lower surface of the upper connecting portion 40A and the upper surface of the lower connecting portion 40B) by an adhesive method or a stud, respectively. The part 40A and the lower connecting part 40B are connected by the earthquake-resistant member 96 to form a stud. Further, stiffening ribs 104 for preventing shear buckling are provided on the steel plate surface of the steel plate 98 in a lattice shape. Although this stiffening rib 104 can be omitted as appropriate, it is desirable to provide the stiffening rib 104 because the flat steel plate 98 is more likely to be shear buckled than the corrugated steel plate 28.

更に、図22(A)及び図22(B)に示すように、断面C型の鋼板を用いた耐震部材106を用いても良い。耐震部材106は、複数(図21では3つ)の断面C型の鋼板108を備えている。これらの3つの鋼板108は、フランジ部を対向させて上下方向に隣接配置され、対向するフランジ部に貫通されるボルト及びナット(不図示)によって接合されている。これらの鋼板108の左右の端部には、鋼製の縦フランジ110A、110Bが設けられている。また、最上段の鋼板108の上部、及び最下段の鋼板108の下部には、固定部材112がそれぞれ設けられている。鋼製の固定部材112は、固定プレート112Aに接合板112Bを立設して断面T字型に構成され、固定プレート112Aは、開口部42の上下の内壁面42A、42B(上連結部40Aの下面、及び下連結部40Bの上面)に接着工法又はスタッド等によって接合され、接合板112Bにはボルト114によって鋼板108が接合されている。これにより、上連結部40A及び下連結部40Bが耐震部材106によって連結され、間柱が構成される。
なお、図22に示す構成では、耐震部材106を、上下に隣接配置された複数の鋼板108で構成したが、左右に隣接配置された複数の鋼板108で構成しても良く、また、耐震部材106を一つの鋼板108で構成しても良い。
これらの鋼板98、108は、地震等により架構12に層間変形が生じた場合に、せん断変形して、耐震性能又は制振性能を発揮し得る。
Furthermore, as shown in FIGS. 22A and 22B, an earthquake-resistant member 106 using a C-shaped steel plate may be used. The earthquake-resistant member 106 includes a plurality (three in FIG. 21) of steel plates 108 having a C-shaped cross section. These three steel plates 108 are arranged adjacent to each other in the vertical direction with the flange portions facing each other, and are joined by bolts and nuts (not shown) penetrating the facing flange portions. Steel vertical flanges 110 </ b> A and 110 </ b> B are provided at the left and right ends of the steel plates 108. Further, fixing members 112 are provided on the upper part of the uppermost steel plate 108 and on the lower part of the lowermost steel plate 108, respectively. The steel fixing member 112 is configured to have a T-shaped cross-section by standing a joining plate 112B on a fixing plate 112A. The lower surface and the upper surface of the lower connecting portion 40B are joined by an adhesive method or a stud, and the steel plate 108 is joined to the joining plate 112B by a bolt 114. Thereby, 40 A of upper connection parts and 40 B of lower connection parts are connected by the earthquake-resistant member 106, and a stud is comprised.
In the configuration shown in FIG. 22, the seismic member 106 is composed of a plurality of steel plates 108 arranged adjacent to each other in the vertical direction, but may be composed of a plurality of steel plates 108 arranged adjacent to each other in the left and right directions. 106 may be composed of one steel plate 108.
These steel plates 98 and 108 can exhibit shear resistance or vibration control performance by shear deformation when interlayer deformation occurs in the frame 12 due to an earthquake or the like.

また、上記の実施形態では、必ずしも耐震改修前の建物よりも耐力を向上させる必要はなく、同等またはそれ以下であってもよい。本発明の本質は、既存壁にスリット又は溝を形成して無効化し、既存壁の一部を利用しながら、変形性能・エネルギー吸収能力に優れる鋼板・波形鋼板に耐震要素を置換することで、建物の耐震性能を向上させることである。   Moreover, in said embodiment, it is not necessary to improve a yield strength rather than the building before an earthquake-proof improvement, and it may be equivalent or less. The essence of the present invention is to invalidate the existing wall by forming a slit or groove, and while using a part of the existing wall, replacing the seismic element with a steel plate / corrugated steel plate with excellent deformation performance and energy absorption capability, It is to improve the seismic performance of the building.

また、既存壁40はRC造に限らず、鉄骨鉄筋コンクリート造やALC壁、スパンクリートであっても良い。また、架構12を構成する柱14、16及び梁18、20は、鉄筋コンクリート造に限らず、鉄骨鉄筋コンクリート造、プレストレスコンクリート造、鉄骨造、更には現場打ち工法、プレキャスト工法等の種々の工法を用いた構造部材に適用可能である。また、梁18、20に替えてコンクリートスラブ又は小梁等であっても良い。   The existing wall 40 is not limited to the RC structure, but may be a steel reinforced concrete structure, an ALC wall, or a spun cleat. In addition, the columns 14 and 16 and the beams 18 and 20 constituting the frame 12 are not limited to reinforced concrete structures, but may be various methods such as steel reinforced concrete structures, prestressed concrete structures, steel structures, and on-site methods and precast methods. It is applicable to the used structural member. Further, instead of the beams 18 and 20, a concrete slab or a small beam may be used.

更に、本実施形態に係る耐震改修方法は、建物10の一部に用いても、全てに用いても良い。本実施形態の耐震改修方法を用いることにより、耐震性能、制振性能に優れた建物を構築することができる。   Furthermore, the seismic retrofit method according to the present embodiment may be used for a part of the building 10 or for all. By using the seismic retrofit method of this embodiment, it is possible to construct a building having excellent seismic performance and vibration control performance.

以上、本発明の実施形態について説明したが、本発明はこうした実施形態に限定されるものでなく、本発明の要旨を逸脱しない範囲において、種々なる態様で実施し得ることは勿論である。   As mentioned above, although embodiment of this invention was described, this invention is not limited to such embodiment, Of course, in the range which does not deviate from the summary of this invention, it can implement in a various aspect.

(A)は本発明の実施形態に係る耐震改修方法が適用された既存壁を示す正面図であり、(B)は図1(A)の1−1線断面図である。(A) is a front view which shows the existing wall to which the earthquake-proof repair method based on embodiment of this invention was applied, (B) is the 1-1 sectional view taken on the line of FIG. 1 (A). 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法が適用された既存壁の地震時における変形状態を示す正面図である。It is a front view which shows the deformation | transformation state at the time of the earthquake of the existing wall to which the earthquake-proof repair method which concerns on embodiment of this invention was applied. 耐震改修における耐力と変形性能との関係を示すグラフである。It is a graph which shows the relationship between the yield strength and deformation performance in an earthquake-proof repair. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法の施工例を示す説明図であり、(A)及び(B)既存壁を示す正面図である。It is explanatory drawing which shows the construction example of the earthquake-proof repair method which concerns on embodiment of this invention, (A) And (B) It is a front view which shows the existing wall. 本発明の実施形態に係る耐震改修方法が適用された耐震壁を示す正面図である。It is a front view which shows the earthquake-resistant wall to which the earthquake-proof repair method which concerns on embodiment of this invention was applied. 本発明の実施形態に係る耐震改修方法が適用された耐震壁を示す正面図である。It is a front view which shows the earthquake-resistant wall to which the earthquake-proof repair method which concerns on embodiment of this invention was applied. (A)及び(B)は本発明の実施形態に係る波形耐震部材の設置方法の変形例を示す正面図であり、(C)は図18(B)の2−2線断面図である。(A) And (B) is a front view which shows the modification of the installation method of the corrugated seismic member which concerns on embodiment of this invention, (C) is 2-2 sectional view taken on the line of FIG. 18 (B). 本発明の実施形態に係る波形耐震部材の設置方法の変形例を示す正面図である。It is a front view which shows the modification of the installation method of the corrugated earthquake-resistant member which concerns on embodiment of this invention. (A)は本発明の実施形態に係る耐震改修方法が適用された既存壁を示す正面図であり、(B)は図20(A)の3−3線断面図である。(A) is a front view which shows the existing wall to which the earthquake-proof repair method based on embodiment of this invention was applied, (B) is 3-3 sectional view taken on the line of FIG. 20 (A). (A)は本発明の実施形態に係る耐震改修方法が適用された既存壁を示す正面図であり、(B)は図21(A)の4−4線断面図である。(A) is a front view which shows the existing wall to which the earthquake-proof repair method which concerns on embodiment of this invention was applied, (B) is 4-4 sectional view taken on the line of FIG. 21 (A). (A)は本発明の実施形態に係る耐震改修方法が適用された既存壁を示す正面図であり、(B)は図22(A)の5−5線断面図である。(A) is a front view which shows the existing wall to which the earthquake-proof repair method which concerns on embodiment of this invention was applied, (B) is 5-5 sectional view taken on the line of FIG. 22 (A). (A)〜(D)は本発明の実施形態に係る波形鋼板の断面形状を示す断面図である。(A)-(D) are sectional drawings which show the cross-sectional shape of the corrugated steel plate which concerns on embodiment of this invention.

符号の説明Explanation of symbols

10 建物
12 架構
14、16 柱
18、20 梁(水平部材)
28 波形鋼板
40 既存壁
42 開口部
42A 内壁
42B 内壁
46 スリット
60 開口部
60A 内壁
60B 内壁
64 開口部
64A 内壁
64B 内壁
66 開口部
66A 内壁
66B 内壁
72 開口部
72A 内壁
72B 内壁
74 開口部
74A 内壁
74B 内壁
86 溝
98 鋼板
108 鋼板
10 Building 12 Frame 14, 16 Column 18, 20 Beam (horizontal member)
28 Corrugated Steel Sheet 40 Existing Wall 42 Opening 42A Inner Wall 42B Inner Wall 46 Slit 60 Opening 60A Inner Wall 60B Inner Wall 64 Opening 64A Inner Wall 64B Inner Wall 66 Opening 66A Inner Wall 66B Inner Wall 72 Opening 72A Inner Wall 72B Inner Wall 74 Opening 74A Inner Wall 74B Inner Wall 74B Inner Wall 74B 86 Groove 98 Steel plate 108 Steel plate

Claims (7)

柱と上下の水平部材とから構成された架構の構面に設けられた既存壁の開口部の上下の内壁に鋼板の横辺を固定し、該鋼板の縦辺に沿って又は平行に、前記既存壁に前記水平部材に至るスリット又は溝を形成する耐震改修方法。   The horizontal side of the steel plate is fixed to the upper and lower inner walls of the opening of the existing wall provided on the construction surface of the frame composed of the columns and the upper and lower horizontal members, and along or in parallel with the vertical side of the steel plate, A seismic retrofit method for forming slits or grooves reaching the horizontal member on an existing wall. 柱と上下の水平部材とから構成された架構の構面に設けられた既存壁の開口部の内壁から前記水平部材に至るスリット又は溝を形成し、対向する前記スリット又は前記溝で挟まれた前記開口部の上下の内壁に鋼板の横辺を固定する耐震改修方法。   A slit or groove extending from the inner wall of the opening of the existing wall provided on the construction surface of the frame composed of the pillar and the upper and lower horizontal members to the horizontal member is formed and sandwiched between the opposed slits or the grooves An earthquake-proof repair method for fixing the lateral sides of the steel plate to the upper and lower inner walls of the opening. 前記既存壁の複数の前記開口部のそれぞれに、前記鋼板を固定する請求項1又は請求項2に記載の耐震改修方法。   The earthquake-proof repair method of Claim 1 or Claim 2 which fixes the said steel plate to each of the said some opening part of the said existing wall. 前記開口部に、横方向に間隔を空けて複数の鋼板を固定する請求項1又は請求項2に記載の耐震改修方法。   The earthquake-proof repair method of Claim 1 or Claim 2 which fixes a some steel plate to the said opening part at intervals in a horizontal direction. 前記鋼板が固定された前記既存壁を残して、他の前記既存壁の一部又は全部を撤去する請求項1〜4の何れか1項に記載の耐震改修方法。   The earthquake-proof repair method of any one of Claims 1-4 which leaves the said existing wall to which the said steel plate was fixed, and removes a part or all of the other said existing wall. 前記鋼板が、波形鋼板である請求項1〜5の何れか1項に記載の耐震改修方法。   The earthquake-resistant repair method according to claim 1, wherein the steel plate is a corrugated steel plate. 請求項1〜6の何れか1項に記載の耐震改修方法によって改修された建物。   A building that has been repaired by the earthquake-proof repair method according to any one of claims 1 to 6.
JP2008297287A 2008-11-20 2008-11-20 Seismic retrofitting method and building Pending JP2010121384A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008297287A JP2010121384A (en) 2008-11-20 2008-11-20 Seismic retrofitting method and building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008297287A JP2010121384A (en) 2008-11-20 2008-11-20 Seismic retrofitting method and building

Publications (1)

Publication Number Publication Date
JP2010121384A true JP2010121384A (en) 2010-06-03

Family

ID=42322948

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008297287A Pending JP2010121384A (en) 2008-11-20 2008-11-20 Seismic retrofitting method and building

Country Status (1)

Country Link
JP (1) JP2010121384A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225003A (en) * 2011-04-15 2012-11-15 Shimizu Corp Interior finishing structure of structural slit portion
CN103216025A (en) * 2013-04-02 2013-07-24 河海大学 Corrugated plate shear wall for high-intensity earthquake areas
JP2013151811A (en) * 2012-01-25 2013-08-08 Kumagai Gumi Co Ltd Formation method of structural slit
JP2014062367A (en) * 2012-09-20 2014-04-10 Daiwa House Industry Co Ltd Damper
JP2014221980A (en) * 2013-05-13 2014-11-27 大和ハウス工業株式会社 Bearing wall with damper, and damper
JP2017166234A (en) * 2016-03-16 2017-09-21 株式会社熊谷組 Earthquake energy absorption mechanism for building
JP2017166233A (en) * 2016-03-16 2017-09-21 株式会社熊谷組 Earthquake energy absorption mechanism for building
JP2019027195A (en) * 2017-08-01 2019-02-21 日本鋳造株式会社 Isolation structure
CN110374258A (en) * 2019-08-02 2019-10-25 张藏柳 A kind of wood siding wall with repairing resistance to compression support function

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012225003A (en) * 2011-04-15 2012-11-15 Shimizu Corp Interior finishing structure of structural slit portion
JP2013151811A (en) * 2012-01-25 2013-08-08 Kumagai Gumi Co Ltd Formation method of structural slit
JP2014062367A (en) * 2012-09-20 2014-04-10 Daiwa House Industry Co Ltd Damper
CN103216025A (en) * 2013-04-02 2013-07-24 河海大学 Corrugated plate shear wall for high-intensity earthquake areas
JP2014221980A (en) * 2013-05-13 2014-11-27 大和ハウス工業株式会社 Bearing wall with damper, and damper
JP2017166234A (en) * 2016-03-16 2017-09-21 株式会社熊谷組 Earthquake energy absorption mechanism for building
JP2017166233A (en) * 2016-03-16 2017-09-21 株式会社熊谷組 Earthquake energy absorption mechanism for building
JP2019027195A (en) * 2017-08-01 2019-02-21 日本鋳造株式会社 Isolation structure
CN110374258A (en) * 2019-08-02 2019-10-25 张藏柳 A kind of wood siding wall with repairing resistance to compression support function

Similar Documents

Publication Publication Date Title
JP2010121384A (en) Seismic retrofitting method and building
JP4587386B2 (en) Seismic reinforcement structure for existing buildings
KR101840401B1 (en) Framed variable type Earthquake resistant structure and Reinforcement method
JP5486278B2 (en) How to install the viscoelastic damper
JP5601882B2 (en) Steel seismic wall and building with the same
JP2011127278A (en) Earthquake-resisting steel wall and building having the same
JP4279739B2 (en) Seismic retrofitting methods and walls for existing buildings
JP5383166B2 (en) Corrugated steel earthquake resistant wall, corrugated steel earthquake resistant wall design method, and building
JP4502484B2 (en) Seismic reinforcement wall
JP2010031558A (en) Seismic strengthening structure and seismic strengthening method
JP4733447B2 (en) Reinforcement wall
JP2010121383A (en) Seismic retrofitting method and building
JP2011006966A (en) Steel earthquake resisting wall, and building with the same
JP4945428B2 (en) Reinforced structure
JP4414832B2 (en) Seismic walls using corrugated steel plates with openings
JP2010276080A (en) Energy absorbing member and structure in which the energy absorbing member is installed
JP3809536B2 (en) Seismic wall structures in existing reinforced concrete buildings and steel reinforced concrete buildings
JP4238991B2 (en) Seismic isolation structure on the middle floor of the building
JP2010070989A (en) Earthquake-resistant structure, method for designing earthquake-resistant structure, and building
JP5254767B2 (en) Seismic structure, building with seismic structure, and repair method.
JP2012188872A (en) Concrete filled circular steel pipe column
JP2011127279A (en) Earthquake resisting wall formed by corrugated steel plate and building having the same
JP4897854B2 (en) Seismic structure
JP6229995B2 (en) Seismic reinforcement structure for buildings
JP5674338B2 (en) Steel shear wall